

Programme: M. Sc. Physics

SEMESTER - I				
Core - I	CLASSICAL 2	MECHANICS		
Code : 21PPHC11	Hrs/Week: 6	Hrs/Semester: 90	Credits:5	TAXA D
Course Outcomes:	_			

Course Outcomes:

CO No.	Upon completion of this course, students will be able to	PSOs addressed	CL
CO 1	Recall basic concepts related to continuous mechanical system.	1	Re
CO 2	Classify the motion of bodies under the influence of the system of force.	5	Ev
CO 3	Understand the method of separation of variables	2	Un
CO 4	Estimate the motion of rigid bodies, molecules, planets, satellites and ships by studying Euler's angles.	3	Ev
CO 5	Interpret extremely accurate results when studying large objects and speeds approaching the speed of light.	3	Ар
CO 6	Explain the difference between Lagrangian and Hamiltonian formulation.	1	Un
CO 7	Imagine the planar and spatial motion of rigid body.	1	Cr
CO 8	Solve the problems using their knowledge and skills in classical mechanics.	2	Cr

Criterion I

I
]

CORE - II

MATHEMATICAL PHYSICS – I

Code: 21PPHC12	Hrs/Week: 6	Hrs/Semester: 90	Credits:5

Course Outcomes:

CO No.	Upon completion of this course, students will be able to	PSOs	CL
		addressed	
CO 1	Evaluate the area of irregular shape by Green's theorem.	2	Ev
CO 2	Recall the basic and the special types of matrices.	1	Re
CO 3	Understand the concepts of feedback control systems with	7	Un
	finite dimensional vector spaces.		
CO 4	Apply special functions for Wireless communication and	2	Ap
	alternating current transmission.	×	
CO 5	Understand the geometrical interpretation of complex	1	Un
	numbers.		34345
CO 6	Explain the characteristic equation of a matrix using Cayley	3	Ev
	Hamilton Theorem.		1
CO 7	Understand the advanced concepts in evaluating double	2	Un
	integral and area enclosed by plane curves	1.	
CO 8	Apply group theory to various disciplines of Physics.	3	Ар

Criterion I

CORE - III ELECTRONICS AND EXPERIMENTAL METHODS

Code: 21PPHC13	Hrs/Week: 6	Hrs/Semester: 90	Credits: 5

Course Outcomes:

CO No.	Upon completion of this course, students will be able to	PSOs	CL
		addresse d	
CO 1	Discuss the working principle of Tunnel Diode, photodiode,	1	Un
	LED, LCD, photo conductor and Gunn diode		
CO 2	Define Hall Effect	1	Re
CO 3	Construct waveform generators such as Square wave	1, 3	Cr
	generator, triangular wave generator and Schmitt trigger		
CO 4	Discuss the functions of registers and counters	1	Un
CO 5	Distinguish between the different types of registers	1	An
CO 6	Analyze the working of D/A and A/D converters	1	An
CO 7	Classify the working mechanism of different types of	1	Ev
T	transducers		
CO 8	Differentiate between intrinsic and extrinsic semiconductors	1	An
			The second s

Criterion I

ELECTIVE – I A. CRYSTAL GROWTH & THIN FILMS

Code: 21PPHE11	Hrs/Week: 6	Hrs/Semester:90	Credits: 4

Course Outcomes:

CO No.	Upon completion of this course, students will be able to	PSO	CL
		addressed	
CO 1	generate an understanding of self-assembly during the process of growth	1	Un
CO 2	apply the processskills of scientific inquiry during experimentation	4	Ap
CO 3	Classify the arrangement of SEM, TEM	4	Ev
CO 4	apply the techniques of SEM and TEM to their own research projects	5	Ap
CO 5	distinguish the differences and similarities between different deposition techniques.	1	An
CO 6	categorize selection of deposition techniques for various applications	1	An
CO 7	use more techniques for the preparation of crystals and thin films	.4	Ар
CO 8	recognize appropriate material for the fabrication of a device	4	Re

Criterion I

CORE IV

MATHEMATICAL PHYSICS II

Code: 21PPHC21	Hrs/Week: 6	Hrs/Semester: 90	Credits: 5

Course Outcomes:

CO No.	Upon completion of this course, students will be able to	PSOs	CL
		addressed	
CO 1	Analyse the experimental data with the aid of Fourier	4	An
	transform		
CO 2	Blend the concepts of tensor calculus in moment of inertia	1	Cr
CO 3	Recall the basic notations of generating functions and special	1	Re
	functions	_	
CO 4	Apply computational techniques to solve a wide range of	2	Ap
	numerical problems arising in physics		
CO 5	Explain the concepts of Laplace Integral	1	Un
CO 6	Solve mathematical problems arising in physics by a variety	2	Cr
	of mathematical techniques.		
CO 7	Employ the knowledge of critical thinking and problem	5	Ap
	solving	4	
CO 8	Employ correct method to solve a particular problem	2	Ap

Criterion I

CORE V

ELECTROMAGNETIC THEORY

Code: 21PPHC22	Hrs/Week: 6	Hrs/Semester: 90	Credits: 5

Course Outcomes:

CO No.	Upon completion of this course, students will be able to	PSOs	CL
		addressed	
CO 1	Recall the fundamental concepts of electromagnetic theory	1	Re
CO 2	Compare electrostatics with magnetostatics	1	Un
CO 3	Construct Maxwell's equations and identify each		Ap
	mathematical operator and physical quantity in the	3	
	equations		
CO 4	Formulate potential problems within electrostatics,	2	Cr
	magnetostatics	2	
CO5	Analyze different waves and conduct a mock trial on	5	An
	electromagnetic radiation	3	
CO 6	Summarize the types of wave guides	1	Un
CO7	Distinguish transmission lines and waveguides and analyze	1	An
	propagation of signal in different modes		
CO8	Obtain solutions for the problems in electromagnetic theory	2	Cr

Criterion I

CORE VI THERMODYNAMICS AND STATISTICAL MECHANICS

		TT /G / 00	
Code: 21PPHC23	Hrs/Week: 6	Hrs/Semester: 90	Credits:5

Course Outcomes:

CO No.	Upon completion of this course, students will be able to	PSOs addressed	CL
CO 1	Understand working knowledge of the zeroth, first, second and third law of thermodynamics	1	Un
CO 2	Apply statistics in different systems containing atoms and molecules	2	Ap
CO 3	Inspect the partition function for the microcanonical, canonical, grand canonical ensemble	1	An
CO 4	Recall the loss of thermodynamics and equipartition theorem from the statistical description using microstates	1	Re
CO 5	Assess about phase transitions and black body radiation	5	Ev
CO 6	Apply energy changes in chemical reaction using the first law of thermodynamics	2	Ар
CO 7	Estimate the Statistical properties of Random Walks and fluctuations in ensembles	1	Cr
CO 8	Determine the physical properties of the system using various correlation functions in Ising Model	6	Ev

Criterion I

ELECTIVE - II A. BIO-MEDICAL INSTRUMENTATION

Code :21PPHE21	Hrs/Week: 6	Hrs/Semester:90	Credits: 4

Course Outcomes:

CO No.	Upon completion of this course, students will be able to	PSOs	CL
		addressed	
CO 1	Define resting and action potentials	1	Re
CO 2	Classify the uses of electrode paste	1	Ар
CO 3	Discuss the principle of operation of different types of	1	Un
lai l	transducers		Test I
CO 4	Interpret the output of bio potential recorders such as ECG,	1	Ev
	EEG and EMG		
CO 5	Investigate internal and external pacemakers	1	An
CO 6	Illustrate the working of different kinds of radiation	1	Ap
	monitoring instruments		
CO 7	Recognise the importance of computers in medicine	1	Un
CO 8	Evaluate the need for various imaging techniques such as	1	Ev
	Computer Tomography, Thermography and MRI	3	

 \mathcal{O}

Criterion I

ELECTIVE II B. MICROPROCESSOR AND MICROCONTROLLER

Code :21PPHE22	Hrs/Week: 6	Hrs/Semester: 90	Credits: 4

Course Outcomes:

