

St. Mary's College (Autonomous) Reaccredited with 'A+' Grade by NAAC (Cycle IV) Thoothukudi

Criterion: I – Curricular Aspects 1.1 – Curriculum Design and Development Year: 2018-2023

Programme: B. Sc. Physics

SEMESTER - I					
Core I	Properties of	Matter			
Code: 18UPHC11	Code: 18UPHC11				

Course Outcome:

CO. No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	calculate the acceleration due to gravity at a place.	1 ,	An
CO-2	define stress, strain, Hooke's law and Poisson's ratio	1	Re
CO-3	describe the fundamental concepts of stress and strain and the relationship between both through the stress- strain equations in order to solve the problems for simple tridimensional elastic modes	1 4	Un
CO-4	calculate the elastic constant values of materials which is necessary for beam construction.	1, 6	An
CO-5	sketch the uses of I-form girders	1	Ap
CO-6	describe the properties of fluids such as viscosity, surface tension and capillary rise.	1	Un
CO-7	evaluate the properties and utility of lubricants	1, 6	Ev
CO-8	calculate the surface tension of a liquid	1, 6	Ap

SEMESTER – I				
Core II Mechanics, Wave Oscillations and Acoustics				
Code: 18UPHC12 Hrs/Week: 4 Hrs / Semester: 60 Credits: 4				

CO.	Upon completion of this course, students will be able	PSO	CL
No.	to	addressed	
CO-1	discuss impulse and linear momentum, calculate the change in momentum of an object for the net force acting on the object	1	Un
CO-2	analyze the motion of the projectile that is projected with an initial velocity	1	An
CO-3	calculate the torque and angular momentum for a moving particle	1, 6	An, Ev
CO-4	locate the center of gravity, the line of gravity and the center of pressure of the objects	1, 6	Un, Ev
CO-5	understand the factors affecting atmospheric pressure, variation of atmospheric pressure with temperature, principle of barometer and working of different kinds of barometer	1	Un
CO-6	define simple harmonic motion and discuss the principle of simple harmonic motion and their types	1 '	Re, Un
CO-7	understand how sound is transmitted through building components	1 ()	Un
CO-8	identity, discuss and resolve acoustical problems related to architectural acoustics and acoustic comfort	1, 6	Un, An

SEMESTER I				
Allied Chemistry I				
Code :18UCPA11 Hrs/Week : 4 Hrs/ Sem : 60 Credits : 3				

CO No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO 1	list the rules for filling of electron in orbitals, Recognize conductors, insulators and semiconductors, write the electronic configuration of elements	1, 4	Re, Ap
CO 2	identify methods to purify organic compounds Estimate the amount of Carbon, Hydrogen and sulphur in a sample	1,4,3,7	Un
CO 3	evaluate molecular weight of a chemical compound	1, 2	Cr
CO 4	correlate the importance of colloids in day to day life, develop a basic understanding of emulsions	1,2,3	An, Ev
CO 5	explain different types of molecular velocities and its significance	1,4	Un
CO 6	know basic terms associated with gaseous state and an insight into degrees of freedom and law of equipartition of energies	1.2, 3	Re
CO 7	identify fundamental particles of nuclear isotopes	1, 3, 4	Re
CO 8	learn the basic principles behind nuclear fusion and fission and enumerate its application	1, 2	An

SEMESTER - I					
Ability Enhancement Course - Value Education					
Code: 18UAVE11 Hrs/Week: 2 Hrs / Semester: 30 Credits: 2					

Unit I: Introduction

Value education and its Relevance to present day – Meaning of Value Education

- Education and its role - Leading a fulfilling life of universal values

Unit II: Cultivation of Personal Values

Personal Values— Truth - Honesty and Integrity — Love — Compassion — Gratitude - Courage — Optimism — Friendship

Unit III: Elimination of Negative Emotions

Overcome fear – Jealousy is harmful – Sources of jealousy - Jealousy and compulsiveness- Be an optimist – Gossip is Dynamite – Anger

Unit IV: Family Values

Familial Responsibilities –Five Basic Functions of a Mother - Fathers' role in the family - Five Duties of Children to Parents - Indian Cultural Values

Unit V: Spiritual Value

Cultivating Good Manners – Being Persuasive – Being authentic – Professional Ethics – Work Culture – Code of Conduct

