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                       1. PRELIMINARIES 

Definition: 1.1 

  A set is a collection of well-defined objects.  The objects in a set are called 

elements or members of that set. 

Definition: 1.2 

Let A and B be any two non-empty sets.  A function   from A to B is a 

relation         such that the following hold: 

(i) Domain of   is A. 

(ii) For each    , there is only one     such that        . 

Definition: 1.3 

A universe of discourse or universal set is the set which, with reference  to a 

particular context, contains all possible elements having the same characteristics and 

from which sets can be formed.  It is denoted by U or W. 

Definition: 1.4 

          An element   is said to be a number of a set A if   belongs to the set A.  The 

membership is indicated by   and is pronounced as 8belongs to9.  Thus,     

means   belongs to A and     means   does not belong to A. 

Definition: 1.5 

A fuzzy set                   in a universe of discourse U is 

characterized by a membership function,   , as follows:           . 
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Definition: 1.6 

A vague set in the universe of discourse   is a pair        , where                                        are mappings such that                   .  The 

functions    and    are called true membership function and false membership 

function respectively. 

Definition: 1.7 

The interval                 is called the vague value of   in A and is 

denoted by       that is                      . 
Definition: 1.8 

A vague set           of a set   with         and               is 

called zero vague set of  . 

Definition: 1.9 

A vague set           of a set   with         and               is 

called unit vague set of  . 

Definition: 1.10 

          A vague set           of a set   with         and                

is called  -vague set of  , where       . 
Definition: 1.11 

Let                         and                         be two 

vague sets of the universe of discourse U, then  

(i) equality:     iff                   and              
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(ii) inclusion:     iff                  and            . 

(iii) intersection:       iff                                                                                           and                                                               
(iv)  union:       and                                                                                                and                                                              
(v) complement:         iff                   and              

Definition: 1.12 

The normalized Euclidean distance between two vague sets           and                    in                is 

                                         
    

Definition: 1.13 

Let   be an equivalence relation defined on a set     Let       The 

equivalence class    determined by the element   is defined by  

                 
Since               so that any equivalence class is non empty. 

Definition: 1.14 

          A De-Morgan algebra is an algebra                 where   and   are 

binary operations,9 is a unary operation and 0,1 are nullary operations satisfying 
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(i)              is a bounded lattice. 

(ii)                 ;               
(iii)          

Definition: 1.15 

A relation   is defined on a set   is said to be antisymmetric if       and             A relation defined on a set    which is reflexive, anti-symmetric and 

transitive is called a partial ordering on      A set   with a partial ordering    defined 

on it is called a partially ordered set or a poset and is denoted by      . 

Definition: 1.16 

          A poset       is called a lattice if          (also denote by    ) and         (also denote by    ) exists for every pair of elements        
Definition: 1.17 

          A Lattice       is said to be complete, if each of its subsets has 1. u. b and      

g. 1. b in it. 

Definition: 1.18 

A lattice L is called a Distributive Lattice if                     

          
Definition: 1.19 

                   is called a Boolean Lattice if   is distributive lattice 

with    and    and   is complemented, that is for every     there is a unique 

element      such that         and        . 



 

5 

 

Definition: 1.20 

          Let   be a non-empty set.  Then   is called an Intuitionistic Fuzzy Set (IFS) 

of  , if it is an object having the form                   where the function            and            denote the degree of membership       and degree 

of non-membership       of each element      to the set   and satisfies the 

condition that                . 

Definition: 1.21 

Let   be a universe of discourse.  A Pythagorean Fuzzy Set (PFS)   in   is 

given by                         where            denotes the degree of 

membership and            denotes the degree of non-membership of the element 

    to the set  , respectively with the condition that                       
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 2. BOOLEAN VAGUE SETS 

2.1. Relations and Operations of Boolean Vague Sets: 

Definition: 2.1.1 

Let   be a non-empty set.  A Boolean vague set A in   is a pair           

where                  are mappings such that        .  The function         define the degree of membership and the function           define the 

degree of non-membership of the element      to A respectively, the functions    and    should satisfy the condition         i.e.,                  
 where         

 is the Boolean complement of       in the Boolean lattice L.  

Definition: 2.1.2 

The Boolean vague set         where    is the constant function         for all     is called the Zero Boolean vague set and it is denoted by 0.   

Definition: 2.1.3 

The Boolean Vague Set         where    is the constant function         for 

all     is called the Unit Boolean Vague Set and it is denoted by 1. 

Note: 2.1.4 

          A Boolean Vague Set A is contained in another Boolean Vague Set         
if and only if              and             for all       Here   is a partial 

ordering on the set of  Boolean Vague Sets defined on domain    
Corollary: 2.1.5 

       is a poset. 
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Proof: 

              for all    , shows   is reflexive.  Let     and     implies that    .  This   is anti-symmetric.  Let         then      shows that   is 

transitive and hence is a partial ordering. 

Definition: 2.1.6 

If A is the Boolean Vague Set          then          is also a Boolean Vague 

Set and is defined as the complement of A and is denoted by     
Definition: 2.1.7 

The Intersection of two Boolean vague sets A and B is a Boolean vague set, 

written as     and is defined by                     
Definition: 2.1.8 

The Union of two Boolean vague sets A and B is a Boolean vague set, written 

as     and is defined by                     
Definition: 2.1.9 

The addition of two Boolean vague set A and B is a Boolean vague set, 

written as     and is defined by                              

Definition: 2.1.10 

 The multiplication of two Boolean vague sets A and B is a Boolean vague 

set, written as     and is defined by                               
The operations of  Union, intersection and complementation defined on Boolean 

vague sets, is easy to extend many basic identities.  In fact, the class of all Boolean 

vague sets defined on a domain X with the Union, intersection and complementation 

forms a complete De Morgan algebra. 
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Theorem: 2.1.11 

                        is a complete De Morgan Algebra. 

Proof: 

Let                 be the class of Boolean vague set of X. 

Let                  and                  

Let                  and                 . 

We show that         is a Boolean vague set and is equal to   . 

To prove that         is a Boolean vague set, we have to prove        . 
Since           and            and        for all      which gives that                           
                                       
                           

 

Hence         is a Boolean vague set. 

By the definition,       and        for all    . 

Hence                 for all    . 

                             is lower bound of    

Let         be another lower bound of    

Then                 for all    . 

i.e.,       and       for all    . 

This gives that    is lower bound of    and     is lower bound of   . 

But            and            and hence       and       

                                      

Hence         is infimum of     
Thus   is complete. 
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Let        be any three Boolean vague sets of      Then we make the following 

observation. 

Idempotency: 

                     

                         

Therefore,         
                     

                         

Therefore,         
Commutativity: 

                     

                             

                  

Therefore,         

                    

                            

                  

Therefore,        . 

Associativity:                                                                                                      
                                                   

                                                 

                                  

Therefore,                                                                                                                       
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Therefore,                 

Absorption:                                                                                                         
                                                          

                                                                                                                             
                                                                

                                       

Therefore,                   

Distributivity:                                                                                                         
                                                           

                                                    

                                  

Therefore,                                                                                                                            
                                                           

                                                    

                                  

Therefore,                     

Therefore                is a bounded distributive lattice, further. 
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De Morgan Laws:                                                                                                                             
                                

                                 

                       
Therefore,                                                                                                                                           
                                

                                 

                       
Therefore,            
Involution: 

                  
                     

               

Therefore,          

Therefore,                is a complete De Morgan Algebra. 

We shall define over the set of all Boolean Vague Sets two operators in some model 

logics that is for any Booleans Vague Set A, 

                                        

Clearly    and    are Boolean Vague Sets. 

Theorem: 2.1.12 

For every Boolean vague set A 

(i)           
(ii)           
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Proof:  

( )            

                

We have            

                         

Therefore                    

(ii)             

We have             

              

Therefore                    

Theorem: 2.1.13 

For every two Boolean vague sets A and B, we have 

(i)              

(ii)              

(iii)             

Proof:  

(i)                       

                                   

                                    
                                    

                                              

Therefore              

(ii)                      )   
                                                



 

13 

 

                                     
                                                                                 

Therefore                                       
(iii)                       

                                    

                                    
                                                               

Therefore             . 

          For any given Boolean vague set we can determine two Boolean vague set with 

its the four numbers.  Let           be a Boolean vague set. 

Write                             

                                      

Then the sets              and                  Clearly, the set      and      

are Boolean Vague Set. 

For, let                   be a Boolean Vague Set 

Then              for all      

This gives that                           
i.e.,    ≤     

Therefore      is a Boolean vague set. Analogouly                                  
Theorem: 2.1.14 

Let (     is a Lattice, then the operator            defined by            
satisfies the following  properties. 

(i) A      
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(ii)              

(iii) If      then           for all       

Proof: 

( )  Let     . 

Then                  with                 for all      
By definition of                                       
Clearly,                    and ,                   
Therefore          
(  )                                 

                                               

                                                          

                                               

                             

Therefore                 
(   )   Let       

That is             and             for all      
This gives that                      and  

                                              
By definition of containment,            
Theorem: 2.1.15 

For any two Boolean vague sets A and B 

(i)                   

(ii)          

(iii)         
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(iv)                 

Proof: 

( )              and            

                                

                                   

                                                               
                                                                      

                                                                    

                             

Therefore,                   
(  )                    and 

                                   
Clearly,                   and ,                   
Hence by containment,           
(   )                             and 

                            
Clearly,                  and                  
Hence by containment,        . 

 (  )                    

                                                                       

Therefore,                        
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2.2  Cartesian product and its properties: 

          Let     and    be two nonempty sets and           and           be two 

Boolean Vague Sets of     and     respectively.  The Cartesian product of   and   

denoted by      defined as                     Since    is Boolean vague 

set of    and   is Boolean vague set of   , this gives that        on    and        
on    which implies                                 This shows that     

is a Boolean vague set. 

Theorem: 2.2.1 

     Let          be three non-empty sets and     be Boolean vague sets of      be a 

Boolean vague set of      be a Boolean vague set of    then 

(i)         

(ii)                 

(iii)                    

Proof: 

     ( )                    

                                           

Therefore,          
     (  )                                

                                                              

                                                                                                                                                                                                                                                                                                                      
Therefore,                 

(   )                               
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Therefore,                     

Theorem: 2.2.2 

          For every two non-empty sets       with Boolean vague sets     over them 

Then  (i)               

          (ii)              

Proof: 

(i)                   

                                         

                                                 

                                                 

                                                  

                                       

Therefore,             . 

(ii)                            

                                                            

                                                            

                                                              

                                                  

Therefore,              
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2.3 Rough Approximations of a Boolean Vague Set  

          Let   denote a set of objects called universe and let       be an 

equivalence relation on     The pair         is called Pawlak approximation space.  

For       and           and   belong to the same equivalence class and we say 

that they are indistinguishable in     Therefore, the relation   is called an 

indiscernibility relation.  Let      denote an equivalence class of   containing 

element     The lower and upper approximations for a subset     in   denoted       and       respectively and defined as follows, 

                       
                                                       
      If an object   belongs to the lower approximation space of   in   then    surely 

belongs to   in P=, x   P* (Y) means that    possibly belongs to   in     
Definition: 2.3.1 

            Let           be a Boolean vague Set of     The lower approximation    

and upper approximation   of   in the Pawlak approximation space       are 

defined as                and               respectively, where for all      
                                            
                                           
                                           
                                          
Here      is the equivalence class of the element    
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Corollary: 2.3.2 

     If   is a Boolean vague set then    and    are Boolean vague sets. 

Proof: 

     Let           be a Boolean vague set 

                               for all     

                               for all          

                               for all          

                                 for all          

Hence                                     
This gives                  

for every      
Hence              is a Boolean vague set. 

           Let           be a Boolean vague set                

                                       for all     

                                     for all          

                                     for all          

                                       for all          

Hence                                     
This gives                  

for every      
Hence,    is a Boolean vague set. 

Theorem: 2.3.3 

          If   is a Boolean vague set then          
Proof: 

      Let           be a Boolean vague set. 

From this definitions of    and     we have, 
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                                                      and 

                                                     
                         for all     and 

                            for all      
Clearly,                               
Hence          
Theorem: 2.3.4 

 If   and   be a Boolean vague sets, then the following holds: 

      ( )              

      (  )             

Proof: 

       Let           be a Boolean vague set. 

     ( )                            and 

                                       

 Now, for all      
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Hence              

(  )                           

                              

For all                                         
                                             
                                                       

                                 

                                                                      
                                                 
                                                           

                                     

                                    

Hence               

Theorem: 2.3.5 

          If A be Boolean vague set, then the following holds 

      ( )              

      (  )             

Proof: 

       Let           be a Boolean vague set. 

