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Introduction

Knots have been around prehistoric times,and remain a

vital part of everyday life today. They are used by sailors,climbers,

fishermen and surgeons, as well as for mundane tasks as tying a

shoelace. Knot theory is one of the most active areas of research in

mathematics today, and its techniques can be found in such wide

ranging areas as fluid dynamics, solar physics, DNA research,and

quantum computition. However,it was only as late as the twentieth

century that mathematicians really began to seriously study knots.

In chapter 1, we discuss about the preliminary concepts of knot

theory, Basic definitions and Reidemeister moves,Skein relation.

Chapter II deals with Kauffman Bracket,Jones Polynomial,how

to find the Kauffman bracket,Jones Polynomial for trefoil knot and

how Reidemeister moves hold knot invariant.

In chapter III, we discuss about Seifert surface,Seifert matrix,

and genus of a knot.

Chapter IV deals with Fundamental problems of knot Theory.
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Preliminaries

This chapter about the basic concepts of knot theory,

Preliminary definitions and also about the Reidemeister Moves,

Skein relation in knot theory.

Definition 1:

The curve intersections in a projection are called Precrossings.

A Precrossing is said to be have been resolved once we have,

selected the crossing information.

Definition :2

Once all crossing information is determined in a link

projection,the image is then a Link diagram.

Example:

Figure 1: Link Diagram

Definition:3

A knot without knotting is called a Trivial Knot or Unknot
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Figure 2: Unknot

This is example of knot.

Definition :4

Minimum number of crossings given any knot diagram is

called a Crossing number.

Example

Figure 3: C rossing number

Definition:5

The minimum number of times the knot must pass through

itself before it becomes unknotted is called the Unknotting

Number of knot.
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Figure 4:

This is a example of unknotting number of knot.

Definition:6

A link is called Chiral if is not equivalent to mirror

image.

Example: The simplest chiral is Trefoil knot

Figure 5: Right and Left Trefoil knot

Definition:7

A link is called Amphichiral or Achiral if it is equivalent to

its mirror image .

Example
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Figure 6: Amchiral or Achiral knot

Definition:8

A Knot invariant is a property of a knot that does not change

under ambient isotopy .If two knots have different values for

any knot invariant,then it is impossible.To transform one into the

other ,thus they are not equivalent.

Definition 9:

The Reidemeister moves

A solitary elementary knot moves ,as might be expected,gives

rise to various changes in the regular diagram.However ,it is

possible to restrict ourselves to just the four moves shown in piture

The Reidemeister moves Picture:
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Figure 7: Reidemeister moves

Definition 10

Given an oriented knot K,then we may assign to it a Laurent

polynomial ∇k(z),with a fixed inderminate z,by means of the

of the following two axioms:

Axiom 1 :If k is the trivial knot ,then we assign ∇k(z) =1

Axiom 2: Suppose that D+,D−,D0 are the regular diagrams,

respectively,of the three knots (or links ),K+,K−,K0.These

regular diagrams are exactly the same except at a neighbourhood

of one crossing point .In this neighbourhood, the regular diagrams

differ in the manner shown in figure 8.

(Note: In the case of D+ (D−) within this neighbourhood,

there exists only a positive (negative) crossing).
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Figure 8: skein diagrams

Then the Laurent polynomials of the three knots(or links) are

related as follows:

∇K+
(z) - ∇K−(z) = z∇K0

(z).

The three regular diagrams D+,D−,D0 formed as above are called

skein diagrams,and the relation ,between the Laurent polynomials

of K+,K−,K0 (whose regular diagrams these are) is called the

Skein relation.Also an operation that replaces one of D+,D−,D0 by

the other two is called a skein operation.
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CHAPTER - II 



2.Kauffman Bracket and Jones Polynomial

In this chapter we discuss about the Kauffman Bracket and Jones Polynomial
and whether the Kauffman Bracket satisfies knot invariant or not

2.1 Kauffman Bracket

Definition.2.1.1

The Kauffman Bracket of a link diagram L, is a polynomial in integer powers
of the variable A, denoted by 〈L〉, defined by the following rules.

Figure 1:

Example.2.1.1
We compute the following bracket polynomials

Figure 2:

Sol:
Part.1

Refer Fig.3
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Figure 3:

Figure 4:

Part.2
Refer Fig.4

Theorem :2.1.2
If a diagram is changed by a type-I move its bracket polynomial changes in

the following way
(i).Refer Fig.5
(ii).Refer Fig.6

Figure 5:

and
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Figure 6:

proof
Part-1

Figure 7:

Part-2

Figure 8:

Theorem:2.1.2
If a Diagram D is changed by a Type-II or Type-III Reidemister move, then

〈D〉 does not change .That is
(i)Refer Fig.9
(ii)Refer Fig.10
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Figure 9:

and

Figure 10:

Proof:
Part-1

Figure 11:

Part-2

Figure 12:

Example :2.1.2
Show that the bracket polynomial of the following trefoil knot (Refer Fig.13)

is A−7 − A−3 − A5 ,

Sol:
Refer Fig.14
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Figure 13:

Figure 14:

Example:2.1.3
Show that the bracket polynomial of the following simple two-component

link(Refer Fig.15) is −A4 − A−4

Sol:
Refer Fig.16

Example :2.1.4

The bracket polynomial of the trivial link of n-components

Sol:

By rule.2 we have

〈L′ ∪©〉 = (−A2 − A−2)〈L′〉

= (−1)(A2 + A−2)〈L′〉

The bracket polynomial of usual projection of the trivial link of n-components
will be

〈©
⋃
©

⋃
...
⋃
©〉 = (−1)n−1(A2 + A−2)n−1
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Figure 15:

Figure 16:

Definition.2.1.2
The writhe ω(D) of a diagram D of an oriented link is the sum of the signs

of the crossings of D where each crossings has sign +1 or -1

Theorem:2.1.3
Let D be a diagram of an oriented link L .Then the expression

(−A)−3ω(D)〈D〉 is an invariant of the oriented link L

Proof:

As proven the bracket polynomial is unaffected by Reidemeister moves of
type-II and type-III .Further more since a type-II move replaces crossings of
opposite signs with no crossings ( regardless of which orientation is chosen )
,ω(D) is also unchanged by a type-II move

similarly,ω(D) is unchanged by a type-III move and hence the claim is true
for Reidemeister moves of type-II and III

consider a diagram D and let D’ be the diagram after a link has been
inserted using a type-I move . Then ω(D′) = ω(D) + 1 regards of the orientation.

Hence

(−A)−3ω(D
′)〈D′〉 = (−A)−3(ω(D)+1)〈D〉

= (−A)−3ω(D)(−A)−3(−A)3〈D〉

= (−A)−3ω(D)〈D〉

13



2.2.Jones Polynomial

Definition:2.2.1 Suppose K is an oriented knot (or a link) and D is a
oriented regular diagram for K .Then the Jones polynomial of K , Vk(t) can be
defined from the following two axioms .The polynomial itself is a Laurent’s
polynomial in

√
t (i,e) it may have terms in which

√
t has a negative exponent .(

we assume (
√
t)2 = t).The polynomial Vk(t) is an invariant of k.

Axiom.1:
If K is a interval knot, then Vk(t)=1

Axiom.2:
Suppose that D+, D−, D0 are Skein diagrams , then the following Skein

relation holds.

Theorem:2.2.1: Suppose that L is a -component(oriented) link
,thenVL(1) = (−2)µ−1

A consequence of this proposition is that the Jones polynomial can never be zero.

Proof:

Since if we substitude t=1 into the skein formula we
obtainVL+(1)− VL−(1) = 0, it follows that

VL+(1) = VL−(1) = Voµ(1)

We also know that , For the trivial µ-component link
Oµ, Voµ(t) = (−1)µ−1(

√
t+ 1√

t
)µ−1

(i,e)Voµ(1) = (−2)µ−1 = V1

Theorem:2.2.2

If K is a knot or link , then

Vk(−1) = (−1)µ(k)−14k (−1)
where µ(k)denotesthenumberofcomponentsofK.

Proof:

If we let t=1 in Axiom(2) then
−Vk+(−1) + Vk−(−1) = (

√
−1− 1√

−1)Vk0(−1)
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We also know that ,

4k+(t)−4k−(t) = (
√
−1− 1√

−1
)Vk0(t) (2)

Sub t=-1 in (2) we obtain

4k+(−1)−4k−(−1) = (
√
−1− 1√

−1
)4k0 (−1) (3)

Next, we multiply (3) by the factor −(−1)(k+)−1 and hence

−(−1)µ(k+)− 14k+ (−1) + (−1)µ(k+)− 14k− (−1) =

−(−1)µ(k+)− 1(
√
−1− 1√

−1
)4k0 (−1)

Since,µ(k−) = µ(k+)andµ(k0) = µ(k+) + 1(or)µ(k+)− 1
−(−1)µ(k+)−14k0 (−1) = (−1)µ(k0)− 14k0 (−1)

and

−(−1)µ(k+)−14k+(−1)+(−1)µ(k−)−14k−(−1) = (−1)µ(k0)−1(
√
−1− 1√

−1
)4k0(−1)

(4)

(1) (4) are exactly the same Skein relation , the required result follows
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The Seifert Matrices

3.1.The Seifert surface

Let us begin with the following theorem due to L.Pontrjagin and F.FRANKL

Theorem 3.1.1

Given an arbitrary oriented knot(or link)K,then there exists in R3 an ori-
entable, connected surface, F, that has as its boundary K.(that is to say, there
exists an orientable connected surface that spans K.)

proof

Suppose that K is an oriented knot (or link)and D is a regular diagram
for K. Our intention is to decompose D into several simple closed curves.
The first step is to draw a small circle with one of the crossing points of
D as its centre.This circle intersects D at four points, say, a,b,c, and d,
Figure 3.1.1(a).As shown in Figure 3.1.1(b),let us splice this crossing point
and connect a and d, and b and c.

Figure 1: 3.1.1

What we have done is to change the original segments ac and bd into
new segments ad and bc.In this way we can remove the crossing point of
D that lies within the circle.This operation is called splicing of a knot K
(along its orientation )at a crossing point of D, then we shall remove all
the crossing points from D. The end result is that D becomes decomposed
into several simple closed curves, Figure 3.1.2 (b)). These curves are called
seifert curves. D,itself , has been transformed into a regular diagram of a
link on the plane that possess no crossing points (i.e., the trivial link). Each
of these simple closed curves may now be spanned by a disk.

In the case of Figure 3.1.2(b), by slicing we obtain three disks, D1, D2, D3,
Figure 3.1.2(c). The boundary of Di is the seifert curve Ci . In the figure
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Figure 2: 3.1.2

3.1.2 (c), there is a possibility that D2 may lie on the top off D1 , or D2 may
be under D1 .Finaly in order to create a single surface from various disks,
we need to attach to these disks small bands that have been given a single
twist. To do this ,firstly take a square abcd and give it a single positive or
negative twist Figure 3.1.3(a) and (b), respectively; these twisted squares are
the required bands.

Figure 3: 3.1.3

If we attach positive (negative) bands at the places of D that corresponded
to positive (negative) crossing points before they were spliced , then we obtain
a connected , orientable surface F, Figure3.1.2 (d). (In the case of a link ,
K, if we alter K in such a way that the projection of K is connected, then by
the above method we can also obtain a connected surface.) The boundary of
this surface , F, is plainly the original knot K.Further , as noted above, F is
also an orientable surface.

As shown in Figure 3.1.4(a), by shading the front of the surface and dotting
the back of the surface , we may distinguish between the front and back of the
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Figure 4: Figure3.1.4

surface. This allows us to assign an orientation to the surface. However ,
as in Figure 3.1.4(b), if one of the bands has a double twist, then it is not
possible for us to distinguish front and the back.

3.2.The genus of a knot

The theorem statd The theorem states that a closed (i.e.,one that is com-
pact and without boundary) orientable surface , F,is topologically equivalent
(i.e.,homeoporphic) to the sphere with several handles attached to its sur-
face.The number of these handles is called the genus of F, and is denoted

Figure 5: Figure3.2.1

Example 3.2.1
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The surface of genus 1, shown in Figure 3.2.19(a), is called a torus, while
the surface in Figure 3.2.1(b) has genus 2.

Theorem 3.2.1.

We may divide a closed orientable surface into αo points, α1 edges, and
α2 faces.Let

χ(F ) = αo - α1 + α2

then χ(F ) is an integer that is independent of how we have divided F; i.e., it
is only dependent on F. This integer is called the Euler charecteristic of F.

The Euler charecteristic χ(F ) and the genus of F, g(F), are related by
means of the following equation:

χ(F ) = 2− 2g(F ).

Therefore,

g(F)= 2−χ(F )
2

.

If F has a boundary, since the boundary is also composed of several points
and edges, the above formula becomes

χ(F ) = 2− µ(F )− 2g(F ),

where µ(F ) is the number of closed curves that make up the boundary of F.

Example 3.2.2

We can divide the torus with a hole in the manner shown in Figure 3.2.2,
so that αo =7 , α1=14 , and α2=6.It follows from this that χ(F)= -1, and
therefore g(F)=1.

Exercise: 3.2.1

Show , by suitably dividing it, that the sphere S2 has the Euler character-
istic 2.(Refer figure 3.2.2)

Solution:

19



Figure 6: Figure 3.2.2

Let us now apply the above Euler characteristic, to the seifert surface con-
structed. We may think of the disks and bands of F as a division of F.The
points of F in this division are the four vertices of each band. The edges of F
are the polygonal curves that constitute the edges of bands and the boundaries
of the disk between the vertex points. The faces of F are the disks and the
bands.

Exercise 3.2.2

Show that if d is the number of disks and b the number of bands , then αo
= 4b , α1 = 6b , and α2 = b+d .

solution:

We know that ,

χ(F) = 4b - 6b + b + d

(from Exercise 3.2.2)

χ(F) = d - b .

Further, µ(K) is just the number of components of the link K.So from (3.2.2)
we obtain that

2g(F) = 2 - µ(K) - χ(F).
2g(F) = 2 - µ(K) - d + b ,

2g(F) + µ(K) - 1 = 1 - d + b .

In the special case when K is a knot , since µ(K) = 1 it follows that

2g(F) = 1 - d + b.
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For the rest of the section let us consider this number , i.e., 1 - d +
b.Suppose Γ(D) is the seifert graph constructed from the seifert surface in
Figure 3.2.1(e).Since Γ(D) is a plane graph , Γ divides S2 into several do-
mains.(We may think of the sphere S2 as R2 with the addition of the point
at infinity.)In this partition of S2, the number of points is d and the number
of edges is b. Suppose that the number of faces is f; then from Theorem 3.2.1
and Exercise 3.2.1 we obtain,

2 = χ (S2) = d - b + f .

Therefore,

f - 1 = 1 - d + b,

i.e., 1 - d + b is equal to the number of faces of this division of S2, excluding
the face that contains the point at infinity, ∞.

3.3.The Seifert matrix

Figure 7: Figure 3.3.1

Suppose that F is a seifert surface created from the regular diagram ,
D, of a Knot (or link) K, and Γ(d) is its seifert graph. We want to create
exactly 2g(F) + µ(K) - 1 closed curves that lie on F.
When Γ(D) partitions S2 , then we showed in the previous section that 2g(F)
+ µ(K) - 1 ( = 1 - d + b = f - 1) is equal to the number of domains (excluding
the domain that contains ∞). The boundary of each these domains (faces)
is a closed curve of Γ(D). Therefore, We can form these closed curves, create
the closed curves on the seifert surface.

Example 3.3.1.

If we transform the regular diagram of the right hand tefoil knot to the
one in Figure 3.3.2(a), then it is fairly straightforward to see its seifert sur-
face is the one in Figure 3.3.2(b) and the subsequent Seifert graph is as in

21



Figure 8: Figure 3.3.2

Figure 3.3.2(c).
From Figure 3.2.2 (b) it follows that there are two closed curves α1 and α2

on the seifert surface. The mutual relationship between α1 , α2 , α#
1 and α#

2

are shown in Figure 3.3.3(a) ∼(d).

From these four diagrams it follows that

Figure 9: Figure 3.3.3.

lk(α1 , α#
1 )= -1 , lk(α2 , α#

1 )= 1 , lk( α2 , α#
2 )= -1,

with the linking number of the other case equal to 0.

Therefore, the seifert matrix for the right-hand trefoil knot is M =

[
−1 0
1 −1

]
.
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Fundamental Problems of
Knot Theory

The problems that arise when we study the theory of knots can essentially be
divided into two types. On the one hand, there are those that we shall call Global
problems, while, in contrast, there are those that we shall call Local problems.

Global problems concern themselves with how the set of all knots behaves. As
the label implies, in contraposition, Local problems are concerned with the exact
nature of a given knot. As to the question which is the more important, and
hence we should concentrate our attention tention on, the unhelpful answer is
that it is impossible to say. In order to solve Global problems it is often necessary
to find solutions to various Local problems. Conversely, the determination of
Local problems may rely on how they fit within the Global problem.

In this chapter, we shall explain and give examples of these two types of
problems. Problems in the theory of knots are not just limited to this bifurcation
into Global and Local problems. However, in the past the above dichotomy has
formed the axis around which knot theory has developed, and it is more than
likely that this will substantially remain the case in the foreseeable future.

1 Global Problems:-

One of the typical classical Global problems is the classification problem.

(1) The Classification problem

The classification problem, at least in definition, is very straightforward, as the
name suggests we would like to create a complete knot (or link) table. What
exactly we mean by a complete table is one in which, firstly, no two knots are
equivalent, and, secondly, a given arbitrary knot is equivalent to some knot in this
table.
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At the time of writing, a complete table in the above strict sense has been
compiled only up to prime knots with 13 crossings. One future problem is to
steadily expand this table. Another (sub-) problem that germinates directly from
the original classification problem is to create a complete table for only certain
specific types of knots, for example, for alternating knots. As we introduce other
types of knots, this question of whether we classify them completely will always be
in the vanguard of the questions that we will ask ourselves. In fact, in Chapters
Torus Knots and Tangles and 2-Bridge Knots we shall discuss two specific knot
types that have been completely classified.

(2) A fundamental conjecture

This conjecture can be immediately stated as follows:

IfS3 −K1andS
3 −K2 , which are usually called comple-

mentary spaces, for two knots Kl and K2 , respectively, are
homeomorphic, then the knots are equivalent.

This conjecture can readily be seen to be the converse of Theorem[If two knots
K1andK2that lie in S3 are equivalent, then their complements
S3 −KlandS

3 −K2 are homeomorphic. ]

In the late 1980s this conjecture was, in fact, proven by C. McA Gordon and J.
Luecke [GL]. As a consequence of this result, the problem of knots in S3

transforms itself from what we may call a relative problem which concerned itself
with the shape of a knot in S3, into an absolute problem, which now concerns
itself with the study of the complementary spaces.

However, much to our dismay we cannot always transform a relative problem
into an absolute problem. The counterexample that immediately comes to hand is
that, in fact, the above fundamental conjecture is false in the case of links.

Example 1:- Although the two links in Figure 1 are not
equivalent, their complementary spaces are
homeomorphic7.

In general, results that hold for knots pass through fairly readily to hold for links
as well. However, as the above example shows, we cannot take this for granted.
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Figure 1:

(3)Kont invariants

As a way of determining whether two knots are equivalent, the concept of the
knot invariant plays a very important rôle. The types of knot invariants are not
just limited to, say, numerical quantities. These knot invariants can also depend
on commonly used mathematical tools, such as groups or rings.

Suppose that to each knot, K, we can assign a specific quantity ρ(K). If for two
equivalent knots the assigned quantities are always equal, then we call such a
quantity, ρ(K), a knot invariant. This concept of assigning some mathematical
quantity to an object under investigation is not limited just to knot theory, it can
be found in many branches of mathematics. Probably the simplest analogous
example occurs in group theory. The number of elements in a group, called the
order of the group, is a group invariant, since for isomorphic groups their
respective orders are equal.

We know that if a knot K and another knot K’ are equivalent, then it is
possible to change K into K’ by applying the elementary knot moves to K a finite
number of times. Therefore, for a quantity ρ(K) to be a knot invariant, ρ(K)
should not change as we apply the finite number of elementary knot moves to the
knot K. It follows from this, for example, that the number of edges of a knot is
not a knot invariant. The reason is that the operations defined in Elementary
Knot Moves.(1) and (1)’ either increase or decrease the number of edges.
Similarly, if we consider the operations in (2) and (2)’ of the same definition,
then it also follows that the size of a knot is not a knot invariant.

A knot invariant, in general, is unidirectional, i.e.,

if two knots are equivalent then−−→ their invariants are equal.
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For many cases the reverse of this arrow does not hold. In contraposition, if
two knot invariants are different then the knots themselves cannot be equivalent,
and so a knot invariant gives us an extremely effective way to show whether two
knots are non-equivalent. The history of knot theory may be said to be an account
of how the various knot invariants were discovered and their subsequent
application to various problems. To find such knot invariants is by definition a
Global problem. On the other hand, to actually calculate many of these knot
invariants, which we shall discuss in Chapter Classical Knot Invariants, is quite
difficult. Further, to find a method to calculate these invariants is also a Global
problem.

2 Local Problems:-

To illustrate and explain the idea of a Local problem, we shall give several
examples.

(1) When are a knot K and its mirror image K* equivalent?

If K and K* are, in fact, equivalent, then we say that K is an amphicheiral
knot (sometimes also referred to as an achiral knot). For example, since the
right-hand trefoil knot [Figure 2(b)] and its mirror image, the left-hand trefoil

Figure 2:

knot (Figure 3), are not equivalent, the trefoil knot is not amphicheiral. On the
other hand, however, the knot is amphicheiral . Due to the extremely special
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Figure 3:

nature of amphicheiral knots, there are, in relative terms, very few of them. This
(Local) problem has over the years been quite extensively studied, and for
particular types of knots many amphicheiral results have been proven.

(2) When is a given knot prime?

In the way described in Figure 4 , a regular diagram of K1#K2, the connected

Figure 4:

sum of K1andK2 may be constructed by placing the regular diagrams of K1andK2

side by side and then connecting them by means of two parallel segments.
Therefore, if a knot K can be decomposed into KlandK2,then K has a regular
diagram of this type shown in Figure 4. However, although theory predicts this in
practice, since most regular diagrams of non-prime knots are usually not so nicely
presented, we cannot deduce from the regular diagram whether a knot is prime.

Example 2:- The regular diagram of the knot, K, shown in
Figure 5(a) is not of the form of Figure 4, but K is not a
prime knot.

Recently, this (Local) problem has been completely resolved in the case of
alternating knots
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Figure 5:

(3) When is a knot invertible?

We know that we can assign to a knot two different, opposite orientations. Let
us denote one of these knots by K and the other, with the opposite orientation,
-K. We would like to determine whether K and -K are equivalent. When K and -
K are, in fact, equivalent, then K is said to be invertible. Knots with a relatively
small number of crossing points are in general invertible. It follows from the
Figure 6 that the left-hand trefoil knot is an example of an invertible knot.

Figure 6:

That non-invertible knots do exist was first shown by H.F. Trotter in 19638.
The knot in Figure 7(a) was the example that was given by Trotter; following this
discovery, many other non-invertible knots were soon found.

In contrast to 1963, it is now fair to say that almost all knots are
non-invertible. We have drawn in Figure 7(b) the simplest non-invertible knot.
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Figure 7:

(4) What is the period of a knot?

If we rotate the figure 8 knot, Figure 8(a), by an angle of π about the Oz-axis,
the figure will rotate to its original form. So, this knot may be said to have period

Figure 8:

2. The left-hand trefoil knot, Figure 8(b), if it is rotated by 2π
3

about the Oz-axis,
will also rotate to its original shape. In general, if we can rotate a knot by an
angle 2π

3
about a certain axis so that it rotates to its original shape, then we say

that this knot has period n. In this case, the (Local) problem is to determine all
the periods for a given knot. This problem has, also, been extensively studied and
has been completely solved for particular types of knots.
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(5) When is a knot a slice knot?

