

SEMESTER -I

CORE I DESI	GN AND ANALYSIS	OF ALGORITHMS	
Course Code:21PCSC11	Hrs/week:5	Hrs/Semester:75	Credits:4

Course Outcomes:

CO.No.	Upon Completion of this course, students will be able to	PSOs Addressed	CL
		Auuresseu	
CO-1	understand the running time and space complexity of	1	Un
	algorithms using asymptotic analysis.		
CO-2	apply divide and conquer to binary search, quick sort,	1,7	Ар
	merge sort.		
CO-3	analyze greedy method to knapsack problem, prims,	1,7	An
	kruskal algorithms.		
CO-4	apply dynamic programming to optimal binary search	1,7,4	Ар
	trees,0/1 knapsack problem and different tree traversals		
CO-5	perform Backtracking to n-queen problem, sum of subsets	1,7	Ар
	problem, graph coloring etc.		
CO-6	apply branch and bound to Travelling sales person	1,7	Ар
	problem, 0/1 knapsack problem.		

Criterion I

DIGITAL IMAGE PROCESSING USING MATLAB

Course Code: 21PCSC12 Hrs/Week: 5

Hrs/Sem: 75

Credits: 4

Course Outcomes:

CORE II

CO. No.	Upon Completion of this course, students will be able to	PSOs Addressed	CL
CO-1	develop programming skills and techniques to solve mathematical problem.	8	Ар
CO-2	learn graphic features of MATLAB and they are able to use this feature effectively in the various applications	6	Ap
CO-3	learn different techniques employed for the enhancement of images.	5	Un
CO-4	interpret Image compression, segmentation and representation standards	7	An
CO-5	choose image filtering in various applications	8	Ap
CO-6	analyze different causes for image degradation and overview of image restoration techniques.	7	An

Criterion I

SEMESTER – I				
CORE III MATHEMATICAL FOUNDATIONS FOR COMPUTER SCIENCE				PUTER SCIENCE
Course Code :	21PCSC13	Hrs / Week : 4	Hrs / Sem : 60	Credits : 4

Course Outcomes:

CO. No.	Upon Completion of this course, students will be able to	PSOs Addressed	CL
CO-1	test the complementary relationship of skewness with measures of central tendency and dispersion in describing a set of data.	2	An
CO-2	apply 'moments' as a convenient and unifying method for summarizing several descriptive statistical measures.	2	Ap
CO-3	analyze the strength and direction of a linear relationship between two variables using Correlation.	2	An
CO-4	demonstrate how much a dependent variable changes based on adjustments to an independent variable using regression.	2	Ap
CO-5	discover the logical operations and predicate calculus needed for computing skill.	2	An
CO-6	understand the application of various type of graphs in real life problem.	2	Un

Criterion I

SEMESTER -I

CORE IV

COMPILER DESIGN

Course Code:21PCSC14

Hrs/week:4 Hrs/Semester:60

Credits:4

Course Outcomes:

CO. No	Upon Completion of this course, students will be able	PSO	CL
	to	addressed	
CO-1	understand the basic principles of compiler in high level programming language	1,5	Un
CO-2	represent language tokens using regular expressions, finite automata	5	An
CO-3	apply parsing techniques and able to write Context Free Grammars for various languages	5	Ap
CO-4	apply the knowledge of intermediate code generation to build efficient systems	5	Ap
CO-5	understand the need of intermediate representation for the generation of target code by applying code optimization techniques	5	Ap
CO-6	apply machine independent optimization technique to intermediate code and generate machine code for high level programming language.		Ар

Criterion I

SEMESTER – I

ELECTIVE I A- ADVANCED COMPUTER ARCHITECTURE

Course Code : 21PCSE11

Hrs / Week : 4 Hrs / Sem : 60

Credits : 4

Course Outcomes:

CO. No	Upon Completion of this course, students will be able to	PSOs	CL
		Addressed	
CO-1	understand the fundamental of computer structure.	5	Un
CO-2	perform computer arithmetic operations.	2	Ap
CO-3	apply the concept of cache mapping techniques.	8	Ap
CO-4	correlate the performance of I/O device	2	An
CO-5	conceptualize instruction level parallelism and Analyze	7	An
	different types of pipeline hazard		
CO-6	analyze performance issues in processor and memory	7	An
100000	design of a digital computer.		