     ( )                            and 
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 Now, for all      
                                       

                                                 
                                                           

                                     

                                    

                                     
                                                 
                                                           

                                     

                                    

Hence              

(  )                           

                              

For all                                         
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Hence               

Theorem: 2.3.6 

          If A and B be Boolean vague sets such that      then       and       

Proof:                        
                            

                                                           
                              

                                     

Therefore                                 
                             

                                                            
                             

                                  

Therefore       
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2.4 Roughness of a Boolean Vague Set: 

          The roughness measure of an ordinary set in the universe of discourse 

developed by Pawlak.  M.Banerjee, in 1996 introduced roughness measure of a fuzzy 

set  , which is expressed as, 

                                              
Where 0        and                                    . 
Definition:  2.4.1 

        The    level sets of       denoted by      and     , are defined as, 

                                            
                                          

Where 0             (0 and 1 are minimum and maximum elements of     
Here        otherwise     and      are respectively reduced to 

                              , 

                                
Definition: 2.4.2 

        A roughness measure     
 of the Boolean vague set of   of   with respect to 

parameters     in    and the approximation       is defined as, 

                                                                              
Theorem: 2.4.3 

          Let   and   be two vague sets of     If     then 

( )  If            then          
  

(  )  If           then          
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Proof: 

From the theorem 2.3.6,     then we have       and         Moreover           and           

( )  From the definition 2.4.2, 

                                                                                
Now,                                                                   
Since                                               

Hence          
 

(  )                                      
Since                                                 

Hence          
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                   3. PYTHAGOREAN VAGUE SETS (PVS) 

3.1 Pythagorean Vague Sets 

          Let   be a universe of discourse.  A Pythagorean Vague Set (PVS)   in   is 

given by                            where               denotes the 

truth value and                 denotes the false value of the element     to 

the set  , respectively, with the condition that                          
Definition: 3.1.1 

          Let                                             be the 

Pythagorean vague elements and      satisfies the following operations. 

1.                                         
2.                                        

3.                                                      
4.                                                           

Example: 3.1.2 

          Let         and      and    be Pythagorean vague sets in   where     

                                                                
                                 and Let     
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1.                                             
                                              

                                                 

                                                           
                                                           
                                                                     

                                                                                            
  2.                                     

                                                

                                           

                                                      
                                                       
                                                                   

                                                                                      
3. Given that                              and                               
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Hence                                                                                                                  
4. Given that                              and                              

                                                          
                                                                               

                                                                                     
                                                                                                                       
                                                                                                                                         
                                                                                                                                                 
Hence                                  
Theorem: 3.1.3 

     Let         and                       be the Pythagorean vague sets and     then 

(i)             
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(ii)              

(iii)                   

Proof: 

( )                                       
                                                    

                          

Therefore,              
(  )                                           
                                                             
                               

Therefore,              
(   ) LHS: 

                                          
                                                          

RHS: 
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Therefore,                     
Definition: 3.1.4 

      Let                    and                                                                    be the Pythagorean vague sets and      then  
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Theorem: 3.1.5 

      Let                    and                                                                        be the Pythagorean vague sets and      then  

(i)             

(ii)             

(iii)                  

Proof: 

( )                                
                                           
                          

Hence,             

(                                    
                                             
                           

Hence,             

(     LHS: 
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RHS: 

Given that                                              
                      
                      
                                            

                                                        
                              

Hence,                   

Theorem: 3.1.6 

Let                                               be the 

Pythagorean vague sets, then 

i.                  

ii.                  

Proof: 

( ) LHS: 
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RHS: 

                                  

                                            

                           
 

Hence,                  

(ii) LHS: 

                        

                                          

RHS: 

                                 
                          

 

Hence,                  

3.2 Distance for Pythagorean Vague Sets 

Definition: 3.2.1 

Let                             and                             be Pythagorean vague sets in    
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1. Hamming Distance 

                                                      
                     

2. Normalized Hamming Distance 

                                                       
                     

3. Euclidean Distance                                                                                                                              

         
                                                                  

    

Where                                                       be 

the degree of indeterminacy of   in   and    
4. Normalized Euclidean Distance           
                                                                   

    

Distance measures satisfies the following conditions  
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Example 3.2.2: 

          Let         and let   and   be the Pythagorean vague set in   defined by                                                                              

 1. Hamming Distance                                                                                                                             

                                                      
                     

                                                                                                                                
                                                                         
                                                 
                                            

                  

2. Normalized Hamming Distance 
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3. Euclidean Distance 

          
                                                                       

                                         
                          

               

4. Normalized Euclidean Distance           
                                                                   

    

                          

                

          Distance in Pythagorean vague sets should be calculated by taking truth 

membership and false membership function it also satisfies the following conditions 
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4. CORRELATION COEFFICIENT OF VAGUE SETS 

4.1 CORRELATION OF VAGUE SETS 

Let                be the finite universal set and           be given 

by A                           ,                            . 
And the length of the vague values are given by 

                     
                    

Now for each        , the informational vague energy of   is defined as follows: 

                                        
    

And for each          the informational vague energy of   is defined as follows: 

                                        
    

The correlation of   and   is given by the formula: 

                                                             
    

Furthermore, the correlation coefficient of   and   is defined by the formula: 

                                   

Where               
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Proposition: 4.1.1 

          For          , the following are true: 

(i)                
(ii)                     
(iii)                    

Theorem: 4.1.2 

  For          , then               
Proof: 

 Since             it can be proved that             
For any arbitrary real number    the following inequality is true: 

                                                             
    

                                                                                                                                                           
Hence ,                                                                                                                                                                                                                                                                               
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The above inequality can be written as: 

                                                                                                                      

Therefore 
                               

Hence                                      

Theorem: 4.1.3 

               

Proof: 

          Considering the inequality in the proof of theorem 4.1.2, the equality holds if 

and only if the following are true: 

1.                

2.                

3.               , for some positive real    
As                                              
Adding 1, 2 and 3, we get                                               
As                                              which gives that        
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Therefore,      
Theorem: 4.1.4 

             and   are non-fuzzy sets and satisfy the condition  

                                                                         
Proof: 

For all       we have,                                             
If            for all       then it should be that: 

                                                                                      
If          

Then                              

If          

Then                               
Hence,                 

Conversely, when   and   are non-fuzzy sets and                  
If          

Then                              

If          

Then                              
Therefore,            
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The cases                                     can be proved similarly. 

Theorem: 4.1.5 

              is a non-fuzzy set. 

Proof: 

          If   is a non-fuzzy set, then            is obvious. 

Conversely, it can be proved by the method of contradiction. 

Assume   is a non-fuzzy set. 

Then                                                  
Hence                            
Then                 

                                  
                             

                                                                                                                                         
This is a contradiction.  Hence    is a non-fuzzy set. 

4.2 Numerical Example for Correlation of Vague Sets 

          In a sensor database application, suppose there are a set of ten sensors in a 

testing region                 .  Let there be ten corresponding measurements,                               at a certain time t.  Hence     means that the 

sensor data is not reachable  accessible at time t (i.e. we have six 20, one 21, one 22 

and two missing values).  Now, the results can be formalized to a vague set   as 

follows.  There are six occurrences of 20, but two values (21 and 22) are against it.  
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There are also two missing values (neutral).  Hence the true membership t is 0.6 and 

the false membership   is 0.2  

(that is         ).  Thus, the vague membership value is           for 20.  

Similarly, the vague membership value is           for 21 and           for 22.  

Combining these results, one gets the     
                                           

Equally, one can have the IFS, 

                                            
Data sets with vague values 

                   Vague set A                    Vague set B                                                                                                                                                                                                                                                                                         
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The correlation coefficient between    is calculated as follows: 
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where               
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5. SOME APPLICATIONS IN VAGUE SETS 

MEDICAL DIAGNOSIS: 

  The field of medicine is one of the most fruitful and interesting area of 

application of vague set theory. In this chapter, Bhargavi and Eswarlal (1) study a 

novel application of vague set in a medical diagnosis by applying the normalized 

Euclidean distance method to measure the distance between each IT workers and each 

health problem.  In this connection, they have taken a survey from friends and 

relatives, which are working in software industries in India.  The most common 

problems, which are identified in IT professionals are namely Musculoskeletal 

Discomfort, Computer Vision Syndrome, some of them were staying away from their 

family and their regular source of meal was hotel, overweight, were not satisfied with 

a time they spent with their family etc.  In the present study, particularly about the 

Stress, Ulcer, Vision problem, Spinal problem and Blood pressure and finally, they 

obtain the solution, which determines the health problem of the IT worker. 

Application of vague sets in medical diagnosis: 

  They have taken survey from the IT professional in which thsey are 

facing many problems in which we have chosen the most common problems. Among 

the workers they have consider only four workers, let the workers be             

are denoted by the set W               and the set of symptoms   

S=                                                         .                   
Let the set of health problems be    

H=                                                               . 
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Table 1: Represents the workers and their symptoms 

 

 Head ache Acidity  Burning 

eyes 

Back pain Depression  

   (0.9,0.1) (0.7,0.2) (0.1,0.9) (0.7,0.2) (0.2,0.7)    (0,0.7) (0.4,0.5) (0.6,0.2) (0.2,0.7) (0.1,0.2)    (0.7,0.1) (0.7,0.1) (0,0.5) (0.1,0.7) (0,0.6)    (0.5,0.1) (0.4,0.3) (0.4,0.5) (0.8,0.2) (0.3,0.4) 

 

 

Table 2: Represents related health problems 

 Stress Ulcer Vision 

Problem 

Spinal 

Problem 

Blood 

Pressure 

Head ache (0.3,0) (0,0.6) (0.2,0.2) (0.2,0.8)  (0.2,0.9) 

Acidity (0.3,0.5) (0.2,0.6) (0.5,0.2) (0.1,0.5) (0,0.7) 

Burning 

eyes 

(0.2,0.8) (0,0.8) (0.1,0.7) (0.7,0) (0.2,0.8) 

Back pain (0.7,0.3) (0.5,0) (0.2,0.6) (0.1,0.7) (0.1,0.8) 

Depression (0.2,0.6) (0.1,0.8) (0.1,0.9) (0.2,0.7) (0.8,0.1) 

 

Using definition 1.13 above to calculate the distance between each workers and each 

health problem with reference to the symptoms, we get the table below. 
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Table3: Workers vs Health Problem 

 Stress Ulcer Vision 

Problem 

Spinal 

Problem 

Blood 

Pressure    0.2569 0.3987 0.3225 0.5666 0.5771    0.4111 0.4147 0.3728 0.2145 0.3633    0.3435 0.4505 0.2191 0.4528 0.5263    0.1732 0.3478 0.3256 0.4347 0.4868 

 

 From the above table3, the shortest distance gives the health problems of four 

IT workers, 

This is represented by the chart diagram given as below: 

 

                                        Fig1: Graph of Workers Vs Health Problems 
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CONCLUSION: 

         Overall the normalized Euclidean distance method gives the final result of four 

IT workers health problems that is from Table 3, we see that- 

(i) The shortest value of        is 0.2569 and therefore        faces stress. 

(ii) The shortest value of     is 0.2145 and therefore   faces spinal problem. 

(iii) The shortest value of     is 0.2191 and therefore    faces vision problem. 

(iv) The shortest value of    is 0.1732 and therefore    faces stress. 
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                                          CHAPTER I 

                                      PRELIMINARIES 

Definition : 1.1 

A non-empty set R together with two binary operations + and . are called 

ring. Which satisfies the following condition. 

(i)  (R, +) is an abelian group. 

(ii)  (R, .) is an associative. 

(iii)  Multiplication is distributive over addition. 

Definition : 1.2 

A near ring is a set N together with two binary operations  +  and  .   

such that 

(i)  (N, +) is a group. 

(ii)  (N, .) is a semi-group. 

(iii)   For all x, y, z * N it holds that (x + y) .z  =  (x. z) + (y. z). 

Definition : 1.3 

A non-empty subset S of a near-ring R is called a subnear-ring of R if 

(i)  x - y * S 

(ii)  xy * S for all x, y * S. 

Definition : 1.4 

A Subgroup B of N is a bi-ideal of N if BNB ¦ B 
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Definition : 1.5 

Let I be an ideal of R. For each a + I, b + I in the factor group R / I. We 

define (a + I) + (b + I) = (a + b) + I and (a + I)(b + I) = (ab) + I. Then R / I is a   near-

ring which we call the residue class near-ring of R with respect to I. 

Definition : 1.6 

A mapping µ : X→[0,1] is called a fuzzy subset of X. 

Definition : 1.7 

Let R be a near-ring and µ be a fuzzy subset of R. Then µ is a fuzzy ideal of 

R if: 

(i)  µ(x – y) g min{µ(x), µ(y)} 

(ii) µ(y + x – y) g µ(x) 

(iii) µ(xy) g µ(y) 

(iv) µ((x + z)y – xy) g µ(z) for all x, y, z * R. 

A fuzzy subset with (i) – (iii) is called a fuzzy left ideal of R, whereas a fuzzy subset 

with (i), (ii) and (i) is called a fuzzy right ideal of R. 