Of all the (Local) problems that we have so far discussed, this is probably by far
the most difficult. The present state of affairs is that only several necessary
conditions are known for a knot to be a slice knot. Further, effective methods to
determine slice knots are also not known. Therefore, this (Local) problem seems
at the moment to be quite intractable.

The subsequent chapters will be an exposition of knot theory, which will take
their bearings from the bifurcation of knot theory problems outlined in this
chapter, namely, the Global and Local problems.
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CHAPTER-V 



5.1.QUANTUM COMPUTATION

Classical computers use a bit to encode information.A bit stores either a 0 or 1
and data is encoded in strings of 0’s and 1’s.Logical gates act on these strings
of data taking two bits as input and producing a single bit as
output.Clearly,what we think of as a ”computer computation” requires
thousands of bits and operation.To perform a task on a computer,we need to
know how many bits are needed to store the data and how many operations
(such as addition or multiplication) are required to perform the
computation.The number of operations required to perform the task is referred
to as the computational complexity.To put this in perspective,currently,a
computation on x bits requires a number of operations that can be expressed as
a polynomial in the variable x.

For example,let’s consider matrix multiplication of an n X n matrix.In an
n X n matrix,there are n2 entries.How many operation does it take to multiply
two n X n matrices? We let A,B and C denote n X n matrices and suppose
that AB=C.Recall that the entry in the i-th row and j-th column of C is
computed as follows

Cij =

n∑
k=1

AikBkj (1)

The computation of Cij in equation (1) requires n multiplication operation
and n-1 addition operation.A single entry in the matrix C requires roughly 2n
operations.There are n2 entries.computing the entire matrix C requires roughly
2n3 operations.Notice that 2x3 is a polynomial,so we say that we can compute
matrix multiplication in polynomial time.

Now consider the bracket polynomial.A virtual link diagram D,with n
classical crossings,has 2n states.Recall the definition of the bracket polynomial:

〈D〉 =
∑
s∈S

Aα(s)−β(s)d|s| (2)

There are 2n states and each state must be evaluate (count the number of
total loops) and then the values are added.Taking this simplistic viewpoint,each
state requires two opereation:Evaluation and addition to a running total.For a
virtual link diagram with n classical crossings,that is (2n)X2 total
opereations.The total number of computations is an exponential expression
based on the number of classical crossings.

Algorithms or computations that require an exponential number of
calculations are challenging,if not impossible to compute.Their rabid growth in
size means that it is very easy to run out of computer memory.

Quantum computation is fundamentally different from classical
computation.The basic unit of data is a qubit-a”quantum bit”.A qubit is
neither a 0 or a 1,but a superposition of the two classical states.Qubites are
expressed as linear combinations:
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| Ψ〉 = α | 0〉+ β | 1〉 (3)

Where α and β are complex number.The notation | ψ〉 is called a ket and
is part of Dirac notation.When measured,the qubit collapses to a 0 with
probability |α|2 and state 1 with probability |β|2.Until the qubit is measured,the
qubit carries information regarding both bits.Returning to the bracket
polynomial,a type A smoothing could be encoded as a 0 and a type B smoothing
could be encoded as a 1.For a virtual knot diagram with n classical crossing,all
2n states could be encoded using n qubits,instead of an n(2n) classical bits.

Two famous quantum algorithms are Shor’s Algorithm (factoring a
number into primes) and Grover’s algorithm (sorting an unstructured
list).Both of these quantum algorithms are ”faster” than their classical
counterparts.One reason that knot theorists are interested in quantum
algorithms is because there is also a quantum algorithm for the computation of
the f-polynomial.

Another reason for knot theorist’s in quantum computation is one of the
models of quantum computation.Theoritical models of quantum computation
involve three main steps:

1.Initialize the system (construct qubits)

2.Apply logical gates (operation)

3.Measure the outcome (read the results)
The first step (system initialization) consists of choosing a linear

combination of qubit vectors of length n with entries in Z2 and complex
coefficients.The logical gates (operations) are simulated via matrix
multiplication using unitary matrices.(We let A∗ denote the conjugate
transpose of a matrix.Then a unitary matrix satisfies the equation
(A∗)T = A−1 or that A(A∗)T = I = (A∗)TA. )One model of quantum
computation is topological quantum computation.This model involves anyons
particles that are arranged in a line in a 2-D plane.Through some
machanism,these particle move around each other in the plane.Adding the
dimension of time,a braid emerges from this scenario.The particles involved in
this scenario are called non-abelian anyons.

By braid,we mean an n-n tangle with some specific restrictions.The
n-strand braid group Bn has the set of generators (σ1, σ2, ...σn−1).The braid
group also contains the n-strand identity braid as shown in the Figure 1.The
inverse of σ1 is obtained by switching the positive crossing to a negative
crossing.The elements of Bn consist of all n - n tangles formed by
concatenation of the generators.The generators satisfy the following identities

σiσj = σjσiforall | i− j |> 1 (4)

σiσi ± 1σi = σi ± 1σiσi ± 1 (5)

An example of concatenation is shown in figure-2.The braid group can be
mapped onto a set of 2nX2n matrices:φ:Bn → SLn(C).These matrices respect
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the Reidemeister moves and,when unitary,can also be viewed as simulated
quantum computer.Research has shown these braid operator are
universal,meaning that the entire set of logical gates can be constructed using a
small set of matrices.

Figure 1:

Braid Generators

Figure 2:

Braid:σ1σ2σ3
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(II).APPLICATIONS OF KNOT THEORY

5.2 TEXTILES

KNOTS by themselves are any accidental or intentional entanglement of
cord,braid,ribbon,beading,fabric or other material that will create a new shape
or structure by forming loops,intertwining,and weaving of the basic
FABRIC.The nw structure may be used to enhance or accessorize many forms
of dress

BRAIDING in TEXTILESmachine or hand method of interlacting three or
more yarns or bias cut cloth strips in such a way that they cross one another
and are laid together in diagonal formation,forming a narrow strip of flat or
tublar fabric

Traditional woven textiles have a wrap and weft thread structure the wrap
threads extend across the width of the fabric while the weft threads run the
length of the fabric.The interactions between the wrap and weft threads are
reular repeating along both the length and width of the fabric.Using
mathematical terminology, fabric is a doubly periodic oriented plane knot
diagram.Here are the several examples of woven fabric.

Figure 1:

The fact that the fabric cn b described using a small region of the doubly
periodic pattern leads to the following definition from Vassiliev.A fabric
kernel is a n-m tangle with no virtual crossings as shown below.

Figure 2:
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Figure 3:

Given an n-m tangle L, we can construct a fabric kernel as shown in the
above figure 3 (fabric from th kernel L).

The fabric kernel can be viewed in three distinct contexts: as alink on a torus,
as a classical link (where components X and Y mark the frame of the torus),or
as a virtual link diagram.Each possibility is shown in the below figure 4 (kernel
visualization)

Figure 4:

The following invariants can be applied to the fabric kernel and can be used to
describ or differentiate between different fabric kernels.We apply these
invariant to the kernel of figure(a) (DIFFERENT FABRICS),which is shown
in figure (plain weave tile).

1.The crossing numbers of the kernel, L,denoted C(L) count the
number of crossing in the kernel.There are 2 crossings which is shown in below
figure.
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Figure 5:

2.The number of components that result when the edges of the fabric
kernel are identified to form a torus is also an invariant.In the above diagram
plain weave,two components are formed when the edges are identified.

3.The linking number of the components is also an invariant.We order
the components of the fabric kernel after identifying the edges.Then, the
linking number of the fabric kernel is defined as L(L)=

∑
i<j |l(Ki,Kj)|

where l(Ki,Kj) is the sum of the signs of the crossings where components i and
j meet. There are two components in the above diagram(figure a) and L(L)=0

4.The axial type of each strand can also be determined by computing the
repeat of an individual strand across the surface of the kernel.The repeat is
then expressed in terms of X and Y,where X denotes the oriented,vertical
boundary of the fabric kernel as shown in the below figure(6)

Plain weave tile pays homage to the irregular qualities of silk,with embellised
lustrous accents to add scale.Designed and assessed for environmental and
social responsibility across material health,material reuse,renewable energy and
social fitness.
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Figure 6:

Tracing the components,we se that the axial type of one component is X-Y
and the other component is X+Y.Traditional fbric is either knitted
(constructed from one continous fiber) or woven (constructed from wrap and
weft fibers).The number of axial components identifies the fabric type
knitted fabric has one axial fiber and woven fabric has two axial fibers (warp
and weft).However,new industrial procsses and 3-D printing open up the
possibility of multi axial fabrics and fabrics that include closed
components.Additional fabric structures are shown in the below diagram.

Figure 7:

In particular,chain mail fabrics (which contain closed components) have
axial types 0, as the component bounds a closed region.
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CONCLUSION

Knot theory is a subject suitable for understanding nature

deeply for learning in an early age. We can watch a knot with eyes

and our ability of space perception will be grown up playing with

it.Knot theory remained as a beautiful mathematical theory in its

own right.There are several practical applications of knot theory

have come to light,including DNA knotting and other topics in

biology,chemistry and physics.There are clearly a large number of

areas that we could explore now,relating to a number of different

subjects.It is this relation to such a wide range of subjects that

makes knot theory so interesting.

This project deals about the basic definitions ,Reidemeister

moves, and skein relation in the first chapter.Kauffman bracket and

and Jones polynomial in second chapter.Seifert Surface,seifert

matrix, the genus of a knot in third chapter.Fundamental problems

of Knot theory in fourth chapter.And we conclude Application in

textiles.
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Introduction 
 

                 Blood stain pattern  help to find at which time the incident happens. It is every 

useful method in the forensic department. Many cases all over the world has been 

solved by the blood stain pattern technology. So it is very important to everyone to 

know about the blood stain. The general role of the blood stain pattern analysis in a 

criminal investigation is to assist in the reconstruction of those events of an alleged 

incident that could have created the stains and stain patterns present at a crime scene. 

             In some cases it may be necessary to conduct a blood stain interpretation using 

photographs, information that may be gained with blood stain pattern analysis include. 

For  example, the position of the individual when the blood was deposited (sitting, 

standing etc..,) the relative position of individuals at the time of bloodshed the possible 

type of weapon used as well as possible mechanisms that could have produced the 

blood staining on a surface. The distinctive blood stain patterns occur because of the 

physical propertied of the blood and how it reacts when acted upon by physical force. 

               The limitations of the blood stain pattern analysis include the fact it cannot 

recreate the entire scenario, as there are unknown variables that analysts cannot 

account for using scientific method . The blood may also have carried bite of skin hair or 

clothing with it all these materials can be recovered and analysed to provide more 

information about the victim the assailant . Blood stain pattern analysis has been 

accepted as reliable evidence by appellate courts in one state after another with little a 

no examination of its scientific accuracy. 
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Chapter 1 

I. Introdution to Bloodstain Pattern Analysis 

 

1.1 Principles of Bloodstain Pattern Analysis 

                           To understand how analysts interpret bloodstains, one must first 

understand the basic properties of blood. 

                            Blood contains both liquid (plasma and serum) and solids (red 

blood cells, white blood cells, platelets and proteins). Blood is in a liquid state 

when inside the body, and when it exits the body, it does so as a liquid. But as 

anyone who has had a cut or a scrape knows, it doesn’t remain a liquid for long. 

Except for people with hemophilia, blood will begin to clot within a few minutes, 

forming a dark, shiny gel-‐like substance that grows more solid as time progresses. 

The presence of blood clots in bloodstains can indicate that the attack was 

prolonged, or that the victim was bleeding for some time after the injury 

occurred. 

Blood can leave the body in many different ways, depending on the type of injury 

inflicted. It can flow, drip, spray, spurt, gush or just ooze from wounds. 

1.2 Objectives of Bloodstain Pattern Analysis 

          BPA is a discipline that uses the fields of biology, physics, and mathematics. BPA 

accomplished by direct scene evaluation and/or careful study of scene photographs 
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(preferably color  photogtaphs with measuring device in view) in conjunction with 

detailed examination of clothing, weapons, and other objects regarded as physical 

evidence. Details of hospital records, postmortem examination, and autopsy photographs 

also provide useful information and should be included for evaluation and study. In cases 

where a scene investigation is not possible and photographs must be relied on, detailed 

sketches, diagrams, reports of crime scene investigation, and laboratory reports should 

be available for review. 

         Relative to the reconstruction of acrime scene, BPA may provide information to the 

investigator in many areas. 

• Areas of convergence and origin of the bloodstains 

• Type and direction of impact that produced bloodstains or spatter 

• Mechanisms by which spatter patterms were produced 

• Assistance with the understanding of how bloodstains were deposited onto items 

of evidence 

• Possible position of victim, assailant, or objects at the scene during bloodshed 

• Possible movement and direction of victim, assailant, or objects at the scene after 

bloodshed 

• Support or contradiction of statements given by accused and/or witnesses 

• Addition criteria for estimation of postmortem interval 

• Correlation with other laboratory and pathology findings relevant to the 

investigation 

The goal of the reconstruction of the crime scene using BPA is to assist the overall forensic 

investigation with the ultimate questions that must be addressed, which include, but are 

not limited to, the following. 
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• What event(s)occurred? 

• Where did the event(s) occur? 

• When and in what sequence did they occur?  

• Who was there during eash event? 

• Who was not there during each event? 

• What did not occur? 

1.3 Types of Bloodstain Patterns: 

(i) Passive bloodstains:  Drops created or formed by the force of gravity acting 

alone. 

 

 

 

(ii) Transfer bloodstain:  This is created when a wet, bloody surface comes in 

contact with a secondary surface. A recognizable image of all or a portion of 
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the original surface may be observed in the pattern, as in the case of a bloody 

hand or footwear. 

 

 

 

(iii) Projected bloodstains: These are created when an exposed blood source 

is subjected to an action or force, greater than the force of gravity. The size, 

shape, and number of resulting stains will depend, primarily, on the amount 

of force utilized to strike the blood source. 
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1.4 Classification  of bloodstain spatter by velocity: 

     There are three basic categories of stain groups bases on the idea of  the size of the 

bloodstain compared with the amount of force propelling the bloodstain. 

(i) Low Velocity Impact Spatter 

                 Low Velocity Impact Spatter is considered to be a force or energy equivalent to 

normal gravitational pull up to a force or energy  of 5 ft/s .The resulting stain is relatively 

large usually 4 mm .in diameter or greater .Free falling drop of blood affected only by 

gravity . 

(ii) Medium  Velocity Impact Spatter 

                Medium velocity spatter is considered  when a source of blood is subjected to a 

force 5 to 25 ft. Per second. The resulting stains range form 1 to 4 mm.in in diameter. 

These type of stains are usually associated with  being or stabbing. 
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(iii) High Velocity Impact Spatter 

                                  High velocity spatter  are created  when the source of blood is 

subjected to a force with a velocity greater than 100 ft .per second .The resulting stain is 

predominantly less than 1 mm. in  diameter although smaller and larger stain may be 

observed. These type of  stains are usually associated with gunshot injuries. 
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Chapter2 

2.Determining the Point of Convergence and the Area 

of Origin 

              Our prior discussion of directionality and the evaluation of the path a given 

droplet was traveling lead us to the next step: defining from where the droplet came 

and determining what common convergence point  several spatters may or may not 

have. 

              We can determine the area of origin for impact spatter patterns by following 

five steps. These steps are: 

1. Identify well- formed spatter stains in the pattern. 

2. Identify directionality of the stains. 

3. Identify point of convergence for the pattern. 

4. Identify impact angle of the stains. 

5. Combine the information for area of origin. 

2.1 Identify Well- Formed stains in the Pattern 

           The concept of a well- formed stain is simply a stain that is symmetrical along its 

long and short axis. Figure (a) contrasts the difference between symmetrical and 

Asymmetrical stains. 
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                Symmetrical shaped stain     (a)              Asymmetrical shaped stain 

Figure(a): The symmetry of the stain is important to the analyst for both defining 

directionality and impact angle. In pursuing an analysis of the area of origin, the analyst 

chooses stains that are stmmetrical. The stain on the left is symmetrical with clearly 

defined margins. The  stains on the right, having impacted onto a rough surface, is not 

symmetrical. Defining a clear length and width, or identifying a long axis in such a stain 

is difficult. 

 

     

(b) Diectionality lssuse Based on Staain Shape 
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Figure(b): Directionality of a stain becomes more defined as the stain becomes more 

elliptical. In the round stain on the left, it is difficult to know where the long axis of the 

stain is. The middle stain provides a clearer idea od this long axis, but even in this instance, 

different analysts might view it in slightly different ways. The elliptical stain on the right 

allows for a very clear understanding of where the long axis is. Different analysts viewing 

directionality in this stain would not vary in any significant fashion. 

2.2 Identify Directionality of the stains 

In spatter stains, directionality is defined by the long axis of the ellipse and the presence 

of scallops, satellites and tails. The ability to recognize  directionality is critical to 

locating a convergence point and the area of origin. The shape of the spatter stain limits 

what we learn about directionality. Elliptical stains offer information that is more 

specific regarding directionality; circular stains offer less (see figure(B) ). As we discuss 

impact angle determination, we will find there is a similar correlation of error associated 

with impact angles. Both issues ( directional ambiguity and error rate associated with 

impact angle) functionally establish which stains the analyst will use in defining area of 

origin. As a general rule, stains that are generally circular (65° to 90°impacts) should not 

be utilized for this evaluation. Stains that have a clear elliptical shape (10°to 65°) can be 

used for directional evaluation.  

       Directionality defines the path of the droplet as it struck a target. Often this is 

described in general terms (e.g., left to right). This direction of travel  can also be 

defined numerically by a specific angle. The directional angle, also known as the gamma 

angle, described directionality as a specific angle ( between 0° and 359° ) as it relates to 

a reference point. Generally, this reference is north for patterns  on horizontal surfaces 
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and up for vertical surfaces. The directionality is established, and then the long axis of 

the stain is measured against the reference point. See figure(C) 

 

 

 

  

Figure (C)  

Figure(C): Directional or gamma angle is the angle between the long axis of a stain and 

a standard reference point. This angle describes the directionality, but does so from 

standard reference point, thus allowing it to be used by forensic software. 

2.3 Identify point of convergence for the pattern 

Depending upon the specific questions  raised about a given spatter ,the needs of 

the analysis may be different. In some instances, a point of convergence analysis (a top a 

view) may be sufficient to answer the questions. At other times, the analyst may require 

more detailed information, demanding the use of the area of the origin evaluation 

methods . 
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For a stain on a horizontal surface if we can define the stain’s directionality and 

then draw a reverse  azimuth (that  is ,a line that extents backward along the path the 

droplet was following), we can be reasonably sure the droplet originated somewhere 

along this avenue. Looking down on the droplet ‘s path in the top view there are no force 

that affect the flight path. 

In this top view, once set in motion, assuming no ricochet event exist, a droplet will 

follow a straight path from its source to its destination. Gravity and air resistance affect 

the droplet only in the vertical plane of its parabola ( a side view perspective). 

For example, given Figure (D) stain# 1 must originate somewhere along a reverse 

path as indicated by the directionality of the droplet . The only limits to the origin are the 

room's limitations or any intermediate obstacles. If figure (D) represented the room 

boundaries and the possible reverse path for stain#1 extends 13 ft, then the drop's origin 

must lie somewhere within those 13 ft. With only one stain the resulting parameter of 

possible origins is very wide. 

 

Figure (D) 
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Figure(D): By following the reverse vector of each droplet to the point where they 

intersect, we can establish a probable point of convergence in two dimensions. 

           If we introduce a second stain as in figure (D), we can then look for a point where 

the two paths intersect. The process is no different from the technique known as 

resection in map reading. By taking two unknown points and applying reverse azimuth 

from each we define  an unknown point where the azimuth cross. In this instance ,the 

unknown point is the likely source for both stains ,their point of convergence . 

Keep in mind that the convergence “point" is likely  to be an area. This individual 

lines created by these reverse azimuth will cross but not at a distinct point (eg., a specific 

XYZ position in space ) (see figure E). However , the wider the radiating pattern of spatter 

involved, the more likely we can resolve the convergence to a more  refined point (see 

figure 8m6). 

 

Figure(E)  
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Figure (E) :At the convergence, the lines will rarely cross each other at a single point. 

The convergence point is often an area as well. 

 

Figure(F) 

Figure (F): The wider the field of radiating spatter, the more refined the convergence 

point becomes. Note that the inclusion of the far left stains functionality tightens the 

convergence point as compared to that observed in Figure€. 

By limiting ourselves to this top view dimension ,we certainly gain simplicity in the 

evaluation. We also gain an inherent difficulty .If our circumstances limit us to only a few 

stains ,it is always possible they are the result of more than one event. That is even  

created stain #1 followed by another unrelated action that caused stain #2 .Given this 
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situation, the points where their reverse paths cross is simply coincidental and  has no 

investigative significance.  

Widespread within a scene and showing no common convergence point , we would 

easily recognize such stains as separate actions .Found in proximity to each other, the 

likelihood of a coincidental convergence of the flight paths increases. Unfortunately, we 

may choose to read this convergence as a single origin both stains . With only a few stains 

to work with, it may be difficult it recognize such an error. 

The same is certainly true when viewing two adjacent patterns. We may see a 

coincidental convergence for two patterns and read this as the source for both. Figure 

(G)  illustrates the possible error when Viewing patterns from closely located impacts. 

 

Figure(G) 
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Figure(G): In addition to the possibility of two stains having a coincidental intersecting 

point, it is also possible for two patterns to overlap in this fashion. If this condition is not 

considered, it might well result in a mistaken point of convergence for both patterns. 

                   As the number of evaluated stains increases, our  confidence increases as 

well. The more paths we find that intersect a given area ,the more likely it is that we 

have a true point of convergence.Even in circumstances of multiple overlying the events 

with the spatter intermixed, the primary convergence points may still be evident. In the 

situation, the various paths may cross at several location, but where we find clusters of 

interesting paths will establish the primary convergence points of the various events. 

                What this top view method of analysis of the convergence point doesn’t 

establish the three-dimensional origin of the spatter, the point above the convergence 

point where the spatter. This location is known as the area of origin, a position in three-

dimenstional space. In the top view approach, we establish a convergence in two 

dimensions and accept the flight paths originate somewhere above it. Once again, the 

possibility of multiple events always exists. The analyst may be viewing spatter from two 

or more events that originated at the same location in the  room, but from different 

heights during different events ( e.g., One impact at 6 ft, another at 3 ft). 

            As described the top view convergence technique is effective in and of itself in 

some instances. It represents a functional method of portraying this convergence in the 

scene (see Figure (H) ).This information alone limits the possible area where the event 

could have originated. 
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Figure(H) 

Figure (H)  An example of using graphic tape to demonstrate the point of convergence in 

a spatter pattern. 

            On vertical surfaces, point of convergence is more problematic .In sum limited 

instances , we can use this method, but because gravity and air resistance affect the 

path of the droplet in the vertical plane, directionality is also affected. 

         To this point, we have narrowed our scope to finding the point of convergence 

along the paths of the stains of interest. The converging lines of these reverse vector 

establish a point of convergence for the pattern. To more effectively limit the source of 

the pattern, we must look at the fight paths in the vertical plane a side -view approach 

of the target .This requires including the stains’ s impact angle in the analysis. 

2.4 Identify impact Angles for the Stains 

                A relationship exists between the length and width of the  resulting stain and the 

angle at which the droplet impacts . The shape of the stains defines the angle of impact. 
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In general the terms what this means is more than the circular stain , the  more 

perpendicular the angle at which it struck the target surface (eg.,90°) , whereas the more 

elliptical the shape ,the more acute the angle of impact (eg.,10°).See figure(I). With 

practice and experience and by observation alone, the analyst will recognize the general  

angle of impact  based solely on the shape . This angle can also be computed to within a 

few degrees of the actual impact angle  based on the relationship. We apply the concept  

the width /length ratio in conjunction with specific trigonometric function (eg., sine 

function).This allows the analyst to use straight line geometry techniques in defining the 

blood  stain event.  

 

Figure(I)  

Figure (I):  Impact angle and stain shape. There is a direct correlation between the shape 

of a stain and the angle at which it struck a target surface. The more elliptical the stain’s 

shape, the more acute the angle of impact. The more circular the stain, the closer it fell 

to 90° on the target. 
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Given a well formed stain where we can accurately measure the width and length we 

can easily establish the impact angle . 