CO No.	Upon completion of this course, students will be able to	PSOs	CL
		addressed	
CO 1	Understand the architectures and instruction sets of	1	Un
	microprocessors and microcontrollers		
CO 2	Verify bus transactions, memory organisation and address	1	Ev
	decoding, basic I/O interfaces and port addressing		
CO 3	Apply and implement learned algorithm design techniques	2	Ap
	and data structures to solve the problems		
CO 4	Understand the interfacing of peripheral devices like I/O	1	Un
	ports, keyboards, displays, ADCs, DACs, stepper motor		
CO 5	Analyze concepts associated with interfacing a	6	An
	microprocessor to memory and to I/O devices	4	
CO 6	Estimate how to control components of a microprocessor	4	Cr
	based system through the use of interrupts		
CO 7	Recall a microprocessor programming model at a level that	6	Re
	enables to write assemble language programs for		
	theprocessor meeting given specifications		
CO 8	Understand the popular 8051 Microcontroller, the processor	1	Un
	family and Time delay		

Criterion I

QUANTUM MECHANICS – I

Code: 21PPHC31

Core - VII

Hrs/Week: 6

Hrs/Semester: 90

Credits:5

Course Outcomes:

CO No.	Upon completion of this course, students will be able to	PSOs	CL
		addressed	
CO 1	Recall Schrodinger equation	1	Re
CO 2	Describe Ehrenfest's theorem and its verification	1	Un
CO 3	Discuss Heisenberg Uncertainty principle	1	Un
CO 4	Evaluate the commutation relations between the various	1	Ev
	quantum mechanical operators		
CO 5	List the properties of Ket and Bra vectors	1	Re
CO 6	Discuss the linear harmonic oscillator problem using wave	2	Un
10000	formalism and matrix formulation		
CO 7	Interpret equations of motion in the Schrodinger picture,	1, 2	Ap
	Heisenberg picture and Interaction picture		
CO 8	Combine spin and angular momenta	1	Ар

Criterion I

CORE - VIII ATOMIC AND MOLECULAR SPECTROSCOPY

Code:21PPHC32	Hrs/Week: 6	Hrs/Semester: 90	Credits:5

Course Outcomes:

CO No.	Upon completion of this course, students will be able to	PSOs	CL
		addressed	
CO 1	Explain the structure of atoms and the origin of the observed	1	Un
	spectra		
CO 2	Examine rotational spectra, get information about molecular	4	An
M	dimension and atomic masses		
CO 3	Examine rotational Raman spectra and understand the	3	An
	techniques in instrumentation		
CO 4	Apply knowledge of Mossbaur spectroscopy in solid state	4	Ap
	physics and nanotechnology		
CO 5	Assess how nuclear spins are affected by magnetic field and	1	Ev
	able to explain what happens when radio frequency		
	radiationis observed		
CO 6	Recall the basic hydrogen spectra	4	Re
CO 7	Explain the key properties of many electron atoms and the		Ev
	importance of the Pauli's exclusion principle		
CO 8	Solve problems in atomic and molecular physics	2	Ap

Criterion I

SEMESTER –III

CORE - IX

SOLID STATE PHYSICS- I

Code: 21PPHC33	Hrs/Week: 6	Hrs/Semester: 90	Credits: 5

Course Outcomes:

CO No.	Upon completion of this course, students will be able to	PSOs	CL
		addressed	
CO 1	Recall about the crystal structure and degree of ordering to	1	Re
	atom binding and packing		
CO 2	Compare the Energy Bands and the number of orbital	5	Un
CO 3	Explain the physics of different types of bonds in crystalline	1	Un
	structure		
CO 4	Solve band structure calculations for simple systems	6	Cr
CO 5	Apply the role of effective electron mass in electron	1	Ap
100000	dynamics		
CO 6	Estimate the thermal ionization of donors and acceptors	4	Ev
CO 7	Describe diffraction using the reciprocal lattice	1	Re
CO 8	Deduce Bloch's theorem from the Schrödinger equation for	6	An
	electrons in a periodic potential	4	

Criterion I

ELECTIVE -III A. NANO SCIENCE AND TECHNOLOGY

Code:21PPHE31	Hrs/Week: 6	Hrs/Semester:90	Credits: 4

Course Outcomes:

CO	Upon completion of this course, students will be able to	PSOs	CL
No.		addressed	
CO 1	Recall a thorough knowledge of basic underline disciplines of nanoscience and nanotechnology	4	Re
CO 2	Explain the preparation, characterization and properties of nanomaterials	6	Un
CO 3	Analyze the types and properties of carbon nanotubes	1 -	An
CO 4	Assimilate existing and new concepts, methodology and researches and apply them in their academic research environment	7	Ev
CO 5	Aware of challenges, risks and promises of nano technological development	6	An
CO 6	Synthesise the nanomaterials by physical, chemical and biological methods and evaluate their properties.	6	Ev
CO 7	Characterise the synthesized nanomaterials by various techniques.	5	Ev
CO 8	Apply the nanomaterials in energy storage, food and in day- to-day life.	8	Ар

Criterion I

ELECTIVE -III

B. ENERGY SOURCES

Code: 21PPHE32	Hrs/Week: 6	Hrs/Semester:90	Credits: 4

Course Outcomes:

СО	Upon completion of this course, students will be able to	PSOs	CL
No.		addressed	
CO 1	outline the technologies that are used to harness the power of solar energy	1	An
CO 2	discuss the positive and negative aspects of solar energy in relation to natural and human aspects of the environment	5	Un
CO 3	Summarize the structure of biomass.	8	Ev
CO 4	Assess economic factors affecting geothermal energy production	5	Ev
CO 5	Analyse and critically evaluate emerging geothermal technologies.	8	An
CO 6	Compare chemical energy to mechanical energy.	1	An
CO 7	Write the uses of Hydrogen energy	5	Cr
CO 8	List the main characteristics (advantages/disadvantages) for fuel cells.	8	Ар

Criterion I

SEMESTER – IV

CORE X

QUANTUM MECHANICS – II

Code: 21PPHC41	Hrs/Week: 6	Hrs/Semester: 90	Credits: 5
0000 211111041		III 5/ Semester : 90	creation of

Course Outcomes:

CO No.	Upon completion of this course, students will be able to	PSOs	CL
		addressed	
CO 1	Describe time independent perturbation theory and its	1	Re
	application to the first order Stark effect in Hydrogen atom		
CO 2	Discuss time dependent perturbation theory and transition	1	Un
	probability		
CO 3	Derive Fermi- Golden rule	2	An
CO 4	Write the Relativistic theory in quantum mechanics	1	Cr
CO 5	Describe scattering by a square well potential using Born	1	Un
	approximation and Partial wave analysis		
CO 6	Employ WKB approximation in quantum problems	1	Ap
CO 7	Explain Dirac's equation for a free particle	1	Ev
CO 8	Apply approximation methods to solve problems	1	Ap
in the second		24	1

Criterion I

CORE XI

SOLID STATE PHYSICS- II

Code:21PPHC42	Hrs/Week: 6	Hrs/Semester: 90	Credits: 5
Code:21PPHC42	Hrs/Week: 6	Hrs/Semester: 90	Credits: 5

Course Outcomes:

CO No.	Upon completion of this course, students will be able to	PSOs	CL
		addressed	
CO 1	Understand the properties of solids	1	Un
CO 2	Demonstrate the types of Polarizability	2	Ар
CO 3	Compare the magnetic properties of solid materials	1	An
CO 4	Reason the working of magnetic mirror and SQUID	1	An
CO5	Identify theproperties of insulators and ferro electricity.	1	An
CO 6	Develop the research work in the field of material science and nanotechnology	1	Cr
C07	Solve the problems related basic crystallography.	1	Cr
CO8	Discuss the quantum theory of magnetic materials	1	Ар

Criterion I

CORE XII

C

NUCLEAR AND PARTICLE PHYSICS

Code:21PPHC43	Hrs/Week: 6	Hrs/Semester: 90	Credits:5
Code:21PPHC43	Hrs/Week: 6	Hrs/Semester: 90	Credits:5

Course Outcomes:

CO No.	Upon completion of this course, students will be able to	PSOs addressed	CL
CO 1	List the basic atomic properties of nuclei	1	Re
CO 2	Classify the different types of nuclear reactions	5	Un
CO 3	Examine the different types of nuclear models and their properties	6	An
CO 4	Categorize the nuclear forces and the theories related to it	1	An
CO 5	Classify the types of elementary particles	1	Ev
CO 6	Distinguish the fission and fusion	1	An
CO 7	Relate the deuteron properties and reactions	2	Ap
CO 8	Examine the origin of various terms in nuclear physics	1	An

Luis Rose

Principal St. Mary's College (Autonomous) Thoothukudi-628 001.

Criterion I