Definition : 1.8 

A fuzzy set µ in N is a fuzzy sub near ring of N if for all x, y * N, 

(i)  µ(x – y) g min{µ(x), µ(y)} 

(ii) µ(xy) g min{µ(x), µ(y)} 

Definition : 1.9 

A fuzzy set µ in N is a fuzzy bi-ideal of N if for all x, y * N, 
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(i) µ(x – y) g min{µ(x), µ(y)} 

(ii) µ(xyz) g min{µ(x), µ(z)} 

Definition : 1.10 

Let X be a non-empty set. A mapping µ : X → D [0,1] is called interval-

valued fuzzy set, where D[0,1] denote the family of all closed sub intervals of [0,1] and 

µ(x) = [µ–(x), µ+(x)] for all  x * X where µ– and µ+ are fuzzy subsets of X such that 

µ–(x) f µ+(x) for all x * X. 

Definition : 1.11 

Let X be a non-empty set. A cubic set A in X is a structure 

A = {< x, Ā�(ĉ), Ą�(ĉ) > : x * X } which is briefly denoted by A = < Ā�, Ą�>, where 

Ā� = [Ā�–, Ā�+] is an interval-valued fuzzy set in X and Ą is fuzzy set in X. 

In this case, we will use 

A(x) =  < Ā�(ĉ), Ą�(ĉ) > 

 = < [µ–(x), µ+(x)], Ą�(ĉ) > for all x * X. 

Definition : 1.12 

Let A = < µ, γ > be a cubic set of S. Define  

U (A; t, n) = {x * S | µ(x) g t and γ(x) f n} where t * D[0,1] and n * [0,1] is called the 

cubic level set of A. 
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Definition : 1.13 

Let R be a near ring. Given two subsets A and B of R, we define the following 

products AB = {ab | a * A, b * B} and A ∗ B = {(ÿ′+ b)a – ÿ′a | a, ÿ′ * A, b * B}. 

Definition : 1.14 

A subgroup B of (R, +) is said to be bi-ideal of R if BRB ∩ B ∗ RB ¦ B. 

Definition : 1.15 

A subgroup B of (R, +) is said to be weak bi-ideal of R if BBB ¦ B. 

Definition : 1.16 

Let Ā and ÿ be any two fuzzy subsets of R. Then Āÿ is fuzzy subset of R 

defined by  

Āÿ(ĉ) = {ĄĆāý=þÿþÿÿ{Ā(Ċ), ÿ(ċ)}    ÿĄ ĉ = Ċċ ĄĀă ÿýý ĉ, Ċ, ċ * �0                  Āą/ăăĈÿĄă  

Definition : 1.17 

 Let � be a near-ring and  Ā be a fuzzy subset of R. We say Ā is a fuzzy 

subnear –ring of � if 

(i)       Ā(ĉ 2 Ċ) g þÿÿ {Ā(ĉ), Ā(Ċ)} 
(ii) Ā(ĉĊ) g þÿ ÿ{Ā(ĉ), Ā(Ċ)} ĄĀă ÿýý ĉ, Ċ * �. 
Definition : 1.18 

 Let � be a near-ring and  Ā be a fuzzy subset of R. Then Ā is called the fuzzy 

ideal of � if 

(i) Ā(ĉ 2 Ċ) g þÿÿ {Ā(ĉ), Ā(Ċ)} 
(ii) Ā(ĉ + Ċ 2 Ċ) g Ā(ĉ) 
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(iii) Ā(ĉĊ) g Ā(Ċ) 
(iv) Ā(ĉ + ċ)Ċ 2 ĉĊ) g Ā(ċ) for all ĉ, Ċ * �. 

A fuzzy subset with (i) to (iii) is called a fuzzy left ideal of R, whereas a fuzzy subset 

with (i), (ii) and (iv) are called a fuzzy right ideal of R. 

Definition : 1.19 

A fuzzy subset µ of a near-ring R is called a fuzzy R-subgroup of R if 

(i) Ā is a fuzzy subgroup of (R, +) 

(ii) Ā(ĉĊ) g Ā(Ċ) 
(iii) Ā(ĉĊ) g Ā(ĉ)  for all x, y * R. 

A fuzzy subset with (i) and (ii) is called a fuzzy left R-subgroup of R, whereas a fuzzy 

subset with (i) and (iii) is called a fuzzy right R-subgroup of R. 

Definition : 1.20 

A fuzzy subgroup µ of R is called fuzzy weak bi-ideal of R if  

Ā(ĉĊċ)  g þÿÿ{Ā(ĉ), Ā(Ċ), Ā(ċ)}  

Definition : 1.21 

 Let � be a non-empty set. A mapping Ā ∶ � → �[0,1] is called an interval- 

valued fuzzy subset of �, if for all ĉ * �, Ā(ĉ) = [Ā2(ĉ), Ā+(ĉ)], where Ā2 and Ā+ are 

fuzzy subsets of X such that Ā2(ĉ) f Ā+(ĉ). Thus µ(ĉ) is an interval and not a number 

from the interval [0,1] as in the case of fuzzy set.  
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                                                        CHAPTER - II 

                                     CUBIC IDEALS OF NEAR RINGS 

Definition : 2.1 

 A cubic set � = < Ā�, ÿ� >  of a near – ring � is called a cubic subnear – ring 

of R if  

(1) Ā�(ĉ 2 Ċ) g þÿÿ{Ā�(ĉ), Ā�(Ċ)}, 
(2) Ā�(ĉĊ) g þÿÿ{Ā�(ĉ), Ā�(Ċ)}, 
(3) ÿ�(ĉ 2 Ċ) f þÿĉ{ÿ�(ĉ), ÿ�(Ċ)}, 
(4) ÿ�(ĉĊ) f þÿĉ{ÿ�(ĉ), ÿ�(Ċ)}, for all ĉ, Ċ * �. 

Definition : 2.2 

 Let � = < Ā�, ÿ� >  be a cubic set of �. We say A is a cubic ideal of R if it 

satisfies the following: 

(1) Ā�(ĉ 2 Ċ) g þÿÿ{Ā�(ĉ), Ā�(Ċ)}, 
(2) Ā�(Ċ + ĉ 2 Ċ) g Ā�(ĉ), 
(3) Ā�(ĉĊ) g Ā�(Ċ), 
(4) Ā�((ĉ + ċ)Ċ 2 ĉĊ) g Ā�(ċ), 
(5) ÿ�(ĉ 2 Ċ) f þÿĉ{ÿ�(ĉ), ÿ�(Ċ)}, 
(6) ÿ�(Ċ + ĉ 2 Ċ) f ÿ�(ĉ),  

(7) ÿ�(ĉĊ) f ÿ�(Ċ), 
(8) ÿ�((ĉ + ċ)Ċ 2 ĉĊ) f ÿ�(ċ), for all ĉ, Ċ * �. 
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Example : 2.3 

 Let � = {ÿ, Ā, ā, Ă} be a set with two binary operations defined as: 

 

 

 

Then (�,+, . ) is near-ring. 

Define a cubic set � = < Ā�, ÿ� >  by Ā�(ÿ) = [0.8, 0.9], Ā�(Ā) = [0.6, 0.7] and  Ā�(ā) = [0.5, 0.5] = Ā�(Ă), 
ÿ�(ÿ) = 0.2, ÿ�(Ā) = 0.6  and ÿ�(ā) = 0.8 = ÿ�(Ă). 
Then, � = < Ā�, ÿ� >  is a cubic ideal of �. 

Theorem : 2.4 

 If � = < Ā�, ÿ� >  is a cubic ideal of R if and only if every non empty cubic 

level set of � = < Ā�, ÿ� >  is a left (resp. right) ideal of �. 

Proof: 

Assume that � = < Ā�, ÿ� >  is a cubic ideal of �. 

Let ĉ, Ċ * �(�; [Ą, ą], ă) for all [Ą, ą] * �[0,1] and ă * [0,1]. 
Then Ā�(ĉ) g [Ą, ą], Ā�(Ċ) g  [Ą, ą], ÿ�(ĉ)  f  ă, ÿ�(Ċ) f ă. 
By the definition of cubic ideal of Ā�(ĉ 2 Ċ)  g  þÿÿ{Ā�(ĉ), Ā�(Ċ)} g  [Ą, ą] and  

 ÿ�(ĉ 2 Ċ) f max{ÿ�(ĉ), ÿ�(Ċ)}  f  ă. 

+ a b c d 

a a b c d 

b b a d c 

c c d b a 

d d c a b 

 

. a b c d 

a a a a a 

b a a a a 

c a a a a 

d a b c d 

 



 

 

8 

 

Hence ĉ 2 Ċ * �(�; [Ą, ą], ă) and Ċ * �. 

Let ĉ * �(�; [Ą, ą], ă and Ċ * �. 

Then Ā�(ĉ)  g  [Ą, ą] and ÿ�(ĉ)  f  ă. 

We know that Ā�(Ċ + ĉ 2 Ċ)  g  Ā�(ĉ) g [Ą, ą] and  

ÿ�(Ċ + ĉ 2 Ċ)  f  ÿ�(ĉ)  f  ă implies Ċ + ĉ 2 Ċ *  �(�; [Ą, ą], ă). 
Thus �(�; [Ą, ą], ă) is a normal subgroup of R. 

Let Ċ * �(�; [Ą, ą], ă) and ĉ * �. 

We know it Ā�(ĉĊ)  g  Ā�(Ċ)  g  [Ą, ą] and ÿ�(ĉĊ)  f  ÿ�(Ċ)  f  ă.  
This implies that ĉĊ * �(�; [Ą, ą], ă). 
Therefore �(�; [Ą, ą], ă) is a left ideal. 

As we know Ā�((ĉ + ċ)Ċ 2 ĉĊ g  Ā�(ċ)  g  [Ą, ą] and  

 ÿ�((ĉ + ċ)Ċ 2 ĉĊ)  f  ÿ�(ċ)  f  ă. 
Which implies that ((ĉ + ċ)Ċ 2 ĉĊ)  * �(�; [Ą, ą], ă). 
Thus �(�; [Ą, ą], ă) is an ideal of R. 

Conversely, 

 Assume that �(�; [Ą, ą], ă) is an ideal of R. 

Let ă * [0,1] and [s,t] * �[0,1] be such that �(�; [Ą, ą], ă) b 0. 
1) Suppose we assume that Ā�(ĉ 2 Ċ)  <  þÿÿ {Ā�(ĉ), Ā�(Ċ)} or 

 ÿ�(ĉ 2 Ċ)  >  þÿĉ {ÿ�(ĉ), ÿ�(Ċ)}. 
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(i)   If Ā�(ĉ 2 Ċ)  <  þÿÿ {Ā�(ĉ), Ā�(Ċ)} then we can find an interval  

 Ā�(ĉ 2 Ċ)  <  [s1, t1]  <  þÿÿ {Ā�(ĉ), Ā�(Ċ) for some [s1, t1] * D[0,1]. 
Hence ĉ, Ċ *  U(A; [s1, t1], þÿĉ{ÿ�(ĉ), ÿ�(Ċ)}) 
but ĉ 2 Ċ +  U(A; [s1, t1], þÿĉ{ÿ�(ĉ), ÿ�(Ċ)}) which is a contradiction. 

(i) If ÿ�(ĉ 2 Ċ)  >  þÿĉ {ÿ�(ĉ), ÿ�(Ċ)} then there exist ă1 *  [0,1] such  

that  ÿ�(ĉ 2 Ċ) >  ă1 >  max {ÿ�(ĉ), ÿ�(Ċ)}. 
Thus ĉ, Ċ *  U(A;þÿÿ{Ā�(ĉ), Ā�(Ċ)} , ă1)  

but ĉ 2 Ċ +  U(A;þÿÿ{Ā�(ĉ), Ā�(Ċ)}, ă1) which is a contradiction. 

Therefore Ā�(ĉ 2 Ċ) g  þÿÿ{Ā�(ĉ), Ā�(Ċ)} and  ÿ�(ĉ 2 Ċ)  f  max {ÿ�(ĉ), ÿ�(Ċ)}. 
Let ĉ, Ċ * R. 
2) Suppose Ā�(Ċ + ĉ 2 Ċ)  <  Ā�(ĉ) Āă ÿ�(Ċ + ĉ 2 Ċ)  >  ÿ�(ĉ). 
            (i)  If Ā�(Ċ + ĉ 2 Ċ) < Ā�(ĉ) then we can find an interval  

[s1, t1] * D[0,1] such that  Ā�(Ċ + ĉ 2 Ċ) < [s1, t1] < Ā�(ĉ). 
So, ĉ * U(A; [s1, t1], ÿ�(ĉ))  
but Ċ + ĉ 2 Ċ +  U(A; [s1, t1], ÿ�(ĉ)) which is a contradiction. 