               To apply the impact angle formula it is important to understand that in right 

triangles certain relationships exist between the angles of  the triangles and the length 

of its sides. These relationships are trigonometric functions such as sine, cosine and 

tangent. These relationships are in no way dependent upon the factors found at the 

crime scene ; they are mathematical in nature. What we do is make an analogy to our 

scene using these relationships.  

              Imagine a right triangle formed between the  droplet  and the target surfaces as 

the droplet strikes. Figure (K) outlines how this triangle might look . A blood droplet  in 

flight is in the shape of sphere. Therefore ,in viewing Figure (K), Line DE (the width) can 

be considered equal  to line AB (the height) of the sphere. An analogy can then be 

drawn between line ab and bc and the width and length of the resulting stain. (See 

figure (L ). Based on the  analogy  line ab is represented  by line LM of the stain and line 

bc is represented by the Line JK of the stain. 

 

Figure(J) 
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Figure (J) The relationship of the droplet to an imagined right triangle. Using the sine 

function and this relationship, the analyst can establish the angle of i. This is the 

droplet’s impact angle. 

 

 

Figure(K) 

Figure (K):  We can draw an analogy between the triangle formed in figure (J) and our 

bloodstain. Line ab is analogus to line  LM, as is bc to JK. Thus, the length and width of 

the stain are quantities we can apply using the sine function to determine the impact 

angle [i]. 

 As a result of the analogy, we have two known quantities from our crime scene which 

we can apply to a formula .By measuring the stains ‘s length (line JK) and width (line LM) 

and applying them to following  formula , the  droplet ‘s impact angle becomes evident; 
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                     Sine i  = Width (ab)/ Length (bc)                             (1) 

                      Inverse sine (ASN) i = Impact angle                       (2) 

Example: 

       Width = 3 mm 

       Length= 5mm 

      0.6(Sine i) = 3/5 ( Width/ Length) 

      Inverse sine  i (0.6) =36.8 

      Impact angle = approximately  36 to 37° 

          It is important to recognise  that the formula provides the analyst with an estimate 

of the impact angle  . The precision of the math should not be constructed to mean a 

similar precision in the definition of the angle. Issues related to the ballistic path of the 

droplet  preclude us form accepting this angles as absolute. As a rule , impact angles  are 

considered to be accurate to within  5°  to 7°. It has always been recognised that circular 

shaped stains presented a greater error level .Recent studies demonstrate that when 

dealing with stains impact between 10° and 45° ,the error rate is only 2°to3° .This error 

rises to 6°to 7° for stains impacting at 60°.After 60° the error rate rises dramatically .As   

with the concern or directionality error rate issues demand that the analyst carefully 

consider what  stains are utilized for area of origin determinations. 
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Figure(L) 

Figure(L): A length to width ratio chart. By dividing the length of the stain by the width, 

we generate a number that is always greater than 1. The analyst finds this number on 

the vertical axis, and then reading to the right locates the corresponding point where the 

graph line intersects. The angle listed below this point is the approximate impact angle. 

For example, the L/W ratio of 1.9 equates to a 30° impact angle. 

 

             In addition to using a calculator with a sine function, there are two other related 

methods for determining impact angle. The first involves the length/width ratio chart 

(see figure M).This basic experiment is repeated in every blood stain  pattern analysis  

class. The analyst divides the measured length of the stain by width, resulting in a 
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number greater than 1. If the result is less  the one ,we have reserved the  length and 

width in the formula .Using the result the analyst locates the corresponding number on 

the vertical axis of the L/W ratio chart. Where the line intersects this point , one simply 

reads the angle listed on the lower axis .     

 

Figure(M) 

      Figure(M): An abbreviated sine function table. In this method, we divide the width by 

the length of the stain, Which always generates a number less than 1. The analyst then 

looks for the closest corresponding number under the sine column of the chart. The 
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number adjacent to this lists the degree of the impact angle. For example, a 0.5 W/L 

ratio equates to a 30°  impact angle.             

                The second method involves dividing the width of the stain by the length and 

comparing  this number to a sine function table (see figure(M) ) .In this instance, the 

result will always be less than 1. The analyst finds the corresponding number on the sine 

function table to determine the angle. A sine table simply eliminates  the need for a 

scientific calculator . 
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Chapter 3 

 

3.Method used for Measurement of Bloodstain Pattern. 

 

3.1 Stain measurement 

                        Measuring the stain is obviously as this provides the analyst with a length and 

width. In considering  the measurements,  the analyst measures only the main body of  

stain. The measurement must exclude any portion of the satellite, scallops, spine 

present in the stain. To accomplish this, one need simply envision a perfect ellipse 

superimposed on the stain. By choosing the point on the stain that naturally completes 

the ellipse, remaining tail portions are not subjectively drawn into the calculation (see 

figure (O).  

 

                                                                      Figure(O) 
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Figure (O) : By comparing the stain to an imagined ellipse, one can generally distinguish 

those portions of the stain to disregard during the Measurement process . including 

scallops, spines and satellite in the measurement will result in a skewed estimate of the 

impact angle. 

 It is important to understand that the inclusion of any excess scallop or portion of the 

spine will change the overall length to width ratio. 

Example: 

Consider a stain with an actual length of 5mm,width of 4mm, and a scalloped tail of 

0.5mm. 

Given such a stain the following is possible: 

Correct Measurement and Evaluation: 

Length : 5mm plus 0.5mm scallop 

Width : 4mm 

Impact angle:53° 

Incorrect Measurement and Skewed Evaluation: 

Length:5mm plus 0.5mm scallop 

Width:4mm 

Impact angle:46° 

In this example,the small excess scallop adds an error of 7°to what we already accept as 

an estimation of the impact angle.Obviously ,by including these excess portion,the 
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analyst can change the calculated impact angle significantly . Unfortunately, there are 

no absolute rules for closing our the ellipse. The analyst must judge each stain 

individually and attempt to estimate these scalloped edges and the tail portions from 

the measurement (figure (P) and figure (Q) ).  

 

Figure(P) 

 

 

Figure (P) The length of the stain is measured along its major axis the analyst must 

exclude the measurement any spines, scallops, tail or satellite that may be present 
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Figure(Q) 

Figure(Q): The width is measured along the minor axis of the stain. Although satellite 

spatter are less a concern when measuring this axis, scallope along the outer edges of 

the stain are often encountered. Do not include the scallop in the measurement. 

3.2 Combine the Information to Establish an Area of Origin 

                       Having  learned to determine the impact angle , we combine the 

convergence point ( the top view) and the impact angle ( the side view)  information  in 

order to identify the area of origin for the spatter event. This is a location in 3-

dimensional  space. For many years, 
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     This location was referred to as the point of  origin; but “point” suggests an actual 

point, a specific position in the X, Y, and Z planes. Because of the issues associated with 

defining directionality and impact angle we recognize that what we are defining is a 

general area, not a point. In some instances,  this area may be quite specific, but in 

others, it may be quite large. For this reason, the “ the point of origin” is now generally 

described as an area of origin. Both terms refer to the same thing and are synonymous. 

 

Figure(R) 

Figure(R): To locate the long axis length, place one arm on the center line and the other 

on the top of the stain. This measurement doubled identifics the length of the long axis. 
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Figure(S) 

Figure(S): To visualize this point, without adjusting the arms and keeping the arm on the 

center point, simply rotate the other arm to the other end of the stain. 

 



33 
 

Figure(P) 

Figure(P): As with the ellipse template comparison method, note that there is an area on 

the trailing edge (where the tail and stain meet) which is not included when measuring 

thestain length. 

  For the sake of simplicity in the following example we will leave all stains on a single 

surface. See figure (U). the flight paths of the four stains appear to have a common 

convergence point in the scene. Our stains are “well-formed” and the analyst measures 

each and applies the sine formula, identifying each stain's impact angle. 

    Accept for the example that based on the width/length ratio the stains impacted as 

follows: 

      Stain #1:30° 

      Stain #2:60° 

      Stain #3:50° 

      Stain # 4:40° 
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                                                      Figure(U) 

Figure (U):  An example of using point of convergence evaluations. In this instance, we 

have four stains with a common convergence point and we wish to determine if they 

share a common area of origin. We measure the distance from the base of each stain to 

the convergence point. We then combine that information with the impact angle in a 

graph ( figure (V)), which allows the analyst to visualize the area of origin for the spatter. 

For purposes of the example, imagine that the analyst then measures the distance from 

the convergence point to the rear of each stain. In this instance, the analyst found: 



35 
 

    Stain #1 is 74 in. From the convergence. 

    Stain #2 is 26 in. From the convergence. 

    Stain #3 is 36 in. From the convergence. 

    Stain #4 is 54 in. From the convergence. 

 

3.3 Defining area of origin with the Tangent Function 

                   

                      By using a scientific calculator, it is possible to forego the graphing process 

and simply calculate this distance above the point of convergence for each stain. The 

analyst does this using another relationship related to right triangles, the tangent. Figure 

(Y) shows the relationships of the scene to this imagined triangle. 

                   The first step in making this determination is to identify stains that appear to 

have a common convergence. As I in the graphing method, the analyst measures the 

distance from these stains back to the point where the stains have a common 

intersection. The analyst also determines the impact angle of each stain. 
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Figure(V) 

 

 Figure (V):  A graph indicating two areas of origin. In the scene from an overhead view, 

all the stains appear to share a common point of convergence. The inclusion of the 

impact angle information adds an additional dimension making it apparent that two 

separate groups are present, suggesting two separate events. 
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Figure(W) 

 Figure (W): The base of each stain's position, the point in two- dimensional space where 

their paths converge (c), and their area of origin (o) define another right triangle. 

 To determine area of origin, the analyst uses the following formula: 

tan i= H/D 

     Where i equals the known impact angle, D equals the distance to the convergence 

point, and H equals the unknown distance above the target surface(see Figure (Z) ).For 

example:  
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Figure(Y) 

 

Figure (Y):  our right triangle from Figure (Y) further defined. We know the distance from 

the stain to the point of convergence (ca) and we can establish the impact angle ( i ). 

Using this information in the formula tan i= H/D, we simply balance the equation and 

solve for the unknown H. Thus, H- tani ×Dß 

 i= 19° 

 D= 25 in. 
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 tan 19= .344 

 0.344.25 = 8 

To solve for H we simply balanced the equation by multiplying tan i by D, giving H= 8.66 

in. This procedure is convenient and provides immediate feedback at the scene. Once 

again, the analyst requires a calculator with trigonometric functions to use this method 
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Conclusion 

              

                   Mathematics play an important role in the analysis of blood 

spatter. The size, shape, direction and angle of impact can be analgised. 

Blood stain analysis can be determine the movement and direction of the 

blood source. When blood hits a surface at an angle other than 90, an 

elongated stain results. The acute angle formed between the direction of a 

blood drop and the plane of the surface it strikes. The direction of travel for 

multiple blood stains in a pattern that combined with the angle of impact 

determinations, is used to find the location of the blood source that was 

impacted to create the pattern. Surface effects on blood stain appearance 

are very important. 

                 The morphology of blood stain distribution patterns at the crime 

scene carries vital information for a reconstruction of the events.  Bloodstain 

pattern analysis is a forensic discipline in which, among others , the position 

of victims can be determined at crime scene on which blood has been 

shed.BPA is the forensic discipline concerned with the classification and 

interpretation of bloodstains and bloodstain patterns at the crime scene.BPA 

is also useful in forensic medicine. BPA is a valid  forensic methods which 

belongs to the category of biological methods using trigonomic models. 
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Preface

The topic of this project is Social Networking Analytics, with focus on underlying
concepts of the discipline, behaviour aspects in social networks and link prediction
modeling. As the interest of individual in virtual social networking grows, more
scientific attention is given to them. Systems are being developed for understand-
ing how and who acts in such social networks. These are tracking every possible
social networking activity: usage, topics, who interact with who, for how long,
user specific interests etc. Social Networking Analytics(SNA) is the discipline in-
corporating such scientific interests, arose from a long standing practice called
Social Network Analysis. After the introduction of virtual social networks, it was
a natural progression to apply the learned concepts and practices in the internet
world. As networks continue to increase in numbers and technology becomes more
advanced, even more tools for social networking analytics will come on the market,
each delving deeper into the system and o↵ering more and more insight. If used
correctly, social networking analytics may be a key tool in helping an organization
to find and connect to the right markets and audiences, on a personal level.
The paper is structure in five chapters.

Chapter 1 presents briefly the evolution of Social Network Analytics.

Chapter 2 introduces the fundamental concepts and metrics in Social
Networking Analytics.

Chapter 3 deals with stuctural balance and transitivity of Social
Networking.

Chapter 4 focuses on the blockmodels in Social Networking namely
Perfect Fit, Zeroblock Criterion, Oneblock Criterion and ↵ Density Criterion.

Chapter 5 deals with the behavioral aspects of Social Networking,
introducing a set of established link prediction models.

Finally it gives the conclusion of the project in Social Networking
Analytics.
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Chapter 1

Evolution of Social Network
Analytics

Due to the recent globalization of the commercial environment and the
impact of the new technologies, the analysis of social networks represents a major
interest. This rather new area of research grew out of social and exact sciences,
computers supporting today modeling and complex mathematical calculations,
previously impossible. The analysis of social networks is driven by business and
social interests, combining various academic fields.

The term social networks was used for the first time in 1950 in socio-
metrics, the science that seeks to obtain data on social behavior and to analyze
it. The latter incorporation of mathematical tools and computing triggered the
evolution of Social Network Analysis and Analytics.

The mathematical basis of SNA arose out of the fields of graph theory,
statistical and probability theory, game theory as well as algebraic models. In
fact, it was from these theories, especially graphs, that the Internet and various
virtual networking concepts were derived.

Networks are generally studied based on the participants and their ac-
tions in the network, with little or no emphasis on the relationships. Particularly,
in Social Networking and SNA the type and the forms of relationships between
the network members are fundamental.

Social networking data comes today in many forms: blogs (Blogger, Live-
Journal), micro-blogs (Twitter), social networking (Facebook, LinkedIn), wiki sites
(Wikipedia, Wetpaint) and multimedia sharing (Flickr, Youtube).

Online social networking represents a fundamental shift of how informa-
tion is being produced, transferred and consumed. User generated content, in any
data form, establishes a connection between producers and consumers of informa-
tion. For consumers, the abundance of share data and opinions is a support in
making more informed decisions.
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SNA is applicable in various domains and fields: organizational behav-
ior, terrorist networking, political and economic systems, inter-relationships be-
tween banks and companies, social influence, educational systems and many oth-
ers. Some of the current interests and challenges in the discipline of SNA are:

• Collecting massive amounts of data and preventing information overload for
the users.

• Extracting and modeling temporal patterns of information growth and fade
over time.

• Correcting e↵ects and biases generated by incomplete or missing data.

• Handling unreliable or conflicting information

• Classification and tracking of topics.

• Predicting and identifying emerging or popular topics.

• Detecting, quantifying and maximizing the individuals influence.

• Identification of topic relevance.

• Determining implicit links between users.

• Understanding of sentiment flow through networks and polarization.
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Chapter 2

Basic Concepts In Social
Networking

A social network can be defined as a finite set of actors and their relationships.
This is a simple and direct concept, allowing everyone to understand the social
network according to the complete data and the connectivity of a considered net-
work. This definitions does not say much though over the types of relationships
of certain groups (i. e. the number of times they take part in the same programs
or activities).

Figure 2.1: Social network

An actor is the social entity who participates in a certain network and
who is able to act and form connections with other actors. It could be an individ-
ual, a corporation or a social body. Examples of actors could be the students in
a classroom, the departments in a company,etc. When all the actors of a network
are of the same type, the network is called monomodal. But there are cases in
which there are di↵erent actors in a network. In a multi-agent system, the actor
is called an agent.

A link between two actors in a social network is called a connection. It is de-
fined by some type of relationship between these actors, depending on the type
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of society. Between companies, the connection could be a business contract of
supply, between people in a company, it could be the hierarchic relationship, if
considering the organizational structure, or it could be the sending of e-mails
in a network of relationships between friends. Other examples include the rela-
tionships of friendship or respect between students in a classroom, the biological
relationships (in a family), the associations of members to clubs, the diplomatic
relationships between countries etc. In the graph theory section presented later in
the paper it will be shown that connections may have a value as well as a direction.

To study networks of various relationships in an objective way, models need to
be created to represent them. There are three notations currently in use in the
social network analysis:

• Graph Theory – the most common model for visual representation, it is
graph base.

• Sociometrics – proposes matrices representation, also called sociomatrices.

• Algebraic – proposes algebraic notations for specific cases, especially for mul-
tiple relationships.

Each notation scheme has di↵erent applications and will enable di↵erent develop-
ments and analyses. Further, this chapter presents concepts and notations used
for representations with graphs and sociomatrices. The combination of these two
techniques has helped significantly the evolution of social network analysis

2.1 Graph Theory

The Graph theory has been widely used in analyses of social networks due to its
representational capacity and simplicity. Basically, the graph consists of nodes
(n) and of connections (l) which connect the nodes. In social networks the
representation by graphs is also called sociogram, where the nodes are the actors
or events and the lines of connection establish the set of relationships in a two
dimensional drawing.

Dyad is the simplest network, composed of only two nodes, that may be
connected or not. If connected, this represents a property of the pair.

9



Figure 2.2: Example of Dyad

Triad is a network formed by three nodes and the possible connections
between them. The triad brings some important concepts into question, such as
the equilibrium and the transitivity which are presented later on. There are max-
imum three dyads in a triad. In business relationships, this can be an important
factor because if Node 1 has a relationship with Node 2, and they in turn with
Node 3, there is a possible path through Node 2 and on to Node 1 to make trans-
actions with Node 3.

Figure 2.3: Example of Triad

Relationship.The set of connections of a given type defines the rela-
tionship found in the social network under analysis. Whereas a connection is
only between two actors or nodes, the relationship is defined for the whole set of
connections. Thus, we can talk about social relationships, business relationships,
educational relationships etc. In the social network, there may be a connection
between two actors (a situation where often the variable is set to “1” in a table or
matrix), or there is none (represented with a “0”).

There are also relationships which imply values, when there is a connection and
this connection can be attributed with a value (i.e. the financial worth of the
business relationships between companies). The social networks where values are
also involved, have a greater degree of complexity. This also due to the possibility
of direction within a graph (i.e. a given company buys from another, but sells
nothing to it).

The actors of a network will be noted n, and the set of actors as N. The con-
nections of a network will have notation l, and the set of connections will be L.
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Thus, a network of “f” actors and of “h” connections will have the sets of actors and
of connections defined respectively by: N = n1 , n2 , . . . , nf and L = l1 , l2 , . . . , lh .

As the connection is always between two actors, then the connection defines a
pair of actors (or dyad). If saying that a connection l1 refers to the connection
between actors n2 and n5, then we can write: l1 = < n2, n5 >

Up to this point it has been defined a connection between two actors without
being concerned about the type of relationship. Many of these connections are
non-directional, meaning that a connection between two actors is established
and that the relationship is not in any specific direction. For example, marriage
establishes a relationship which is non-directional as it is not possible for a mem-
ber to be married to another and that the inverse is not also true. If considering
that the type of connection between companies to be the existence or otherwise
of a contract, such a connection is non-directional.

A directional connection is that which represents a connection which goes from
an actor (origin) and ends at another (destination). For example, if making an
analysis which considers purchases and sales between companies of a network,
there will be a direction in the connections. The image below (Figure 2.4) exem-
plifies the concept. In the first case, the direction of the arrow shows that actor
1 sells to actor 2; in the second, actor 2 sells to 1, and in the last case, the graph
represents that actor 1 sells to actor 2 and also that actor 2 sells to actor 1.

Figure 2.4: Directional connection in graphs

So if a connection l1 refers to the directional connection of actor n2 to
actor n5 : l1 = < n2 ! n5 >.

For a network with the number of actors equal to “f”, the maximum number
lmax of connections in a non-directional graph can be written using the expression:
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lmax = f(f�1)
2

In other words, for two actors the maximum is one connection, for three the
maximum is three, for four, it’s six, and so on,as shown in Figure 2.5 below:

Figure 2.5: Maximum number of connections in non-directional graphs

In directional graphs, the maximum number of connections (arrows) be-
tween two actors is two arrows (one in each direction), for three actors the max-
imum is six, and so on. The expression which defines the maximum number of
directional connections is: lmaxdr = f(f � 1). One example of directional graph
which has the maximum number of connections is the Brazilian soccer champi-
onship. There are twenty teams playing for the championship, each team plays
against all the other teams, once at home and once away (outward game and re-
turn match, two directions). The total of the connections (games) in this network
(championship) will be 380.
Graphs enable many interesting analyses to be made and have visual appeal which
help us to understand the structure and behavior of social networks. However, for
networks with many actors and connections, this becomes impossible. Similarly,
some important information, such as the frequency of occurrence and specific val-
ues, are di�cult to apply in a graph.

2.2 Sociomatrices

For making possible the analysis of networks with many actors and connection,
the matrices developed by sociometrics, sociomatrices, are being used. Thus,
sociometrics and its sociomatrice complement the Graph theory, establishing a
mathematical basis for analyses of social networks.

Figure: M1 presents a matrix which shows the existence of the connec-
tions between the various actors of the network proposed in Figure 2.6, represented
by a non-directional graph. In being non-directional,a matrix is symmetrical.
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Figure 2.6: Network of non-directional business relations

1 2 3 4 5 6 7 8 9 10 11
1 0 1 1 0 0 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0 0
3 1 1 0 0 1 0 0 0 1 0 0
4 0 0 0 0 1 0 0 0 0 0 0
5 0 0 1 1 0 1 1 1 1 0 0
6 0 0 0 0 1 0 0 0 0 0 0
7 0 0 0 0 1 0 0 0 0 0 0
8 0 0 0 0 1 0 0 0 1 0 0
9 0 0 1 0 1 0 0 1 0 1 1
10 0 0 0 0 0 0 0 0 1 0 0
11 0 0 0 0 0 0 0 0 1 0 0

Figure M1: Symmetrical matrix for the non-directional graph in Fig. 2.6

Each element of the matrix shows a connection, or the lack of it, between two
actors and is notated ”xline,column”, with the sub-indices indicating the actor of a
given line and the actor of a given column. If considering the values of “i” and “j”
as these indices, each element will be identified by xij or algebraically:

• xij - when there is a connection between ni and nj

• xij=0- when there is no connection

• xii = xjj = 0 - when the connection does not exist

and in the symmetrical matrix: xij = xji Therefore, if the connections are direc-
tional, the graph is directional, and in this case the notation will be:

• xij=1 - when there is a connection from ni to nj
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• xji=1 - when there is a connection from nj to ni

• xij - when there is no connection

and here the matrix is rarely symmetrical. In Figure 2.7 is presented a directional
graph where the companies have selling relationships between each other. The
arrows point in the direction of the sale.

Figure 2.7: Directional graph with sales connections between companies

Figure:M2 presents the corresponding sociomatrix, where can be seen the
asymmetry and that the main diagonal is empty.

1 2 3 4 5 6 7 8 9 10 11
1 - 0 1 0 0 0 0 0 0 0 0
2 1 - 1 0 0 0 0 0 0 0 0
3 0 0 - 0 1 0 0 0 1 0 0
4 0 0 0 - 1 0 0 0 0 0 0
5 0 0 0 0 - 0 1 1 0 0 0
6 0 0 0 0 1 - 0 0 0 0 0
7 0 0 0 0 0 0 - 0 0 0 0
8 0 0 0 0 1 0 0 - 0 0 0
9 0 0 0 0 1 0 0 1 - 1 1
10 0 0 0 0 0 0 0 0 0 - 0
11 0 0 0 0 0 0 0 0 0 0 -

Fig.M2 Sociomatrix corresponding to the directional graph in Fig.2.7

In the next section, using the basic knowledge of graphs and socioma-
trices, various characteristics of the networks of business relationships, such as
prestige, social role of the actors and other definitions which are useful in the
practical analyses in business and social environments are being defined.
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2.3 Measures in Social Networking

The use of graphs and sociomatrices is necessary in order to createmodels, or sim-
plified representation systems of networks of relationship. However, with graphs
and sociomatrices it is not possible to represent the whole of the characteristics
and attributes of a network, nor all of its limits and variations. In order to make
analyses therefore, the model is simplified and the analysis is based on various
measures. The main measures used for social network analysis are presented in
this section.

