

Programme: M. Sc. Botany

SEMESTER I				
Core I Plant Diversity I (Algae, Bryophyte, Fungi and Lichen)				
Course Code:21PBOC11	Hrs/week: 6	Hrs/Semester: 90	Credit: 4	

Course Outcome

CO. NO	Upon completion of this course, students will beable to	PSO addressed	CL
CO-1	illustrate the distinguishing features of algae, bryophytes, fungi and lichens and appreciate their uniqueness	1, 2	Un, Re
CO-2	compare the status of cryptogams in evolution of advanced plant groups	1, 2	An
CO-3	illustrate the basic skills and critique the role of algae, fungi, lichen and bryophytes in their everyday life and environment	5, 6	Ap, Ev
CO-4	implement the practical knowledge to identify a particular group from a mixed group in the laboratory and in the field	6	Ар
CO-5	indicate the adaptive features of cryptogams to their habitats	1, 2, 7	Un
CO-6	relate the phylogenetic relationship between the different plant groups	1, 2	Un

Criterion I

Core II

Plant Microbe Interaction

Course Code: 21PBOC12

Hrs/week: 6 Hrs/Semester: 90

Credits: 4

Course Outcomes

CO.No	Upon completion of this course, students will be able to:	PSO	CL
		addressed	
CO-1	perform the techniques of isolation, characterization and measure	4	Re
	the growth of bacteria		
CO-2	differentiate the mode of action of antibiotics	3	An
CO-3	outline the stages of disease pyramids and disease cycle.	2	An
CO-4	know about the enzymes involved in plant diseases	3	Re
CO-5	understand the basic principles related to plant diseases.	2	Un
CO-6	differentiate the general symptoms of bacterial disease, viral diseases and fungal disease	6	Un

SSR Cycle V

Criterion I

Semester I			
Core III Bioinstrumentation and Research Methods			
Course Code: 21PBOC13	Hrs/week: 5	Hrs/Semester: 75	Credits: 4

C

CO.No	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	acquaint with different tools and techniques essential for research work	6	Cr
CO-2	understand the fundamentals of statistics and statistical analysis	4	Un
CO-3	do statistical analysis and communicate the results of statistical analyses accurately and effectively	4	Ap
CO-4	examine the basic framework of research process and able to learn how to address research problem and what is to be done to solve it.	6	An
CO-5	communicate the research findings to the scientific forums	6	Cr
CO-6	develop an understanding of the ethical dimensions of conducting applied research	7	An

Criterion I

Semester I			
Core IV Phytochemistry and Pharmacognosy			
Course Code: 21PBOC14	Hrs/week: 5	Hrs/Semester: 75	Credits: 4

CO. No.	Upon completion of this course, students will be able to	PSO's addressed	CL
CO-1	confirm the promising role of the phyto constituents	8	Re
	as cytotoxicity and substantiate them for the treatment		
	offatal diseases		
CO-2	understand the importance of secondary metabolites	3	Un
	and relate them in treating the ailments		
CO-3	identify and categorize medicinal potential of	3	Ap
	herbs based on their chemical constituents and		
	therapeutic applications		
CO-4	extract essential oils from natural resources and utilize	7,8	Aa
	them effectively as pharamaceuticals and cosmeticals		1000000
CO-5	evaluate the purity of the drugs and able to detect	2,4	Ev
	adulterations and substitutions		
CO-6	screen and elucidate various pharmacologically	4	Ev
	important phyto constituents to ascertain its medical		
	quality	4	

Criterion I

SEMESTER II			
Core V Plant Diversity II (Pteridophytes, Gymnosperms and Paleobotany)			
Course Code: 21PBOC21	Hrs/week: 5	Hrs/Semester: 75	Credit: 4

C

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	appreciate the uniqueness and distinguish between diverse groups of Pteridophytes and Gymnosperms using their characteristic features	1,2	Un, An
CO-2	discuss different lifecycle patterns in different groups	1,2	An
CO-3	know the basic skills and techniques in micro preparation and formulate methods to identify different groups	1,6	Ар
CO-4	know the evolutionary significance of Pteridophyte	1,2	Un
CO-5	compare and contrast the origin and evolution of steles, foliage, seed and seedless plants.	4,8	Ev
CO-6	review critically the biology, ecology of fossils and methods of fossilization.	1,7	Un