            (ii)  If ÿ�(Ċ + ĉ 2 Ċ)  > ÿ�(ĉ) then there exist ă1 such that  

ÿ�(Ċ + ĉ 2 Ċ)  >  ă1  >  ÿ�(ĉ) implies ĉ * U(A; Ā�(ĉ), ă1) 
but Ċ + ĉ 2 Ċ +  U(A; Ā�(ĉ),  ă1) which is a contradiction. 
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Therefore Ā�(Ċ + ĉ 2 Ċ)  g  Ā�(ĉ) and ÿ�(Ċ + ĉ 2 Ċ)  f  ÿ�(ĉ). 
3) Suppose assume that Ā�(ĉĊ)  <  Ā�(Ċ) Āă ÿ�(ĉĊ)  >  ÿ�(Ċ). 
            (i)  If Ā�(ĉĊ)  <  Ā�(Ċ) then we can find an interval [s1, t1] such that  

Ā�(ĉĊ)  <  [s1, t1]  <  Ā�(Ċ) implies Ċ * U(A; [s1, t1], ÿ�(Ċ))  
but ĉĊ +   U(A; [s1, t1], ÿ�(Ċ)) which is a contradiction. 

           (ii)       If ÿ�(ĉĊ)  >  ÿ�(Ċ) then we can find an ă1 such that 

ÿ�(ĉĊ) > ă1 > ÿ�(Ċ) implies Ċ * U(A; Ā�(Ċ), ă1) but ĉĊ +  (�; Ā�(Ċ), ă1) which 

is contradiction.  

Therefore Ā�(ĉĊ)  g  Ā�(Ċ) and ÿ�(ĉĊ)  f  ÿ�(Ċ). 
4) Suppose assume that Ā�((ĉ + ċ)Ċ 2 ĉĊ) <  Ā�(ċ) Āă  
       ÿ�((ĉ + ċ)Ċ 2 ĉĊ) > ÿ�(ċ). 
          (i)      If Ā�((ĉ + ċ)Ċ 2 ĉĊ) < Ā�(ċ) we can find an interval [s1, t1], such that  

Ā�((ĉ + ċ)Ċ 2 ĉĊ) < [s1, t1] < Ā�(ċ). 
Then Ā�(ċ)  * U(A; [s1, t1], ÿ�(ċ)) but (ĉ + ċ)Ċ 2 ĉĊ + U(�; [s1, t1], ÿ�(ċ)) 
which is a contradiction. 

(ii)  If ÿ�((ĉ + ċ)Ċ 2 ĉĊ)  >  ÿ�(ċ) we can find ă1 such that  

ÿ�((ĉ + ċ)Ċ 2 ĉĊ) > ă1 > ÿ�(ċ). 
Then ÿ�(ċ)  *  U(A; Ā�(ċ), ă1) but (ĉ + ċ)Ċ 2 ĉĊ + U(A; Ā�(ċ), ă1) which is a 

contradiction. 
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Therefore Ā�((ĉ + ċ)Ċ 2 ĉĊ)  g  Ā�(ċ) and ÿ�((ĉ + ċ)Ċ 2 ĉĊ)  f ÿ�(ċ) 
Hence A = < Ā�, ÿ� >  is cubic ideal of R. 

Theorem : 2.5 

 Intersection of any family of cubic ideals (sub near-ring) of R is also a cubic 

ideal (sub near-ring) of R. 

Proof : 

 Let �� = < Ā�� , ÿ�� >  be cubic ideals of R where ÿ * Ω any index set. 

Let ĉ, Ċ * � then, 

 (i) â Ā��(ĉ 2 Ċ)�*Ω    = ÿÿĄ {Ā��(ĉ 2 Ċ)/ ÿ * Ω} 
          g ÿÿĄ{þÿÿ { Ā��(ĉ), Ā��(Ċ)}/ÿ * Ω} 
                     = þÿÿ {ÿÿĄ { Ā��(ĉ)/ÿ * Ω}, ÿÿĄ{Ā��(Ċ)/ ÿ * Ω} 
                     = þÿÿ{â Ā��(ĉ),â Ā��(Ċ)}�*Ω�*Ω  

 (ii) ã�*Ωÿ��(ĉ 2 Ċ)    = ĄĆā {ÿ��(ĉ 2 Ċ)/ ÿ * Ω} 
                     f ĄĆā {þÿĉ {ÿ��(ĉ), ÿ��(Ċ)}/ÿ * Ω} 
                     = þÿĉ {ĄĆā {ÿ��(ĉ)/ÿ * Ω}, ĄĆā{ÿ��(Ċ)/ ÿ * Ω} 
                     = þÿÿ{ã�*Ωÿ��(ĉ), ã�*Ωÿ��(Ċ)} 
 (iii) â Ā��(Ċ + ĉ 2 Ċ)�*Ω   = ÿÿĄ {Ā��(Ċ + ĉ 2 Ċ)/ ÿ * Ω} 
                           g ÿÿĄ { Ā��(ĉ)/ÿ * Ω} 
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                           = â Ā��(ĉ)�*Ω   

 (iv) ã�*Ωÿ��(Ċ + ĉ 2 Ċ) = ĄĆā {ÿ��(Ċ + ĉ 2 Ċ)/ ÿ * Ω} 
                           f ĄĆā {ÿ��(ĉ)/ÿ * Ω} 
                           = ã�*Ωÿ��(ĉ) 
 (v) â Ā��(ĉĊ)�*Ω               = ÿÿĄ {Ā��(ĉĊ)/ ÿ * Ω} 
                           g ÿÿĄ { Ā��(Ċ)/ÿ * Ω} 
                           = â Ā��(Ċ)�*Ω   

 (vi) ã�*Ωÿ��(ĉĊ)             = ĄĆā {ÿ��(ĉĊ)/ ÿ * Ω} 
                           f ĄĆā {ÿ��(Ċ)/ÿ * Ω} 
                           = ã�*Ωÿ��(Ċ) 
 (vii) â Ā��((ĉ + ċ)Ċ 2 ĉĊ)�*Ω   = ÿÿĄ {Ā��(ĉ + ċ)Ċ 2 ĉĊ)/ ÿ * Ω} 
                                       g ÿÿĄ { Ā��(ċ)/ÿ * Ω} 
                                       = â Ā��(ċ)�*Ω   

 (viii) ã�*Ωÿ��((ĉ + ċ)Ċ 2 ĉĊ) = ĄĆā {ÿ��((ĉ + ċ)Ċ 2 ĉĊ)/ ÿ * Ω} 
                                       f ĄĆā {ÿ��(ċ)/ÿ * Ω} 
                                       = ã�*Ωÿ��(ċ) 
Therefore, intersection of any cubic ideals of R is also a cubic ideal of R. 

The following theorem is relation between crisp ideals and cubic ideals. 
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Definition : 2.6 

 Let �� be cubic ideals of near-rings �� for ÿ = 1,2, & , ÿ. Then the direct 

product of ��(ÿ = 1,2, &ÿ) is a function  

Ā�1 × Ā�2 × & .× Ā��: �1 × �2 × & .× �� → �[0,1],  
ÿ�1 × ÿ�2 × & .× ÿ��: �1 × �2 × & .× �� → �[0,1] defined by 

 Ā�1 × Ā�2 × & .× Ā��(ĉ1, ĉ2, & ĉ�) = þÿÿ {Ā�1(ĉ1), Ā�2(ĉ2), & , Ā��(ĉ�)} and 

 ÿ�1 × ÿ�2 × & .× ÿ��(ĉ1, ĉ2, & ĉ�) = þÿĉ {ÿ�1(ĉ1), ÿ�2(ĉ2),& , ÿ��(ĉ�)}. 
Theorem : 2.7 

 The direct product of cubic ideals of near-rings is also cubic ideal of near-

rings. 

Proof: 

 Let �� = < Ā�� , ÿ�� >  be cubic ideals of near-rings �� where ÿ = 1,2, & ÿ. 
 Let ĉ = (ĉ1, ĉ2, & ĉ�), Ċ = (Ċ1, Ċ2, & Ċ�) 
 and ċ = (ċ1, ċ2, & ċ�) * �1 × �2 × & .× �� 

(i) Ā��(ĉ 2 Ċ)   =  Ā��((ĉ1, ĉ2, & ĉ�) 2 (Ċ1, Ċ2, & Ċ�) 
   =  Ā��(ĉ1 2 Ċ1,ĉ2 2 Ċ2,&&ĉ� 2 Ċ�) 
   = þÿÿ {Ā�1(ĉ1 2 Ċ1), Ā�2(ĉ2 2 Ċ2), & . Ā��(ĉ� 2 Ċ�)} 
                                    = þÿÿ {þÿÿ {Ā�1(ĉ), Ā�1(Ċ)},þÿÿ{ Ā�2(ĉ), Ā�2(Ċ)} , & 

        þÿÿ{ Ā��(ĉ), Ā��(Ċ)} 
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   =  þÿÿ {þÿÿ {Ā�1(ĉ1), Ā�2(ĉ2), & . . Ā��(ĉ�)}, 
     þÿÿ {Ā�1(Ċ1), Ā�2(Ċ2),& . . Ā��(Ċ�)}} 
   = þÿÿ {Ā�1 × Ā�2 ×& .× Ā��(ĉ1, ĉ2, & . ĉ�),  
                                                                Ā�1 × Ā�2 × & .× Ā��(Ċ1, Ċ2, & . Ċ�)} 
   = þÿÿ {Ā��(ĉ), Ā��(Ċ)}. 
(ii) ÿ��(ĉ 2 Ċ)   =  ÿ��((ĉ1, ĉ2, & ĉ�) 2 (Ċ1, Ċ2, & Ċ�) 
   =  ÿ��(ĉ1 2 Ċ1,ĉ2 2 Ċ2,&&ĉ� 2 Ċ�) 
   = þÿĉ {ÿ�1(ĉ1 2 Ċ1), ÿ�2(ĉ2 2 Ċ2), & . ÿ��(ĉ� 2 Ċ�)} 
   = þÿĉ {þÿĉ {ÿ�1(ĉ), ÿ�1(Ċ),þÿĉ{ ÿ�2(ĉ), ÿ�2(Ċ)} , & 

        þÿĉ{ ÿ��(ĉ), ÿ��(Ċ)} 
   =  þÿĉ {þÿĉ {ÿ�1(ĉ1), ÿ�2(ĉ2),& . . ÿ��(ĉ�)}, 
     þÿĉ {ÿ�1(Ċ1), ÿ�2(Ċ2), & . . ÿ��(Ċ�)}} 
   = þÿĉ {ÿ�1 × ÿ�2 ×& .× ÿ��(ĉ1, ĉ2, & . ĉ�), 
                 ÿ�1 × ÿ�2 ×& .× ÿ��(Ċ1, Ċ2, & . Ċ�)} 
   = þÿĉ {ÿ��(ĉ), ÿ��(Ċ)}. 
(iii) Ā��(Ċ + ĉ 2 Ċ)  =  Ā��((Ċ1, Ċ2, & Ċ�) + (ĉ1, ĉ2, & ĉ�) 2 (Ċ1, Ċ2, & Ċ�) 
      =   Ā��(Ċ1 + ĉ1 2 Ċ1,Ċ2 + ĉ2 2 Ċ2,&&Ċ� + ĉ� 2 Ċ�) 
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                                       = þÿÿ {Ā�1(Ċ1 + ĉ1 2 Ċ1), Ā�2(Ċ2 + ĉ2 2 Ċ2), &. 
                                                                                           Ā��(Ċ� + ĉ� 2 Ċ�)} 
                 g  þÿÿ {Ā�1(ĉ1), Ā�2(ĉ2), & . . Ā��(ĉ�)} 
                 = Ā�1 × Ā�2 ×& .× Ā��(ĉ1, ĉ2, & . ĉ�), 
                 = Ā��(ĉ). 
(iv) ÿ��(Ċ + ĉ 2 Ċ)  =  ÿ��((Ċ1, Ċ2, & Ċ�) + (ĉ1, ĉ2, & ĉ�) 2 (Ċ1, Ċ2, & Ċ�) 
      =  ÿ��(Ċ1 + ĉ1 2 Ċ1,Ċ2 + ĉ2 2 Ċ2,&&Ċ� + ĉ� 2 Ċ�) 
                 = max {ÿ�1(Ċ1 + ĉ1 2 Ċ1), ÿ�2(Ċ2 + ĉ2 2 Ċ2), &.  
                                                                                                ÿ��(Ċ� + ĉ� 2 Ċ�)} 
                f  þÿĉ {ÿ�1(ĉ1), ÿ�2(ĉ2), & . . ÿ��(ĉ�)} 
                = ÿ�1 × ÿ�2 ×& .× ÿ��(ĉ1, ĉ2, & . ĉ�), 
                = ÿ��(ĉ). 
(v) Ā��(ĉĊ)     =  Ā��((ĉ1, ĉ2, & ĉ�)(Ċ1, Ċ2, & Ċ�) 
     =  Ā��(ĉ1Ċ1,ĉ2, Ċ2,&&ĉ�Ċ�) 
     = þÿÿ {Ā�1(ĉ1Ċ1), Ā�2(ĉ2Ċ2),& . Ā��(ĉ�Ċ�)} 
     g þÿÿ {Ā�1(Ċ1), Ā�2(Ċ2),& Ā��(Ċ�)}    