Nodal degree

In a non-directional network, it is measure the number of connections at a node
and this number is called the nodal degree. The degree of a node can vary from
zero, when there is no connection at this node to any other node of the network,
through to the value f–1, when there is a connection at this node with all the
other nodes on the network. The measure of the degree of a node can define its
importance, for example, in a network where there are various connections, this is
something of interest to the members of the network.

To obtain a graph of the degree of a given node, g(ni), count the number of
lines which are connected to this node. Considering the example shown in Figure
2.6 and then checking the degree of each node, in decreasing order, as follows:

• g(n5) = 6

• g(n9)= 5

• g(n3)= 4

• g(n1) = g(n2) = g(n8) = 2

• g(n4) = g(n6) = g(n7) = g(n9) = g(n11) = 1

An important piece of data in business networks is the average number of relation-
ships between the members of the network. This can be measured by obtaining
the average degree of the network. The average degree is defined by the sum of
all the degrees divided by the number of actors in the network or algebraically:

ḡ =

Pf
i=1 g(ni)

f
=

2L

f

where L is the number of connections of the network and f is the total number of
actors (nodes). For the network from the previous example, the value of ḡ= 2.36.
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Nodal degree (directional graph)

In directional graphs, the measure of the degree is slightly di↵erent, as it is interest-
ing to know how many connections the origin node has and how many connections
it has as destination.

The number of connections this node has as destination is called nodal-in de-
gree. For the nodal-in degree of node ni , obtained by counting the number of
arrows pointing towards it. The used notation is gi(ni).

The number of connections this node has as origin is callednodal-out degree.
For the nodal-out degree of node ni , obtained by counting the number of arrows
pointing from it. The used notation is go(ni). These measures are very important
in a network, as the nodal-out degree can indicate the capacity of expansion
of a given actor, whilst the nodal-in degree can represent their popularity. The
measure of the nodal-in degree, for example, is one of the factors which determines
the status of a given web site when making a search using Google. The position in
the ranking of a page shown in the search results is determined by the number of
sites which link to that page on the network, in other words, the nodal-in degree
of the page.

For the business network considered in Figure 2.7, showing the directed con-
nections for sales from one actor to another, the next nodal-out degree and the
nodal-in degree are calculated for each node:

Nodal-out degree Nodal-in degree
go(n1) = 1 gi(n1) = 1
go(n2) = 2 gi(n2) = 0
go(n3) = 2 gi(n3) = 2
go(n4) = 1 gi(n4) = 0
go(n5) = 2 gi(n5) = 4
go(n6) = 1 gi(n6) = 0
go(n7) = 0 gi(n7) = 1
go(n8) = 1 gi(n8) = 2
go(n9) = 4 gi(n9) = 1
go(n10) = 0 gi(n10) = 1
go(n11) = 0 gi(n11) = 1

Table 1 Nodal-out and Nodal-in degrees corresponding to the directional graph in Fig.
2.7

In the table above can be seen that for the same node the nodal-out degree and
the nodal-in degree may be either equal or not. Based on the di↵erences of in and
out degrees, the theoreticians of directional graphs have created di↵erent names
for the roles of the nodes . This is of special interest in business networks, as they
define the behavior of the actor in the network of relationships.
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Furthermore, depending on the number and type of connection, di↵erent types
of node are defined:

• Isolated if gi(ni) = go(ni) = 0 - neither the origin nor destination of
connections

• Transmitter if gi(ni) = 0 and go(ni) � 1 - not the destination of connec-
tion, but the origin

• Receptor if go(ni) = 0 and gi(ni) � 1- not the origin of connection,
but the destination

• Carrier if gi(ni) � 1 and go(ni) � 1 - the origin and destination of
connection

For the considered example, the company node 5 is a carrier and acts as inter-
mediary as a seller in this network, but also concentrates most of the buying (its
nodal-in degree is by far the highest).

As for the non-directional graph, it is important to find the average nodal-in
degree and the average nodal-out degree of the members of such a network. The
average nodal-in degree, denoted by ḡe , is defined as the sum of all the nodal-in
degrees divided by the number of actors of the network, that is:

ḡe =
Pf

i=1 ge(ni)
f

where f is the total number of actors (nodes). Similarly, the average nodal-out
degree, denoted by ḡs is defined as the sum of all the nodal-out degrees divided
by the number of actors of the network, that is

ḡs =
Pf

i=1 gs(ni)
f

The total number of “ins” have necessarily to be equal to the total of the “outs”
(the sum of all the origins should be equal to the sum of all the destinations). The
next formulation is possible:

ḡs = ḡe = L
f

where L is the number of connections of the network. For the network in the above
example, the value of ḡe = ḡs= 1,27 , which represents a directional network with
low connectivity.
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Density of the network. Whilst the degree of the node is important to de-
fine the number of relationships of a given actor, another important piece of data
of a network is its density, in other words, the measurement of the number of exis-
tent connections. Dense networks are those in which there are many connections
and sparse networks are those where there are few connections. Environments
where there are intense business relationships, such as between the countries of
the European Union form dense networks.

The measurement of the density of a non-directional network is denoted
by � and it is defined by the number of connections L of this network divided by
the maximum number lmax of connections. The expression for the density for the
non-directional graph is:

� = L
f(f�1)

2

= 2L
f(f�1)

If the graph has no connections, it is said to be empty and the density is equal
to 0. If it has the maximum number of connections, then it is said to be full
and the density is equal to 1. Figure 2.8 exemplifies the empty, the full and the
intermediate graph, for a network with four nodes.

Figure 2.8: Density of di↵erent non-directional graphs

For a directional network, the measurement of the density is denoted by
and is defined by the number of L connections (arrows) of this network divided by
the maximum number lmax.dir. The expression for the density for the directional
graph is:

� = L
f(f�1)

Searchability and directional connectivity

In a network, if there is a path between two nodes, this means that these two
nodes can establish some type of relationship along this path formed by the path,
that is, a node can find the other node along the path. This possibility of rela-
tionship is called searchability.

In a directional graph, searchability can be established at di↵erent levels,
depending on the direction of the arrows along the path. For a node to be able to
find the other node in a directional network, there are four types of connectivity,

18



Figure 2.9: Types of connectivity in directional graphs

as shown in the example of types of paths between nodes A and B in Figure 2.9.
These are the four types of connectivity:

• The nodes A and B have weak connectivity between then when there is
a semi-path between them (at least one arrow in the opposite direction)

• The nodes A and B have unilateral connectivity between then when there
is a directional path from A to B or from B to A between them (all arrows
point in the same direction)

• The nodes A and B have strong connectivity between then when there is
a directional path from A to B and another directional path from B to A
(passing through di↵erent nodes and connections)

• The nodes A and B have recursive connectivity between then when there
is a directional path from A to B and from B to A passing through the same
nodes and connections.

Every directional graph comes within one of these types of connectivity. Their
interpretation is:
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• The directional graph has weak connectivity if all the pairs of nodes have
weak connectivity

• The directional graph has unilateral connectivity if all the pairs of nodes
are connected unilaterally

• The directional graph has strong connectivity if all the pairs of nodes
have strong connectivity

• The directional graph has recursive connectivity if all the pairs of nodes
have recursive connectivity

Note: These ideas are important for the analysis of cohesion between the members
of a given network. If there is weak connectivity between A and B in a business
network of sales, the possibility of A selling to B is less than if the connectivity
were strong.

Geodesic

The shortest path between two nodes is called geodesic, and the length of this
path, in number of intermediate connections, is called geodesic distance. This
minimum distance is very interesting because it allows the analyst to see how many
connections and how many nodes are intermediaries in a relationship between two
actors of a network. The geodesic distance between any two nodes ni and nj, is
noted d(ni, nj).

If there is no geodesic for any two nodes, that is, if there is no possibility of
any path between them, their distance is considered infinite and the network will
be disconnected.

For a directional network, the geodesic is considered as the shortest directed path
between two nodes. Considering that in a directed path all the arrows have to be in
the same direction, the geodesic from ni to nj will not always be the same geodesic
from nj to ni. See an example of this type in figure 2.10. The sequence which
defines the geodesic from n1 to n3 is {n1, l2, n2, l3, n4, l4, n3}, with the geodesic
distance d(n1, n3)=3. Whereas for the geodesic from n3 to n1, the sequence is {n3,
l5, n1}, with the geodesic distance d(n3, n1)=1.

Figure 2.10: Example of geodesic in an undirected and a directed network
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Graphs with sign and with value

For each relationship established by a connection in a graph, two further pieces of
additional information can be included: a sign and a value. The inclusion of a
positive or negative sign for a connection can show us that a relationship is good
or bad. An example of this type of network is a graph showing the relationships
of a�nity between students in a classroom. Usually (+) indicates that there is
friendship and (–) indicates enmity.

The inclusion of value can add a number to a connection. An is indicating on
the graph the business relationship between companies, the value of the connec-
tion representing the amount in millions of dollars in a sale transaction.

Centrality and prestige

Two important concepts in a network are the ideas of centrality and prestige of
an actor. There are various definitions and forms of calculating centrality. For a
given actor ni, the centrality is denoted as C(ni) and the measure will be given
by the degree of the node, that is, by the number of connections of this node in the
network. Centrality can be also considered the measure that gives the indication
of power and influence of the individual nodes of the network based on how well
they are connected. The fundamental measures of centrality are: Betweenness,

Closeness, and Degree.

Figure 2.11: Example of centrality

Betweenness measures the number of subjects whom an individual is
connecting indirectly, through their direct links.

Closeness indicates how near is a subject to all other individuals in a
network, directly or indirectly.
Closeness centrality is the inverse measure of the sum of the shortest distances
between each individual and everyone else in the network.

Centralization is the di↵erence between the numbers of links of each
node in the network divided by maximum possible sum of di↵erences. A central-
ized network will have many of the links dispersed around a certain node(s) while
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a decentralized will have nodes with comparable number of links.

The concept of prestige of an individual ni is related to the concept of directional
networks. The centrality of an individual ni , considering the arrows directed to-
wards them (i.e. their nodal-in degree) defines his prestige, P (ni), in the network.

Other metrics in Social Networking

• Clustering coe�cient is the measure representing the probability of a
future link between two unconnected neighbors of a considered node.

• Cohesion represents the degree in which nodes are connected directly among
each other by cohesive bonds.

• Radiality represents the degree with which the network of a certain indi-
vidual reaches out into the global network providing content and inducing
influence.

• Reach represents the degree in which any node of a network can reach the
other nodes.

• Structural cohesion measures the minimum number of nodes that would
disconnect the network or the group if removed.

• Structural equivalence represents the degree in which nodes share a com-
mon set of links connecting them to other nodes in the network.
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Chapter 3

Structural Balance and
Transitivity

3.1 Structural Balance of Social Networks

Social relationships have a profound impact on human development, in all life
stages. Such relationships are of positive nature (i.e. friendship, collaboration,
trust, support etc.) or of negative nature (i.e. oppression, dislike, harassment,
intimidation etc.). A social network captures all such types of relations defined
between a finite set of members. Individual characteristics and shared relationships
change in time and continuously impact the entire community (social network).

Clearly, the tension executed between every two network entities, be it
positive or negative is a fundamental aspect in social networking. The framework
of this type of analysis is the structural balance, which aims to extract and store
the relationship information in a clear and structured way. The structural bal-
ance concept is based on social psychology theories being helped by graphical and
mathematical representations. The structural balance theory is based in fact on
pure mathematical analysis.

The structural balance theory is based on identifying the nature of rela-
tionship between two individuals by initially isolating them. If these individuals
share some level of friendship, support or collaboration, their link is marked posi-
tive: “+”, else the link is marked negative: “-“. The theory looks at subgroups of
three individuals sharing a particular configuration of positive and negative val-
ues. In fact, there are possible four distinctive configuration cases between three
individuals A, B, C. These are presented in Figure 3.1 below.

In such reduced systems, clear conclusion of structural balance can be
drawn:

Case 1: A, B, C are mutual friends. This is a natural situation of three
persons that are mutually friends. There are no instability sources in such system,
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Figure 3.1: Structural balance for sets of three nodes

therefore the system is balanced.

Case 2: A, B are friends and C is a mutual enemy. This is also a
natural situation between three individuals, two of the three are in a relationship of
friendship and both dislike the third individual. As the system has clear friendship
and enemy bindings and therefore no instability sources, this system is balanced.

Case 3: A is friend with B and C, but B and C are enemies. In such
system there is present, in some degree, a psychological stress or instability into
the formed relationships: one individual is in a friendship relation with two other
individuals that dislike each other. The instability source comes from the fact that
individual A might try changing the negative relation between B and C in positive
one or might take side and become enemies with one of the individuals B or C.
Based on this instability reasoning, this system in unbalanced.

Case 4: A, B, C are mutual enemies. In this type of system there are also
present instability aspects. The reasoning is based on the fact that two individuals
might start collaborating against the third individual in the system. In this case
a negative link might transform in a positive one. This is why this system too is
considered unbalanced.

In conclusion, the structural balance of a sub-system of three individuals
connected by three links is achieved if: either all three links are positive or else,
only exactly one of the links is positive. This consideration is known as the struc-
tural balanced property and is at the basis of the global structural balance of the
network.

The global structural balance of the network is expressed as the problem
of eliminating the unbalanced triangles. This expression is not convenient due to
the involved computation, but it represents the basic start point in the concept of
structural balance of social networks.
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“If a labeled complete graph is balanced, then either all pairs of nodes are

friends, or else the nodes can be divided into two groups, X and Y, such that every

pair of nodes in X like each other, every pair of nodes in Y like each other, and

everyone in X is the enemy of everyone in Y.”

Today structural balance is highly relevant in the on-line social media
where individual opinion is intensively expressed, often in a context of influence.
Another example is the international relations, representing the relationship be-
tween various countries.

Understanding the mechanism of positive and negative relationships helps
the studies of behavior, structure and influence in the social field. These are im-
portant aspects in managing social or business contexts. Research is only starting
exploring these fundamental questions, aiming to understand how,out of large
scale datasets, balance and related theories can bring out knowledge.

3.2 Transitivity

Definition
The triad involving actors i, j, and k is transitive if whenever i!j and j!k then

i!k.

If either of the two conditions of this statement is not met (if i 6!j and/or j 6!k),
then the triple is termed vacuously transitive. Vacuously transitive triples are
neither transitive nor intransitive. Note how the focus has shifted from cycles
in signed graphs to semicycles in signed digraphs to transitive triads in ordinary
digraphs.

From this definition we have the following theorem:

Theorem A digraph is transitive if every triad it contains is transitive.

We note that if a transitive digraph has no asymmetric dyads -that is, if all choices
are reciprocated -then it is clusterable. Clusterable digraphs require mutual dyads
to be within and null dyads to be between clusters. Thus, clusterability is a spe-
cial case of transitivity. Ranked clusterable digraphs are also transitive. In fact,
transitivity is the most general idea of this type for graphs and digraphs.

Refer again to Figure 3.2. The following triads are transitive: 6, 7, 8, 9.
Triads 1, 2, 3, 4, 5 are vacuously transitive. They do not contain enough arcs to
meet the conditions of the theorem, so cannot be transitive or intransitive. Triads
10, 11, 12, 13, 14, 15, 16 are intransitive. Vacuously transitive triads can occur
and the digraph itself can still be transitive. Now, rather than eight ”miserable”
triples from ranked clusterability, there are only seven intransitive triads.

25



Figure 3.2: The sixteen possible triads for transitivity in a digraph

Thus, we must look at ordered triples rather than triads. Note also that
each threesome of actors consists of six distinct ordered triples of actors. Some
of these triples may have transitive choices while others may be intransitive. Still
others may be vacuously transitive. A triple must be of one of these types. For
the triad itself to be labeled transitive, all ordered triples of actors present in a
triad must be either transitive or vacuously transitive. If any one of the triples is
intransitive, so is the triad.

For example, look at triad 16 in Figure 3.2. As is the case with all tri-
ads, triad 16 has six triples. This triad, along with its triples and their statuses,
are listed in Figure 3.3. Three of the triples are transitive, while one of them
(the second) is not. The other two triples are vacuously transitive (for example,
the first triple, ninjnk is neither transitive nor intransitive since actor i does not
have a tie to actor j). The second triple, ninjnk , is clearly intransitive, since
ni!nk,nk!nj,but ni 6!nj. Thus, this triad is considered intransitive because of
this single intransitive triple. The number of transitive and/or intransitive triples
within a particular type of triad is very important when quantitatively and sta-
tistically assessing the amount of transitivity in a digraph.
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Figure 3.3: The type 16 triad, and all six triples of actors

The generality of transitivity can be seen, for example, by looking at triad
2 from Figure 3.2. This triad, which is not allowed under ranked c1usterability,
has just a single asymmetric dyad, so it is vacuously transitive. Vacuously tran-
sitive triples are allowed under transitivity, so type 2 triads can arise, without
invalidating the idea.

The other triad that was problematic for ranked clusterability was triad
16. But this triad is almost transitive. Only one of its six triples is intransitive.
So, the presence of this 5/6th’s transitive/vacuously transitive triad in a data set
is not such a big deal (assuming transitivity is operating).
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Chapter 4

Blockmodels

4.1 Definition

We begin with a set of R dichotomous relations defined on a one-mode network of
g actors. A blockmodel consists of two things:

1. A partition of actors in the network into discrete subsets called positions.

2. For each pair of positions a statement of the presence or absence of a tie
within or between the positions on each of the relations.

A blockmodel is thus a model, or a hypothesis about a multirelational network. It
presents general features of the network, such as the ties between positions, rather
than information about individual actors.

We can define a blockmodel more precisely in terms of a mapping of
the actors in the network onto the positions in the blockmodel.A blockmodel is a
partition of the actors in N into B positions, B1,B2,....,BB, and onto mapping �

from N onto the collection of positions, where �(i) = Bk if actor i is in position
Bk. A blockmodel also specifies the ties between and within the B positions. We
let bklr, indicate the presence or absence of a tie from position Bk to position B1

on relation Xr, where bklr, = 1 if there is a tie from position Bk to position B1 on
relation Xr, and bklr=0 otherwise.

A blockmodel is also represented by an image matrix, B={bklr}.The im-
age matrix is a B x B x R array, with entries bklr indicating the presence or absence
of a tie from position Bk to position B1 on relation Xr. Each layer of B describes
the hypothesized ties between and within positions on the specific relation. The
matrix B has also been referred to as a blockmodel, since it specifies the pres-
ence or absence of ties between positions. Whereas the original relational data
are presented in the usual g x g x R multirelational sociomatrix, a blockmodel is
a simplification in that it consists of a smaller B x B x R array, B, that presents
ties between positions.
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A blockmodel thus has two components: the mapping, �, that describes
the assignment of actors to positions, and the matrix, B, that specifies the presence
or absence of ties between and within positions on each relation. Each actor is
assigned to one and only one of the positions, and If the assignment is the same
across relations.

Each of the entries in the B x B x R matrixB is called a block. Each block,
bklr ,in the blockmodel corresponds to a submatrix of the original sociomatrix that
contains the relevant interposition or intraposition ties. A block containing a 1 is
called a oneblock, and indicates the presence of a tie from the row position to the
column position. A oneblock may also be referred to as a bond. A block containing
a 0 is called a zeroblock, and indicates the absence of a tie from the row position to
the column position. More formally, if there is a hypothesized tie from position Bk

to position Bl on relation Xr , then bklr = 1 in the blockmodel; bklr is a oneblock.
If there is no hypothesized tie from position Bk to position Bl then bklr = 0 in
the blockmodel; bklr is a zeroblock.

A blockmodel is a simplified representation of multirelational network
that captures some of the general features of a network’s structure. Specifically,
positions in a blockmodel contain actors who are approximately structurally equiv-
alent. Actors in the same position have identical or similar ties to and from all
actors in other positions. For example all actors in position Bk have similar ties
to actors in positions Bl,Bm, and so on. Thus, the blockmodel is stated at the
level of the positions, not individual actors.

4.2 Building Blocks

Suppose that we start with a partition of actors into B positions, and have per-
muted the rows and the columns of the sociomatrix for each relation so that actors
who are assigned to the same position occupy adjacent rows and columns in the
permuted sociomatrix. In the permuted sociomatrix, all entries, xij, are the ob-
served values of the ties between actors in the positions and all ties pertaining to
ties between or within positions will be contained in submatrices of the socioma-
trix. If all actors within each position are perfectly structurally equivalent, then all
submatrices corresponding to ties within and between positions, for all relations,
will be filled either completely with 0’s or completely with 1’s. However, in real
network data, pairs (or collections) of actors are seldom structurally equivalent.
In the permuted sociomatrix the submatrices corresponding to inter- and intrapo-
sition ties will usually contain both 1’s and 0’s. Therefore, determining whether
a block in a blockmodel is a oneblock or a zeroblock is not straightforward. Con-
structing a blockmodel requires a rule which governs the assignment of a 0 or 1 to
the tie between positions in the model.

There are several criteria which have proved useful for deciding whether
a block should be coded as a zeroblock or a oneblock. These include:
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• Perfect fit (fat fit)

• Zeroblock (lean fit)

• Oneblock

• ↵ density criterion

• Maximum value -for valued data

• Mean value - for valued data

We first define each of these rules and then discuss when each one might be
appropriate.

In a blockmodel, each of the B x B x R elements of B contains the
hypothesized value of the tie from the row position to the column position on the
layer relation. As described above, bklr denotes the value of the hypothesized tie
from position Bk to position Bl on relation r. If the block is a oneblock then bklr,
= 1, and if the block is a zeroblock then bklr = 0. The decision about whether a tie
exists or not in each block of B depends on the observed values of the ties between
actors in the positions. That is, bklr depends on the values of xijr for i2Bk and
j2Bl. We will let gk be the number of actors in position Bk and gl be the number
of actors in position Bl. For distinct Bk and Bl,there will be gk x gl ties from
members of position Bk to members of position Bl.For ties among members of
the same position, there will be gk x (gk -1) ties among actors in position Bk Note
that in a blockmodel, ties from a position to itself are meaningful, and often quite
important theoretically, in contrast to reflexive ties for actors and diagonal entries
in a sociomatrix, which are often undefined.

The most common criteria for defining oneblocks and zeroblocks are
based on the density of ties within a block. The density of ties in block bklr will
be denoted by �klr and (for a dichotomous relation) is defined as the proportion
of ties that are present. For k 6=l this proportion is:

�klr=
P

i2Bk

P
j2Bl

Xijr

gkgl
The density of ties within a position, for example block bklr, is equal to:

�klr=
P

i2Bk

P
j2Bk

Xijr

gk(gk�1) , for i 6= j.

We can now specify more formally some useful criteria for defining zer-
oblocks and oneblocks in a blockmodel.

4.2.1 Perfect Fit (Fat Fit)

The perfect fit (or fat fit) blockmodel occurs if all actors in each position are
structurally equivalent This ideal situation results in submatrices in the permuted
sociomatrix filled with all 1’s or with all 0’s. The criterion for a perfect fit block-
model requires that the tie between two positions on a given relation is equal to 1
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only if all actors in the row position have ties to all actors in the column position,
and a tie between positions is equal to 0 only if there are no ties from actors in
the row position to actors in the column position.

bklr =

(
0 ifXijr = 0 forall i 2 Bk, j 2 Bl, and

1 ifXijr = 1, forall i 2 Bk, j 2 Bl.

The only way that this criterion can be met for all blocks is if all actors in all
positions are structurally equivalent. Thus, it is quite unlikely that this criterion
will be useful in practice. However, as an ideal, the perfect fit criterion can provide
a baseline for assessing the goodness-of-fit of a blockmodel.

4.2.2 Zeroblock (Lean Fit) Criterion

The zeroblock criterion states that the tie between two positions on a given relation
is 0 only if there are no ties from actors in the row position to actors in the column
position on the specified relation, otherwise the block is a oneblock.

bklr =

(
0 ifXijr = 0, forall i 2 Bk, j 2 Bl

1 otherwise.