SEMESTER - II				
Core III Thermal Physics and Statistical Mechanics				
Code: 18UPHC21 Hrs / Week: 4 Hrs / Semester: 60 Credits: 4				

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	define temperature, pressure, closed system, reversible and irreversible process	1	Re
CO-2	understand the basic concepts of thermodynamics such as temperature, pressure, properties, closed system, reversible and irreversible process	1	Un
CO-3	understand the transfer of energy	1	Un
CO-4	demonstrate the experiment regarding the measurement of thermal conductivity and specific capacity	1, 2	An
CO-5	calculate the thermal conductivity of a bad conductor	1, 6	An
CO-6	understand the low temperature physics, concerned with the behavior of matter in the temperature regime where quantum effects are dominated		Un
CO-7	create an interest in field of research in low temperature physics	1	Cr
CO-8	employ Fermi-Dirac and Bose-Einstein statistics according to the spin of the particle and compare the three statistics	1	An, Ev

SEMESTER – II					
Core IV Optics					
Code: 18UPHC22	Code: 18UPHC22 Hrs / Week: 4 Hrs / Semester: 60 Credits: 4				

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	understand the theory behind the important properties of light such as reflection, refraction, dispersion, interference, diffraction and polarisation.	1	Un
CO-2	calculate the focal length of lenses in contact and out of contact with each other	1, 6	An
CO-3	determine the refractive index and dispersive power of the material of the prism	1, 2, 6	Ev
CO-4	define the different types of aberrations in lenses and discuss the methods to reduce them	1	Re, Un
CO-5	describe the phenomenon of interference in reflected systems and calculate the refractive index of liquids by forming Newton's rings	1, 2, 6	Un, Ev
CO-6	calculate the thickness of a thin wire by forming interference fringes	1, 2, 6	Ev
CO-7	evaluate the dispersive power and resolving power of a grating and demonstrate experiments with a grating and find the wavelengths of the light used	1, 2, 6	Ev, An
CO-8	acquire knowledge of the polarisation of light and its changes upon reflection and transmission	1	Un

SEMESTER II					
Allied Chemistry II					
Code: 18UCPA21 Hrs/Week: 4 Hrs/Sem: 60 Credits: 3					

CO No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO 1	Differentiate ores and minerals Explain the methods of	1	An,Un,
	purification of ores Know the extracting methods, properties and uses of titanium, vanadium, thorium.		Re
	Titanium tetrachloride, Vanadiumpentoxide, Thorium nitrate.		
CO 2	Synthesise some industrially important organic compounds such as Freon , rayon , polyester , nylon , thiokol Dacron	1, 5	Ev
CO 3	Classify fuels and know its industrial uses	1, 4	Ap
CO 4	Identify the techniques for sterilising water for domestic use	1, 4	An
CO 5	Know the basics of abrasives	1,4	Re
CO 6	Know the principles of volumetric analysis	1,3 , 4	Re
CO 7	Assess error analysis	1	Cr
CO 8	Know the basic concepts of photochemistry and electrochemistry	1,3	Re

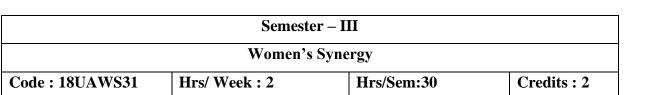
SEMESTER III					
Core V Electricity and Electromagnetism					
Code: 18UPHC31 Hrs./Week : 4 Hrs./Sem : 60 Credits : 4					

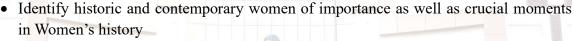
CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	recall Coulomb's law	1	Re
CO-2	discuss potential due to point charge	1	Un
CO-3	apply the principle of potentiometer to measure current and resistance	1,4,6	Ap
CO-4	compare self inductance and mutual inductance	1,4,6	Ev
CO-5	describe eddy current	1	Un
CO-6	construct LCR series and parallel resonance circuit	1,4,6	Cr
CO-7	study the uses of transformer	1,4,6	Ap
CO-8	formulate Maxwell's equations for the propagation of electromagnetic waves	1	Cr

Semester –III						
Allied Mathematics – I						
Code: 18UMAA31	Code: 18UMAA31 Hrs/week: 3 Hrs/Sem: 45 Credits: 2					