     = Ā�1 × Ā�2 ×& .× Ā��(Ċ1, Ċ2, & . Ċ�)} 
     = Ā��(Ċ). 
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(vi) Ā��(ĉĊ)     =  ÿ��((ĉ1, ĉ2, & ĉ�)(Ċ1, Ċ2, & Ċ�) 
     =  ÿ��(ĉ1Ċ1,ĉ2, Ċ2,&&ĉ�Ċ�) 
     = þÿĉ {ÿ�1(ĉ1Ċ1), ÿ�2(ĉ2Ċ2), & . ÿ��(ĉ�Ċ�)} 
     f þÿĉ {ÿ�1(Ċ1), ÿ�2(Ċ2),& ÿ��(Ċ�)}    

     = ÿ�1 × ÿ�2 ×& .× ÿ��(Ċ1, Ċ2, & . Ċ�)} 
     = ÿ��(Ċ). 
(vii) Ā��((ĉ + ċ)Ċ 2 ĉĊ)  = Ā��((ĉ1, ĉ2, & ĉ�)(ċ1, ċ2, & ċ�))(Ċ1, Ċ2, & Ċ�)   
                                                                                     2 (ĉ1, ĉ2, & ĉ�)(Ċ1, Ċ2, & Ċ�) 
              =  Ā�� (((ĉ1 + ċ1)Ċ1 2 ĉ1Ċ1), (ĉ2 + ċ2)Ċ2 2 ĉ2Ċ2)&. 
       ((ĉ� + ċ�)Ċ� 2 ĉ�Ċ�)))  

                                             = þÿÿ{Ā�1((ĉ1 + ċ1)Ċ1 2 ĉ1Ċ1), Ā�2(ĉ2 + ċ2)Ċ2ĉ2Ċ2), 
                                          …,Ā��(ĉ� + ċ�)Ċ� 2 ĉ�Ċ�)} 
            g þÿÿ {Ā�1(ċ1), Ā�2(ċ2),& . Ā��(ċ�)} 
            = Ā�1 × Ā�2 × Ā��(ċ1, ċ2, ċ�) 
            = Ā��(ċ) 
(viii) ÿ��((ĉ + ċ)Ċ 2 ĉĊ)   = ÿ��((ĉ1, ĉ2, & ĉ�) + (ċ1, ċ2, & ċ�))(Ċ1, Ċ2, & Ċ�) 
                                                                                         2(ĉ1, ĉ2, & ĉ�)(Ċ1, Ċ2, & Ċ�) 
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           =  ÿ�� (((ĉ1 + ċ1)Ċ1 2 ĉ1Ċ1), (ĉ2 + ċ2)Ċ2 2 ĉ2Ċ2)&. 
       ((ĉ� + ċ�)Ċ� 2 ĉ�Ċ�)))  

           = þÿĉ{ÿ�1((ĉ1 + ċ1)Ċ1 2 ĉ1Ċ1)ÿ�2(ĉ2 + ċ2)Ċ2 2 ĉ2Ċ2), 
                                         ….,ÿ��(ĉ� + ċ�)Ċ� 2 ĉ�Ċ�)} 
           f þÿĉ {ÿ�1(ċ1), ÿ�2(ċ2), & . ÿ��(ċ�)} 
           = ÿ�1 × ÿ�2 × ÿ��(ċ1, ċ2, ċ�) 
           = ÿ��(ċ) 
Therefore, direct product of cubic ideals of near-rings is also cubic ideal of near rings. 

Definition:2.8 

 Let � = < Ā�, ÿ� >  be a cubic set of �. Then the strongest cubic relation on � 

is a cubic relation Ċ with � is given by ć(ĉ, Ċ) = {((ĉ, Ċ), ÿ(ĉ, Ċ), ÿ(ĉ, Ċ))/ĉ, Ċ * �}, 
where ÿ is an interval valued fuzzy relation with respect to Ā� defined by  ÿ(ĉ, Ċ) = þÿÿ{Ā�(ĉ), Ā�(Ċ)}, and ÿ is an anti-fuzzy relation with respect to ÿ� 

defined by ÿ(ĉ, Ċ) = þÿĉ {ÿ�(ĉ), ÿ�(Ċ)}.  
Theorem : 2.9 

 Let � = < Ā�, ÿ� > be a cubic set of near-ring � and  ć(ĉ, Ċ) = {((ĉ, Ċ), ÿ(ĉ, Ċ), ÿ(ĉ, Ċ))/ĉ, Ċ * �}, be a strongest cubic relation with 

respect to ć. Then � is a cubic ideal of � if and only if ć is a cubic ideal of � × �. 

Proof: 

Let us assume that � = < Ā�, ÿ� >  is a cubic ideal of �. Let ĉ1, Ċ1, ĉ2, Ċ2, ċ1, ċ2 * �.  
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Then for ĉ = (ĉ1, ĉ2), Ċ = (Ċ1, Ċ2), ċ = (ċ1, ċ2) * � × �, we have  

(i) ÿ(ĉ, Ċ)  = ÿ((ĉ1, ĉ2) 2 (Ċ1, Ċ2)) 
   = ÿ(ĉ1 2 Ċ1, ĉ2 2 Ċ2) 
   = þÿÿ {Ā�(ĉ1 2 Ċ1) 2 Ā�(ĉ2 2 Ċ2)} 
   g þÿÿ{þÿÿ {Ā�(ĉ1), Ā�(Ċ1)},þÿÿ {Ā�(ĉ2), Ā�(Ċ2)}} 
   = þÿÿ {þÿÿ{Ā�(ĉ1), Ā�(ĉ2)},þÿÿ{Ā�(Ċ1), Ā�(Ċ2)}}  

   = þÿÿ { ÿ((ĉ1, ĉ2) 2 ÿ(Ċ1, Ċ2)} 
   = þÿÿ { ÿ((ĉ), ÿ(Ċ)} 
(ii) ÿ(ĉ 2 Ċ)  = ÿ((ĉ1, ĉ2) 2 (Ċ1, Ċ2)) 
   =  ÿ(ĉ1 2 Ċ1, ĉ2 2 Ċ2)  

   = þÿĉ { ÿ�(ĉ1 2 Ċ1), ÿ�(ĉ2 2 Ċ2)} 
   f þÿĉ {þÿĉ{ÿ�(ĉ1), ÿ�(Ċ1)} ,þÿĉ{ÿ�(ĉ2), ÿ�(Ċ2)}} 
   = þÿĉ {þÿĉ{ÿ�(ĉ1), ÿ�(ĉ2)} ,þÿĉ{ÿ�(Ċ1), ÿ�(Ċ2)}} 
   = þÿĉ {ÿ(ĉ1, ĉ2), ÿ(Ċ1, Ċ2) 
   = þÿĉ {ÿ(ĉ) , ÿ(Ċ)} 
(iii) ÿ(Ċ + ĉ 2 Ċ) = ÿ((Ċ1, Ċ2) + (ĉ1, ĉ2) 2 (Ċ1, Ċ2)) 
   = ÿ(Ċ1 + ĉ1 2 Ċ1, Ċ2 + ĉ2 2 Ċ2) 
   = þÿÿ {Ā�(Ċ1 + ĉ1 2 Ċ1), Ā�(Ċ2 + ĉ2 2 Ċ2) 
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   g þÿÿ {Ā�(ĉ1), Ā�(ĉ2)} 
   = ÿ(ĉ1, ĉ2) 
   = ÿ(ĉ) . 
(iv) ÿ(Ċ + ĉ 2 Ċ) = ÿ((Ċ1, Ċ2) + (ĉ1, ĉ2) 2 (Ċ1, Ċ2)) 
   = ÿ(Ċ1 + ĉ1 2 Ċ1, Ċ2 + ĉ2 2 Ċ2) 
   = þÿĉ {ÿ�(Ċ1 + ĉ1 2 Ċ1), ÿ�(Ċ2 + ĉ2 2 Ċ2) 
   f þÿĉ {ÿ�(ĉ1), ÿ�(ĉ2)} 
   = ÿ(ĉ1, ĉ2)  

   = ÿ(ĉ). 
(v) ÿ(ĉĊ)  = ÿ((ĉ1, ĉ2)(Ċ1, Ċ2))  
   = ÿ(ĉ1Ċ1, ĉ2Ċ2) 
   = þÿÿ {Ā�(ĉ1Ċ1), Ā�(ĉ2Ċ2)} 
   g þÿÿ {Ā�(Ċ1), Ā�(Ċ2)} 
   = ÿ(Ċ1, Ċ2) 
   = ÿ(ĉ) . 
(vi) ÿ(ĉĊ)  = ÿ((ĉ1, ĉ2), (Ċ1, Ċ2))  

   = ÿ(ĉ1Ċ1, ĉ2Ċ2) 
   = þÿĉ {ÿ�(ĉ1Ċ1), ÿ�(ĉ2Ċ2)} 
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   f þÿĉ {ÿ�(Ċ1), ÿ�(Ċ2)} 
   = ÿ(Ċ1, Ċ2) 
   = ÿ(ĉ) . 

(vii) ÿ(ĉ + ċ)Ċ 2 ĉĊ)      = ÿ(((ĉ1, ĉ2) + (ċ1, ċ2))(Ċ1, Ċ2) 2 (ĉ1, ĉ2)(Ċ1, Ċ2))  
             = ÿ((ĉ1 + ċ1)Ċ1 2 ĉ1Ċ1, (ĉ2 + ċ2)Ċ2 2 ĉ2Ċ2) 
             = min {Ā�((ĉ1 + ċ1)Ċ1 2 ĉ1Ċ1), 
                                                                                   Ā�((ĉ2 + ċ2)Ċ2 2 ĉ2Ċ2)} 
             g þÿÿ {Ā�(ċ1), Ā�(ċ2)} 
             = ÿ(ċ1, ċ2) 
             = ÿ(ċ) . 

(viii) ÿ((ĉ + ċ)Ċ 2 ĉĊ)    = ÿ(((ĉ1, ĉ2) + (ċ1, +ċ2))(Ċ1, Ċ2) 2 (ĉ1, ĉ2)(Ċ1, Ċ2)) 
             = ÿ((ĉ1 + ċ1)Ċ1 2 ĉ1Ċ1, (ĉ2 + ċ2)Ċ2 2 ĉ2Ċ2) 
             = þÿĉ {ÿ�((ĉ1 + ċ1)Ċ1 2 ĉ1Ċ1), 
                                                                                       ÿ�((ĉ2 + ċ2)Ċ2 2 ĉ2Ċ2)} 
            g þÿĉ {ÿ�(ċ1), ÿ�(ċ1)} 
            = ÿ(ċ1, ċ2) 
            = ÿ(ċ) . 
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Conversely, 

 Assume that ć is a cubic ideal of � × �. then ĉ = (ĉ1, ĉ2), Ċ = (Ċ1, Ċ2), 
 ċ = (ċ1, ċ2) * � × �. 

(i) þÿÿ {Ā�(ĉ1 2 Ċ1), Ā�(ĉ2 2 Ċ2)}  = ÿ(ĉ1 2 Ċ1, ĉ2 2 Ċ2) 
                 = ÿ((ĉ1, ĉ2) 2 (Ċ1, Ċ2)) 
      = ÿ(ĉ 2 Ċ) 
      g þÿÿ {ÿ(ĉ1, ĉ2) 2 ÿ(Ċ1, Ċ2)} 
                            = þÿÿ {þÿÿ{Ā�(ĉ1), Ā�(ĉ2)}, 
                                                                                      þÿÿ{Ā�(Ċ1), Ā�(Ċ2)} 
If Ā�(ĉ1 2 Ċ1) f Ā�(ĉ2 2 Ċ2), then Ā�(ĉ1) f Ā�(ĉ2),  Ā�(Ċ1) f Ā�(Ċ2),  
we get Ā�(ĉ1 2 Ċ1) g þÿÿ {Ā�(ĉ1), Ā�(Ċ1)}   

