SEMESTER I				
CORE II DIGITAL IMAGE PROCESSING USING MATLAB				
Course Code: 21PCSC12 Hrs/Week: 5 Hrs/Sem: 75 Credits: 4				

- To interpret images mathematically and process them for the extraction of data using MATLAB.
- To familiarize students with image enhancement and restoration techniques.
- To introduce the concepts of image processing and basic analytical methods to be used in image processing.

Course Outcomes:

CO. No.	Upon Completion of this course, students will be able to	PSOs	CL
		Addressed	
CO-1	Develop programming skills and techniques to solve mathematical problem.	1	Ар
CO-2	Learn graphic features of MATLAB and they are able to use this feature effectively in the various applications	1	Ар
CO-3	Distinguish the need for image transforms different types of image transforms and their properties.	2,3	An
CO-4	Learn different techniques employed for the enhancement of images.	3	Un
CO-5	Analyze images in the frequency domain using various transforms.	3	An
CO-6	Interpret Image compression, segmentation and representation standards	3	An
CO-7	Choose image filtering in various applications	2	Ap
CO-8	Analyze different causes for image degradation and overview of image restoration techniques.	3	An

SEMESTER I				
CORE II DIGITAL IMAGE PROCESSING USING MATLAB				
Course Code: 21PCSC12Hrs/Week: 5Hrs/Sem: 75Credits: 4				

UNIT-I: Matlab

Introduction: MATLAB Environment - Types of files - Search - Constants, Variables and Expressions - Vectors and Matrices - Polynomials - Input / Output statements-MATLAB graphics-Control Structures - Writing Programs and functions. (Text Book 1 - Chapter 1, 2, 3, 4, 5, 6, 7, 8)

UNIT- II: Introduction & Image Enhancement

Introduction – steps in image processing, Image acquisition, representation, sampling and quantization, relationship between pixels. – color models – basics of color image processing.

Image enhancement in spatial domain – some basic gray level transformations – histogram processing – enhancement using arithmetic, logic operations – basics of spatial filtering and smoothing.

UNIT-III: Intensity Transformations And Spatial Filtering& Frequency Domain Processing

Intensity Transformation Functions- Histogram Processing and Function Plotting- Spatial Filtering- Image Processing Toolbox Standard Spatial Filters

The 2-DDiscrete Fourier Transform- Computing and Visualizing the 2-D DFT in MATLAB-Filtering in the Frequency Domain- Obtaining Frequency Domain Filters from Spatial Filters -Generating Filters Directly in the Frequency Domain- Sharpening Frequency Domain Fillers.

UNIT -IV: Image Restoration & Color Image Processing

A Model of the Image Degradation/Restoration Process - Noise Models - Restoration in the Presence of Noise Only-Spatial Filtering- Periodic Noise Reduction by Frequency Domain Filtering-Modeling the Degradation Function -Direct Inverse Filtering -Wiener Filtering

Color Image Representation in MATLAB- Converting to Other Color Spaces - The Basics of Color Image Processing Color Transformations.

UNIT -V: Image Compression & Image Segmentation

Coding Redundancy -Huffman Codes - Huffman Encoding - Huffman Decoding -Interpixel Redundancy -Psychovisual Redundancy - JPEG Compression.

Point, Line, and Edge Detection- Thresholding- Region-Based Segmentation. (Text Book 2 - Chapter 2, 3, 4, 5, 6, 8, 10)

Text Books:

1. Rajkumar Bansal, Ashok Kumar Goel and Manoj Kumar Sharma. *MATLAB and its Applications in Engineering*. Pearsons Publications, 2016.

2. Rafael C. Gonzalez. Digital Image Processing using MATLAB. 2nd Edition, 2010.

Reference Books:

1. R.C. Gonzalez and R.E.Woods. *Digital Image Processing*, 3rd Edition, Pearson Education.

2002, by Peter Issa Kattan

SEMESTER –I				
CORE IV COMPILER DESIGN				
Course Code:21PCSC14	Hrs/week:4	Hrs/Semester:60	Credits:4	

- To learn the process of translating a modern high-level language to executable code.
- To identify the methods and strategies of parsing techniques.
- To generate intermediate code, and to design syntax directed translation scheme and apply code optimization techniques.