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	form the equations from the given roots.	1	Cr
CO-2	Approximate solutions of equations by applying Horner's method and Newton's method	1	Un ,Ev
CO-3	transform equations by increasing, decreasing and multiplying the roots of the equation.	3	An
CO-4	develop and apply concepts of expressions and equations to investigate and describe relationships	7	An
CO-5	demonstrate problem solving skills	3, 8	Cr
CO-6	evaluate eigen values and eigen vectors of square matrices and make use of the properties of determinants in their calculation.	1 .	Un, Ev
CO-7	calculate the radius of curvature by differentiation	1,3	Un, Ev
CO-8	calculate centre and circle of curvature.	1,3	Ev

SEMESTER – III						
Allied Mathematics – II						
Code: 18UMAA32	Code: 18UMAA32 Hrs / Week: 3 Hrs / Semester: 45 Credits: 2					


CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	compute the curl and the divergence of vector fields	1,3	Cr
CO-2	compute the gradient of a scalar valued function	1,3	Cr
CO-3	solve Differential Equations	1	Ev
CO-4	interpret basic definitions and terminology associated with differential equations and their solutions	3	Un
CO-5	classify the differential equations with respect to their order and linearity	1	An
CO-6	solve linear differential equations	1	Ev
CO-7	find complementary functions	1 4	Re
CO-8	evaluate particular integrals of the form e^{ax} , $\sin ax$, $\cos ax$, x^m and $e^{ax}f(x)$	1,3	An,Ev


SEMESTER III				
NME I	Applied Physics I			
Code: 18UPHN31	Hrs/Week: 2	Hrs/Sem : 30	Credits: 2	

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO -1	recall the tools used in the home	3	Re
CO –2	discuss the systems of domestic wiring	3	Un
CO -3	explain the principle of Air Conditioning	3	Un
CO -4	sketch the refrigerating cycle	3	Ap
CO -5	describe the function of a compressor	3	Un
CO -6	understand the theory behind the important properties of light such as reflection, refraction, interference and total internal reflection	1,3	Un
CO -7	discuss the types of optical fibers	2,3	Ev
CO –8	list out the applications of lasers	3	Re

- To know about Women's health issues including menstruation, pregnancy, child birth etc, thereby taking care of themselves.
- Create awareness about their own biases, fears and comfort levels and encourage to dream and fuel their own growth and self development.
- Engage in promoting social justice and women rights
- Create platforms and facilitate the young women to operate symbiotically towards issues affecting their lives and take self initiatives for growth.

SEMESTER IV					
Core VI Electronics and Communication					
Code: 18UPHC41 Hrs/Week: 4 Hrs/Sem: 60 Credits: 4					

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO -1	recall semiconductors	2	Re
CO –2	design a voltage regulator using Zener diode.	2,4,6	Cr
CO –3	construct Colpitt's oscillator, Hartley oscillator.	2,4,6	Cr
CO -4	design a single stage transistor amplifier and an oscillator	2,4,6	Cr
CO –5	list out the types of networks	2	Re
CO -6	differentiate monostable and bistable multivibrator	2,4,6	An
CO -7	describe Satellite Communication	2	Un
CO -8	apply the principle of Doppler effect to Radar	2,3	Ap

SEMESTER - IV						
Allied Mathematics – III						
Code: 18UMAA41	Code: 18UMAA41					

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	identify the difference between partial differential equation and ordinary differential equation	1	An
CO-2	form the partial differential equation	1	Cr
CO-3	classify various types of partial differential equations	3	- Un
CO-4	apply Laplace transform on functions	1	An
CO-5	understand inverse Laplace transform	1	Un
CO-6	solve differential equation using Laplace transform	1	An
CO-7	identify Beta integrals and Gamma integrals	3	An
CO-8	understand the concept of Beta and Gamma functions.	1 3	Un

SEMESTER – IV						
Allied	Allied - Mathematics - IV					
Code: 18UMAA42	Code: 18UMAA42 Hrs / Week: 3 Hrs / Semester: 45 Credits: 2					