The focus on zeroblocks as structurally important phenomena arises because of the
expectation that while one blocks might not be completely filled with 1’s, blocks
that contain no observed ties indicate important structural patterns. Substan-
tively, if we expect that e↵ort is required to maintain a tie, then a single observed
”1” in a submatrix should be taken as an important tie in the blockmodel. For ex-
ample if we recorded the incidence of military interventions by countries during a
given year, these rare events would nevertheless indicate an important political tie,
not only between individual countries, but also between positions. The zeroblock
criterion is reasonable if ties are scarce and/or if the density of the sociomatrix is
small. The fact that although zeroblocks should contain only 0’s, oneblocks might
contain both l’s and 0’s gives rise to the alternative label lean fit. The oneblocks
might be ”lean” rather than ”fat.”

4.2.3 Oneblock Criterion

The oneblock criterion focuses on oneblocks rather than on zeroblocks. This cri-
terion requires that the submatrix of the sociomatrix corresponding to the intra-
or interposition ties be completely filled with 1’s. All possible ties from actors in
the row position to actors in the column position need to be present in order to
define a oneblock, otherwise it is a zeroblock:

bklr =

(
1 ifxijr = 1, forall i 2 Bk, j 2 Bl

0 otherwise.
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The oneblock criterion might be most appropriate when the relation is dense,
rather than sparse. However, in practice, oneblocks seem to be quite rare.

4.2.4 ↵ Density Criterion

Since real social network data rarely contain (perfectly) structurally equivalent
actors, blockmodels that are based on the property of structural equivalence are
unlikely to contain blocks all of which are either perfect oneblocks or perfect zer-
oblocks. For various reasons we expect that oneblocks might contain some 0’s and
zeroblocks might contain some 1’s. Therefore it is reasonable to define a threshold
density, ↵, such that if the observed block density, �klr is greater than or equal
to ↵ then the block will be coded as oneblock, and if the observed block density
is less than a then the block is coded as a zeroblock.We define the ↵ criterion as:

bklr =

(
0 if�klr < ↵

1 if�klr � ↵

One guideline for choosing a value of ↵is that it should depend on the density of
the relations in the analysis. Two commonly used values are the overall (grand)
density computed across all relations, or, since all relations are unlikely to have
the same density, there could be R separate ↵’s, one for each relation (↵r = �r).
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Chapter 5

Link Prediction Models

Social networks present high dynamics and a continuous transformation by adding
new nodes and edges. This behavior causes changes in the nature of the social
interaction and the structure of the network. For various domains it would be
a great benefit to be able to understand and therefore control the mechanism of
evolution of social networks.

Apart from influence, another fundamental topic in the evolution of social
networks is the link prediction problem. This subject has captured the attention
of various scientists, especially in the artificial intelligence sector and data mining.

Many studies refer business and professional collaborations generated by
informal social interactions in such networks. Other studies focus on the impact
of the social hierarchy in the professional network or inferring missing links. It is
interesting to notice that most of these studies conclude that e↵ective and concrete
link prediction methods can be used to analyze social networks so to predict future
interactions that might help organizations, businesses or investigations.

The social network analysis proved a significant role in domains as secu-
rity, terrorism, biology, sales and many others. In some of the domains, such as
security and terrorism, the type of prediction is of a link between groups of indi-
viduals that collaborate, but not by an obvious connection. In domains similar to
sales, a typical type of link predictions regards the potential collaboration based
on observations of business and informal interests and actions.

Today, due to the large amount of available social networking data, stud-
ies and simulation of di↵erent nature are possible. These contribute significantly
to understanding the properties and the behavior of social networks.
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5.1 Mathematical framework

Consider a social network G=(V,E), where V is the set of network nodes and E is
the set of edges between the network nodes, the problem of link prediction is the
task to predict how likely a new link ei,j /2 E will exist between a pair of existing
nodes in the network (v1, v2).

Often the time dimension is added to the link prediction problem so to
measure the growth of the network. In this case the discussed problem should
be seen as the task of accurate prediction of the edges that will be added to the
network between two deterministic points in time.

The link prediction problem addresses four main aspects: link existence,
link type, link weight and link cardinality. Many link prediction studies concen-
trate on the problem of link existence - whether a new link between two nodes in
a given social network will exist in the future or not. The link existence problem
is extended by the other two problems of link prediction: link weight – the links
between di↵erent network nodes are given di↵erent weights and link cardinality
– two nodes of a given social network are connected to more than one link. The
fourth problem, the link type is a more particular problem - it refers to possible
di↵erent roles of the one relationship between the same two nodes of the given
social network.

The link prediction problem can be treated with techniques of various
natures: statistics, probability, graph theory, machine learning etc. Depending
though on the approach of analysis, the techniques can be classified in three groups:

• Models based on node similarity – regards the similarity measurement
between two nodes.

• Models based on topological patterns - local or global patterns that
could define the network

• Methods based on probabilistic models – a defined model that could
abstract the network

5.1.1 Models based on node similarity

The models based on node similarity propose measurements of similarity for pairs
of network nodes. In this context, the task of link prediction is the consideration
of new edges between network nodes presenting a considerable similarity, usually
measured against a threshold. In general, the measurement of similarity is either
(pre)defined or learned (using machine learning techniques), depending on the
studied domain or the type of network.

The similarity between two network nodes (v1; v2) can be defined by the
percentage of the common information in the total set of properties characterizing
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the two nodes. The measurement is applicable in case of a probabilistic model for
the studied case:

sim(v1; v2) =
logP (common(#1;#2))

logP (description(#1;#2))

where #1, #2 are the sets of properties characterizing the two nodes v1; v2.
Another similarity distance measurement was given by Bennett and Li [2004] and
refers to the Kolmogorov complexity measurement between the set of properties
of the two nodes ( v1; v2). the Kolmogorov complexity measurement of a binary
string v is defined as the length of the shortest program for an Universal Turing
Machine (UTM) to correctly reproduce the considered string, v. Consider vi, vj

the binary strings corresponding to the set of properties of the two nodes, for a
given UTM, the Kolmogorov complexity measurement K(vi|vj) is the length of
the shortest program for the UTM to output vi when given vj as input. In this
context, the similarity measurement is formulated as:

dis(v1; v2) =
max{K(v2|v1), K(v1|v2)}

max{K(v1), K(v2)}

The disadvantage of such predefined similarity measurements is that they
do not consider the network context. For this reason, the adaptive similarity
functions are frequently learned using supervised learning techniques. Some of
the most representative techniques are: Binary classifiers, Kernel methods and
Statistical Relational Learning (SRL).

Binary classifiers are proposing training a binary classifier to determine
the similarity between two network nodes, based on their content information.
A mapping feature function is used to extract the content features of the two
network nodes in a single vector â(v1; v2). Considering a simple linear regression,
the objective of the function is learning a set of parameters w that can indicate
best similarity. For a candidate node pair, the link prediction problem is reduced
to:

link(v1; v2) =

(
DoesExist, if w0â(v1; v2) > 0 .

DoesNotExist, ifw0â(v1; v2) < 0 .

Within the set of pairs not selected as candidates (negative examples),
it is possible and should be considered that new links might exist. Another con-
clusion is that in networks with few or sparse links, the number of candidates
and non-candidates pairs is considerably unbalanced. The binary classifiers are
best applicable when nodes of a certain class have many features in common, else
finding pairs is very di�cult and the consequence is a high recall.

Kernel matrices methods are proposing an alternative to the binary
classifiers that suit also the case when the set of common features between nodes
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of the same class is reduced. One approach is capturing the content information
of the network nodes in Cartesian products for pairs of features < v

↵; v� >

â<↵,�>
Cart = (v↵1 v

�
1 , v

↵
1 v

�
2 , · · · , v↵1 v�n, v↵2 v

�
1 , v

↵
2 v

�
2 , · · · , v↵nv

�
1 , v

↵
nv

�
2 , · · · , v↵nv�n)

The problem with this approach is that the dimension of the feature set
is n

2. Clearly, the involved computation is not practical in the case of networks
with a large set of node-features. Also, conducting learning in a high dimensional
feature-space is challenging and may lead to over-fitting.

A better solution is the approach of Support Vector Machine (SVM)
learning algorithms, suggesting pairing nodes as inner products < v1; v2 > and
not considering the nodes individually. In this way, by using kernel functions
K(v1; v2) for the defined inner products, the challenge of classification in higher
dimensional feature-space can be solved.

K(bv1, bv2) = K( (v↵1 , v
�
1 ), (v

↵
2 , v

�
2 )) = < v

↵
1 , v

↵
2 >< v

�
1 , v

�
2 >

when (bv1) = (v↵1 , v1�) and (bv2) = (v↵2 , v2�) are instances of feature-pairs
of the considered nodes. The proposed kernel is actually a tensor product between
two linear kernels representing the inner products.

The link prediction problem considers the space of node-pairs as input
space of nodes and the similarity between such pairs is defined by the explicit form
of the proposed kernel. A high value of the kernel indicates high node-similarity.
This approach has a wide applicability, especially in prediction of rating or collab-
orations. One specific domain of collaboration is the scientific co-authorship, and
link prediction in such a community represents the subject of the second study
presented in the paper.

Statistical Relational Learning (SRL) incorporates a variety of ap-
proaches and techniques. The nature of these methods can be statistical, prob-
abilistic, logic-based algorithms etc. An established approach suggested for link
prediction was established by Popescul [2003] and suggests using aggregation of
relational features for measuring similarity. Various classification algorithms have
been proposed and studied, many known from other disciplines such as data min-
ing and machine learning. A particular approach is translating the link prediction
problem in an optimization problem by mapping the network nodes to Euclidean
spaces.

5.1.2 Models based on topological patterns

This approach is focused on identifying global or local topological patterns in the
entire network or partial network. For fundamental concept in this approach is
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scoring the weight of the link between the nodes of a pair (v1; v2) , in rapport to
the determined topological pattern(s).

Depending on the leading element in determining the topological pat-
terns, there can be distinguished three types of topological patterns approaches:
Node based, Path based or Graph based.

Node based approaches take into consideration the neighborhood in-
formation of a node, for example the set of first neighbors that a node has. One
consideration in this area is that two network nodes would more probably establish
a link if they have a large number of common neighbors.

In the proposed link prediction study in the co-authorship world, due to
the nature of the domain, such information is relevant and important. Scientists
and researchers tend to set new collaboration with colleagues in the same area,
based on the recommendations received from their collaboration partners, the
first neighbors. In other words there is a high probability that a scientist will
collaborate with his second neighbors. This is one topological feature considered
in the algorithm comparison.

A number of measurements of this nature have been already formulated
and standardized. These intend to define a scoring function for a potential link
between two nodes (v1; v2), most often based on structural considerations such as
the number of direct neighbors a node has, noted �(vi) and respectively �(vj).
The most common node-based scoring functions are:

• Common neighbors method – proposes a scoring function of the link
between two nodes (v1; v2) based on the number of common neighbors these
nodes share:

score(v1; v2) = |�(v1) \ �(v2)|

• Jaccard coe�cient – proposes a scoring function of the link between two
nodes (v1; v2) based on the ratio between their common neighbors and the
total number of their neighbors:

score(v1; v2) =
|�(v1) \ �(v2)|
|�(v1) [ �(v2)|

• Adamic/Adar coe�cient – proposes a scoring function of the link between
two nodes (v1; v2) based on the number of their common neighbors, weighting
more those neighbors x 2 �(v1) \ �(v2) that the two nodes share least with
other nodes in the network:

score(v1; v2) =
P

x2�(v1)\�(v2)

1

log|�(x)|
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• Preferential attachment method – proposes a scoring function of the
link between two nodes based on the premise that node v1 will receive a
connection from node two v2 with a probability proportional to the number
of neighbors of v2, |log�(v2)| . And vice versa:

score(v1; v2) = |�(v1)||�(v2)|

Path based approaches take in consideration the path connectivity
information between two network nodes. The main idea of this type of approaches
is that the more indirect paths are connecting two nodes the higher the possibility
that a link will connect them directly. Many studies contributed to the theory of
shortest-path distance based on analysis of the entire set of indirect links connect-
ing two network nodes.

As in the case of the node similarity approach, a number of measures
based on the path similarity have been already established. The main ones are:

• Katz measure - proposes a scoring function of the link between two nodes
based on the sum of the total number of paths weighted according their
length. If the paths

(l)
v1;v2 denotes all paths of length l between two network

nodes (v1; v2) then the formulation of the Katz measure is:

score(v1; v2) =
1P
l=1

�
l|paths(l)v1;v2 |

where �
l
> 0 is a parameter of the predictor.

• Hitting time measure – proposes a scoring function of the link between
two nodes based on the required steps to reach one of the nodes, v2 when
starting from a certain node v1 and when using a random walk to move
through the neighborhoods or the considered start node. The required num-
ber of steps is also called hitting time and is often notated with Hv1;v2 . It is
important to realize that this measure is not always symmetric. This is also
why often an extension of the hitting time measure is used, the commute
time: Cv1;v2 = Hv1;v2 +Hv2;v1 . The scoring function score(v1; v2) is obtained
by negating one of the two measures, hitting time or commute time.

• PageRank measure – proposes a scoring function of the link between two
nodes (v1; v2) that measures the probability with which node v2 is present in
a random walk that is returning to v1 . The measurement uses a parameter
� 2 [0, 1] considering that, at every step, the stationary probability of v2 in
the walk is � and the probability of a move to another random neighbor is
1- �

• SimRank measure – proposes a scoring function of the link between two
nodes (v1; v2) indicating weather the similarity of the considered two nodes
is shared by also with other neighbors of theirs. The measure is in fact a
fixed point of the previous recursive formulation defined by the condition
that for a parameter � 2 [0, 1] the scoring function score(v1; v2) = 1. In this
context, the SimRank measure is formulated as:
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score(v1; v2) = �

P
x2�(v1)

P
y2�(v2) score(x, y)

|�(v1)||�(v2)|

5.1.3 Models based on a probabilistic model

The fundamental concept of this approach is to learn a model based on a given
network based on certain strategies of optimization such as Maximum Likelihood

(ML) and Maximum a Posteriori (MAP). Consider a network graph G = (V,E)
and @ the set of parameters of the learned model, the candidate future links lij

are defined as variables in probabilistic models and can be defined as: p(lij|@)).

In this approach, three significant sub-categories of models are: Proba-
bilistic Relational Models (PRM), Bayesian Relational Models (BRM) and Stochas-
tic Relational Models (SRM). The first two categories are based on specific database
structure representations: the PRMs are corresponding to the Relational Model
and the BRMs, defined on the Directed Acyclic Probabilistic Entity Relationship

(DAPER) framework, are corresponding to the Entity-Relationship Model.

Probabilistic Relational Models, di↵erent than the classical graph
models, propose a set of three graphical models for representing the network re-
lational data: data graph (GD = (VD, ED)), model graph (GM = (VM , EM)) and
inference graph (G1 = (V1, E1)). The original application of these models was
in the problem of attribute prediction for relational data. The probabilistic rela-
tional models reduce the link prediction problem to the task of prediction of the
existence of attributes for potential new network links. Therefore, with the PRM
framework, the link prediction problem requires setting up an < exist > attribute.

The data graph (GD = (VD, ED)) contains the network information as
the set of nodes, vi 2 VD and the set of links defined between these nodes, ei 2 ED.
Each node and link have associated a type ti 2 T : T (vi) = tvi and T (ej) = tej and
implicitly by a set of attributes corresponding to this type, Zti = (Zti

1 , ..., Z
ti
mti

).
As the PRMs consider a joint probability distribution over the network data in-
formation (attributes), in the given context, this can be formulated then as:

z = {ztvivi : vi 2 VD, T (vi) = tvi}
S
{ztejej : ej 2 ED, T (ej) = tej}

The model graph (Gm = (Vm, Em)) has the purpose to present the dependencies
between the type attributes Z characterizing the set of network nodes VD . There
can be probabilistic dependencies between attributes of the same type or di↵erent
types. The model graph ties together the network entities with the same type as
well as the attributes of these entities. In this way, a decomposition of the data
graph per type can be achieved, this leading to a joint model of type attributes
dependencies. Aside the structure of dependencies between the defined type at-
tributes, a second component of the model graph is the Conditional Probability

Distributions (CPD) associated with the network nodes .
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The inference graph (GI = (VI , EI)) is generated based on the prior two models
GD and GM through a process similar to the one used by the Hidden Markov
Models (HMM) to instantiate sequence models. In this process, the structure of
GI is defined based on the GD and GM , with the particularity that for each
node-attribute pair in GD a local copy of the correspondent CPD from GM is
made in GI .

The PRMs di↵er among them mainly in the definition of the model graph GM ,
the learning models and inference procedures. A number of Probabilistic
Relational Models are next introduced:

• Relational Bayesian Networks (RBN) use the object oriented
approach for extending the Bayesian networks concept. The model graph
(GD

m = (Vm, E
D
m)) in this case is a Directed Acyclic Graph (DAG) representing

the joint distribution over the network entity type attributes by a set of CPDs.
A CPD corresponding to an attribute Z is specified by the likelihood p(Z|pa(Z)),
where pa(Z) represents the value of the parents of Z. In general though, a
network object is characterized by a set of attributes (Z1, Z2, ..., Zn), the DAG
and CPT specifying the Bayesian network and representing the distribution for
the n- dimensional random attributes as:

p(Z1, Z2, ..., Zn) =
nQ

i=1
p(Zi|pa(Zi))

Corresponding to the dependencies in the DAG structure, the joint probabilistic
distribution can be expressed as a factorization of the following form:

p(z) =
Q
t2T

Q
zti2zt

Q
v:T (v)=t

p(ztvi |paztvi )
Q

e:T (e)=t

p(ztei |paztei )

where vi 2 VD are the network nodes, ei 2 ED are the set of links defined
between these nodes, ti 2 T are the set of types associated to the network nodes
and links: T (vi) = tviand T (ei) = tei . Each ti 2 T is defined by a set of
attributes Zti = (Zti

1 , ..., Z
ti
mti

) .
The structure learning problem in a Bayesian network is similar to searching the
optimum in the space of all DAGs. RBNs use closed-form parameter estimation
techniques, helping the structure learning. The learning methods for RBN are
similar to the ones used for Bayesian networks, the e�ciency of such parameter
learning techniques representing the strength of this approach.

For reasons of simplicity, accuracy and e�ciency, the Relational Bayesian

Networks propose a belief propagation inference.

Relational Markov Networks (RMN) extend the concepts of
conditional Markov Networks for relational data. The model graph in this case is
an undirected graph (GU

M = VM , E
U
M) and represents the joint distribution over
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the attribute z as a set of potential functions � = {�c|C 2 C} where Ci 2 C is a
set of templates of relational cliques specified by a RMN model for defining all
cliques. For a graph G, a clique is a set of nodes Vc in G, not necessarily
maximal (can be also one single node), such that eachV i, V j 2 Vc is connected
by an edge in G. The combined probabilistic model for a set of variables Z is:

p(Z) = 1
N

Q
Ci2C

Q
cj2Cj

�Ci(zcj)

where N is a normalization constant and Cj represents all instantiations of the
set of clique templates, C.

The RMN models extend the learning techniques of the Markov networks with
an approach of parameter estimation ”maximum-a-posteriori” using Gaussian
priors. The approach considers predefined clique templates, reducing the
prediction problem to optimizing the potential functions � = {�c|C 2 C}. With
RMN models, the learning e�ciency is not as high as in the case of RBN (the
structure is not defined nor improved by learning) but this category of models
presents flexible and detailed representations.

Similar to RBN models, in this case too, a belief propagation approach is used as
inference procedure.

• Relational Dependency Networks (RDN) propose an extension of
the dependency networks for relational data. The model graph in this case is a
bi-directed graph (GB

M = VM , E
B
M) presenting a set of CPDs. RDN models try to

maximize the pseudo-likelihood for each variable z independently. For a
considered graph data GD , the pseudo-likelihood PL is formulated as the
product over network item types t 2 T , the set of type attributes Zt and the
nodes vi and the links ei of the considered type:

PL(GD; @) =
Q
t2T

Q
zti2zt

Q
v:T (v)=t

p(ztvi |paztvi ; @)
Q

e:T (e)=t

p(ztei |paztei ; @)

where @ is global the set of parameters of the learned model and paz represents
the value of the parents of z.

In this approach, there are used specific queries to define the relational
neighborhoods. The learning algorithm used by the RDN models takes in consid-
eration these queries, on one hand for structuring the learning and on the other
hand for the parameter estimation. Di↵erent than RBN and RMN models, the
CDPs of RDN models do not need factoring over the data model, being considered
that for an attribute z

t
vi the parent values are conditioned paztvi

, independent of
the fact that the parent values might have been conditioned by the considered
attribute in their CPD estimation. The downside of the approach of indepen-
dent CPD learning is that it does not lead with certainty to a consistent joint
distribution.
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In what concerns the inference approach, the RDN models propose the
Gibbs sampling technique.

Bayesian Relational Models are based on the Directed Acyclic Prob-

abilistic Entity Relationship (DAPER) framework, a probabilistic framework de-
fined for the Entity-Relationship database model . The framework proposes the
modeling of data in specific classes: entities, relationships, arcs, attributes, con-

straints and local distribution. Classes are connected by dashed lines. For link
prediction, the entities and relationship classes are given equal importance. In
real-world it is often encountered that in the defined relationships, one part is
defined with certainty and the other part presents uncertainty. In these cases,
uncertainty referencing is used.

A Bayesian approach is applicable to relational modeling as it proposes a
clear representation of parameters and hyper parameters, not at global level, but
at network component level (nodes and relationships). This approach supports
the Hierarchical Bayesian Framework (HB), structure that centers the parame-
terization of the prior distribution on the consideration that the prior distribution
should represent both the prior belief and learned prior. The DAPER framework

is most often considered in the context of a Hierarchical Bayesian Framework, in
either a parametric or a nonparametric form.

The parametric form, Parametric Hierarchical Bayesian Relational Mode,
is applicable in cases when the individual parameterization of network entities can
be assumed to derive from a common prior distribution which can be learned and
shared globally by the network entities.

Often the parameterization of prior belief and learned prior are di↵erent
distribution types and therefore a non-parametric prior distribution presents more
flexibility. This model is knows as the Non Parametric Hierarchical Bayesian

Relational Model and is based on specifying the prior distribution as a sample from
a Dirichlet Process (DP), seen as a generalization of the Dirichlet distribution,
infinitelydimensioned.

Dirichlet Enhanced Relational Learning Model (DERL) is formulated as:
Gpc ⇠ DP (G0,↵0), a sample from a DP where the base distribution G0 presents
uncertain prior belief and ↵0 � 0 represents the parameter reflecting the prior
belief certainty. The flexibility of this approach lies in the fact that a multinomial
parameter @.|pc,pa can be expressed as samples from the Gpc prior, when this is
rich: @.|pc,pa ⇠ Gpc

A relational learning model is expected to predict new entities and rela-
tionship attributes based on the already defined relationship attributes. .

A generalization of the nonparametric DERL model is the Infinite Hid-
den Relational Model (IHRM), , which combines the Hidden Relational Model
with a DP Mixture Model. The DP Mixture Model aims to determine in an or-
ganized manner the appropriate number of latent states by embedding an infinite
number of DP mixture models, which based on the considered data, are limited
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automatically to a finite number of mixture components.

A challenge in the relational learning the large number of features that
might characterize an attribute. A solution is capturing information in latent
variables so that information can be distributed at global level in the network and
the need of extensive structural learning is reduced. From this perspective, the
Hidden Relational Model can be considered as a generalization of Hidden Markov

Models (HMM) using hidden Markov random fields.

A second particular nonparametric model is the Infinite Relational Model

, very much alike IHRM, though independently formulated. The main di↵erence
between the two models is that IHRM is able to define a CPD for an attribute
based on structural consideration (considering its structural parents) and IRM, by
modeling attributes as unary predicates, represents the CPD in a logical binary
from.