Course Outcomes:

CO. No	Upon Completion of this course, students will be able to	PSO	CL
		addressed	
CO-1	Understand the basic principles of compiler in high level	1,5	Un
	programming language		
CO-2	Represent language tokens using regular expressions, finite	5	An
	automata		
CO-3	Apply parsing techniques and able to write Context Free	5	Ар
	Grammars for various languages		
CO-4	Apply the knowledge of intermediate code generation to	5	Ар
	build efficient systems		
CO-5	Develop the knowledge on Run-time Environment	5	Ар
CO-6	Understand the need of intermediate representation for the	5	Ар
	generation of target code		
CO-7	Design code generator and apply code optimization	5	Ар
	techniques		
CO-8	Apply optimization techniques to intermediate code and	5	Ар
	generate machine code for high level language program		

SEMESTER –I			
CORE IV COMPILER DESIGN			
Course Code:21PCSC14	Hrs/week:4	Hrs/Semester:60	Credits:4

UNIT – I: Lexical Analysis

Structure of a compiler – Lexical Analysis – Role of Lexical Analyzer – Input Buffering – Specification of Tokens – Recognition of Tokens –Finite Automata – Regular Expressions to Automata – Minimizing the number of states of a DFA.

UNIT – II: Syntax Analysis

Introduction – Context-free Grammars – Writing a Grammar – Top-Down Parsing – Bottom-Up parsing – LR Parsing – Ambiguous Grammar – Parser Generators

UNIT – III: Intermediate Code Generation

Syntax Directed Definitions - Evaluation Orders for Syntax Directed Definitions - Variants of Syntax trees – Three-Address Code – Types and Declarations – Translation of Expressions – Type Checking

UNIT - IV: Run Time Environments and Code Generation

Storage Organization – Stack Allocation of Space - Access to Nonlocal Data on the Stack -Issues in the Design of a Code Generator – Target Language – Address in the Target Language - A Simple Code Generator

UNIT - V: Code Optimization

Basic Blocks and Flow Graphs - Optimization of Basic Blocks - Peephole Optimization - Machine-Independent Optimizations: Introduction to Data-Flow Analysis

Text Book:

1. Alfred V. Aho, Monica S. Lam, RaviSethi and Jeffery D.Ullman. *Compilers: Principles, Techniques and Tools*. Pearson, 2nd Edition, 2014.

Reference Books:

- 1. J.P. Tremblay and P.G. Sorrenson. *The Theory and Practice of Compiler Writing*. McGraw Hill, 1985.
- 2. David Galles. *Modern Compiler Design*. Pearson Education Asia, 2007.
- 3. Steven S. Muchnick. *Advanced Compiler Design & Implementation*. Morgan Kaufmann Pulishers, 2000.

SEMESTER- II				
CORE VIII	CORE VIII - SINGLE BOARD COMPUTERS AND IOT			
Course Code: 21PCSC24Hrs / week :4Hrs / Sem: 60Credits :4				

- To deliver a deep knowledge of Internet of Things and Single Board Computers.
- To understand the architecture of Single Board Computers and ability on setup Raspberry Pi .
- To recognize the concepts of Internet of Things and its security measures.

Course Outcomes:

CO.No	Upon Completion of this course, students will be able to	PSO addressed	CL
CO-1	Code program and develop applications using single board computers	8	Ap
CO-2	Create a good working setup of Raspberry Pi	8	Cr
CO-3	Understand the concepts of Internet of Things	8	Un
CO-4	Identify and applying different IoT technologies	8	Ap
CO-5	Inculcate knowledge on communication middleware and Information security in IoT	7,8	Un
CO-6	Analyze basic protocols in wireless sensor network	7	An
CO-7	Implement State of the Art - IoT Architecture	8	Ap
CO-8	Examine the security and privacy issues in IoT	7,8	An

UNIT - I: Introduction to Single Board Computers

Introduction - history of Single Board Computers - Classification - Comparison -Evolution - Architecture - applications - Overview on Raspberry Pi - GPIO - shields overview on Beaglebone - features.

UNIT - II: Setting up RASPBERRY Pi

Installing and preparing Raspberry Pi - flashing SD Card - Booting up -Configuring Pi - Troubleshooting - Using Command Line interface - Linux commands configuring network connection- Arduino and Pi- Basic Input and Output

UNIT – III: Introduction to Internet of Things

Internet of Things: Introduction-Definition & Characteristics of IoT-Physical design of IoT and logical design of IoT- IoT Enabling Technologies: WSNs, Cloud Computing, Big Data Analytics, Communication Protocols and Embedded Systems. IoT and M2M: Introduction-M2M-Difference between IoT and M2M Scenario.

UNIT – IV: Internet of Things Concepts

IoT concepts: IoT architectures-Resource management-IoT data management and analytics-Communication protocols-Applications-Programming frameworks for Internet of Things: Overview-Embedded Device Programming Languages-Message passing in Devices-Stream processing in IoT-Introduction-The foundations of stream processing in IoT- Continuous Logic Processing System-Challenges and future directions.