Criterion I

SEMESTER II			
Core VII Developmental Botany			
Course Code: 21PBOC23	Hrs/week: 5	Hrs/Semester: 75	Credit: 4

CO. No	Upon completion of this course ,students will be able to	PSO addressed	CL
CO-1	understand the overview of essential aspects of development and know how embryo arises and the	3, 4	Un
	nature of signals thatguidecomplexpatternsof growth and differentiation in the embryo		
CO-2	explore and illustrate how the molecular and genetic approaches provide an insight into the mechanism that translate cues into organized pattern growth and development	4	Re, Un
CO-3	role of shoot and root apical meristem in vegetative growth and development	3	Re, Un
CO-4	know the biochemical and physiological changes associated with the development of sex organs, fertilization events and fruit development	4	Un, Ap
CO-5	know how the intrinsic programmes of development coupled to external influences such as nutrient levels, energy inputs and environmental signals.	4	Un
CO-6	acquire hands on training experience related to the course.	4	Re

SEMESTER – II			
Core VIII Genetics and Bioinformatics			
Course Code:21PBOC24	Hrs/Week: 4	Hrs/Sem: 60	Credits: 4

CO. No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	associate the physical basis of heredity and the mode of inheritance of a character	2	Un
CO-2	predict the unknown phenotype and genotype in a partially known pedigree	4	Ap
CO-3	understand various chromosomal aberrations and	1, 2	An,
	various chromosome banding techniques,		Un
CO-4	comprehend the operations in population genetics and	2, 4	Un,
	develop skill in map a gene and measure the distance		Ap
	between two genes		
CO-5	predict gene of unknown sequences, similarity	1, 4	An, Ap
	betwe <mark>en sequences,</mark> protein structure, phylogenetic		
	relationshipsbetween large groups using genomic data	1	
CO-6	learn barcoding techniques and sequence submission	1,2	An, Un

Criterion I

SEMESTER III				
Core IX Biochemistry and Biophysics				
Course Code: 21PBOC31	Hrs/week: 6	Hrs/Semester: 90	Credits:4	

CO.No.	Upon completion of this course, students will be able to	PSO	CL
		addressed	
CO-1	study the polymeric biomolecules and their monomeric	1,2	Re
	building blocks		
CO-2	illustrate that living organisms and biological system	1,3	Re
	interact via molecular connection		
CO-3	able to realise the importance of structural configuration of	1,6	Re
lad later	biomolecules and their atomic rearrangement with respect		
	to their functions		- 1 -
CO-4	outline enzyme groups and nomenclature that be able to	2,3	An
	explain the specificity of enzyme's role and also detect the		
	source, and chemistry of vitamins and symptoms specific to		
	their deficiency		388
CO-5	set up and operate variety of experiments and analyse data	3,4	Ар
	accompanied by problem solving and recording.		
CO-6	draw electromagnetic spectrum and understand the	3,7	Ap,
	properties of light, enabling to explain that light energy is		Cr
	needed by plant and that is transformed in biochemical	1.8	1
	system as governed by the laws of thermodynamics		
		and the second	

Criterion I

SEMESTER III				
Core X Taxonomy of Angiosperms				
Course Code:21PBOC32	Hrs/week:6	Hrs/Semester: 90	Credit:4	

CO. No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	understand the rules of botanical nomenclature and taxonomical hierarchy that enable to organize the plant based on the hierarchical system	1	Ap
CO-2	apply scientific literature for identifying and grouping of underrepresented plants in the taxonomic literature and gain hands on working experience in describing the floristic feature of the plants of specified families and make sketches of that.	4, 1	Re, An
CO-3	outline different systems of classification and recall the contribution of taxonomist/naturalist in plant systematic	1	Un
CO-4	compare the traditional and modern system of classification and report its merits and demerits and recognize how the role of cytology, embryology, phytochemistry and molecular biology of plants help to authenticate the identity of plants	1, 3	Ар
CO-5	realize the importance of taxonomical literature (flora, monograph, botanical gardens, herbarium and government organization) and utilize them for plant identification and conservation.	2	Un
CO-6	apply effectively the traditional and modern tool (Keys, interactive keys, e-flora, digital herbarium) to develop skill in plant identification	4	Un

Criterion I

SEMESTER - III				
Core XI Molecular Biology and Genetic Engineering				
Course Code: 21PBOC33	Hrs/week: 5	Hrs/Semester: 75	Credits: 4	