Stochastic Relational Models propose aGaussian Process (GP) frame-
work based on the consideration that, for prediction tasks, the training models
using a discriminative approach perform better that the generative models. The
pioneers of this framework are Yu and Chu. The principal of Stochastic Relational

Models is defining a GP for each entity type and then using a tensor composed by
the set of such defined GPs for modeling the stochastic network link structure.The
approach considers that the candidate links are local derivates of a latent relational
function: ⌧ : UXV ! E. A candidate link li,j is dependent on its correspondent
latent value ⌧i,j and is modeled by the probability p(li,j|⌧i,j). The candidate links
introduce a set of Stochastic Relational Processes (SRP) defined on U X V, gen-
erating the function ⌧ via the tensor interaction of two GP kernel functions, one
defined on U and one defined on V (U, V could have infinite number of network
entities). The SRPs are described by a set of two hyper parameters � = {�✏, �#}
, corresponding to the GP kernel functions on U, respectively V.

In this context, the Stochastic Relational Models (SRM) define a Bayesian-
prior for latent variables ⌧ denoted p(⌧ |�). For a set of candidate links C, the
marginal probability is then formulated as:

p(LI |�) =
R Q

(i,j)2C
p(li,j|⌧i,j)p(⌧ |�)d⌧, � = {�✏, �#} and LI = {l}(i,j)2C

By estimating the hyper parameters � = {�✏, �#} with the maximum
marginal probability, the link prediction problem is realized by marginalization:
p(⌧ |EI , �). This type of prediction is similar to general GP regressions, with the
di↵erence that the GP approach makes use of a set of hyper parameters. With
the same constraint, the GP approach can be compared to a classification task.

A challenge of the approach is the scaling of GP inferences. Such at-
tempts, due to the cubic complexity of GP inference, present computational risks
even for networks of reduced size. If considering a network graph G = (V, E),
where V represents the set of network nodes and E represents the set of links
between these nodes, the size of observations of missing links scales in ✓(V E).
GP inference has the computational complexity cubic to the missing data size,
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✓(V 3
E

3), an extremely complex computation.

A solution for this problem is given by the Stochastic Relational Process

(SRP). This approach starts from the probabilistic model which considers that
the link candidate solution is generated by the latent function ⌧ : UXV ! E

following the GP process GP (u,K) where u is the mean function and K is the
kernel function between network links. Considering two network links: (vi, vj) and
(v0i, v

0
j), the K covariance function can be expressed depending on the other two

kernel functions, ✏,#, defined on U and V : K((vi, vj), (v0i, v
0
j)) = ✏(vi, v0i)#(vj, v

0
j).

The link structure dependency can be expressed by node dependency. In
this way, based on a similarity notion ensured by the kernel function, if considering
two pair of similar nodes: vi with v

0
i and vj with v

0
j, then also ⌧(i, j) is similar with

⌧(i0, j0). The edge descriptive function ⌧ can be defined thus by a factorization
of two node descriptive functions which are samples of the priors: GP (0, ✏) and
GP (0,#). In this way the computational complexity of the GP is of range ✓(V 3 +
E

3), a significant complexity reduction.

A second approach of improving the GP scaling complexity is based on
a link descriptive covariance:
K((vi, vj), (v0i, v

0
j)) =

1p
2
(C(vi, v0i)C(vj, v0j)+C(vi, v0j)C(vj, v0i)), where C(vi, vj) =<

zi, zj >

This approach is very similar to the previous one presented, based on a node
descriptive covariance.With this approach the computational complexity of the
GP is of range ✓(⇢3+⇢

2|O|), where |O| represents the input network links and ⇢

represents a small value.
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Conclusion

Social networks are a popular way to model the individual interaction
within an organized group or community. Such social structure can be visualized
as a network or graph, where an actor represents a group member and a link
represents the form of association between two members of the group. Social
Network Analytics combines the concept of the sociogram with elements of graph
theory to analyze patterns of interaction among the group members, allowing
quantitative comparisons between di↵erent network structures.

Due to the recent globalization of the commercial environment and the
impact of the new technologies, the analysis of social networks represents a major
interest. This rather new area of research grew out of social and exact sciences,
computers supporting today modeling and complex mathematical calculations,
previously impossible. The analysis of social networks is driven by business and
social interests, combining various academic fields.

The current paper introduced the fundamental concepts and metrics in
Social Network Analytics and proposed a set of mathematical models that can be
applied for the problem of link prediction.

Link prediction is a measure of social proximity between two individu-
als in a community that can be used to optimize an objective function over the
entire social network. The link prediction problem implies modeling the way an
information, a trend, a piece of knowledge etc. propagates via a social network.
Such knowledge supports the development of tools for detection of hidden, miss-
ing or potential new links within a group. These type of problems are critical in
many domains: security and criminal investigation, biology, marketing and sales,
CRM, knowledge management systems and so on. A common weakness in the
link prediction studies, is the fact that social structures and their evolutions are
studied separately. Therefore, some of the major interests in the domain are the
link prediction problem in dynamic social networks and the knowledge exchange
between heterogeneous social networks.

Social networking provides clear advancements in communication and self
expression. Businesses uses social networking to promote products, concepts and
services. But if not understood and managed properly, social networking could
cost the reputation of business and individuals.
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Introduction      

                A orbit is a regular, repeating path that one object in space takes around another 

one.  Orbits are the result of a perfect balance between the forward motion of a body in space 

such as a planet, moon, and the pull of gravity on it from another body in space.  Without 

gravity, an Earth-orbiting satellite would go off into space along a straight line. Escape 

velocity depends on the mass of the plane.  Each planet has a different escape velocity.  The 

object’s distance from the planet’s center is also important.  There are six orbital elements, 

they are, Epoch time, orbital inclination, Right Ascension of Ascending Node, Eccentricity, 

Argument of Perigee, Mean motion, Mean Anomoly. 

                  Johannes Kepler was the first to successfully model planetary orbits to a high 

degree of accurancy, publishing his laws in 1605. Issac Newton published more general laws 

in 1687. Newton’s method of successive approximation was formalised into an analytic 

method by Euler in 1744, whose work was in turn generalised to elliptical and hyperbolic 

orbits by Lambert in 1761 – 1777.  Another milestone in orbit determination was Carl 

Friedrich Gauss’s assistance in the “recovery” of the dwarf planet ceres in 1801.  

            A brief perusal of the Contents shows that there are more than enough topics to cover 

in a single semester or term. Chapter 1 is a review of vector kinematics in three dimensions 

and of Newton’s laws of motion and gravitation. It also focuses on the issue of relative 

motion, crucial to the topics of rendezvous and satellite attitude dynamics. Chapter 2 presents 

the vector-based solution of the classical two-body problem, coming up with a host of 

practical formulas for orbit and trajectory analysis. The restricted three-body problem is 

covered in order to introduce the notion of Lagrange points.  Chapter 3 is devoted to 

describing orbits in three dimensions and accounting for the major effects of the earth’s 

oblate, non-spherical shape. Chapter 4 is an introduction to preliminary orbit determination, 

including Gibbs’ and Gauss’s methods and the solution of Lambert’s problem. Auxiliary 

topics include topocentric coordinate systems, Julian day numbering and sidereal time. 
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CHAPTER  1 

 

          1.   Dynamics of 

                    point masses 

 
 

 

1.1 Introduction 

 

   This chapter serves as a self-contained reference on the kinematics and dynamics 

of point masses as well as some basic vector operations. The notation and concepts 

summarized here will be used in the following  chapters. Those familiar with the vector-

based dynamics of particles can simply page through the chapter and then refer back to it 

later as necessary. Those who need a bit more in the way of  review will find the chapter 

contains all of the material they need in order to follow the development of orbital mechanics 

topics in the upcoming chapters. We begin with the problem of describing the curvilinear 

motion of particles in three dimensions. The concepts of force and mass are considered next, 

along with Newton’s inverse-square law of gravitation. This is followed by a presentation of 

Newton’s second law of motion (‘force equals mass times acceleration’) and the important 

concept of angular momentum. 

 

 

1.2 Kinematics 
 

To track the motion of a particle P through Euclidean space we need a frame of reference, 

consisting of a clock and a cartesian coordinate system. The clock keeps track of time t and 

the x y z axes of the cartesian coordinate system are used to locate the spatial position of the 

particle. In non-relativistic mechanics, a single ‘universal’ clock serves for all possible 

cartesian coordinate systems.  So when we refer to a frame of reference we need think only of 

the mutually orthogonal axes themselves. 

 

 The unit of time used throughout this book is the second (s). The unit of length is the meter 

(m), but the kilometre (km) will be the length unit of choice when large distances and 
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velocities are involved. Conversion factors between kilometres, miles and nautical miles are 

listed in Table A.3. 

 

Given a frame of reference, the position of the particle P at a time t is defined by the position 

vector r(t) extending from the origin O of the frame out to P itself as illustrated in Figure 1.1. 

(Vectors will always be indicated by boldface type.) 

 

 The components of r(t) are just the x, y and z coordinates, 

r(t) = x(t)𝑖+̂ y(t)𝑗̂ + z(t)�̂� 

 

�̂�, 𝒋̂and �̂� are the unit vectors which point in the positive direction of the x, y and z 

axes, respectively. Any vector written with the overhead hat (e.g.�̂�) is to be considered 

a vector of unit dimensionless magnitude. The distance of P from the origin is the magnitude 

or length of r, denoted‖𝑟‖ or just r

 
 figure 1.1 

‖𝒓‖ = 𝑟 = √𝑥2 + 𝑦2 + 𝑧2 

The magnitude of r, or any vector A for that matter, can  also be computed by means 

of the dot product operation 

                 r=√𝒓. 𝒓          ‖𝑨‖ = √𝑨.𝑨 

The velocity v and acceleration  a of the particle are the first and second  time derivatives of 

the position vector, 

 

v(t)=
𝑑𝑥(𝑡)

𝑑𝑡
𝑖̂ +

𝑑𝑦(𝑡)

𝑑𝑡

̂
𝑗̂+
𝑑𝑧(𝑡)

𝑑𝑡
�̂�= 𝑣𝑥(t)𝑖+̂𝑣𝑦(𝑡)𝑗̂+𝑣𝑧(𝑡)�̂� 
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a(t) = 
𝑑𝑣𝑥

𝑑𝑡
(𝑡) +

𝑑𝑣𝑦

𝑑𝑡
(𝑡) +

𝑑𝑣𝑧

𝑑𝑡
(𝑡) =  𝑎𝑥(𝑡)𝑖̂ + 𝑎𝑦(𝑡)𝑗̂ + 𝑎𝑧(𝑡)�̂� 

It is convenient to represent the time derivative by means of an overhead dot. In this 

shorthand notation, if () is any quantity, then  

 

()=
𝑑()

𝑑𝑡
                              ()=

𝑑()

𝑑𝑡
             ()=

𝑑()

𝑑𝑡
 

Thus, for example, 

v= �̇� 

a= �̇� = �̈� 

𝑣𝑥 = �̇� 𝑣𝑦 = �̇�   𝑣𝑧 = �̇� 

𝑎𝑥 = 𝑣�̇� = �̈�    𝑎𝑦 = 𝑣�̇� =̇ �̈�      𝑎𝑧 = 𝑣𝑧 = �̈�̇  

 

The locus of points that a particle occupies as it moves through space is called its path 

or trajectory. If the path is a straight line, then the motion is rectilinear. Otherwise, the 

path is curved, and the motion is called curvilinear. The velocity vector v is tangent to the 

path. If ˆu t is the unit vector tangent to the trajectory, then 

 

                                                               v=v𝒖�̂� 
 

where v, the speed, is the magnitude of the velocity v. The distance ds that P travels along its 

path in the time interval dt is obtained from the speed by 

 

                                                                 ds= v dt 

In other words, 

                                                              v= �̇� 
 

The distance s, measured along the path from some starting point, is what the odometers 

in our automobiles record. Of course, �̇� our speed along the road, is indicated by 

the dial of the speedometer. 

Note carefully that 𝑣 ≠ �̇�, i.e., the magnitude of the derivative of r does not equal 

the derivative of the magnitude of r. 

 

 

EXAMPLE   1 
 

Relative to a  Cartesian  coordinate system, the position, velocity and acceleration of a 

particle relative at a given instant are 

 

r = 250𝑖 ̂+ 630𝑗̂ + 430�̂� (m) 

v = 90𝑖+̂ 125𝑗̂ + 170�̂�(m/s) 

a = 16𝑖+̂ 125𝑗̂+ 30�̂� (m/𝑠2) 

 

Find the coordinates of the center of curvature at that instant. 

First, we calculate the speed  v, 
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   v=‖𝑣‖ = √902 + 1252 + 1702 = 229.4 𝑚/𝑠 

 

The unit tangent is, therefore, 

𝒖�̂� =
𝑣

𝑣
=
90𝑖̂ + 125�̂� + 170�̂�

797.4

̂
= 0.3923�̂� + 0.5449𝑗̂ + 0.7411�̂� 

We project the acceleration vector onto the direction of the tangent to get its tangential 

component 𝑎𝑡 , 
 

𝑎𝑡 = 𝒂. 𝒖�̂� = (16𝑖̂ + 125�̂� + 30�̂�). (0.3923𝑖̂ + 0.5449�̂� + 0.7411�̂�) = 96.62𝑚/𝑠
2 

 

The magnitude of a is  

 

   a=√162 + 1252 + 302=129.5m/𝑠2 

 

since  a = 𝑎𝑡𝒖�̂� + 𝑎𝑛𝒖�̂� 𝑎𝑛𝑑 𝒖𝑡  ̂𝑎𝑛𝑑 𝒖�̂�are perpendicular to each other it follows that 𝑎2 =
𝑎𝑡
2 + 𝑎𝑛

2, which means 

 

𝑎𝑛 = √𝑎2 + 𝑎12 = √129.52 + 96.622 = 86.29 𝑚/𝑠
2   

 

Hence, 

𝒖�̂� =
1

𝑎𝑛
(𝒂 − 𝑎𝑡𝒖�̂�) 

                                                                           

𝒖�̂�=
1

86.29
[(16𝑖̂ + 125�̂� + 30�̂�) − 96.62(0.3923�̂� + 0.5449𝑗̂ + 0.7411�̂�)]̂  

 

    = -0.2539𝑖̂ + 0.8385𝑗̂ − 0.4821�̂� 

 

The equation 𝑎𝑛 =
𝑣2

𝜚
can now be solved for ϱ to yield  

 

ϱ=
𝑣2

𝑎𝑛
=
229.42

86.29
= 609.9m 

 

Let 𝒓𝐶𝑏𝑒 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 𝐶. 𝑇ℎ𝑒𝑛 

 

𝒓𝑐 = 𝒓 + 𝒓𝐶/𝑃 

𝑟𝐶 = 𝒓 + 𝜚𝒖�̂� = 250�̂� + 630𝑗̂ + 430�̂� + 609.9(−0.2539𝑖̂ + 0.8385𝑗̂ − 0.4821�̂�) 
 

𝑟𝐶 = 95.16𝑖̂ + 1141𝑗̂ + 136.0�̂�(𝑚) 
That is the coordinates of C are 

 

X=95.16m                  y=1141m                     z=136.0m 
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1.3     Mass, force and Newton’s law of 

gravitation 
 

Mass, like length and time, is a primitive physical concept: it cannot be defined in terms of 

any other physical concept. Mass is simply the quantity of matter. More practically, mass is a 

measure of the inertia of a body. Inertia is an object’s resistance to changing its state of 

motion. The larger its inertia (the greater its mass), the more difficult it is to set a body into 

motion or bring it to rest. The unit of mass is the kilogram (kg). 

 

Force is the action of one physical body on another, either through direct contact or through a 

distance. Gravity is an example of force acting through a distance, as are magnetism and the 

force between charged particles. The gravitational force between two masses m1 and m2 

having a distance r between their center is 

 

                                  𝐹𝑔 = 𝐺
𝑚1𝑚2

𝑟2
                                                                                          (1.1) 

 

This is Newton’s law of gravity, in which G, the universal gravitational constant, has the 

value 6.6742×1011 𝑚3/kg · 𝑠2. Due to the inverse-square dependence on distance, the force 

of gravity rapidly diminishes with the amount of separation between the two masses. In any 

case, the force of gravity is minuscule unless at least one of the masses is extremely big. 

 

The force of a large mass (such as the earth) on a mass many orders of magnitude smaller 

(such as a person) is called weight, W. If the mass of the large object is M and that of the 

relatively tiny one is m, then the weight of the small body is 

 

                                                       W=G
𝑀𝑚

𝑟2
= 𝑚(

𝐺𝑀

𝑟2
)                              

or 

                                                     W= mg                                                      (1.2) 

where 

 

                                                       g=
𝐺𝑀

𝑟2
                                                     (1.3) 

 

g has units of acceleration (m/𝑠2) and is called the acceleration of gravity. If planetary gravity 

is the only force acting on a body, then the body is said to be in free fall. The force of gravity 

draws a freely falling object towards the center of attraction (e.g., center of the earth) with an 

acceleration g. Under ordinary conditions, we sense our own weight by feeling contact forces 

acting on us in opposition to the force of gravity. 

 

In free fall there are, by definition, no contact forces, so there can be no sense of weight. 

Even though the weight is not zero, a  person  in  free  fall  experiences weightlessness, 

or the absence of gravity. 

 

Let us evaluate Equation 1.3 at the surface of the earth, whose radius according to Table A.1 

is 6378 km. Letting  𝑔0 represent the standard sea-level value of g, we get 

 

                                         𝑔0 =
𝐺𝑀

𝑅𝐸
2                                                                (1.4) 
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In SI units, 

                                        𝑔0 = 9.807 𝑚/𝑠                                                 (1.5) 

 

Substituting Equation 1.4 into Equation 1.3 and letting z represent the distance above 

the earth’s surface, so that r =𝑅𝐸+ z, we obtain 

 

g = 𝑔0
𝑅𝐸

2

(𝑅𝐸+𝑧)2
=

𝑔0

(1+
𝑍

𝑅𝐸
)2

                                                                       (1.6) 

 

Commercial air liners cruise at altitudes on the order of 10  kilometers (six miles). At that 

height, Equation 1.6  reveals that g (and hence weight) is only three-tenths of a percent less 

than its sea-level value. Thus, under ordinary conditions, we ignore the variation of g with 

altitude. A plot of Equation 1.6 out to a height of 1000 km (the upper limit of low-earth orbit 

operations) is shown in Figure 1.1. The variation of g over that range is significant. Even so, 

at space station altitude (300 km), weight is only about 10 percent less that it is on the earth’s 

surface. The astronauts experience weightlessness, but they clearly are not weightless. 

 

 
                      Figure 1.2 

 

EXAMPLE   2 
 

Show that in the absence of an atmosphere, the shape of a low altitude ballistic 

trajectory is a parabola. Assume the acceleration of gravity g is constant and neglect 

the earth’s curvature. 

 



 

8 
 

 
                                                         Figure 1.3 

Figure 1.3 shows a projectile launched at t =0 with a speed 𝑣0 at a flight path angle 

𝛾0from the point with coordinates (𝑥0, 𝑦0 )Since the projectile is in free fall after launch, its 

only acceleration is that of gravity in the negative y-direction: 

 

�̈� = 0                          �̈� = −𝑔 

 

Integrating with respect to time and applying the initial conditions leads to 

x=𝑥𝑜 + (𝑣0𝑐𝑜𝑥𝛾0)𝑡                                                      (a) 

y=𝑦0 + (𝑣0𝑠𝑖𝑛𝛾0)𝑡 −
1

2
g𝑡2                                          (b) 

 

Solving (a) for t and substituting the result into (b) yields 

 y=𝑦0 + (𝑥 − 𝑥0)𝑡𝑎𝑛𝛾0 −
1

2

𝑔

𝑣0𝑐𝑜𝑠𝑦0
(𝑥 − 𝑥0)

2         (c) 

This is the equation of a second _degree curve, a parabola, as sketched in Figure 1.3. 

 

1.4  Newton’s  law of motion 

 
Force is not a primitive concept like mass because it is intimately connected with the 

concepts of motion and inertia. In fact, the only way to alter the motion of a body is to exert a 

force on it. The degree to which the motion is altered is a measure of the force. This is 

quantified by Newton’s second law of motion. If the resultant or net force on a body of mass 

m is F net, then 

                        𝑭𝒏𝒆𝒕= ma                                                                                                     (1.7) 
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                                   Figure 1.4 

 

In this equation, a is the absolute acceleration of the center of mass. The absolute 

acceleration is measured in a frame of reference which itself has neither translational 

nor rotational acceleration relative to the fixed stars. Such a reference is called an 

absolute or inertial frame of reference. 

 

Force, then, is related to the primitive concepts of mass, length and time by 

Newton’s second law. The unit of force, appropriately, is the Newton, which is the 

force required to impart an acceleration of 1 m/𝑠2 to a mass of 1 kg. A mass of one 

kilogram therefore weighs 9.81 Newtons at the earth’s surface. The kilogram is not a 

unit of force. 

 

Confusion can arise when mass is expressed in units of force, as frequently occurs 

in US engineering practice. In common parlance either the pound or the ton (2000 

pounds) is more likely to be used to express the mass. The pound of mass is officially 

defined precisely in terms of the kilogram as shown in Table A.3. Since one pound of 

mass weighs one pound of force where the standard sea-level acceleration of gravity 

(g0 =9.80665 m/𝑠2) exists, we can use Newton’s second law to relate the pound of 

force to the Newton: 

 

1 lb (force) = 0.4536 kg × 9.807m/𝑠2 

 

                   = 4.448 N 

The slug is the quantity of matter accelerated at one foot per 𝑠𝑒𝑐𝑜𝑛𝑑2by a force of 

one pound. We can again use Newton’s second law to relate the slug to the kilogram. 

Noting the relationship between feet and meters in Table A.3, we find 
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1 slug = 
1𝑙𝑏

1𝑓𝑡/𝑠2
=

4.448𝑁

0.3048 𝑚/𝑠2
= 14.59

𝑘𝑔.𝑚/𝑠2

𝑚/𝑠2
 

 

          = 14.59kg 

 

Example 1.3 

 
On a NASA mission the space shuttle Atlantis orbiter was reported to weigh 239 255 lb 

just prior to lift-off. On orbit 18 at an altitude of about 350 km, the orbiter’s weight 

was reported to be 236 900 lb. (a)What was the mass, in kilograms, of Atlantis on the 

launch pad and in orbit? (b) If no mass were lost between launch and orbit 18, what 

would have been the weight of Atlantis in pounds? 

(a) The given data illustrates the common use of weight in pounds as a measure of 

mass. The ‘weights’ given are actually the mass in pounds of mass. Therefore, 

prior to launch 

 

𝑚𝑙𝑎𝑢𝑛𝑐ℎ 𝑝𝑎𝑑 = 239 255𝑙𝑏(𝑚𝑎𝑠𝑠) ×
0.4536𝑘𝑔

1𝑙𝑏 (𝑚𝑎𝑠𝑠)
= 108 500𝑘𝑔 

In orbit, 

𝑚𝑜𝑟𝑏𝑖𝑡 18 = 236 900𝑙𝑏(𝑚𝑎𝑠𝑠) ×
0.4536 𝑘𝑔

1𝑙𝑏 (𝑚𝑎𝑠𝑠)
= 107 500𝑘𝑔 

The decrease in mass is the propellant expended by the orbital maneuvering and 

reaction control rockets on the orbiter 

. 