UNIT - V: Security and Privacy in the Internet of Things

Concepts- IoT Security Overview-Security Frameworks for IoT-Privacy in IoT Networks-Obfuscation and Diversification for Securing the Internet of Things: Introduction-Distinguishing Characteristics of IoT-Obfuscation and Diversification Techniques

Text Books:

- 1. Matt Richardson and Shawn Wallace. *Getting started with Raspberry Pi*. O'ReillyMedia, Inc, 1st edition, 2012.
- 2. ArshdeepBahga and Vijay Madisetti.*Internet of Things-A Hands-on Approach*. Universities Press Amir (India), 2015.

Reference Books:

- 1. RajkumarBuyya and VahidDastjerdi. *Internet of Things: Principles and Paradigms*. Cloud Computing and Distributed Systems (Clouds) Laboratory, Manja Soft Pty Ltd., Australia, 2016.
- 2. Fei Hu. Security and Privacy in Internet of Things (IoTs): Models, algorithms, and Implementations. CRC Press, 2016.
- 3. Tim Cox. Raspberry Pi Cookbook for Python Programmers. 2014.

SEMESTER –I

CORE PRACTICAL-I DESIGN AND ANALYSIS OF ALGORITHMS LAB

Course Code:21PCSCR1Hrs/week: 4Hrs/Semester:60Credits:2

Using C++ programming write programs for the following:

- 1. Sorting
- 2. Graph traversal
- 3. Prim's Algorithm-Greedy Method
- 4. N queen problem
- 5. Knapsack problem
- 6. Single Source Shortest Path
- 7. Sum of Subsets
- 8. Binary Search Tree
- 9. Graph Coloring
- 10. BiConnected Components
- 11. Travelling Salesman Problem

SEMESTER –I

CORE PRACTICAL-II DIGITAL IMAGE PROCESSING USING MATLAB LAB

Course Code:21PCSCR2 Hrs/week:4 Hrs/Semester:60 Credits:2

Using MATLAB write programs for the following:

- 1. Resizing and Rotating Images
- 2. To extract different attributes of an Image.
- 3. Image Enhancement- Contrast and Brightness
- 4. Image Enhancement- Calculate Histogram
- 5. Blurring and Smoothing
- 6. Edge Detection
- 7. Image Sharpening
- 8. Object Segmentation via Thresholding
- 9. Noise Filtering
- 10. Image Negation

SEMESTER- I			
ELECTIVE I B- CRYPTOGRAPHY AND NETWORK SECURITY			
Course Code: 21PCSE12	Hrs / week :4	Hrs / Sem: 60	Credits :4

- To make the students to learn the fundamental concepts of cryptography and network security and utilize these techniques in computing system.
- To understand cryptography and network security concepts
- To develop the knowledge in cryptography theories, algorithms and systems

Course Outcomes:

CO. No.	Upon Completion of this course, students will be able to	PSOs	CL
		Addressed	
CO-1	Understand the fundamental Conceptsof various encryption techniques	1,2	Un
CO-2	Demonstrate the process to maintain the Confidentiality, Integrity and Availability of data	7	Ар
CO-3	Distinguish between various algorithms for network security to protect against the threats in the networks	7	An
CO-4	Apply the concept of Public key cryptography	1,7	Ар
CO-5	Analyze solutions for effective key management and distribution	2,7	An
CO-6	Apply and manage to secure a message over insecure channel by various means	7	Ар
CO-7	Identify and apply the functional IP network security to protect against the threats in the networks	7	Ар
CO-8	Explain the configuration of simple firewall architectures	7	Ар

UNIT - I

Introduction: Information OSI Security Architecture - Security Attacks-Passive Attacks-Active Attacks-Security Services – Authentication-Access Control-Data Confidentiality-DataIntegrity-Nonrepudiation-AvailabilityService-Security Mechanisms- Model for Network security

UNIT - II

Classical Encryption Techniques -Symmetric Cipher Model- Substitution Techniques - Transposition Techniques - Block Ciphers and the Data Encryption Standard-Block Cipher Principles - The Data Encryption Standard -Strength of DES-Advanced Encryption Standard -Evaluation Criteria for AES- The AES Cipher

UNIT-III

Public-Key Cryptography and RSA: Principles of Public-Key Cryptosystems -The RSA Algorithm- Key Management - Diffie-Hellman Key Exchange- Message Authentication and Hash Functions: Authentication Requirements-Authentication Functions -Message Authentication Codes - Hash Functions

UNIT - IV

IP Security: IP security overview, IP security architecture, Authentication header, Encapsulating security pay load, combining security association, Key management-Web security considerations, Secure socket layer, Secure electronic transaction.