(ii) þÿĉ {ÿ�(ĉ1 2 Ċ1), ÿ�(ĉ2 2 Ċ2)}   =  ÿ(ĉ1 2 Ċ1, ĉ2 2 Ċ2) 
      =  ÿ((ĉ1, ĉ2) 2 (Ċ1, Ċ2)) 
      =  ÿ(ĉ 2 Ċ) 
      f þÿĉ { ÿ(ĉ), ÿ(Ċ)} 
      = þÿĉ {ÿ(ĉ1, ĉ2), ÿ(Ċ1, Ċ2)} 
                                       = þÿĉ {þÿĉ {ÿ�(ĉ1), ÿ�(ĉ2)}, 
                                                                                        max {ÿ�(Ċ1), ÿ�(Ċ2)}  
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If ÿ�(ĉ1 2 Ċ1) g ÿ�(ĉ2 2 Ċ2), then ÿ�(ĉ1) g ÿ�(ĉ2), ÿ�(Ċ1) g ÿ�(Ċ2),  
we get ÿ�(ĉ1 2 Ċ1) f  þÿĉ{ ÿ�(ĉ1), ÿ�(Ċ1)}.    
(iii)  þÿÿ {Ā�(Ċ1 + ĉ1 2 Ċ1), Ā�(Ċ2 + ĉ2 2 Ċ2)}  = ÿ(Ċ1 + ĉ1 2 Ċ1, Ċ2 + ĉ2 2 Ċ2) 
              = ÿ(Ċ1, Ċ2) + (ĉ1, ĉ2) 2 (Ċ1, Ċ2)) 
              = ÿ(Ċ + ĉ 2 Ċ) 
              g ÿ(ĉ) 
              = ÿ(ĉ1, ĉ2) 
              = þÿÿ {Ā�(ĉ1), Ā�(ĉ2)} 
If Ā�(Ċ1 + ĉ1 2 Ċ1) g Ā�(Ċ2 + ĉ2 2 Ċ2), then Ā�(ĉ1) g Ā�(ĉ2), 
 we get  Ā�(Ċ1 + ĉ1 2 Ċ1) g Ā�(ĉ1). 
(iv)  þÿĉ {ÿ�(Ċ1 + ĉ1 2 Ċ1), ÿ�(Ċ2 + ĉ2 2 Ċ2)}  = ÿ(Ċ1 + ĉ1 2 Ċ1, Ċ2 + ĉ2 2 Ċ2) 
              = ÿ(Ċ1, Ċ2) + (ĉ1, ĉ2) 2 (Ċ1, Ċ2)) 
              = ÿ(Ċ + ĉ 2 Ċ) 
              f ÿ(ĉ) 
              = ÿ(ĉ1, ĉ2) 
              = þÿĉ {ÿ�(ĉ1), ÿ�(ĉ2)} 
If ÿ�(Ċ1 + ĉ1 2 Ċ1) g ÿ�(Ċ2 + ĉ2 2 Ċ2), then ÿ�(ĉ1) g ÿ�(ĉ2),  
we get ÿ�(Ċ1 + ĉ1 2 Ċ1) f ÿ�(ĉ1). 
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(v) þÿÿ {Ā�(ĉ1Ċ1), Ā�(ĉ2Ċ2)}   = ÿ(ĉ1Ċ1, ĉ2Ċ2) 
     = ÿ((ĉ1, ĉ2)(Ċ1, Ċ2)) 
     = ÿ(ĉĊ) 
     g ÿ(Ċ) 
     = ÿ(Ċ1, Ċ2) 
     = þÿÿ{Ā�(Ċ1), Ā�(Ċ2)} 
If Ā�(ĉ1Ċ1) f Ā�(ĉ2Ċ2), then Ā�(ĉ1) f Ā�(ĉ2) and Ā�(Ċ1) f Ā�(Ċ2), 
 we get Ā�(ĉ1Ċ1) g Ā�(Ċ1).  
(vi) þÿĉ {ÿ�(ĉ1Ċ1), ÿ�(ĉ2Ċ2)}   = ÿ(ĉ1Ċ1, ĉ2Ċ2) 
     = ÿ((ĉ1, ĉ2)(Ċ1, Ċ2)) 
     = ÿ(ĉĊ) 
     f ÿ(Ċ) 
     = ÿ(Ċ1, Ċ2) 
     = þÿĉ{ÿ�(Ċ1), ÿ�(Ċ2)} 
If ÿ�(ĉ1Ċ1) g ÿ�(ĉ2Ċ2),then ÿ�(ĉ1) g ÿ�(ĉ2) and ÿ�(Ċ1) g ÿ�(Ċ2), 
we get ÿ�(ĉ1Ċ1) g ÿ�(Ċ1).  
(vii) þÿÿ{Ā�(ĉ1+ċ1)Ċ1 2 ĉ1Ċ1) , Ā�(ĉ2+ċ2)Ċ2 2 ĉ2Ċ2)} 
   = ÿ((ĉ1+ċ1)Ċ1 2 ĉ1Ċ1, (ĉ2+ċ2)Ċ2 2 ĉ2Ċ2) 
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   = ÿ(((ĉ1, ĉ2) + (ċ1, ċ2))(Ċ1, Ċ2) 2 (ĉ1, ĉ2)(Ċ1, Ċ2)) 
                                    = ÿ(ĉ + ċ)Ċ 2 ĉĊ) 
   g ÿ(ċ) 
   = ÿ(ċ1, ċ2) 
   = þÿÿ {Ā�(ċ1), Ā�(ċ2)} 
If Ā�((ĉ1+ċ1)Ċ1 2 ĉ1Ċ1) f  Ā�(ĉ2+ċ2)Ċ2 2 ĉ2Ċ2), then Ā�(ĉ1) f  Ā�(ĉ2) and Ā�(Ċ1) f  Ā�(Ċ2) and Ā�(ċ1) f  Ā�(ċ2) we get Ā�((ĉ1+ċ1)Ċ1 2 ĉ1Ċ1) g  Ā�(ċ1). 
(viii) þÿĉ{ÿ�((ĉ1+ċ1)Ċ1 2 ĉ1Ċ1) , ÿ�((ĉ2+ċ2)Ċ2 2 ĉ2Ċ2)} 
   = ÿ((ĉ1+ċ1)Ċ1 2 ĉ1Ċ1, (ĉ2+ċ2)Ċ2 2 ĉ2Ċ2) 
   = ÿ(((ĉ1, ĉ2) + (ċ1, ċ2))(Ċ1, Ċ2) 2 (ĉ1, ĉ2)(Ċ1, Ċ2)) 
                                    = ÿ((ĉ + ċ)Ċ 2 ĉĊ) 
   f ÿ(ċ) 
   = ÿ(ċ1, ċ2) 
   = þÿĉ {ÿ�(ċ1), ÿ�(ċ2)} 
If ÿ�((ĉ1+ċ1)Ċ1 2 ĉ1Ċ1) f  ÿ�(ĉ2+ċ2)Ċ2 2 ĉ2Ċ2), then ÿ�(ĉ1) g  ÿ�(ĉ2) and ÿ�(Ċ1) g  ÿ�(Ċ2) and ÿ�(ċ1) g  ÿ�(ċ2) we get ÿ�((ĉ1+ċ1)Ċ1 2 ĉ1Ċ1)  f ÿ�(ċ1). 
Therefore, ć is a cubic ideal of �. 
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CHAPTER – III 

CUBIC BI-IDEALS IN NEAR RINGS 

Definition : 3.1 

 A cubic set � = < Ā,� > is a cubic sub near-ring of � if for all ĉ, Ċ * �. 

(i)  Ā(ĉ 2 Ċ) g þÿÿ {Ā(ĉ), Ā(Ċ)} 
 �(ĉ 2 Ċ) f þÿĉ {�(ĉ),�(Ċ)} 
(ii) Ā(ĉĊ) g þÿÿ{Ā(ĉ)) , Ā(Ċ)} 
 �(ĉĊ) f þÿĉ{�(ĉ)) , �(Ċ)} 
Definition : 3.2 

 A cubic set � = < Ā,� > is � is a cubic bi-ideal of � if for all ĉ, Ċ, ċ * �. 

(i)  Ā(ĉ 2 Ċ) g þÿÿ {Ā(ĉ), Ā(Ċ)} 
 �(ĉ 2 Ċ) f þÿĉ {�(ĉ),�(Ċ)} 
(ii) Ā(ĉĊċ) g þÿÿ{Ā(ĉ) , Ā(ċ)} 
 �(ĉĊċ) f þÿĉ{�(ĉ)) , �(ċ)} 
Example : 3.3 

 Let � = {ÿ, Ā, ā, Ă} be the Klein’s four group. Define addition and 

multiplication in N as follows, 
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Then (�,+. , ) is a near-ring. 

Define a cubic set � = < Ā,� >, by 

Ā(ÿ) = [0.8, 0.9],  Ā(Ā) = [0.6, 0.7],  
Ā(ā) = [0.5, 0.5] = Ā(Ă) is an interval-valued fuzzy bi-ideal of � and  

�(ÿ) = 0.2, �(Ā) = 0.6, �(ā) = 0.8 = �(Ă) is a fuzzy bi-ideal of N. 

Thus � = < Ā,� > is a cubic bi-ideal of N. 

Definition : 3.4 

 Let � = < Ā�, �� > be cubic ideals of near-rings ��, for ÿ = 1,2,3, & ÿ. Then the 

cubic direct product of ��  (1,2,3, &ÿ) is a function 

 (Ā1 × Ā2 × &&& × Ā�): �1 × �2 × &&&× ��  → �[0,1], 
 (�1 × �2 ×&&&× ��): �1 × �2 × &&&× ��  → �[0,1] defined by  

(Ā1 × Ā2 × &&& × Ā�) (ĉ1 × ĉ2 × &&& × ĉ�) = þÿÿ{Ā1(ĉ1) , Ā2(ĉ2)&. Ā�(ĉ�)}        
and  (�1 × �2 × &&& × ��) (ĉ1 × ĉ2 ×&&& × ĉ�)                                                
                                                                           =   þÿĉ{�1(ĉ1) , �2(ĉ2)& .��(ĉ�)} 
 

+ a b c d 

a a b c d 

b b a d c 

c c d b a 

d d c a b 

 

. a b c d 

a a a a a 

b a a a a 

c a a a a 

d a b c d 
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Definition : 3.5 

 Let � = < Ā,� > be a cubic set of �. Then the strongest cubic relation on � is 

a cubic relation ÿ with respect to � = < Ā,� > given by  ÿ(ĉ, Ċ) = {((ĉ, Ċ), Ā(ĉ, Ċ), ā(ĉ, Ċ))/ĉ, Ċ * �}, where Ā is an interval-valued fuzzy 

relation with respect to Ā defined by Ā(ĉ, Ċ) = þÿÿ {Ā(ĉ), Ā(Ċ)} and ā is a fuzzy 

relation with respect to � defined by ā(ĉ, Ċ) = þÿĉ {�(ĉ),�(Ċ)}. 
Theorem : 3.6 

 Every cubic bi-ideal in a regular near-ring � is a cubic sub near-ring �. 

Proof: 

 Let � = < Ā,� > be a cubic bi-ideal of � and ÿ, Ā * �. Since � is regular, 

there exist ĉ * � such that ÿ = ÿĉÿ. Then 

 Ā(ÿĀ) = Ā((ÿĉÿ)Ā) 
  = Ā(ÿ(ĉÿ)Ā) 
  g þÿÿ {Ā(ÿ), Ā(Ā) and  

 �(ÿĀ) = �((ÿĉÿ)Ā) 
  = �(ÿ(ĉÿ)Ā) 
  f þÿĉ{�(ÿ),�(Ā)} 
Thus � = < Ā,� > is a cubic sub bi-ideal of �. 

Theorem : 3.7 

 Let � be a strongly regular near-ring. If � = < Ā,� > is a cubic bi-ideal in �. 

Then Ā(ĉ) = Ā(ĉ2) and �(ĉ) =  �(ĉ2) for all ĉ * �. 
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Proof: 

 Let � = < Ā,� > be a cubic bi-ideal of � and ĉ * �. Since � is strongly 

regular, there exist Ċ * � such that ĉ = ĉ2Ċĉ2. Then 

Ā(ĉ)   = Ā(ĉ2Ċĉ2) 
  g þÿÿ{Ā(ĉ2), Ā(ĉ2)} 
             = Ā(ĉ2) 
  g þÿÿ {Ā(ĉ), Ā(ĉ)} 

  = Ā(ĉ) 
�(ĉ)    = �(ĉ2Ċĉ2) 
 f þÿĉ{�(ĉ2), �(ĉ2)} 
            = �(ĉ2) 
 f þÿĉ {�(ĉ),�(ĉ)} 

 = �(ĉ) 
Hence, Ā(ĉ) = Ā(ĉ2) and �(ĉ) =  �(ĉ2). 
Theorem : 3.8 

 The direct product of cubic bi-ideals of near-rings is also a cubic bi-ideal of 

near-ring. 