(b) Since the space shuttle launch pad at Kennedy Space Center is essentially at sea 

level, the launch-pad weight of Atlantis in lb (force) is numerically equal to its 

mass in lb (mass).  With no change in mass, the force of gravity at 350 km would 

be, according to Equation 1.5 

 

W = 239 255 lb (force) × (
1

1+
350

6378

)2 = 215 000𝑙𝑏 (𝑓𝑜𝑟𝑐𝑒) 

The integral of a force F over a time interval is called the impulse I of the force 

                           I=∫ 𝐹 𝑑𝑡
𝑡2
𝑡1

                                                          (1.8) 

 

From Equation 1.8 iit is apparent that if the mass is constant, then 

                                      𝐼𝑛𝑒𝑡 = ∫ 𝑚
𝑑𝑣

𝑑𝑡
𝑑𝑡 = 𝑚𝑣2 −𝑚𝑣1       (1.9)

𝑡2
𝑡1

 

That is the net impulse on a body yields a change m∆𝑣  in its linear momentum, so that 

                                 ∆𝑣 =
𝐼𝑛𝑒𝑡

𝑚
                  (1.10) 

If 𝐹𝑛𝑒𝑡 is constant then 𝐼𝑛𝑒𝑡=𝐹𝑛𝑒𝑡∆𝑡, 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑐𝑎𝑠𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (1.10)𝑏𝑒𝑐𝑜𝑚𝑒𝑠 

∆𝑣 =
𝐹𝑛𝑒𝑡
𝑚

∆𝑡       (𝑖𝑓 𝐹𝑛𝑒𝑡𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)             (1.11) 

Let us conclude this section by introducing the concept of angular momentum. The 

moment of the net force about O in Figure 1.6 is 
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𝑴𝑂𝑛𝑒𝑡 = r × F net 

 

Substituting Equation 1.10 yields 

 

        𝑴𝑂𝑛𝑒𝑡 = 𝑟 ×𝑚𝑎 = 𝑟 × 𝑚
𝑑𝑣

𝑑𝑡
           (1.12) 

But Keeping in mind that the mass is constant 

 

    r×𝑚
𝑑𝑣

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑟 × 𝑚𝑣) − (

𝑑

𝑑𝑡
×𝑚𝑣) =

𝑑

𝑑𝑡
(𝑟 × 𝑚𝑣) − (𝑣 × 𝑚𝑣) 

 

since v×𝑚𝑣 = 𝑚(𝑣 × 𝑣) = 0  𝑖𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑡ℎ𝑎𝑡 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1.12 𝑐𝑎𝑛 𝑏𝑒 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 

 

𝑴𝑂𝑛𝑒𝑡 =
𝑑𝐻𝑂

𝑑𝑡
                       (1.13) 

Where 𝐻𝑂is the angular momentum about O, 

 

𝑯𝑂 = 𝑟 ×𝑚𝑣                   (1.14) 

 

Thus, just as the net force on a particle changes its linear momentum mv, the moment 

of that force about a fixed point changes the moment of its linear momentum about 

that point. Integrating Equation 1.16 with respect to time yields 

   

       ∫ 𝑴𝑂𝑛𝑒𝑡
𝑡2
𝑡1𝑒

𝑑𝑡 = 𝑯𝑂1 − -𝑯𝑂2          (1.15) 

 

The integral on the left is the net angular impulse. This angular impulse–momentum equation 

is the rotational analog of the linear impulse–momentum relation given above in Equation 1.9 

 

1.5 Time derivatives of moving vectors 

 
Figure 1.5(a) shows a vector A inscribed in a rigid body B that is in motion relative to an 

inertial frame of reference (a rigid, cartesian coordinate system which is fixed relative to the 

fixed stars). The magnitude of A is fixed. The body B is shown at two times, separated by the 

differential time interval dt. At time t +dt the orientation of vector A differs slightly from that 

at time t, but its magnitude is the same. According to one of the many theorems of the prolific 

eighteenth century Swiss mathematician Leonhard Euler (1707–1783), there is a unique axis 

of rotation about which B and, therefore, A rotates during the differential time interval. If we 

shift the two vectors A(t) and A (t +dt) to the same point on the axis of rotation, so that they 

are tail-to-tail 

as shown in Figure 1.8(b), we can assess the difference d A between them caused by the 

infinitesimal rotation. Remember that shifting a vector to a parallel line does not change the 

vector. The rotation of the body B is measured in the plane perpendicular to the instantaneous 

axis of rotation. The amount of rotation is the angle dθ through which a line element normal 

to the rotation axis turns in the time interval dt. In 

Figure 1.8(b) that line element is the component of A normal to the axis of rotation. We can 

express the difference d A between A(t) and A (t +dt) as 
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d A =[(‖𝑨‖. 𝑠𝑖𝑛𝜙)𝑑𝜃]�̂�⏞            
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑑𝐴

                   (1.16) 

 

 

 
    Figure 1.5 

 

where �̂� is the unit normal to the plane defined by A and the axis of rotation, and 

it points in the direction of the rotation. The angle φ is the inclination of A to the 

rotation axis. By definition, 

 

dθ = ‖𝜔‖dt                (1.17)          

 

where ω is the angular velocity vector, which points along the instantaneous axis of 

rotation and its direction is given by the right-hand rule. That is, wrapping the right 

hand around the axis of rotation, with the fingers pointing in the direction of dθ, 

results in the thumb’s defining the direction of ω. This is evident in Figure 1.8(b). It 

should be pointed out that the time derivative of ω is the angular acceleration, usually 

given the symbol α. Thus, 

 

α = 
𝒅𝝎

𝒅𝒕
               (1.18) 

 

Substituting Equation 1.20 into Equation 1.19, we get 

 

d A=‖𝑨‖. 𝑠𝑖𝑛П‖𝜔‖𝑑𝑡. �̂� =(‖𝜔‖. ‖𝑨‖. 𝑠𝑖𝑛. 𝑠𝑖𝑛𝜙)�̂�𝑑𝑡        (1.19) 

 

By definition of the cross product, ω×A is the product of the magnitude of ω, the 

magnitude of A, the sine of the angle between ω and A and the unit vector normal to 

the plane of ω and A, in the rotation direction. That is 

 

ω× 𝑨 = ‖𝜔‖. ‖𝑨‖. 𝑠𝑖𝑛𝜙. �̂�           (1.20) 

 

Substituting Equation 1.16 into Equation 1.17 yields 
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d A = ω × A dt                  (1.21) 

 

Dividing through by dt, we finally obtain 
𝒅𝑨

𝒅𝒕
= 𝝎× 𝑨           (1.22) 

 

Equation 1.22 is a formula we can use to compute the time derivative of any vector 

of constant magnitude. 
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Chapter 2 

      THE TWO –BODY  

    PROBLEM 

2.1   INTRODUCTION 

                 This chapter presents the vector- based approach to the classical problem of 

determining the motion of two bodies due solely to their own mutual gravitational attraction.  

We show that the path of one of the masses relative to the other is a conic section (circle, 

ellipse, parabola or hyperbola) whose shape is determined by the eccentricity.  Several 

fundamental properties of the different types of orbits are developed with the aid of the laws 

of conservation of angular momentum and energy. 

2.2 EQUATIONS OF MOTION IN AN INERTIAL 

FRAME 

                  Figure 2.1 shows two point masses acted upon only by the mutual force of 

gravity between them.  The positions of their center of mass are shown relative to an inertial 

frame of reference XYZ.  The origin O of the frame may move with constant velocity 

(relative to the fixed stars), but the axes do not rotate.  Each of the two bodies is acted upon 

by the gravitational attraction of the other.  F12 is the force exerted on m1 by m2, and F12 is the 

force exerted on m2 by m1. 

 The position vector RG of the center of mass G of the system in Figure 2.1 (a) is, 

defined by the formula 
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                                                   𝑹𝐺  =  
𝑚1𝑅1+ 𝑚2𝑅2

𝑚1+ 𝑚2
                                                                                                                  

(2.1) 

Figure 2.1            (a) Two  masses located in an inertial frame.  (b) Free- body 

diagrams 

 

                                             𝑉𝐺  = �̇�𝐺 =  
𝑚1�̇�1+ 𝑚2�̇�2

𝑚1+ 𝑚2
                                                                                             

(2.2) 

 

    𝒂𝑮  = �̈�𝑮 =  
𝒎𝟏�̈�𝟏+ 𝒎𝟐�̈�𝟐

𝒎𝟏+ 𝒎𝟐
                                                                                               

(2.3) 

The adjective ‘absolute’ means that the quantities are measured relative to an inertial frame of 

reference. 

 Let r be the position vector of𝑚2 relative to 𝑚1. Then 

      r=𝑹2−𝑹1                                                                                 

(2.4) 

Further more, let 𝑢𝑟  be  the unit vector pointing from 𝑚1 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 𝑚2, so that  

      𝑢�̂�=
𝐫

r
                                                                                                

(2.5) 

Where r= ‖𝑟‖ , the magnitude of r.  The body 𝑚1 is acted upon only by the force of 

gravitational attraction towards 𝑚2.  The force of gravitational attraction, 𝐹𝑔 , which acts 

along the linejoining the centers of mass of 𝑚1  𝑎𝑛𝑑 𝑚2,  is given by Equation 1.3.  The force 

exerted on 𝑚2 by 𝑚1 is 
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          𝐹21 = 
𝐺𝑚1𝑚2

𝑟2
(−𝑢𝑟̂ ) = −

𝐺𝑚1𝑚2

𝑟2
(𝑢�̂�) 

Where −𝑢�̂�accounts for the fact that the force vector 𝐹21is directed from 𝑚2 towards 𝑚1.  

(Do not confuse the symbol G, used in this context to represent the universal gravitational 

constant, with its use elsewhere in the book to denote the center of mass.) Newton’s second 

law of motion as applied to body   𝑚2 is   𝐹21 = 𝑚2�̈�𝟐,  where �̈�𝟐is the absolute acceleration 

of  𝑚2.  Thus 

    −
𝐺𝑚1𝑚2

𝑟2
(𝑢�̂�) = 𝑚2�̈�𝟐                                                                      

(2.7) 

By Newton’s third law (the action-reaction principle), 𝐹12 − 𝐹21, so that for 𝑚1 we have 

                                                        
𝐺𝑚1𝑚2

𝑟2
(𝑢�̂�)  = 𝑚1�̈�𝟏                                                                                                               

(2.8) 

Equation 2.7 and 2.8 are the equation of the two bodies in inertial space.  By adding each side 

of these equations together, we find 𝑚1�̈�𝟏= 𝑚2�̈�𝟐= 0.  According to Equation 2.3, that 

means the acceleration of the center of mass G of the system of two bodies 𝑚1 𝑎𝑛𝑑 𝑚2 is 

zero.  G moves with a constant velocity 𝐕𝐺  in a straight line, so that its position vector to 

XYZ given by 

       𝐑𝐺 = 𝐑𝐺𝑜 + 𝐯𝐺𝑡                                                               
(2.9) 

Where 𝐑𝐺𝑜 is the position of G at time t=0 .  The center of mass of a two-body system may 

therefore serve as the origin of an inertial frame. 

  2.3 EQUATION OF RELATIVE MOTION 

                 Let us now multiply Equation 2.7 by 𝑚1 and Equation 2.8 by 𝑚2  to obtain 
  

                                                   −
𝐺𝑚1 

2𝑚2

𝑟2
𝑢�̂�  = 𝑚1𝑚2𝑅2̈ 

 

                                                        
 𝐺𝑚1𝑚2 

2

𝑟2
𝑢�̂�  = 𝑚1𝑚2𝑅2̈ 

 

                     Subtracting the second of these two equations from the first yields 

 

                                               𝑚1𝑚2(𝑅2̈ − 𝑅1)̈   =  −
𝐺𝑚1𝑚2

𝑟2
(𝑚1 +𝑚2)𝑢�̂�    

 

                     Canceling the common factor and using Equation 2.4 yields 

 

                                                                             𝑟 ̈= −
𝐺(𝑚1+𝑚2)

𝑟2
𝑢�̂�                                                 

(2.13) 

 

                     Let the gravitational μ parameter be defined as 
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                                                                   μ=𝐺(𝑚1 +𝑚2)                                                   
(2.14) 

 

The units of  μ  are 𝑘𝑚3𝑠−2. Using Equation 2.14 together with Equation 2.5, we can  write  

Equation 2.13 as 

 

                                                                             �̈� =−
𝜇

𝑟3
𝑟                                                              

(2.15) 

This is the second order differential equation that governs the motion of  𝑚2 relative to 𝑚1. It 

has two vector constants of integration, each having three scalar components. Therefore,   

Equation 2.15 has six constants of integration. Note that interchanging the roles of 𝑚1and 

𝑚2in all of the above amounts to simply multiplying Equation 2.15 through by −1, which, of 

course, changes nothing. Thus, the motion of 𝑚2as seen from 𝑚1 is precisely the same as the 

motion of 𝑚1as seen from 𝑚2.  

               The relative position vector r in Equation 2.15 was defined in the inertial frame 

(Equation 2.4).  It is convenient, however, to measure the components of r in a frame  of 

reference attached to and moving with  𝑚1 . In a co-moving reference frame, such as the  xyz 

system illustrated in Figure 2.2, r has the expression 

                                                        r  = 𝑥𝑖 ̂+ 𝑦𝑗̂ +  𝑧�̂� 

  

 

 

 

 

 

 

 

 

 

  Figure 2.2 Moving reference frame x y z attached to the center of mass of  𝑚1. 

2.4 ANGULAR MOMENTUM AND THE ORBIT FORMULAS 

               

               The angular momentum of body 𝑚2 relative to 𝑚1 is the moment of 𝑚2’s                                                                

relative linear momentum 𝑚2𝑟 ̇   (cf. Equation 1.17), 

                                                     𝐻1/2= r × 𝑚2𝑟 ̇  

               where 𝑟 ̇  = v is the velocity of 𝑚2 relative to 𝑚1. Let us divide this equation through 

by 𝑚2 and let h=𝐻1/2/𝑚2, so that 

 

                                               h = r ×𝑟 ̇                                                          (2.18) 
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h is the relative angular momentum of  𝑚2 per unit mass, that is, the specific relative angular 

momentum. The units of h are  𝑘𝑚3𝑠−1. 

 

 Taking the time derivative of h yields 

 

                                             
𝑑ℎ

𝑑𝑡
=  𝑟 ̇ ×  𝑟 ̇ +  𝑟 × �̈� 

 

But 𝒓 ̇  ×  �̇� =0. Furthermore, �̈� = - (μ/𝑟3)r, according to Equation 2.15, so that 

       

                           r × �̈�  = r × (-
𝜇

𝑟3
𝒓) = - 

𝜇

𝑟3
(𝒓 × 𝒓) = 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7           The path of 𝑚2 around 𝑚1 lies in a plane whose normal is defined by h. 

 

Figure 2.8              Components of the velocity of 𝑚2, viewed above the plane of the orbit.  
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Therefore, 

                                             
𝑑𝒉

𝑑𝑡
= 0     (or r × 𝒓 ̇  = constand) 

At any given time, the position vector r and the velocity vector 𝑟 ̇  lie in the same plane, 

as illustrated in Figure 2.7. Their cross  product r × 𝒓 ̇  is perpendicular to that plane. 

Since r ×𝒓 ̇  =h, the unit vector normal to the plane is 

                                              �̂�=
𝒉

ℎ
                                                                                          

(2.20) 

But, according to Equation 2.19, this unit vector is constant. Thus, the path of  𝑚2, around 
𝑚1, lies in a single plane. 

                 Since the orbit of 𝑚2, around 𝑚1,  forms a plane, it is convenient to orient oneself 

above that plane and look down upon the path, as shown in Figure 2.8. Let us resolve the 

relative velocity vector  𝒓 ̇  into components 𝑣𝑟 =  𝑣𝑟𝑢�̂�    and v⊥ =v⊥�̂�⊥ along the outward 

radial from 𝑚1  and perpendicular to it, respectively, where �̂�r and �̂�⊥ are the radial and 

perpendicular (azimuthal) unit vectors. Then we can write Equation 2.18 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.9     Differential area d A swept out by the relative position vector r during time 

interval dt. 

 

as   

 

                           h = r𝒖�̂�  ×( 𝑣𝑟𝒖�̂�  + v ⊥�̂�⊥) = r v⊥�̂�  

That is,  

                         h = r v⊥ 

Clearly, the angular momentum depends only on the azimuth component of the   relative 

velocity. 

                During the differential time interval dt the position vector r sweeps out an area dA, 

as shown in Figure 2.9. From the figure it is clear that the triangular area dA is  given by 

 

d A = 
1

2
 × base × altitude =  

1

2
  × v dt × r sinϕ =  

1

2
 r( v sinϕ)dt  =  

1

2
  r v⊥dt 

Therefore, using Equation 2.21 we have 
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𝑑ℎ

𝑑𝑡
=
ℎ

2
                                                                                                                             

(2.23)       

dA/dt is called the areal velocity, and according to Equation 2.22 it is constant. Named after 

the German astronomer Johannes Kepler (1571–1630), this result is known as Kepler’s 

second law: equal areas are swept out in equal times. Before proceeding with an effort to 

integrate Equation 2.15, recall the vector identity known as the bac −cab rule: 

                                    A × (B × C) = B (A · C) – C (A · B)                                                                                   

(2.23)      

Recall as well that  

                                     

 

                           r.r =  𝒓𝟐                                                                     (2.24) 

 

So that  

    
𝑑

𝑑𝑡
( 𝒓. 𝒓) = 2𝑟 

𝑑𝑟

𝑑𝑡
 

But         

𝑑

𝑑𝑡
( 𝒓. 𝒓) = 𝒓 .

𝑑𝒓

𝑑𝑡
+  
𝑑𝒓

𝑑𝑡
. 𝒓 = 2𝒓 .

𝑑𝒓

𝑑𝑡
 

 

Thus, we obtain the important identity  

     r.�̇� = 𝑟�̇�                                                                             

(2.25a) 

since �̇�  = v and r=||𝑟||, this can be written alternatively as 

     r.v=||𝑟||
𝑑 ||𝑟||

𝑑𝑡
                                                                  

(2.25b) 

Now let us take the cross product of both sides of Equation 2.15 [�̈� =  −(
𝜇

𝑟3
) 𝑟 ] with the 

specific angular momentum h: 

    �̈� × 𝒉 =  −
𝜇

𝑟3
 𝒓 × 𝒉                                                                        

(2.26) 

Since 
𝑑

𝑑𝑡
(�̇� × 𝒉) =  �̈� × 𝒉 + �̇�   × �̇� , the left-hand side can be written  

                                �̈� × ℎ =
𝑑

𝑑𝑡
(�̇� × ℎ) − �̇�   × ℎ̇   
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But according to Equation 2.19, the angular momentum is constant (ℎ̇ = 0), so this reduces 

to  

                              �̈� × ℎ =
𝑑

𝑑𝑡
(�̇� × ℎ)                                                                         

(2.27) 

                                                      
1

𝑟3
𝑟 × ℎ  = − 

𝑑

𝑑𝑡
(
𝐫

𝑟
)                                                                      

(2.28) 

Substituting Equation 2.27 and 2.28 into Equation 2.26, we get, The right – hand side 

Equation 2.26 can be transformed by the following sequence of substitutions: 

1

𝑟3
𝑟 × ℎ =  

1

𝑟3
[𝑟 × (𝑟 × �̇�)]          (Equation 2.18 [h = r× �̇�]) 

=
1

𝑟3
[𝑟(𝑟. �̇�) −�̇�(𝑟. 𝑟)]      ( Equation  2.23  [bac - cab  rule] ) 

= 
1

𝑟3
[𝑟(𝑟�̇�) −�̇�𝑟2]      ( Equation  2.24 and 2.25) 

=
𝑟�̇� − �̇�𝐫

𝑟2
 

But  

              
𝑑

𝑑𝑡
(
𝐫

𝑟
) =  

𝑟�̇�−�̇�𝐫

𝑟2
 

Therefore  = −
𝐫�̇�−�̇�𝑟

𝑟2
 

 

                                                     
𝑑

𝑑𝑡
(�̇� × ℎ) =  

𝑑

𝑑𝑡
(𝜇

𝐫

𝑟
)      or 

𝑑

𝑑𝑡
(�̇� × ℎ − 𝜇

𝐫

𝑟
) = 0 

That is,  

 �̇� × ℎ − 𝜇
𝐫 

𝑟
= 𝑐                                                            

(2.29) 

Where the vector c is an arbitrary constant of integration having the dimensions of 𝜇.  

Equation 2.29 is the first integral of the equation of motion, �̈� =  −(
𝜇

𝑟3
) 𝐫.  Taking the dot 

product of both sides of Equation 2.29 with the vector h yields 

                                             (�̇� × ℎ ). 𝐡 − 𝜇
𝐫.𝐡 

𝑟
= 𝑐. 𝐡 
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Since �̇� × 𝐡 is perpendicular to both �̇� and 𝐡 , it follows that(�̇� × 𝐡). 𝐡 = 𝟎.Likewise, 

sinceh=r× �̇�is perpendicular to both and �̇� , it is true that𝐫. 𝐡 = 0.  Therefore, we have C.h =

𝟎 , i.e., c is perpendicular to h which is normal to the orbital plane.  That of course means c 

must lie in the orbital plane.  

 

 
𝐫

𝑟
+ 𝐞 =  

�̇�×𝐡

𝜇
                                                                  

(2.30) 

Where e = c/𝜇. The dimensionless vector e is called the eccentricity vector.  The line defined 

by the vector e is commonly called the apse line. In order to obtain a scalar equation, let us 

take the dot product of both sides of Equation 2.30 with r: 

 
𝐫.𝐫

𝑟
+ 𝐫. 𝐞 =

𝐫.(�̇�×𝐡)

𝜇
                                                         

(2.31) 

In order to simplify the right-hand side, we can employ the useful vector identity, known as 

the interchange of the dot and the cross, 

 A.(B×C)=(A×B).C                                                 

(2.32) 

To obtain 

                                                  𝐫. (�̇� × 𝐡) = (𝐫 × �̇�). 𝐡) = 𝐡. 𝐡 = h𝟐                                        

(2.33) 

Substituting this expression into the right-hand side of Equation 2.31, and substituting r. r = 

𝑟2 on the left yields  

                                             r+ r . e =
ℎ2

𝜇
                                                         (2.34) 

observe that by following the steps leading from Equation 2.30 to 2.34 we have lost track of 

the variable time.  This occurred at Equation 2.33, because his constant Finally, from the 

definition of the dot product we have  

𝒓. 𝒆 = 𝑟𝑒 cos 𝜃 
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Chapter 3 

           ORBITS IN THREE 

DIMENSION 

 

3.1. Introduction: 
            The discussion of orbital mechanics up to now has been confined to two 

dimensions to the plane of the orbits themselves.  

              This chapter explores the means of describing orbits in three-dimensional space, 

which, of course, is the setting for real missions and orbital maneuvers.  Our focus will be 

on the orbits of earth satellites.  

          We begin with a discussion of the ancient concept of the celestial sphere and the use of 

right ascension and declination to define the locations of stars, planets and other celestial 

objects on the sphere.  

        This leads to the establishment of the inertial geocentric equatorial frame of reference 

and the concept of state vector.  

       The six components of this vector give the instantaneous position and velocity of an 

object relative to the inertial frame and define the characteristics of the orbit.  
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         Following that discussion is a presentation of the six classical orbital elements, which 

also uniquely define the shape and orientation of an orbit and the location of a body on it. 

        We then show how to transform the state vector into orbital elements. 

 

3.2. Geocentric Right Ascension-Declination 

frame: 
       In the human eye, objects in the night sky appears as points on a celestial sphere 

surrounding the earth, as given in below diagram.  The north and south poles of this fixed 

sphere correspond to those of the earth rotating within it.  Coordinates of latitude and 

longitude are used to locate points on the celestial sphere in much the same way as on the 

surface of the earth.  The projection of the earth’s equatorial plane outward onto the celestial 

sphere defines the celestial equator.  The vernal equinox γ, which lies on the celestial sphere, 

is the origin for measurement of longitude, which in astronomical parlance is called right 

ascension.  Right ascension (RA or α) is measured along the celestial equator in degrees east 

from the vernal equinox. (Astronomer measure tight ascension in hours instead of degrees, 

where 24 hours equals 360°). 

 

[The celestial sphere, with grid lines of right ascension and declination.]                    
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Latitude on the celestial sphere is called declination. Declination (Dec or δ) is measured 

along a meridian in degrees, positive to the north of the equator and negative to the south. 

 

 

 

 

 

 

  

[A view from the sky above the eastern horizon from 0° longitude at the equator 9cm local 

time, 20 March 2004.] 