UNIT - V

System Security: Intruders - Intrusion Detection - Password Management-Malicious software, Viruses and related threats, virus counter measures-Firewalls: Firewall Design Principles-Trusted Systems - Common Criteria for Information Technology Security Evaluation

Text Book:

1. William Stallings. *Cryptography and Network Security Principles and Practices*. 6th Edition, 2013.

References Books:

1. Behrouz A. Ferouzan. *Cryptography & Network Security*, Tata McGraw Hill, 2007.

2. Charlie Kaufman, Radia Perlman and Mike Speciner. *Network Security*. Prentice Hall of India, 2002.

SEMESTER- II			
ELECTIVE II B - SOFT COMPUTING			
Course Code: 21PCSE22	Hrs / week :4	Hrs / Sem: 60	Credits :4

- To solve real-world problems by providing approximate results those conventional and analytical models cannot solve.
- To understand the features, advantages and applications of Artificial Intelligence.
- To realize the revolution of artificial intelligence to develop hybrid systems for the industrial problems.

Course Outcomes:

CO. No.	Upon Completion of this course, students will be able to	PSOs	CL
		Addressed	
CO-1	Understand the concepts of Artificial Intelligence and neural networks.	1	Un
CO-2	Categorize different learning algorithms	3	An
CO-3	Analyze the classification taxonomy of NN	3	An
CO-4	Compare different network models	7	An
CO-5	Comprehend the fuzzy logic and the concept of fuzziness involved in various systems and fuzzy set theory.	2	Ар
CO-6	Implement the concepts of fuzzy sets, knowledge representation using fuzzy rules	2	An
CO-7	Identify and define approximate reasoning, fuzzy inference systems, and fuzzy logic	1	An
CO-8	Analyze the genetic algorithms and their applications	3	An

SEMESTER- II			
ELECTIVE II B - SOFT COMPUTING			
Course Code: 21PCSE22	Hrs / week :4	Hrs / Sem: 60	Credits :4

UNIT – I: Neural Networks Fundamentals

Fundamentals of ANN: The Biological Neural Network, Artificial Neural Networks -Building Blocks of ANN and ANN terminologies: Architecture, setting of weights, activation functions-McCulloch-pitts Neuron Model - Learning Strategy (Supervised, Unsupervised, Reinforcement), Learning Rules – Hebbian Learning rule- Perceptron learning rule-Delta Learning Rule.

UNIT - II: Categories of Neural Networks

Models of ANN: Single layer perceptron- Architecture, Algorithm, application procedure. Associative memory Networks: Hopfield Net and BAM - Supervised Learning Networks: Back propagation Network (BPN) and Radial Basis Function Network (RBFN) - UnSupervised Learning Networks : Self Organizing Feature Maps: SOM and LVQ.

UNIT – III: Basic Concepts of Fuzzy Set

Fuzzy Sets, properties and operations - Fuzzy relations, cardinality, operations and properties of fuzzy relations, fuzzy composition

UNIT – IV: Membership Function & FIS

Fuzzy variables - Types of membership functions - fuzzy rules: Takagi and Mamdani - fuzzy inference systems: fuzzification, inference, rule base, defuzzification.

UNIT-V: Genetic Algorithms

Genetic Algorithm (GA): Biological terminology – elements of GA: encoding, types of selection, types of crossover, mutation, reinsertion – a simple genetic algorithm –General Genetic algorithm -The Schema Theorem - Classification of Genetic Algorithm - Applications of Genetic Algorithm.

Text Books:

- 1. S. N. Sivanandam, S. Sumathi and S.N. Deepa. *Introduction to Neural Networks using MATLAB 6.0.* Tata McGraw-Hill, New Delhi, 2006.
- 2. S. N. Sivanandam and S.N. Deepa. Principles of Soft Computing. Wiley-India, 2008.

Reference Books:

- 1. Simon Haykin. Neural networks A Comprehensive Foundation. Pearson Prentice Hall, 2005
- 2. S.Rajasekaran and G.A.V.Pai. *Neural Networks, Fuzzy Logic and Genetic Algorithms*. PHI, 2004.
- 3. S.N.Sivanandam and S.N.Deepa. Introduction to Genetic Algorithms. Springer, 2007.
- 4. Timothy J.Ross. Fuzzy Logic with Engineering Application. McGraw Hill, 2000.
- 5. Davis E.Goldberg. *Genetic Algorithms: Search, Optimization and Machine Learning.* Addison Wesley, N.Y., 2003.