Proof : 

 Let �� = < Ā�, �� > be cubic bi-ideals of near-rings ��, for ÿ = 1,2, &&&ÿ 
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 Let ĉ = (ĉ1, ĉ2, &&&& . ĉ�), Ċ = (Ċ1, Ċ2, &&&& . Ċ�) and  

ċ = (ċ1, ċ2, &&&& . ċ�) * �1 × �2 × &&& ��  

Ā�(ĉ 2 Ċ)   = Ā�((ĉ1, ĉ2, &&&& . ĉ�) 2 (Ċ1, Ċ2, &&&& . Ċ�)) 
        = Ā�(ĉ1 2 Ċ1, ĉ2 2 Ċ2, &&& . ĉ� 2 Ċ�) 
        = þÿÿ {Ā1(ĉ1 2 Ċ1), Ā2(ĉ2 2 Ċ2), &&&Ā�(ĉ� 2 Ċ�)} 
                   g þÿÿ {þÿÿ{Ā1(ĉ1), Ā1(Ċ1)} , þÿÿ{Ā2(ĉ2), Ā2(Ċ2)},&&&.    
                                                                                 þÿÿ{Ā�(ĉ�), Ā�(Ċ�)} 
                   = þÿÿ {þÿÿ{Ā1(ĉ1), Ā2(ĉ2), &&&Ā�(ĉ�)}, 
                                                        þÿÿ{Ā1(Ċ1), Ā2(Ċ2)},&&& . Ā�(Ċ�)}  
                   = þÿÿ {(Ā1 × Ā2 × &&&× Ā�)(ĉ1, ĉ2, &&&& . ĉ�), 
                                                    (Ā1 × Ā2 × &&&× Ā�)(Ċ1, Ċ2, &&&& . Ċ�)} 
Ā�(ĉ 2 Ċ)   = þÿÿ{ Ā1(ĉ), Ā1(Ċ)} 
��(ĉ 2 Ċ)  = ��((ĉ1, ĉ2, &&&& . ĉ�) 2 (Ċ1, Ċ2, &&&& . Ċ�))  

        = ��((ĉ1 2 Ċ1), (ĉ2 2 Ċ2), &&&&(ĉ� 2 Ċ�))  

        = þÿĉ {�1(ĉ1 2 Ċ1), �2(ĉ2 2 Ċ2),&&&&��(ĉ� 2 Ċ�)} 
        f þÿĉ {þÿĉ{�1(ĉ1), �1(Ċ1)} ,þÿĉ{�2(ĉ2),�2(Ċ2)},&&&.,   
                                                                                      þÿĉ{��(ĉ�),��(Ċ�)} 
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                    = þÿĉ {þÿĉ{�1(ĉ1),�2(ĉ2), &&&��(ĉ�)},  
                                                              þÿĉ{�1(Ċ1),�2(Ċ2)}, &&& .��(Ċ�)}  
                   = þÿĉ {(�1 × �2 ×&&&× ��)(ĉ1, ĉ2, &&&& . ĉ�), 
                                                   (�1 × �2 ×&&&× ��)(Ċ1, Ċ2, &&&& . Ċ�)}  
��(ĉ 2 Ċ)  = þÿĉ {��(ĉ),��(Ċ) 
Ā�(ĉĊċ)      = Ā�((ĉ1, ĉ2, &&&& . ĉ�)(Ċ1, Ċ2, &&&& . Ċ�)(ċ1, ċ2, &&&& . ċ�)) 
        = Ā�(ĉ1Ċ1ċ1, ĉ2Ċ2ċ2, &&& . ĉ�Ċ�ċ�) 
        = þÿÿ {Ā1(ĉ1Ċ1ċ1), Ā2(ĉ2Ċ2ċ2), &&&Ā�(ĉ�Ċ�ċ�)}  

        g þÿÿ {þÿÿ {Ā1(ĉ1), Ā1(ċ1)},þÿÿ{Ā2(ĉ2), Ā2(ċ2)} , &&&,  
                                                                                             þÿÿ {Ā�(ĉ�), Ā�(ċ�)}} 

        = þÿÿ {(Ā1 × Ā2 × &&× Ā�) (ĉ1, ĉ2, &&&& . ĉ�), 
                                              (Ā1 × Ā2 × &&× Ā�) (ċ1, ċ2, &&&& . ċ�)} 
Ā�(ĉĊċ)      = þÿÿ {Ā�(ĉ), Ā�(ĉ)} 
��(ĉĊċ)    = ��((ĉ1, ĉ2, &&& . . ĉ�)(Ċ1, Ċ2, &&& . . Ċ�)(ċ1, ċ2, &&& . . ċ�) 
       = ��(ĉ1Ċ1ċ1, ĉ2Ċ2ċ2, &&& . . ĉ�Ċ�ċ�) 
       = þÿĉ {�1(ĉ1Ċ1ċ1),�2(ĉ2Ċ2ċ2), &&& ��(ĉ�Ċ�ċ�)} 
       f þÿĉ {þÿĉ {�1(ĉ1), �1(ċ1)},þÿĉ{�2(ĉ2),�2(ċ2)} , &&& 

                                                                                         þÿĉ{��(ĉ�),��(ċ�)}} 
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       = þÿĉ{(�1 × �2 ×&& .× ��)(ĉ1, ĉ2, &&& . . ĉ�), 
                                                       (�1 × �2 ×&& .× ��) (ċ1, ċ2, &&& . . ċ�)  
��(ĉĊċ)    = þÿĉ {��(ĉ), ��(ċ)}  

Hence, the direct product of cubic bi-ideals of near-rings is also a cubic bi-ideal of 

near-ring. 

Theorem : 3.9 

   Let � = < Ā,� > be a cubic set of a near-ring � and  ÿ(ĉ, Ċ) = {((ĉ, Ċ), Ā(ĉ, Ċ), ā(ĉ, Ċ))|ĉ, Ċ * �} be a strongest cubic relation with 

respect to ÿ. Then � = < Ā, � > is a cubic bi-ideal of � if and only if ÿ is a cubic       

bi-ideal of � × �. 

Proof: 

 Assume that � = < Ā,� > is a cubic bi-ideal of �. 

Let ĉ1, ĉ2, Ċ1, Ċ2, ċ1, ċ2 * �.  

Then ĉ = (ĉ1, ĉ2), Ċ = (Ċ1, Ċ2), ċ = (ċ1, ċ2) *  � × � 

We have 

Ā(ĉ 2 Ċ)  =  Ā((ĉ1, ĉ2) 2 (Ċ1, Ċ2)) 
  =  Ā(ĉ1 2 Ċ1, ĉ2 2 Ċ2)  

  = þÿÿ {Ā(ĉ1 2 Ċ1), Ā(ĉ2 2 Ċ2)} 
  g þÿÿ {þÿÿ{Ā(ĉ1), Ā(Ċ1)} ,þÿÿ{Ā(ĉ2), Ā(Ċ2)} 
  = þÿÿ {þÿÿ{Ā(ĉ1), Ā(ĉ2)} ,þÿÿ{Ā(Ċ1), Ā(Ċ2)} 
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  = þÿÿ { Ā(ĉ1, ĉ2), Ā(Ċ1, Ċ2)} 
  = þÿÿ { Ā(ĉ), Ā(Ċ)}  

ā(ĉ 2 Ċ)  =  ā((ĉ1, ĉ2), (Ċ1, Ċ2)) 
  =  ā(ĉ1 2 Ċ1, ĉ2 2 Ċ2)  

  = þÿĉ {�(ĉ1 2 Ċ1),�(ĉ2 2 Ċ2)} 
  f þÿĉ {þÿĉ{�(ĉ1), �(Ċ1)} ,þÿĉ{�(ĉ2), �(Ċ2)}} 
  = þÿĉ {þÿĉ{�(ĉ1), �(ĉ2)} ,þÿĉ{�(Ċ1), �(Ċ2)}} 
  = þÿĉ { ā(ĉ1, ĉ2), ā(Ċ1, Ċ2)} 
  = þÿĉ { ā(ĉ), ā(Ċ)}  

Ā(ĉĊċ)  =  Ā((ĉ1, ĉ2)(Ċ1, Ċ2)(ċ1, ċ2)) 
  =  Ā(ĉ1Ċ1ċ1, ĉ2Ċ2ċ2)  
  = þÿÿ {Ā(ĉ1Ċ1ċ1), Ā(ĉ2Ċ2ċ2)} 
  g þÿÿ {þÿÿ{Ā(ĉ1), Ā(ċ1)} ,þÿÿ{Ā(ĉ2), Ā(ċ2)} 
  = þÿÿ {þÿÿ{Ā(ĉ1), Ā(ĉ2)} ,þÿÿ{Ā(ċ1), Ā(ċ2)} 
  = þÿÿ { Ā(ĉ1, ĉ2), Ā(ċ1, ċ2)} 
  = þÿÿ { Ā(ĉ), Ā(ċ)}  

ā(ĉĊċ)  =  ā((ĉ1, ĉ2)(Ċ1, Ċ2)(ċ1, ċ2)) 
  =  ā(ĉ1Ċ1ċ1, ĉ2Ċ2ċ2)  
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  = þÿĉ {�(ĉ1Ċ1ċ1),�(ĉ2Ċ2ċ2)} 
  f þÿĉ {þÿĉ{�(ĉ1), �(ċ1)} ,þÿĉ{�(ĉ2), �(ċ2)} 
  = þÿĉ {þÿĉ{�(ĉ1), �(ĉ2)} ,þÿĉ{�(ċ1), �(ċ2)} 
  = þÿĉ { ā(ĉ1, ĉ2), ā(ċ1, ċ2)} 
  = þÿĉ { ā(ĉ), ā(ċ)}  

Hence ÿ is a cubic bi-ideal of � ×�. 

Conversely 

 Assume that ÿ is a cubic bi-ideal of � × �, then 

ĉ = (ĉ1, ĉ2), Ċ = (Ċ1, Ċ2), ċ =(ċ1, ċ2) * � × � 

þÿÿ { Ā(ĉ1 2 Ċ1), Ā(ĉ2 2 Ċ2)}  = Ā(ĉ1 2 Ċ1, ĉ2 2 Ċ2) 
     = Ā((ĉ1, ĉ2) 2 (Ċ1, Ċ2)) 
     = Ā(ĉ 2 Ċ) 
     g þÿÿ {Ā(ĉ), Ā(Ċ)} 
     = þÿÿ {Ā(ĉ1, ĉ2), Ā(Ċ1, Ċ2)} 
     = þÿÿ {þÿÿ{ Ā(ĉ1), Ā(ĉ2)}, 
                                                                                       þÿÿ{ Ā(ċ1), Ā(ċ2)}} 
If  Ā(ĉ1 2 Ċ1) f Ā(ĉ2 2 Ċ2), then Ā(ĉ1) f Ā(ĉ2) and Ā(Ċ1) f Ā(Ċ2)  
we get Ā(ĉ1 2 Ċ1) g þÿÿ { Ā(ĉ1), Ā(Ċ1)} 
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þÿĉ {�((ĉ1 2 Ċ1),�(ĉ2 2 Ċ2)}  =  ā(ĉ1 2 Ċ1, ĉ2 2 Ċ2) 
     =  ā((ĉ1, ĉ2) 2 (Ċ1, Ċ2)) 
     =  ā(ĉ 2 Ċ) 
     f þÿĉ {ā(ĉ), ā(Ċ)} 
                = þÿĉ {ā(ĉ1, ĉ2), ā(Ċ1, Ċ2)}  
                = þÿĉ {þÿĉ{�(ĉ1), �(ĉ2)}, 
                                                                                 þÿĉ {�(Ċ1), �(Ċ2)}} 
If �(ĉ1 2 Ċ1) g �(ĉ2 2 Ċ2), then �(ĉ1) g �(ĉ2) and �(Ċ1) g �(Ċ2)  
we get �(ĉ1 2 Ċ1) f þÿĉ { �(ĉ1), �(Ċ1)}. 
þÿÿ { Ā(ĉ1Ċ1ċ1), Ā(ĉ2Ċ2ċ2)}   = Ā(ĉ1Ċ1ċ1, ĉ2Ċ2ċ2) 
     = Ā((ĉ1, ĉ2)(Ċ1, Ċ2)(ċ1, ċ2)) 
     = Ā(ĉĊċ) 
     g þÿÿ {Ā(ĉ), Ā(ċ)} 
     = þÿÿ {Ā(ĉ1, ĉ2), Ā(ċ1, ċ2)} 
     = þÿÿ {þÿÿ{Ā(ĉ1), Ā(ĉ2)} ,þÿÿ{Ā(ċ1), Ā(ċ2)}} 
If Ā(ĉ1Ċ1ċ1) f Ā(ĉ2Ċ2ċ2), then Ā(ĉ1) f  Ā(ĉ2), Ā(Ċ1) f  Ā(Ċ2) and Ā(ċ1) f  Ā(ċ2) 
we get Ā(ĉ1Ċ1ċ1) g þÿÿ { Ā(ĉ1), Ā(ċ1)} 
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þÿĉ { �(ĉ1Ċ1ċ1),�(ĉ2Ċ2ċ2)}  =  ā(ĉ1Ċ1ċ1, ĉ2Ċ2ċ2) 
     =  ā(ĉ1, ĉ2)(Ċ1, Ċ2)(ċ1, ċ2) 
     =  ā(ĉĊċ) 
     f þÿĉ {ā(ĉ), ā(ċ)} 
     = þÿĉ {ā(ĉ1, ĉ2), ā(ċ1, ċ2)} 
               = þÿĉ {þÿĉ{ �(ĉ1), �(ĉ2)}, 
                                                                                     þÿĉ {�(ċ1),�(ċ2)} 
If �(ĉ1Ċ1ċ1) g �(ĉ2Ċ2ċ2), then �(ĉ1) g �(ĉ2), �(Ċ1) g �(Ċ2) and  

�(ċ1) g �(ċ2).  
We get  �(ĉ1Ċ1ċ1) f þÿĉ {�(ĉ1), �(ċ2)} 
Hence � = < Ā, � > is a cubic bi-ideal of �. 