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	discuss the chemistry of genetic material and details of	1	Un, An
	its replication at molecular level and analyze how errors		
	during replication are repaired		
CO-2	infer complexity of gene expression in eukaryotes over		
	prokaryotes and compare gene regulation mechanisms	2, 4	Un, An
· / /////	at various levels by which they can learn how it controls		
	growth and development of an organism		
CO-3	illustrate the principles of genetic engineering and	2 -	Un, An
	investigate the basic steps of gene cloning		
CO-4	indicate the role of enzymes and vectors responsible for		
	gene manipulation, transformation and genetic	1	Un
	engineering	ų.	
CO-5	investigate and critique the different types of gene	2, 3	An, Ev
	transfer methods employed in gene cloning process		
CO-6	implement the advanced techniques in genetic	1	
	engineering, present the different strategies of	7	Ap
	recombinant DNA technology and resolve the problems	and the second	L.A.
	encountered		des :

SEMESTER - IV				
Core: XIII Plant Physiology				
Course Code: 21PBOC41	Hrs/week: 6	Hrs/Semester : 90	Credits: 5	

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	understand the effect of the soil-plant-water continuum (SPWC) and assess the need of mineral nutrients and symptoms specific to nutrient deficiency.	2, 6	Un
CO-2	discuss how root structure and functions influence the transfer of inorganic nutrients from the soil into the plants,	3	Un
CO-3	analyse the mechanism of assimilation of inorganic molecules into organic molecular components and lightenhanced photochemical reactions that culminatesin the synthesis of ATP and NADPH and fixation of carbon dioxide into organic compounds	3	Un
CO-4	describe respiration with its associated carbon metabolism and releasing of energy stored in chemical bonds in a controlled manner for cellular use	3	Re
CO-5	review systematically how plant's manage physiologically with respect to environmental stress and remark on the hormone controlled and light mediated morphogenetic events in plants.	3	Cr
CO-6	design and conduct scientific experiments and analyze the data critically	6	Cr

Criterion I

SEMESTER IV			
Core XV	Plant Biotechno	logy	
Course Code: 21PBOC43	Hrs/week: 4	Hrs/Semester: 60	Credits:4

CO. No.	Upon completion of this course, students will be able to	PSO	CL
		addressed	
CO - 1	comprehend the basic principal of in-vitro tissue culture	3	Re
	and develop skills in methods of tissue culture.	J	Un
CO - 2	substantiate tissue culture is the viable option for the conservation of endangered plants	4	Re
CO - 3	grasp the techniques of mass cultivation of biofertilizer		
	and defend biofertilizer a boon to sustainable agriculture	3	Un
CO - 4	categories different methods of synthesis of	3	Un
	nanoparticles and understand the wide range of	5	
	application of nanotechnology.		
CO - 5	describe what is plant molecular farming and highlight		
	that transgenic plants are bioreactor for production of	4	Ap
	quality protein and other metabolites valuable to		
	medicine and industries?		
CO - 6	utilize transferable skills obtained through the course for		
	the professional accomplishment	1.	Re
A second s			

Criterion I

SEMESTER – IV					
Core Elective	Nanobiotechnology				
Course Code: 21PBOE42	Hrs/Week: 4	Hrs/Semester: 60	Credits: 4		

0

CO.No.	Upon completion of this course, students will be able to	PSO's Addressed	CL
CO-1	understand the fundamental principles of nanotechnology and types of nano particle	3	Un
CO-2	apply engineering and physics concepts to the nano- scale and non-continuum domain.	4	Cr
CO-3	understand the wide range of applications of nanotechnology and its interdisciplinary aspect	2	Re
CO-4	applyandtransferinterdisciplinarysystemsengineeringapproachestothefieldofbio-andnanotechnologyprojects </td <td>3.</td> <td>Re</td>	3.	Re
CO-5	practice and explain state-of-the-art characterization methods for nanomaterials, understanding and critiquing nanomaterial safety and handling methods required during characterization and its applications in the various field like bioengineering, biomedicine and agricultural/environmental issues	4	An
CO-6	correlate the impact of nanotechnology and nanoscience in a global, economic, environmental, and societal context and identify career paths at the interface of nanotechnology, biology, environmental and agricultural engineering and medicine	6, 7	En

Luis Rose

Principal St. Mary's College (Autonomous) Theothukudi-628 001.

Criterion I

SSR Cycle V

 \bigcirc