SEMESTER –V					
Core Integral - I – Microbial Nanotechnology					
Code: 18UMII51Hrs/Week: 4Hrs/Sem: 60Credit: 4					

Vision:

To create the ability to be multi-skilled in the field of nanotechnology with good technical and instrumentation knowledge on various concepts and providing standard education and enabling the students to become entrepreneurs and socially responsible.

Mission:

To aware the basic knowledge about the basic nanotechnology and developing young students with active and creative minds in the field of nanotechnology.

CO No	Upon completion of this course, students will	PSO	CL
	be able to	addressed	
CO- 1	acquire basic knowledge on nanotechnology	4	Un
CO -2	explain the basics of microbial applications of nanotechnology.	4	Un
CO -3	appreciate the structural and functional principles of nanomatreials.	4	An
CO- 4	grasp the fundamental knowledge about synthesis of nanomaterials.	4	Un
CO- 5	acquire basic knowledge about biosensors and types.	2	Ар
CO- 6	get knowledge about analysis of biomolecular nanostructures.	4,2	Un
CO -7	acquire knowledge on cancer diagnosis and treatment.	2,4	Ар
CO- 8	get knowledge about drug designing and delivery	2,4	Ар

Course Outcome:

SEMESTER –V					
Core Integral - I – Microbial Nanotechnology					
Code: 18UMII51Hrs/Week: 4Hrs/Sem: 60Credit: 4					

Unit I

Introduction to nanotechnology - Structural and functional principles of nanotechnology - Applications of nanotechnology. Bionanoparticles – Carbon nanotubes, Carbon nanocones.

Unit II

Nanotechnology : Nanoparticle synthesis by plants, bacteria and yeast. Methods of Nanobiotechnology - Analysis of bimolecular Nanostructures by Atomic Force Microscopy, Scanning Probe Electron Microcopy and XRD.

Unit III

Biosensors – optical nanosensors, multi-functional biochip (MFB) and Detection of the *Mycobacterium by MFB*.

Unit IV

Application of Nanobiotechnology in medicine – Cancer diagnosis and treatment, Drug designing and delivery.

Unit V

Nanotechnology and Food safety – Food Packaging and Processing. Nanotechnology in Agriculture – crop improvement and Pest management. Bio security

Text Books:

1. David. S. Goodsell. Jhonwiley 2006. Bionanotechnology: Lessons from Nature.

2. R. K. Rathi, 2009, Nanotechnology 1st Edition. S. Chand & Company Ltd, New Dehli.

Books for Reference:

- 1. Bernd Rehm, 2006. *Microbial Bionanotechnology: Biological Self-assembly Systems and Biopolymer-based Nanostructures*, Horizon Scientific Press.
- Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen and Jack E.Lemons. Biomaterials Sciences: An Introduction to Materials in Medicine 2nd Edition.
- 3. Christof M. Niemayer, Chad A. Mirkin, 2004. *Nanobiotechnology:* Concepts, Applications and perspectives, Wiley VCH publishers.
- 4. Fulekar M.H., 2010, *Nanotechnology: Importance and Applications*, I. K. International Pvt Ltd, New Delhi
- 5. JainK.K., Tailor L., Nanobiotechnology: Molecular Diagnosis. Francis Group.

SEMESTER – V				
Core Integral – II- Vermitechnology				
Code:18UMII52 Hrs/ Week: 4 Hrs/ Sem: 60 Credit:4				

Vision

To educate the students by ensuring the production of healthy food in a healthy way, we want to contribute to live in a healthy world.

Mission:

To contribute to global ecological economic recovery, profitable and sustainable way to produce high quality organic products and a healthy and positive results in agriculture is to be achieved.

Course Outcome:

CO No	Upon completion of this course, students will be able to	PSO addressed	CL
CO- 1	select from, use and interpret results of descriptive vermi technology methods effectively.	6	Ev
CO -2	demonstrate an understanding the scientific and technological benefits to the rural sector by equipping them with the latest technology and to create the model for the nation	6	Ev
CO- 3	gain knowledge about the various morphology of earthworms	1	An
CO -4	communicate the awareness of field sampling using vermi compost	5	Un
CO- 5	make appropriate awareness of parasites and predators in vermi composting	5	Un
CO- 6	understand the awareness among the present status and importance of composting methods and vermi composting	4	An
CO- 7	understand the waste reduction in vermi composting	4	Un
CO -8	explain the nutrient availability in the vermi compost	6	Ev

SEMESTER – V					
Core Integral – II- Vermitechnology					
Code:18UMI152Hrs/ Week: 4Hrs/ Sem: 60Credit:4					

Unit-I:

Earth worm classification – Morphology and Anatomy. Biology of *Lumbricus terrestris*.Vermicomposting - Definition, introduction and scope - The nature of earthworms-soil environment - basic environmental requirements.