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	use the Jacobian to change variables to ease integration	1,3	Un
CO-2	evaluate line integrals	3	Ev
CO-3	set up the regions and integrate double integrals in rectangular and polar coordinates	3	Re, Ev
CO-4	set up and evaluate triple integrals	3	R,E
CO-5	use Green's theorem to evaluate line integrals along simple closed contours on the plane.	1	Cr
CO-6	apply Stokes' theorem to compute line integrals along the boundary of a surface.	1 4	An
CO-7	use Stokes' theorem to give a physical interpretation of the curl of a vector field.	1,3	An
CO-8	use the divergence theorem to give a physical interpretation of the divergence of a vector field.	1,3	An

SEMESTER IV					
Core Skill Based Physics for Competitive Examinations					
Code: 18UPHS41 Hrs./Week: 4 Hrs./Sem: 60 Credits: 4					

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO -1	recall units and dimensions	8	Re
CO –2	solve problems in gravitation and escape velocity	1,8	An
CO –3	solve problems in magnetic effect of current	1,8	An
CO -4	solve problems in Surface Tension and Viscosity	1,8	An
CO -5	solve problems related to Kirchhoff's laws & Steady current	1,8	An
CO –6	solve problems in Electrostatics & Electric potential	1,8	An
CO -7	solve problems in Electromagnetic Induction	1,8	An
CO –8	solve problems in Zener diode & Transistor	2,8	An

SEMESTER V				
Common Core Core VII - Solid state and Material Science				
Code: 18UPCC51 Hrs/Week: 6 Hrs/Sem: 90 Credits: 4				

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	understand the basic symmetry elements and operations of crystals	1, 2	Un
CO-2	distinguish the types of crystals and enumerate the various crystal imperfections	3,4	An
CO-3	get a clear knowledge about metallic glasses, ceramics and biomaterials.	1, 3, 5,7, 8	Re
CO -4	justify the wave nature of matter and its experimental study	1,3	Ev
CO –5	apply Bragg's law for x –ray study	2 (Ap
CO –6	distinguish magnetic materials based on susceptibility	1,2	An
CO –7	use magnetic materials in various field	1,2	Ap
CO –8	discuss the synthesis methods of nano materials	2,3	Un

SEMESTER V					
Core VIII	Core VIII Digital Electronics				
Code: 18UPHC52 Hrs/Week: 5 Hrs/Sem: 75 Credits: 4					

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO -1	define binary numbers	2	Re
CO –2	explain number system	2	Un
CO -3	construct logic gates	2, 4,6	Cr
CO -4	recall the fundamental concepts and techniques used in digital electronics	2	Re
CO –5	analyze the construction of shift register	2,5	An
CO -6	design registers, interpret logic functions, circuits and truth tables.	2, 4	Cr
CO -7	design counters, understand the concepts of decimal number system.	2,5	Cr
CO –8	differentiate A/D and D/A conversions	2, 4	An

SEMESTER V					
Core IX Computational Physics					
Code: 18UPHC53 Hrs/Week: 5 Hrs/Sem: 75 Credits: 4					

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
	utilize their knowledge of C++ programming language		
CO -1	and write programs for solving various problems in	6,8	Ap
	physics		
CO -2	design a program for operator overloading	6	Cr
CO -3	distinguish between one dimensional and two dimensional arrays	6	An
CO -4	define various types of constructors	6	Re
CO –5	design a simple C++ program for function	6	Cr
CO –6	define a class	6	Re
CO -7	differentiate constructors and destructors	6	An
CO –8	solve the problem in Bisection method	6, 8	An

SEMESTER V					
Core Integral I	Core Integral I Renewable Energy Sources				
Code :18UPHI51					

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO -1	construct solar ponds for water desalination, solar cookers and solar green houses	7, 5	Cr
CO -2	assess the working of windmills used for power generation	7	Ev
CO –3	list the renewable energy sources available in surplus	7 ,	Re
CO -4	explain different types of solar water heaters	7,5	Un
CO –5	sketch out the classifications of WEC system	7	Ap
CO –6	recall Green house effect	7	Re
CO -7	discuss Energy audit	7	Un
CO –8	design KVIC plants for bio gas generation	7	Cr

Semester - V					
Common Skill Based Core Computer for Digital Era and Soft Skills					
Code: 18UCSB51 Hrs / Week: 2 Hrs / Sem: 30 Credits: 2					

- Identify different types of computer systems.
- Classify various types of software being used.
- Compare various digital payments and use them in day to day life.
- Recognise the innovative technologies IoT and integrate it in various fields.
- Analyze various social networking platforms and use them efficiently.
- Distinguish various cyber attacks and apply preventive measures.
- Understand the various soft skills needed to become successful.
- Analyze self and adapt oneself to work in a team.