 

Above figure is a sky chart showing how the heavenly grid appears   from a given point on 

the earth. Notice that the sun is located at the intersection of the equatorial and ecliptic 

planes, so this must be the first day of spring.  Stars are so far away from the earth that their 

positions relative to each other appear stationary on the celestial sphere. Planets, comets, 

satellites, etc., move upon the fixed backdrop of the stars. The coordinates of celestial bodies 

as a function of time is called an ephemeris, for example, the Astronomical Almanac (US 

Naval Observatory, 2004).  

 

Venus and moon ephemeris for 0 hours universal 

time (Precession epoch: AD 2000) 
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                                                  Venus                                  Moon 

Date                               RA                        Dec              RA                  Dec 

 

1 Jan 2004                 21hr 05.0 min          −18◦36_       1hr 44.9 min      +8◦47_ 

1 Feb 2004                23hr 28.0 min          −04◦30_       4hr 37.0 min      +24◦11_ 

1 Mar 2004                01hr 30.0 min         +10◦26_       6hr 04.0 min       +08◦32_ 

1 Apr 2004                03hr 37.6 min          +22◦51_       9hr 18.7 min      +21◦08_ 

1 May 2004               05hr 20.3 min         +27◦44_      11hr 28.8 min     +07◦53_ 

1 Jun 2004                 05hr 25.9 min         +24◦43_      14hr 31.3 min      −14◦48_ 

1 Jul 2004                  04hr 34.5 min         +17◦48_      17hr 09.0 min      −26◦08_ 

1 Aug 2004               05hr 37.4 min          +19◦04_       21hr 05.9 min      −21◦49_ 

1 Sep 2004                07hr 40.9 min          +19◦16_       00hr 17.0 min      −00◦56_ 

1 Oct 2004                09hr 56.5 min           +12◦42_      02hr 20.9 min      +14◦35_ 

1 Nov 2004              12hr 15.8 min           +00◦01_       05hr 26.7 min      +27◦18_ 

1 Dec 2004               14hr 34.3 min           −13◦21_       07hr 50.3 min      +26◦14_ 

1 Jan 2005               17hr 12.9 min           −22◦15_       10hr 49.4 min      +11◦39_ 

 

or epoch, for we know that even the positions of the stars relative to the equinox 

change slowly with time.  

 

Above table is an abbreviated ephemeris for the moon and for Venus. An ephemeris depends 

on the location of the vernal equinox at a given time.                         

 

Variation of the coordinates of the star Regulus due to precession of the equinox. 

 

Precession epoch                             RA                                                                      Dec 

 

AD 1700                                   9hr 52.2 min (148.05◦)                                        +13◦25_AD      

AD1800                                   9hr 57.6 min (149.40◦)                                         +12◦56_ 

AD1900                                  10hr 3.0 min (150.75◦)                                          +12◦27_ 

AD 1950                                 10hr 5.7 min (151.42◦)                                          +12◦13_ 

AD 2000                                 10hr 8.4 min (152.10◦)                                          +11◦58_ 

 

For example, Above table shows the celestial coordinates of the star Regulus at five epochs 

since AD 1700. Currently, the position of the vernal equinox in the year 2000 is used to 

define the standard grid of the celestial sphere. 

 

In 2025, the position will be updated to that of the year 2050; in 2075 to that of the year 

2100; and so on at 50year intervals. Since observations are made relative to the actual 

orientation of the earth, these measurements must be transformed into 

the standardized celestial frame of reference. As above table suggests, the adjustments will be 

small if the current epoch is within 25 years of the standard precession epoch. 

 

 

3.3. State Vector and the geocentric equatorial 

frame: 
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                 At any given time, the state vector of a satellite comprises its velocity v and 

acceleration. 

a. Orbital mechanics is concerned with specifying or predicting state vectors over 

intervals of time. From Chapter 2, we know that the equation governing the state 

vector of a satellite traveling around the earth is, under the familiar assumptions,  

                                

                r=- 
𝜇

𝑟3
𝒓                                                                                    (3.1)                       

     

r is the position vector of the satellite relative to the center of the earth. The components of r 

and, especially, those of its time derivatives �̇� =v and �̈� =a, must be measured in a non-

rotating frame attached to the earth. A commonly used nonrotating right-handed cartesian 

coordinate system is the geocentric equatorial frame shown in below diagram. The X axis 

points in the vernal equinox direction. The XY plane is the earth’s equatorial plane, and the Z 

axis coincides with the earth’s axis of rotation and points northward.  

                The unit vectors �̂�, 𝑗 ̂and �̂� form a right-handed triad. The non-rotating geocentric 

equatorial frame serves as an inertial frame for the two-body earth satellite problem, as 

embodied in Equation 3.1. It is not truly an inertial frame, however, since the center of the 

earth is always accelerating towards a third body, the sun (to say nothing of the moon), a fact 

which we ignore in the two-body formulation. 

               In the geocentric equatorial frame the state vector is given in component form by,  

            

                                                           r = X �̂�+ Y�̂�+ Z �̂�                          (3.2)                                            

       

                                                     v = 𝑣𝑋�̂� + 𝑣𝑌�̂� + 𝑣𝑍�̂�                     (3.3)                                     

 

If r is the magnitude of the position vector then, 

               

                                                        r = r𝒖�̂�                                                 (3.4) 

 
                                                                                                                                                                                        

[Geocentric equatorial frame.]sssss 
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From above figure we see that the components of 𝒖�̂� (the direction cosines of r) are found in 

terms of the right ascension α and declination δ as follows, 

                              𝒖�̂� = cos δ cos α�̂� + cos δ sin �̂�+ sin δ �̂�            (3.5)   

            Therefore, given the state vector, we can then compute the right ascension and 

declination. However, the right ascension and declination alone do not furnish r. For that we 

need the distance r to obtain r from equation 3.4. 

 

Example: 3.1 
If the position vector of the International Space Station is 

                                 r = −5368  �̂� − 1784�̂�+ 3691�̂� (km) what are its right ascension and 

declination 

The magnitude of r is 

                           r = (−5368)2 + (−1784)2 + 36912 = 6754 km 

Hence, 

                        𝒖�̂�    = r/r 

                                     = −0.7947�̂� − 0.2642�̂� + 0.5464�̂�                                                    

       From this and equation 4.5 we see that sin δ=0.5464 which means, 

                                 δ = sin−1 0.5464 = 33.12◦ 

There is no quadrant ambiguity since, by definition, the declination lies between−90◦and 

+90◦, which is precisely the range of the principal values of the arc sin function.   It also 

follows that cos δ cannot be negative.  From equation 4.5 and equation (a) just above we 

have, 

                                     cos δ cos α = −0.7947                       (b)                         

                                     cos δ sin α = −0.2642                       ©                                 

Therefore, 

              Cos α = −0.7947/ cos 33.12◦ 

                        = −0.9489  

which implies, 

            α = cos−1 (−0.9489) 

              = 161.6◦ (second quadrant) or 198.4◦ (third quadrant) 

From (c) we observe that sin α is negative, which means α lies in the third quadrant, 

            α = 198.4◦ 

If we are provided with the state vector r0, v0 at a given instant, then we can determine the 

state vector at any other time in terms of the initial vector by means of the expressions. 

                r =f r0 + gv0 

                v = ˙f r0 + ˙gv0                                                              (36)     

where the Lagrange coefficients f and g and their time derivatives are given in Equation 3.66.  

Specifying the total of six components of r0 and v0 therefore completely determines the size, 

shape and orientation of the orbit. 
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3.4. Orbital Elements and State Vector 

Algorithm 3.1: 
                 Obtain orbital elements from the state vector. A MATLAB version of this 

procedure appears in Appendix D.8. Applying this algorithm to orbits around other planets or 

the sun amounts to defining the frame of reference and substituting the appropriate 

gravitational parameter μ. 

 

1. Calculate the distance, 

              r =√𝒓. 𝒓 = √𝑋2 + 𝑌2 + 𝑍2 

2. Calculate the speed, 

     v = √𝒗. 𝒗 =√𝑣𝑋2 + 𝑣𝑌2 + 𝑣𝑍2 
3. Calculate the radial velocity, 

  V r = r · v/r = (X𝑣𝑋 + Y𝑣𝑌 + Z𝑣𝑍)/r 

Note that if 𝑣𝑟 >0, the satellite is flying away from perigee. If 𝑣𝑟 <0, it is flying towards 

perigee. 

4. Calculate the specific angular momentum, 

 

       h = r × v =      𝑰   ̂   �̂�   �̂� 

                              X   Y     Z 

                           𝑣𝑋   𝑣𝑌   𝑣𝑍 

5. Calculate the magnitude of the specific angular momentum, 

                   h = √𝒉. 𝒉  the first orbital element. 

6. Calculate the inclination, 

          i = 𝑐𝑜𝑠−1 (ℎ𝑍 / h)                                                                                        (3.7)                         

This is the second orbital element. Recall that i must lie between 0◦ and 180◦, so there is no 

quadrant ambiguity. If 90◦ < i  ≤ 180◦, the orbit is retrograde. 

7. Calculate 

N = �̂�× h =            �̂�      �̂�     �̂� 

                                0     0       1  (3.8) 

                               ℎ𝑋   ℎ𝑌   ℎ𝑍                                                                         

This vector defines the node line. 

8. Calculate the magnitude of N, 

     N = √𝑵.𝑵 

 

9. Calculate the RA of the ascending node, 

      Ω= cos−1 (𝑁𝑋/N) 

the third orbital element. If (𝑁𝑋/N)>0, then lies in either the first or fourth quadrant. If (𝑁𝑋/N) 

<0, then _ lies in either the second or third quadrant. To place Ω in the proper quadrant, 

observe that the ascending node lies on the positive side of the vertical XZ plane (0≤_<180◦) 

if 𝑁𝑌 >0. On the other hand, the ascending node lies on the negative side of the XZ plane 

(180◦ ≤_<360◦) if 𝑁𝑌 <0. Therefore, 𝑁𝑌 >0 implies that 0<_<180◦, whereas 𝑁𝑌 <0 implies 

that 180◦< Ω <360◦. In summary,  

               Ω =     𝑐𝑜𝑠−1(𝑁𝑋 / N)           (NY ≥ 0) 

Ω =360◦ − 𝑐𝑜𝑠−1(𝑁𝑋/N) (𝑁𝑌 < 0)               (3.9)  

                   

10. Calculate the eccentricity vector. Starting with Equation 2.30, 

       e   = 1/μ[ v × h – 𝜇𝑟/r] 
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           = 1/μ [v × (r × v) –μ
𝒓

𝑟
] 

           = 1/μ  [𝒓𝑣𝟐 − 𝒗(𝒓. 𝒗) − 𝜇
𝒓

𝑟

⏞            
𝑏𝑎𝑐−𝑐𝑎𝑏 𝑟𝑢𝑙𝑒

] 

so that 

          e = 1/μ[(𝑣2 – μ/r  ) r -  𝑣𝑟v ]                                                                                   (3.10)                    

11. Calculate the eccentricity, 

              e =√𝒆. 𝒆 

the fourth orbital element. substituting equation 3.10 leads to a form depending only on the 

scalars obtained thus far, 

 e = 1/μ √(2𝜇 −  𝑟𝑣2)𝑟𝑣2𝑟 + (𝜇 − 𝑟𝑣2)2                                       
12. Calculate the argument of perigee,     

        ω = 𝑐𝑜𝑠−1 (N · e/Ne) 

the fifth orbital element. If N· e>0, then ω lies in either the first or fourth quadrant. If N· 

e<0, then ω lies in either the second or third quadrant. To place ω in the proper quadrant, 

observe that perigee lies above the equatorial plane (0≤ω<180◦) if e points up (in the positive 

Z direction), and perigee lies below the plane (180◦ ≤ω<360◦) if e points down. Therefore, e 

Z ≥0 implies that 0<ω<180◦, whereas e Z <0 implies that 180◦<ω<360◦. To summarize, 

             ω = {
𝑐𝑜𝑠−1  (

𝑵.𝒆

𝑁𝑒
)     (𝑒𝑍 ≥ 0

360°𝑐𝑜𝑠−1 (
𝑵.𝒆

𝑁𝑒
)       (𝑒𝑍 < 0)

    

                        

13. Calculate the true anomaly, 

      θ = 𝑐𝑜𝑠−1 (e · r/e r) 

the sixth and final orbital element. If e · r>0, then θ lies in the first or fourth quadrant. If e · 

r<0, then θ lies in the second or third quadrant. To place θ in the proper quadrant, note that if 

the satellite is flying away from perigee (r · v ≥0), then 0≤θ <180◦, whereas if the satellite is 

flying towards perigee (r · v <0), then 180◦ ≤ θ <360◦. Therefore, using the results of step 3 

above 

              θ = 𝑐𝑜𝑠−1 (e · r/e r)               (𝑒𝑟≥ 0) 

 

        360◦ − 𝑐𝑜𝑠−1 (e · r/e r)          (𝑒𝑟< 0)                     

                  Substituting Equation 4.10 yields an alternative form of this expression, 

          θ =  𝑐𝑜𝑠−1[
1

𝑒

ℎ2

µ𝑟
 – 1]            (𝑣𝑟 ≥ 0) 

                         

              360◦ −   𝑐𝑜𝑠−1[
1

𝑒

ℎ2

µ𝑟
 – 1]    (𝑣𝑟 < 0) The procedure described above for calculating the 

orbital elements is not unique. 
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Chapter 4 

Preliminary Orbits 

Determination 

 4.1 Gibb’s method of orbits 

determination with three positions vectors 

let observations of a space object at the three successive times 𝑡1, 𝑡2 and 𝑡3 (𝑡1 < 𝑡2 < 𝑡3)  the 

geocentric position vectors 𝒓1, 𝒓2and 𝒓3 The problem is to determine the velocities 𝑣1,𝑣2and 

𝑣3 at 𝑡1, 𝑡2 and 𝑡3 assuming that the object is in a two-body orbit.  

The unit vector normal to the plane of 𝑟2 and 𝑟3 must be perpendicular to the unit vector in 

the direction of 𝑟1. Thus, if 𝒖𝒓�̂� = 𝑟1/𝑟1 and 𝑪23̂ =(𝑟2 × 𝑟3)/ || 𝑟2 × 𝑟3 || , then the dot product 

of these two unit vectors must vanish, 

𝒖𝑟1̂ · 𝑪23̂  = 0 

𝑟1, 𝑟2and 𝑟3 lie in the same plane.  Apply scalar factors 𝑐1 and 𝑐3 to 𝑟1 and 𝑟3 so that 𝑟2 is the 

vector sum of 𝑟1𝑐1 and 𝑟3𝑐3 

𝑟2 = 𝑐1𝑟1 + 𝑐3𝑟3 (4.1) 

The coefficients c1 and c3 are readily obtained from 𝑟1, 𝑟2 and 𝑟3 
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Figure 4.1 Any one of a set of three coplanar vectors (𝑟1, 𝑟2, 𝑟3) can be expressed as the 

vector sum of the other two. 

To find the velocity v corresponding to any of the three given position vectors r, in Equation 

2.30, which may be written 

v × h = µ .( 
𝒓

𝑟
 + e) 

where h is the angular momentum and e is the eccentricity vector. The cross product of this 

equation with the angular momentum, 

h × (v × h) = μ .( 
𝒉 × 𝒓

𝑟
 + h × e) (4.2) 

By means of the bac − cab rule (Equation 2.23), the left side becomes 

h × (v × h) = v(h · h) − h(h · v) 

But h · h = h2 and v × h = 0, since v is perpendicular to h. Therefore 

h × (v × h) = ℎ2v 

which means Equation 4.2 may be written 

v = µ/ℎ2 . h × r/r + h × e (4.3) 
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 the unit vector pˆ lies in the direction of  the eccentricity vector e and wˆ  is the unit vector 

normal to the orbital plane, in the direction of the angular momentum vector h. Thus, we can 

write 

  

e = e�̂�               (4.4a) 

 h = h �̂�               (4.4b) 

 Equation 4.3 becomes 

 

                   v =  
𝜇

ℎ2
 .( h�̂� × r/r + h�̂� × e�̂� )= 

µ

ℎ
[ �̂� × r /r+ e(�̂� × �̂�) (4.5) 

 

Since �̂�, �̂� and �̂� form a right-handed triad of unit vectors,  �̂�× �̂� = �̂� , �̂� × �̂� = �̂� and 

           �̂� × �̂�= �̂�                                              (4.6) 

 Equation 4.5 reduces to 

v = µ/h. �̂�× r/r + e �̂�                                     (4.7) 

 

Use the position vectors  𝑟1, 𝑟2 and 𝑟3 to calculate q, w, h and e,   let us take the dot product 

of Equation 4.1 with the eccentricity vector e to obtain the scalar equation 

𝑟2 · e = 𝑐1𝑟1 · e + 𝑐3𝑟3 · e                                       (4.8) 

 

According to Equation 2.34 – the orbit equation – we have the following relation among h, e 

and each of the position vectors, 

 𝑟1 · e =
ℎ2

𝜇
− 𝑟1   𝑟2 · e =

ℎ2

𝜇
− 𝑟2   𝑟3 · e =  

ℎ2

𝜇
− 𝑟3           (4.9) 

 



 

34 
 

 Substituting these relations into Equation 5.8 yields 

 

   ( 
ℎ2

𝜇
 − 𝑟2) = 𝑐1(

ℎ2

𝜇
− 𝑟1)+ 𝑐3(

ℎ2

𝜇
− 𝑟3)                          (4.10) 

 

 To eliminate  𝑐1 and 𝑐2 from this expression, let us take the cross product of Equation 4.1 

first with 𝑟1 and then 𝑟3. , both having 𝑟3 × 𝑟1 on the right, 

 

𝒓2 × 𝒓1 = 𝑐3(𝑟3 × 𝑟1) 𝑟1 × 𝑟3 = −𝑐1(𝒓3 × 𝒓1)                    (4.11) 

 

 multiply Equation 4.10  by the vector 𝒓3 × 𝒓1 

            
ℎ2

𝜇
 (𝒓3 × 𝒓1) − 𝒓2(𝒓3 ×𝒓1) = 𝑐1(𝒓3 × 𝒓1) (

ℎ2

𝜇
− 𝑟1)+ 𝑐3(𝒓3 × 𝒓1) (

ℎ2

𝜇
− 𝑟3) 

Using Equations 5.11, this becomes 

           ℎ2/µ (𝒓3 × 𝒓1) − 𝒓2(𝒓3 × 𝒓1) = −(𝒓2 × 𝒓3) ( 
ℎ2

𝜇
− 𝑟1)+ (𝒓2 × 𝒓1) (

ℎ2

𝜇
− 𝑟3) 

 

 ℎ2/µ (𝒓1 × 𝒓2 + 𝒓2 × 𝒓3 + 𝒓3× 𝒓1) = 𝒓1(𝒓2 × 𝒓3) + 𝒓2(𝒓3 × 𝒓1) + 𝒓3(𝒓1 × 𝒓2)     (4.12) 

This is an equation involving the given position vectors and the unknown angular momentum 

h. Let us introduce 

  

N = 𝒓1(𝒓2 × 𝒓3) + 𝒓2(𝒓3 × 𝒓1) + 𝒓3(𝒓1 × 𝒓2)           (5.13) 

 

                             D = 𝒓1 × 𝒓2 + 𝒓2 × 𝒓3 + 𝒓3 × 𝒓1            (4.14) 

 Then Equation 5.12 may be written   
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N = 
ℎ2

𝜇
D 

N =
ℎ2

𝜇
D 

  

where N = ||N||   and D = ||D|| . It follows from Equation 4.15 that the angular momentum h is 

determined from 𝐫1, 𝒓2 and 𝒓3 by the formula 

  

h = √𝜇
𝑁

𝐷
                                                      (4.16) 

  

Since 𝒓1, 𝒓2 and 𝒓3  are coplanar, all of the cross products   𝒓1, 𝒓2, 𝒓2, 𝒓3  and 𝒓3    𝒓1 lie in 

the same direction, namely, normal to the orbital plane. D must be normal to the orbital plane.  

�̂� to denote the orbit unit normal.  

�̂�  = 
𝐃

D
                                                        (4.17) 

 Find  h and �̂� in terms of 𝒓1, 𝒓2  and𝒓3.  Find an expression for q to use in Equation 4.7. 

From Equations 4.4a, 4.6, and 4.17 it follows that 

�̂� = �̂� × �̂� =  
1

𝐷𝑒
 (D × e)                         (4.18) 

 

Substituting Equation 4.14 we get 

�̂�= 
1

𝐷𝑒
 [(𝒓1 × 𝒓2) × e + (𝒓2 × 𝒓3) × e + (𝒓3 × 𝒓1) × e]    (5.19) 

 Apply the bac − cab rule to the right side by noting 

(A × B) × C = −C× (A × B) = B(A · C) − A(B· C) 

 Using this vector identity we obtain 

                        (𝒓2 × 𝒓3) × e = 𝒓3(𝒓2 · e) − 𝒓2(𝒓3 · e) 



 

36 
 

                       (𝒓3 × 𝒓1) × e = 𝒓1(𝒓3 · e) − 𝒓3(𝒓1 · e)  

                       (𝒓1 × 𝒓2) × e = 𝒓2(𝒓1 · e) − 𝒓1(𝒓2 · e) 

employing Equations 4.9,  

 (𝒓2 × 𝒓3) × e = 𝒓3 (
ℎ2

𝜇
 – 𝑟2) – 𝒓2 (

ℎ2

𝜇
 – 𝑟3) = 

ℎ2

𝜇
 (𝒓3 – 𝒓2) + 𝑟3 𝒓2 – 𝑟2 𝒓3 

(𝒓3 × 𝒓1) × e = 𝒓𝟏 (
ℎ2

𝜇
 – 𝑟3) – 𝒓3 (

ℎ2

𝜇
 – 𝑟1) = 

ℎ2

𝜇
 (𝒓1 – 𝒓3) + 𝑟1 𝒓3 – 𝑟3 𝒓1 

(𝒓1 ×𝒓2) × e = 𝒓2 (
ℎ2

𝜇
 - 𝑟1) – 𝒓1 ( 

ℎ2

𝜇
- 𝑟2) =  

ℎ2

𝜇
 (𝒓2 -𝒓1) + 𝑟2 𝒓1 – 𝑟1 𝒓2 

  

Summing these three equations, collecting terms and substituting the result into Equation 

4.19 yields 

�̂� =
1

𝐷𝑒
S         (4.20) 

  

where 

        S = 𝒓1(𝑟2 − 𝑟3) + 𝒓2(𝒓3 − 𝑟1) + 𝒓3(𝑟1 − 𝑟2)       (4.21) 

 substitute Equations 4.16, 4.17 and 4.20 into Equation 4.7  

v = 
𝜇

ℎ
( �̂�  × r /r + e �̂�) 

   = 
𝜇

√𝜇
𝑁

𝐷

[ 
𝑫

𝐷 
×𝐫

𝑟
 + e (

1

𝐷𝑒
 𝑺 )] 

v = √
𝜇

𝑁𝐷
( 
𝑫 ×𝒓

𝑟
 + S )                                                    (4.22) 

  

 

All of the terms on the right depend only on the given position vectors 𝑟1, 𝑟2and. 𝑟3 
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Conclusion: 
                         Humanity requires more efficient, more sustainable, and much less costly 

access to space, if it wants to dramatically expand its use of Earth orbit and make 

interplanetary space part of its economical sphere.  We need ways to get into orbit to reach 

other planets that do not leave large amount of debris, require enormous amounts of 

propellant, or take incredibly along period of time.  The space tethersystems described in this 

book offer various solutions.  Space elevators could provide an easy and regular way to get 

into Earth orbit, ad electrodynamic momentum exchange tethers could send space-craft from 

low orbits up into higher ones and vice versa.  Tethers could even de-orbit return capsules or 

send space craft on their way to other planets. 

                  The earth’s gravity field provides a record of the mass distribution within the 

system and can be used to understand the evolution and dynamics needed to maintain that 

distribution.  For the fluid portions of the earth, gravity measurements can be used to sense 

directly the motions of mass within the system.  The inversion of the gravity signals to obtain 

the mass distribution and the dynamics that cause them is not a straightforward problem, but 

through a combination of spatial and temporal analyses, knowledge of the gravity field and 

its temporal variations can provide insights into the process that can control these dynamics. 
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