Unit-II:

Vermicomposting materials and their classification. Physical, chemical and biological changes brought by earth worm in soil structure-carbon, nitrogen and phosphorous transformations

Unit-III:

Vermicomposting methods - Optimal conditions for Vermiculture - temperature, moisture, pH, soil type, organic matter. Nutrient availability in vermi Compost.

Unit-IV:

Vermicomposting in Homes, Maintenance of vermicomposting beds. Harvesting the worms. Earth worm predators, parasites and pathogens. - Vermi wash. Vermi culture for waste reduction.

Unit-V:

Composting - Vermicomposting - Required conditions - Advantages - Role of vermicompost in plant growth and other applications, Field sampling- passive methods.

Text Book:

Mary Violet Christy. A., 2014, Vermi Technology - MJP Publishers, Chennai.

Books for Reference:

- 1. Edwards, C.A. and Bohlen, P.J. 1996, *Ecology of earthworms*-3rd Edition, Chapman and hall.
- 2. Jsmail, S.A., 1970, Vermicology. The Biology of Earthworms. Orient Longman, London.
- 3. Lee, K.E., 1985. *Earthworms Their ecology and relationship with soil and land use*, Academic Press, Sydney.
- 4. Ranganathan L.S. 2006. *Vermibiotechnology from soil health to human health*. Agrobios India.
- 5. Gupta P.K. 2008. Vermicomposting for sustainable Agriculture. Agrobios. India.

SEMESTER-VI					
Core Integral–III- Cosmetic Microbiology					
Code :18UMII61Hrs/Week:4Hrs/Sem: 60Credit:4					

Vision:

To impart basic level information in the novel subject of Cosmetic microbiology.

Mission:

To enhance the knowledge on the applications of Cosmetic microbiology in various fields.

Course Outcome:

CO No	Upon completion of this course, students will be able to	PSO addressed	CL
CO- 1	recall the history of cosmetic microbiology.	1	Re
CO- 2	explain about sanitary manufacturing in cosmetic manufacturing	2,5	Un
CO -3	infer practical knowledge about the microbiological targets of preservation	1,2,4	Un
CO- 4	explain the recent techniques on good manufacturing techniques in cosmetic microbiology	3,4,6	Un
CO- 5	demonstrate the quality and safety assurance in cosmetic industry and the hazard analysis and critical control point.	2,4,5,6	Un
CO- 6	apply the techniques in preservation of cosmetics	2,4,5,6	Ар
CO-7	have knowledge on cosmetic production	2,4	Cr
CO-8	get knowledge about analysis of cosmetic production	2,4	Cr

SEMESTER-VI					
Core Integral–III- Cosmetic Microbiology					
Code :18UMII61Hrs/Week:4Hrs/Sem: 60Credit:4					

Unit I

Introduction to cosmetic microbiology-History of cosmetic microbiology – Biology of microbes-Bacteria, growth, diversity, molds and yeast.

Unit II

Sanitary manufacturing in cosmetic manufacturing – Cleaning (Detergent ingredients & properties, Types of surfactants) – Sanitization(Physical &chemical sanitizers)-Cleaning & sanitizing equipments-Cleaning and sanitization procedures.

Unit III

Hazard Analysis and Critical Control Point (HACCP) protocols in cosmetic microbiology-Apply HACCP to cosmetics-Waste water removal and CIP system-Selecting Critical Control Points – Parameters of an effective HACCP program.

Unit IV

Cosmetic microbiology test methods preservative efficacy methods-CFTA methods-ASTM methods-Test for factors affecting preservative efficacy-Neutralizer evaluation-Rapid methods used in preservative testing-Microbial content testing.

Unit V

Validation methods – Model for validation-Validation of equipment cleaning & sanitization-Validation in microbiology laboratory- Preservation strategies-Scope and microbiological targets of preservation.

Textbook:

1. Daniel. K. Brannan. 1997. Cosmetic Microbiology. A Practical Handbook. CRC press.

Books for Reference :

- 1. Brannan, D.K., DilleJ.C., and Kaufman, D.J.1987. Correlation of invitro challenge testing with consumer-use testing for cosmetic products, *Appl.Environ.Microbiol.*, *53*.
- 2. Halleck F.E., 1978. Thermal solution sterilization, *Pharm. Technol.*, June.
- 3. Pflug I.J., and G.M.Smith. 1977. "the Use of Biological Indicators for Monitoring Wet-Heat Sterilization Processes.". In *Sterlization of Medical products*. (EDS. E.R.L. Gaughran and K.Kereluk), New Brunswick, N.J., Johnson and Johnson.
- 4. Gardner J.F., and M.M.Peel.1991. *Introduction to Sterilization, Disinfection, and Infection Control.* Second Edition. Churchill Livingstone, Melbourne