SSR Cycle V

Criterion I

0)

	1		
	Υ.		
÷	-	-	
╰			∕

SEMESTER-I

ELECTIVE I B- CRYPTOGRAPHY AND NETWORK SECURITY

Course Code: 21PCSE12 | Hrs / week :4

Hrs / Sem: 60

Credits :4

Course Outcomes:

CO. No.	Upon Completion of this course, students will be able to	PSOs	CL
		Addressed	
CO-1	understand the fundamental concepts of various	6,2	Un
	encryption techniques		
CO-2	demonstrate the process to maintain the Confidentiality,	6	Ар
	Integrity and Availability of data		
CO-3	distinguish between various algorithms for network	4	An
	security to protect against the threats in the networks		
CO-4	apply the concept of Public key cryptography and analyze	2,3	Ap
	solutions for effective key management and distribution		
CO-5	apply and manage to secure a message over insecure	6,3	Ap
	channel by various means		
CO-6	identify and apply the functional IP network security to	6	Ар
	protect against the threats in the networks and to protect	4	
	system security		

Criterion I

SEMESTER – II					
CORE V J2EE					
Course Code : 21PCSC21	Course Code : 21PCSC21Hrs / Week : 5Hrs / Sem : 75Credits : 4				

C

CO. No.	Upon Completion of this course, students will be able to	PSOs Addressed	CL
CO-1	make use of a high-level overview of the J2EE architecture	1	Ap
CO-2	identify the services and components which comprise the J2EE specification	5	Un
- CO-3	explain how J2EE technology applications are packaged	5	Un
CO-4	acquire the knowledge of EJB and its types and Differentiate Servlet and JSP	7	An
CO-5	build server side java application called Servlet to catch form data sent from client and store it on database	8	Cr
CO-6	build server side java application called JSP to catch form data sent from client, process it and store it on database.	8	Cr

Criterion I

SEMESTER-I	I
-------------------	---

CORE VI

DATA MINING & R PROGRAMMING Course Code: 21PCSC22

Hrs / week :5

Hrs / Semester: 75

Credits :4

Course outcomes:

CO. No.	Upon Completion of this course, students will be able to	PSOs Addressed	CL
CO-1	classify different data mining tasks and the algorithms most appropriate for addressing them.	4,5	An
CO-2	discover Strengths & Limitations of Data Mining Methods	5,8	An
CO-3	display interesting patterns from large data, to extract and analyse, make predictions and solve problems	4,8	An
CO-4	evaluate models/algorithms with respect to their accuracy	4	Ev
CO-5	demonstrate capacity to perform a self-directed piece of practical work that requires the application of data mining techniques.	1,4	Ev
CO-6	develop hypotheses based on the analysis of the results obtained and test them.	8	Ev

Criterion I

SEMESTER - I	[]
--------------	----

CORE VII DISTRIBUTED DATABASE MANAGEMENT SYSTEM

CourseCode : 21PCSC23

Hrs / Week : 4

Hrs / Sem : 60

Credits : 4

Course Outcomes:

CO. No.	Upon Completion of this course, students will be	PSOs	CL
	able to	Addressed	
CO-1	understand the concept of Distributed DBMS	3	Un
CO-2	apply various architectures of DDBMS and fragmentation techniques in a given problem	8	Ар
CO-3	visualize the steps of query processing	8	Ap
CO-4	compare various Query Optimization Algorithms	7	An
CO-5	organise the approaches to concurrency control in Distributed database	7	An
CO-6	apply various algorithms and techniques for deadlock and recovery in Distributed database	8	Ap