SEMESTER VI						
Core XI	Core XI Nuclear and Particle Physics					
Code :18UPHC62						

Vision: To enrich our students with the knowledge of nuclear and particle physics

Mission: To study the properties of α , β , γ rays, process of radioactivity and its applications

and various detectors

Course Outcome:

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO -1	recall the structure of nuclei	2	Re
CO -2	understand simple nuclear models	2 9	Un
CO –3	explain properties of α, β, γ rays and their decay	2	Un
CO -4	analyze the key features of nuclear fission and its applications	2	An
CO –5	analyze the key features of nuclear fusion and its applications	2	An
CO -6	understand the principle and working of particle accelerators	2	Un
CO -7	understand the principle and working of particle detectors	2	Un
CO -8	describe the constituent particles in the electron, proton and neutron	2	Un

SEMESTER VI				
Core XII Opto Electronics & Fibre Optic Communication				
Code :18UPHC63				

Course (Jutcome:		
CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO -1	recall the basic principles of semiconductors	2	Re
CO -2	understand the formation of energy bands of semiconductors	2	Un
CO -3	list out the optical characteristics of semiconductors	2	Re
CO -4	explain the principle and working of optical sources	2	Un
CO –5	categorise the optical detectors and their principles	2	An
CO –6	analyze and classify the structure of optical fibres, its types and various optical losses	2	An
CO -7	understand the basics of signal propagation through optical fibres	2	Un
CO –8	understand the types and various optical losses	2	Un

SEMESTER VI					
Core Integral II Advanced Physics					
Code :18UPHI61					

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO -1	recall laser and its applications in medicine industry	3	Re
CO –2	list out the applications of Holography	3	Re
CO –3	solve arithmetic operations using 8085	5,6	An
CO -4	draw 8085 MPU	5,6	An
CO –5	formulate a program to write two hexadecimal numbers using 8085	5,6	Cr
CO –6	discuss BCS theory	2	Un
CO -7	assess the usage of Superconductors	3	Ev
CO –8	list the materials and its properties for nuclear and space applications	2	Re

SSR Cycle V Criterion I

(0)

SEMESTER- I Core I Mechanics and Properties of Matter Course Code: 21UPHC11 Hours/Week: 6 Hrs/ Semester: 90 Credits: 5

Course Outcomes:

CO.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	discuss the principle of conservation of energy and linear momentum (K2)	1	Un
CO-2	calculate the change in momentum of an object for the net force acting on the object (K3)	1	Ap
CO-3	analyse the motion of the projectile (K4)	41	An
CO-4	outline the fundamental concepts of stress and strain (K4)	1	An
CO-5	prove the relation connecting the three modulo of elasticity (K5)	1	Ev
CO-6	recall viscosity, coefficient of viscosity and surface tension (K1)	1	Re

 \bigcirc

SEMESTER- I					
SEC I	SEC I Professional English for Physics – I				
Course Code: 21UPHPE1	Hrs./Week : 2	Hrs./Sem : 30	Credits: 2		

COURSE OUTCOMES:

CO. No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	draw flowcharts and mind maps (K1)	5	Re
CO-2	apply their own ability to improve their own competence in using the language (K3)	5	Ap
CO-3	criticise the use of language to speak with confidence (K5)	5	Ev
CO-4	discuss the importance of reading for life (K2)	5	Un
CO-5	write independently unfamiliar texts with comprehension (K1)	5	Re
CO-6	outline the importance of writing in academic life (K4)	5	An

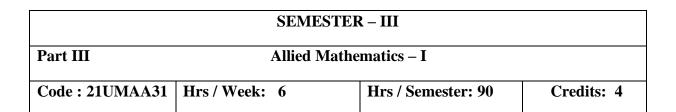
SEMESTER- II					
CORE II	CORE II Thermal Physics and Optics				
Course Code: 21UPHC11	Course Code: 21UPHC11 Hours/Week: 6 Hrs/ Semester: 90 Credits: 5				

COURSE OUTCOMES:

CO. No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	recall the laws of thermodynamics to understand the concepts of transport phenomenon (K1)	1	Un
CO-2	discuss the transfer of energy through conduction, convection and radiation (K2)	1	Re
CO-3	demonstrate and conductor (K3) determine the thermal conductivity of a bad	1	Ap
CO-4	categorize the different types of aberrations in lenses (K4)	1	An
CO-5	evaluate the thickness of a thin wire by forming interference fringes (K5)	1	Ev
CO-6	summarise the knowledge on polarisation of light and its changes upon reflection and transmission (K2)	1	Un

SEMESTER- II				
SEC II	SEC II Professional English for Physics – II			
Course Code: 21UPHPE2	Hrs./Week: 2	Hrs./Sem : 30	Credits: 2	

COURSE OUTCOMES:


CO. No.	No. Upon completion of this course, students will be able to		CL
CO-1	discuss in small groups based on the listening and reading passages (K2)	5	Un
CO-2	identify the articles, prepositions and pronouns in the given passages (K1)	5	Re
CO-3	apply the acquired vocabulary knowledge in their writing skills (K3)	5	Ap
CO-4	simplify the given comprehension (K4)	5	An
CO-5	argue on digital competence for academic and professional life (K5)	5	Ev
CO-6	write slogans and captions (K1)	5	Re

 \bigcirc

SEMESTER III				
Core III	Core III Electricity and Electromagnetism			
Course Code: 21UPHC31	Hrs./Week: 4	Hrs./Sem: 60	Credits: 4	

Course Outcome:

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	recall Current, Ohm's law and Kirchoff's law (K1)	1	Re
CO-2	apply Kirchoff's law to Wheatstone's network (K3)	1,6	Ap
CO-3	apply the principle of potentiometer to measure current and resistance (K3)	1,6	Ap
CO-4	compare self inductance and mutual inductance (K4)	1,6	An
CO-5	compare LCR series and parallel resonance circuit (K2)	1,6	Un
CO-6	evaluate the value of capacitance using Desauty's bridge (K5)	1,6	Ev

CO.No.	Upon completion of this course, students will be able to	POs addressed	CL
CO-1	the equations from the given roots & approximate solutions of equations by applying Horner's method and Newton's method	1	± Un=
CO-2	develop and apply concepts of expressions and equations to investigate and describe relationships	5	An
CO-3	evaluate eigen values and eigen vectors of square matrices and make use of the properties of determinants in their calculation.	3	Ev
CO-4	calculate the radius of curvature, centre and circle of curvature.	5	Ev
CO-5	compute the gradient of a scalar valued function ,curl,and divergence of vector fields	3	Cr
CO-6	interpret basic definitions and classify the differential equations with respect to their order and linearity	1	Un

SEMESTER III				
NME I	NME I Applied Physics I			
Course Code: 21UPHN31	Hrs./Week: 2	Hrs./Sem : 30	Credits: 2	

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO -1	identify tools used in the home (K1)	4	Re
CO -2	discuss the systems of domestic wiring (K2)	4	Un
CO –3	sketch the refrigerating cycle (K4)	4	An
CO -4	explain the function of a compressor (K2)	4	Un
CO -5	classify the types of emission of laser (K3)	40	Ap
CO -6	apply the application of laser in various fields (K3)	4	Ap

Semester – III				
	Women's Synergy			
Code: 18UAWS31 Hrs/ Week: 2 Hrs/Sem:30 Credits: 2				

- To know about Women's health issues including menstruation, pregnancy, child birth etc, thereby taking care of themselves.
- Create awareness about their own biases, fears and comfort levels and encourage to dream and fuel their own growth and self development.
- Engage in promoting social justice and women rights
- Create platforms and facilitate the young women to operate symbiotically towards issues affecting their lives and take self initiatives for growth.
- Identify historic and contemporary women of importance as well as crucial moments in Women's history

/		\
٠.	$\overline{}$)
	\smile	

SEMESTER IV					
Core IV Electr	Core IV Electronics and Communication				
Course Code: 21UPHC41 Hrs/Week:4 Hrs/Sem:60 Credits:4					

CO. No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO -1	recall semiconductors (K1)	2	Re
CO –2	explain a universal divider bias (K2)	2	Un
CO –3	construct inverting and non inverting amplifier (K3)	2, 6	Ap
CO <u>-4</u>	summarize the types of networks (K2)	2	Un
CO -5	prove Thevenin's and Norton's theorem (K5)	2, 6	Ev
CO –6	outline the principle of amplitude modulation reception (K4)	2	An

SEMESTER-IV					
Part III Allied Mathematics-II					
Code: 21UMAA41	Code: 21UMAA41 Hrs/Week: 6 Hrs/Sem: 90 Credits: 4				

CO.No.	Upon completion of this course, students will be able to	POs addressed	CL
CO-1	identify the difference between partial differential equation and ordinary differential equation	1	An
CO-2	classify various types of partial differential equations and form the partial differential equation	3	Un
CO-3	solve differential equations using Laplace transform	5	An
CO-4	set up the regions and integrate double integrals in rectangular and polar coordinates.	20	Ev
CO-5	use Green's theorem to evaluate line integrals along simple closed contours of the plane	3	Cr
CO-6	identify and understand the concept of Beta integrals and Gamma integrals	2	Ap

/		╮`
/	\bigcirc	1
	\cup	-)

SEMESTER IV					
Skill Based Elective Phys	Skill Based Elective Physics for Competitive Examinations				
Course Code: 21UPHS41 Hrs./Week: 2 Hrs./Sem: 30 Credits: 2					

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO -1	evaluate the problems in gravitation and escape velocity (K5)	4	Ev
CO –2	recall surface tension and viscosity (K1)	4	Re
CO –3	discuss the laws of thermodynamics (K2)	4	Un
CO -4	distinguish the interference from diffraction (K4)	4	An
CO –5	apply Kirchhoff's laws to solve problems (K3)	4	Ap
CO -6	explain problems in electromagnetic induction (K2)	4	Un

SEMESTER V				
Core V (Common Core) Material Science				
Course Code : 21UPCC51 Hrs./Week :6 Hrs./Sem :90 Credits :5				

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO – 1	identify the basic symmetry elements and operations of crystals, distinguish the types of crystals and enumerate the various crystal imperfections (K1)	_	Re
CO – 2	rank the properties of new materials like metallic glasses, shape memory alloys, high temperature materials, smart materials and biomaterials and apply them in various walks of life (K5)	2	Ev
CO – 3	justify the wave nature of the matter and its experimental study(K5)	2	Ev
CO – 4	distinguish magnetic materials based on susceptibility(K4)	2,1	An
CO – 5	summarise the uses of magnetic materials in various field (K2)	2,1	Un
CO-6	outline the synthesis methods of nano materials(K4)	2,4	An

	\sim	/
	(\bigcirc))
/		IJ

SEMESTER V					
Core VI Digital Electronics					
Course code: 21UPHC51	Course code: 21UPHC51				

Course O	course Outcome:				
CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL		
CO -1	recall binary numbers (K1)	2,6	Re		
CO –2	summariase the functions of encoder and decoder (K2)	2,6	Un		
CO –3	construct logic gates (K3)	2, 6	Ap		
CO -4	analyse the construction of counters and shift register (K4)	2,6	An		
CO –5	distinguish A/D from D/A conversions (K4)	2, 6	An		
CO-6	prove De Morgan's laws (K5)	2,6	Ev		

SEMESTER -V				
Core VII Computational Physics				
Course Code: 21UPHC52 Hrs./Week: 5 Hrs./Sem: 75 Credits: 5				

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO -1	describe programs for solving various problems in physics (K1)	4	Re
CO -2	distinguish between one dimensional and two dimensional arrays (K4)	4	An
CO –3	summaries the various types of constructors (K2)	4	Un
CO -4	design a simple c++ program for function (K1)	4	Re
CO –5	test the program to write two hexadecimal numbers using 8085 (K5)	43	Ev
CO –6	solve arithmetic operations using 8085 (K3)	4	Ap

٢.	$\overline{}$. `
/	_	\
	\cap	١.
	\cup	- 1

SEMESTER V				
Core Elective Renewable Energy Sources				
Course Code: 21UPHI51 Hrs/Week:4 Hrs/Sem:60 Credits:4				