Criterion I

CORE VIII

SINGLE BOARD COMPUTERS AND IOT

Credits :4

Course Code: 21PCSC24

Hrs / week :4 Hrs / Sem: 60

Course Outcomes:

CO.No	Upon Completion of this course, students will be able to	PSO	CL
		addressed	
CO-1	code program and develop applications using single board	1,4	Cr
	computers and to create a good working setup of Raspberry		
	Pi		
CO-2	understand the concepts of Internet of Things and identifying	4,3	Un
	different IoT technologies		
CO-3	inculcate knowledge on communication middleware and	6	Un
	Information security in IoT		
CO-4	analyze basic protocols in wireless sensor networks	6	An
CO-5	implement State of the Art - IoT Architecture	7	Ap
CO-6	examine the security and privacy issues in IoT	6	An
. 9		4	A HE T

Criterion I

SEMESTER-II

ELECTIVE II A – ADVANCED COMPUTER NETWORKS

Course Code: 21PCSE21	Hrs / week :4	Hrs / Semester: 60	Credits :4

Course Outcomes:

CO. No.	Upon Completion of this course, students will be able to	PSOs Addressed	CL
CO-1	describe the evolution and History of Wireless technology	6	Un
CO-2	analyse the wireless propagation channels.	6	An
CO-3	examine the Performance of ARQ Protocols, Ethernet LAN, Token Ring, RIP, TCP and UDP.	6	Ap
CO-4	identify the networking technologies and implementation of protocols like TCP, UDP and IP using OPNET and NS-2	6	An
CO-5	solve technical problems in ARQ protocols, MAC protocols and Routing Algorithm.	4,6	Ap
CO-6	construct the route discovery algorithm to determine the shortest path in an internet represented as a weighted graph.	2,6	Ар

Criterion I

0	1			-
	1		1	
	L		1	
	۰.		-	-
L		~		
٦			-	-

SEMESTER- II				
ELECTIVE II	B - SOFT CO	OMPUTING		
Course Code: 21PCSE22	Hrs / week :4	Hrs / Sem: 60	Credits :4	

CO. No.	Upon Completion of this course, students will be able to	PSOs	CL
	epon comprehen of this course, students will be usic to	Addressed	01
CO-1	understand the concepts of Artificial Intelligence and	1, 8	Un
	neural networks and categorize different learning		
	algorithms		
CO-2	analyze the classification taxonomy of NN and compare	6,8	An
	different network models		
CO-3	comprehend the fuzzy logic and the concept of fuzziness	2	Ap
	involved in various systems and fuzzy set theory.		
CO-4	implement the concepts of fuzzy sets, knowledge	2	An
	representation using fuzzy rules		
CO-5	identify and define approximate reasoning, fuzzy	2	An
	inference systems, and fuzzy logic		
CO-6	analyze the genetic algorithms and their applications	84	An
		dista inte	-

Criterion I

Semester III					
CORE IX	CORE IX SOFTWARE TESTING				
Course Code: 21PCSC31	Hrs / week : 4	Hrs / Sem: 60	Credits :4		

CO. No	Upon Completion of this course, students will be able to	PSO	CL
		addressed	
CO-1	understand the fundamental concepts and techniques in	3	Un
	Software Testing and the categories of the system testing methods		
CO-2	identify and apply the functional and system testing methods in commercial environment	8	Ap
CO-3	design Test Planning	4	Ар
CO-4	distinguish between methods of judging test case adequacy and how to design tests that will accomplish the obligations of such methods.		An
CO-5	demonstrate the process of validation and verification Write code to automate test execution and analysis	8	Ар
CO-6	implement various test processes for quality improvement	8	Ар

Criterion I

	SEMESTER – III
CORE X	CLOUD COMPUTING AND BIG DA

CLOUD COMPUTING AND BIG DATA

Course Code : 21PCSC32

Hrs / Week : 4 Hrs / Sem : 60 Credits : 4

Course Outcomes:

CO. No.	Upon completion of this course, students will be able to	PSOs addressed	CL
CO-1	carrying out the decisions based on data analytics.	8	Ар
CO-2	analyze the big data analytic techniques for useful business applications.	8	An
CO-3	identifying the data models in relation to Big Data Storage and Analytics.	5,8	Re
CO-4	implementing Big Data applications using Pig and Hive and working with big data platform	5,8	Ap
CO-5	identify the architecture, infrastructure and delivery models of cloud	1,4	Re
CO-6	apply suitable virtualization concept and organize the core issues of cloud computing	1,8	An

Criterion I

/	\cap	
	\cup	
1	. –	1
. 7	-	•

SEMESTER III				
CORE XI DATA SCIENCE USING PYTHON				
Course Code: 21PCSC33	Hrs / week :4	Hrs / Sem: 60	Credits : 4	

CO. No	Upon Completion of this course, students will be able to	PSO Addressed	CL
CO-1	explore the fundamental concepts of data science	8	An
CO-2	explain how data is collected, managed and stored for data science	5,8	Un
CO-3	evaluate the data analysis techniques for applications handling large data and visualize the inference using various tools		Ар
CO-4	implement numerical programming, data handling and visualization through NumPy and Pandas	1	Ap
CO-5	understand and demonstrate the usage of universal functions and list of Arrays in NumPy	1	Ар
CO-6	analyze the significance of python program development environment and apply it to solve real world applications	1,7	Un

Criterion I

SEMESTER – III

RESEARCH METHODOLOGY

Course Code : 21PCSC34

Hrs / Week : 4 Hrs / Sem : 60

Credits : 4

Course Outcomes:

CORE XII

CO. No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	demonstrate knowledge of research processes	7	An
CO-2	understand the concepts of defining the research problem and research design and compare between methodologies and methods used in research	2,7	Un
CO-3	explain the concepts and procedures of sampling, data collection, analysis and reporting	5,4	Ар
CO-4	assess the basic function and working of analytical research tools used in computer science research	7,8	Re
CO-5	prepare a research report and examine the plagiarism and its types.	7	Ap
CO-6	apply the knowledge of teaching methods for its wide applicability.	1,7	Ар

Criterion I

SEMESTER- III

A- ORGANIZATIONAL BEHAVIOUR

ELECTIVE I

Course Code: 21PCSE31 Hrs / week :4

Hrs / Sem: 60

Credits :4

Course Outcomes:

CO. No	Upon Completion of this course, students will be able	PSO	CL
CO. NO	to	addressed	CL
CO-1	analyse the behaviour of individuals and groups in	1, 6	An
	organisations in terms of the key factors that influence		
	organizational behaviour		
CO-2	evaluate personality types, perception and learning	8	Ар
	process on human behavior		
CO-3	analyze the importance of Attitudes, Values, Job	1,6	An
	satisfaction, Group formation and Group behaviour		
CO-4	identify different motivational theories and evaluate	6	Un
	motivational strategies used in a variety of organizational		
	settings		
CO-5	analyze about human stress and the consequences of stress	6	An
	in an organization	4	
CO-6	identify the various leadership styles and the role of	1,6	Un
	leaders in a decision making process		
CAMPAGE & MILTON		ALL	Naverage Top

Criterion I

SEMESTER – III				
ELECTIVE I	B - Ol	BJECT ORIENTED	SOFTWARE ENGIN	EERING
Course Code : 21PC	CSE32	Hrs / Week : 4	Hrs / Sem : 60	Credits : 4

Course Outcomes:

CO. No	Upon Completion of this course, students will be	PSOs	CL
	able to	Addressed	
CO-1	design and implement a software system to meet	4	Cr
	desired needs.		
CO-2	use modern software systems and tools.	8	Ар
CO-3	understand different software life cycle concept.	3	Un
CO-4	study and design SRS documents for software	7	An
	projects.		
CO-5	study and model software projects using different	7	An
	modelling techniques.		
CO-6	discuss about project organisation and	2	Ev
	communication		

Leuis Rosa

Principal St. Mary's College (Autonomous) Thoothukudi-628 001.

Criterion I