Course O	Course Outcome:				
CO.No.	o. Upon completion of this course, students will be able to		CL		
CO –1	construct solar cooker (K3)	3	Ap		
CO -2	analyse the working of windmills used for power Generation (K4)	3	An		
CO –3	list the renewable energy sources available in surplus (K1)	3	Re		
CO -4	explain different types of solar water heaters (K2)	3	Un		
CO –5	sketch out the classifications of wave system (K3)	3	Ap		
CO –6	recall green house effect (K1)	3	Re		

SEMESTER – V				
Core Elective Mathematical Physics				
Course Code: 21UPHE52 Hrs / Week: 4 Hrs / Semester: 60 Credits: 4				

CO.No.	Upon completion of this course, students will be able to	PSO addressed	- CL
CO-1	recall scalar and vector function (K1)	6	Re
CO-2	discuss curl and divergence of a vector function (K2)	6	Un
CO-3	apply the fundamental properties of determinants (K3)	6	Ap
CO-4	evaluate problems in Fourier series (K5)	6	Ev
CO-5	analyse problems in Fourier transform (K4)	6	An
CO-6	discuss the properties of Laplace transform (K2)	6	Un

Semester - V				
Common Skill Based Core Computer for Digital Era and Soft Skills				
Code: 21UCSB51	Hrs / Week: 2	Hrs / Sem : 30	Credits: 2	

- Identify different types of computer systems.
- Classify various types of software being used.
- Compare various digital payments and use them in day to day life.
- Recognise the innovative technologies IoT and integrate it in various fields.
- Analyze various social networking platforms and use them efficiently.
- Distinguish various cyber attacks and apply preventive measures.
- Understand the various soft skills needed to become successful.
- Analyze self and adapt oneself to work in a team.

SEMESTER VI			
Core VIII Relativity and Quantum Mechanics			
Course Code :21UPHC61			

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO -1	describe Michelson –Morley experiment (K1)	2	Re
CO -2	summarise the postulates of special theory of relativity (K2)	2	Un
CO –3	outline the De Brogli's hyposthesis for the dualistic nature of matter waves (K4)	2	An
CO -4	relate the uncertainty condition between displacement and momentum; energy and time (K3)	2	Ap
CO -5	prove Bohr's quantization condition for angular momentum (K5)	2	Ev
CO -6	apply to Schrodinger equation to 1D and 3D physical (K3)	2	Ap

	' '
\bigcirc	1
\cup	-)

SEMESTER VI				
Core IX Atomic and Nuclear Physics				
Course Code: 21UPHC62 Hrs./Week: 4 Hrs./Sem: 60 Credits: 3				

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO -1	recall the structure of atoms (K1)	2	Re
CO -2	understand the structure of nucleus and nuclear models (K2)	2	Un
CO -3	distinguish the properties of α , β , γ rays and their decay (K4)	2	An
CO -4	analyze the key features of nuclear fusion and fission (K3)	2	Ap
CO –5	evaluate half life, mean disintegration (K5) life, amount of substance left after	2	Ev
CO –6	discuss the principle and working of particle accelerators and detectors (K2)	2	Un

SEMESTER VI					
Core X Opto Elect	Core X Opto Electronics & Fibre Optic Communication				
Course Code: 21UPHC63 Hrs/Week:4 Hrs/Sem:60 Credits:4					

CO.No.	Upon completion of this course, students will be able	PSO addressed	CL
CO -1	recall the basic principles of semiconductors (K1)	2	Re
CO -2	explain the formation of energy bands of semiconductors (K2)	2	Un
CO –3	outline the optical characteristics of semiconductors (K4)	2	An
CO -4	classify optical detectors (K3)	2	Ap
CO -5	analyze and classify the structure of optical fibres, its types and various optical losses (K4)	2	An
CO -6	outline the different types of optical losses (K4)	2	An

SEMESTER VI								
Core XI Advanced Physics								
Course Code :21UPHC64	Hrs./Week: 4	Hrs./Sem: 60	Credits: 4					

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO –1	recall the fundamentals of laser (K1)	4	Re
CO -2	summarise the applications of laser drilling (K2)	4	Un
CO -3	classify the polymers(K3)	4	Ap
CO –4	outline the structure of polymers (K4)	4	An
CO –5	criticize BCS theory (K5)	4 4	Ev
CO –6	discuss the materials and their properties for nuclear and space applications (K2)	4	Un

Principal
St. Mary's College (Autonomous)
Thoothukudi-628 001.