Theorem : 3.10 

 If � = < Ā,� > be any cubic set of �. Then � = < Ā,� > is a cubic bi-ideal 

of � if and only if the cubic level set  �(�;  ą, ÿ) is a bi-ideal of �, when it is non-

empty. 

Proof: 

 Assume that � = < Ā,� > be a cubic bi-ideal of �. 

Let ĉ, Ċ, ċ *  �(�;  ą, ÿ) for all  ą * �[0,1] and ÿ * [0,1] 
Then Ā(ĉ) g ą, Ā(Ċ) g ą, Ā(ċ) g ą and �(ĉ) f ÿ, �(Ċ) f ÿ, �(ċ) f ÿ 
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Now suppose ĉ, Ċ *  �(�;  ą, ÿ) then by definition of cubic bi-ideal 

 Ā(ĉ 2 Ċ) g þÿÿ {Ā(ĉ), Ā(Ċ)} g þÿÿ {ą, ą} g ą and  

 �(ĉ 2 Ċ) f þÿĉ {�(ĉ),�(Ċ)} f þÿĉ {ÿ, ÿ} f ÿ  

Hence ĉ 2 Ċ * �(�;  ą, ÿ)  
Suppose, ĉ, ċ * �(�;  ą, ÿ) and Ċ * � then 

 Ā(ĉĊċ) g þÿÿ {Ā(ĉ), Ā(ċ)} g þÿÿ {ą, ą} g ą and  

 �(ĉĊċ) f þÿĉ {�(ĉ),�(ċ)} f þÿĉ {ÿ, ÿ} f ÿ  

Hence ĉĊċ * �(�;  ą, ÿ) 
Therefore, �(�;  ą, ÿ) is a bi-ideal of �. 

Conversely, 

 Let ą * �[0,1] and ÿ * [0,1] be such that �(�; ą, ÿ) b ∅ and �(�; ą, ÿ) is a bi-

ideal of �.  

Suppose we assume that 

 Ā(ĉ 2 Ċ) s þÿÿ {Ā(ĉ), Ā(Ċ)}  (or) 

 �(ĉ 2 Ċ) r þÿĉ{�(ĉ), �(Ċ)} 
 If Ā(ĉ 2 Ċ) s þÿÿ {Ā(ĉ), Ā(Ċ)} then there exist ą1 * �[0,1] such that 

Ā(ĉ 2 Ċ) < ą1 < þÿÿ { Ā(ĉ), Ā(Ċ)} hence ĉ, Ċ * �(�; ą1, þÿĉ{ �(ĉ),�(Ċ)}),  
 but ĉ 2 Ċ + �(�; ą1, þÿĉ { �(ĉ),�(Ċ)} which is contradiction 

 If �(ĉ 2 Ċ)  r þÿĉ{�(ĉ),�(Ċ)} then there exist ÿ1 * [0,1] such that 
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�(ĉ 2 Ċ) > ÿ1 > þÿĉ {�(ĉ), �(Ċ)} hence ĉ, Ċ * �(�;þÿÿ{Ā(ĉ), Ā(Ċ)} , ÿ1),  
but ĉ 2 Ċ + �(�;þÿÿ{Ā(ĉ), Ā(Ċ)} , ÿ1) which is contradiction 

Hence  Ā(ĉ 2 Ċ) g þÿÿ{Ā(ĉ), Ā(Ċ)}and  

 �(ĉ 2 Ċ) f þÿĉ {�(ĉ),�(Ċ)} 
Suppose assume that 

 Ā(ĉĊċ) s þÿÿ {Ā(ĉ), Ā(ċ)}  (or) 

 �(ĉĊċ) r þÿĉ{�(ĉ),�(ċ)} 
 If Ā(ĉĊċ) s þÿÿ {Ā(ĉ), Ā(ċ) then there exist ą1 * �[0,1] such that 

Ā(ĉĊċ) < ą1 < þÿÿ { Ā(ĉ), Ā(ċ)} hence ĉ, ċ * �(�; ą1, þÿĉ{ �(ĉ),�(Ċ)}),  
but ĉĊċ + �(�; ą1, þÿĉ { �(ĉ),�(ċ)} which is contradiction. 

 If �(ĉĊċ) r þÿĉ {�(ĉ), �(ċ) then there exist ÿ1 * �[0,1] such that 

�(ĉĊċ)  >  ÿ1  > þÿĉ { �(ĉ),�(ċ)} hence  ĉ, ċ * �(�;þÿÿ{ Ā(ĉ), Ā(Ċ)}  
but ĉĊċ + �(�;þÿÿ {Ā(ĉ), Ā(ċ)} which is contradiction. 

Hence Ā(ĉĊċ) g þÿÿ {Ā(ĉ), Ā(ċ)}  

 �(ĉĊċ) f þÿĉ{�(ĉ),�(ċ)} 
Therefore � = < Ā,� > is a cubic bi-ideal of �. 

Theorem : 3.11 

 Let � be a non-empty subset of �. Then � is a bi-ideal of � if and only if the 

characteristic cubic set  �� = < Ā�� , ��� > of � in � is a cubic bi-ideal of �. 
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Proof: 

 Assume that � is a bi-ideal of �.      

Let ĉ, Ċ * �.  

Suppose that  Ā��(ĉ 2 Ċ)  <  þÿÿ {Ā��(ĉ), Ā��(Ċ)} and 

           ���(ĉ 2 Ċ)  >  þÿĉ {���(ĉ),���(Ċ)} 
 It follows that  Ā��(ĉ 2 Ċ) = 0, þÿÿ{Ā��(ĉ), Ā��(Ċ)} = 1 

                        ���(ĉ 2 Ċ) = 1, þÿĉ{���(ĉ), ���(Ċ)} = 0 

This implies that ĉ, Ċ * � but ĉ 2 Ċ + � a contradiction to � being a near-ring of �. 

Suppose that  Ā��(ĉĊċ) < þÿÿ{Ā��(ĉ), Ā��(ċ)} ÿÿĂ 

                       ���(ĉĊċ) > þÿĉ{���(ĉ),���(ċ)} 
If follows that  Ā��(ĉĊċ) = 0, þÿÿ{Ā��(ĉ), Ā��(ċ)} = 1 

                        ���(ĉĊċ) = 1, þÿĉ{���(ĉ), ���(ċ)} = 0 

This implies that ĉ, ċ * � but ĉĊċ + � a contradiction to �. 

Hence �� = < Ā�� , ��� > is a cubic bi-ideal of �. 

Conversely, 

Assume that �� = < Ā�� , ��� > is a cubic bi-ideal of �, for any subset � of �. 

Let ĉ, Ċ * � then  Ā��(ĉ) = Ā��(Ċ) = 1 and ���(ĉ) = ���(Ċ) = 0 

Since �� is a cubic bi-ideal of N. 
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 Ā��(ĉ 2 Ċ)  g  þÿÿ {Ā��(ĉ), Ā��(Ċ) = 1 ÿÿĂ 

 ���(ĉ 2 Ċ)  f  þÿĉ{���(ĉ),���(Ċ)} = 0  
This implies that ĉ 2 Ċ * � 

Let ĉ, ċ * � and Ċ * � then 

Ā��(ĉ) = Ā��(ċ) = 1 and ���(ĉ) = ���(ċ) = 0 

 Ā��(ĉĊċ) g þÿÿ {Ā��(ĉ), Ā��(ċ)} and 

 ���(ĉĊċ) f þÿĉ{���(ĉ),���(ċ)} = 0  

This implies that ĉĊċ * � 

Hence � is a bi-ideal of �. 

Theorem : 3.12 

 If � = < Ā,� > is a cubic bi-ideal of N, then �ā = < (Ā)ā, (�)ā > is also a 

cubic bi-ideal of N. 

Proof: 

 Let ĉ, Ċ * � and � = < Ā,� > is a cubic bi-ideal of N, then 

(i) (Ā)ā(ĉ 2 Ċ)     = 1 2 (Ā 2 Ċ) 
   f 1 2þÿÿ {Ā(ĉ), Ā(Ċ)} 
   = þÿĉ {1 2 Ā(ĉ), 1 2 Ā(Ċ)} 
   = þÿĉ {(Ā)ā(ĉ), (Ā)ā(Ċ)} and 

 (�)ā(ĉ 2 Ċ)    = 1 2 �(ĉ 2 Ċ) 
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   g 1 2þÿĉ {�(ĉ),�(Ċ)} 
   = þÿÿ {1 2 �(ĉ), 1 2 �(Ċ)} 
   = þÿÿ {(�)ā(ĉ), (�)ā(Ċ)}  
(ii) (Ā)ā(ĉĊċ)       = 1 2 Ā(ĉĊċ) 
   f 1 2þÿÿ {Ā(ĉ), Ā(ċ)} 
   = þÿĉ {1 2 Ā(ĉ), 1 2 Ā(ċ)} 
   = þÿĉ {(Ā)ā(ĉ), (Ā)ā(ċ)}  
 (�)ā(ĉĊċ)       = 1 2 �(ĉĊċ) 
   g 1 2þÿĉ {�(ĉ),�(ċ)} 
   = þÿÿ {1 2 �(ĉ), 1 2 �(ċ)} 
   = þÿÿ {(�)ā(ĉ), (�)ā(ċ)}  
Therefore, �ā = < (Ā)ā , (�)ā > is a cubic bi-ideal of �. 
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CHAPTER – IV 

CUBIC WEAK BI-IDEALS OF NEAR RINGS 

Definition : 4.1 

 A cubic set � = < Ā,� >  of � is called the cubic subgroup of �, if  

a)  Ā(ĉ 2 Ċ) g þÿÿ {Ā(ĉ), Ā(Ċ)}  

b)  �(ĉ 2 Ċ) f þÿĉ {�(ĉ),�(Ċ)}   ∀ ĉ, Ċ * �. 

Definition : 4.2 

 A cubic subgroup � = < Ā,� >  of � is called the cubic weak bi-ideal of �, if  

a)  Ā(ĉĊċ) g þÿÿ {Ā(ĉ), Ā(Ċ), Ā(ċ)}  

b)  �(ĉĊċ) f þÿĉ {�(ĉ),�(Ċ),�(ċ)}   ∀ ĉ, Ċ, ċ * �. 

Example : 4.3 

 Let � = {ÿ, Ā, ā, Ă} be a near-ring with two binary operations + and . are 

defined as follows: 

 

 

 

 

Then (�,+, . ) is a near-ring. 

Let Ā ∶ � → �[0,1] be an interval valued fuzzy subset defined by Ā(ÿ) = [0.8, 0.9],  Ā(Ā) = [0.6, 0.7]  

+ a b c d 

a a b c d 

b b a d c 

c c d b a 

d d c a b 

 

. a b c d 

a a a a a 

b a a a a 

c a a a a 

d a b c d 
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and Ā(ā) = [0.4, 0.5] = Ā(Ă). Then Ā is an interval valued fuzzy weak bi-ideal of �. 

Let � ∶ � → [0,1] be a fuzzy subset defined by �(ÿ) = 0.2, �(Ā) = 0.4 and  

�(ā) = 0.8 = �(Ă).  Then � is a fuzzy weak bi-ideal of R. 

Hence � = (Ā,�) is a cubic weak bi-ideal of �. 

Definition : 4.4 

 Let �� be cubic weak bi-ideals of near-rings ��, for ÿ = 1,2, & ÿ. Then the cubic 

direct product of ��(ÿ = 1,2, & ÿ) is a function  

Ā1 × Ā2 ×&× Ā�: �1 × �2 ×,&�� → �[0,1],  
�1 × �2 × &× ��: �1 × �2 ×,&�� → [0,1] defined by 

(Ā1 × Ā2 × &× Ā�)(ĉ1, ĉ2, & . ĉ�) = þÿÿ {Ā1(ĉ1), Ā2(ĉ2), & Ā�(ĉ�)} and  

(�1 × �2 ×&× ��)(ĉ1, ĉ2, & . ĉ�) = þÿĉ {�1(ĉ1), �2(ĉ2),&��(ĉ�)}  
Definition : 4.5 

 Let �1 = < Ā,� >  and �2 = < Ā, � >  be two cubic subsets of R. Then �1�2 

is cubic subsets of R defined by: 

(�1�2)(ĉ) = {  
  (Ā1Ā2)(ĉ) = {ĄĆāý=þÿþÿÿ{Ā(Ċ), Ā(ċ)}   ÿĄ ĉ = Ċċ ∀ĉ, Ċ, ċ * �[0, 0]          Āą/ăăĈÿĄă  
(�1�2)(ĉ) =  { ÿÿĄý=þÿþÿĉ{�(Ċ),�(ċ)}   ÿĄ ĉ = Ċċ ∀ĉ, Ċ, ċ * �1          Āą/ăăĈÿĄă  

Theorem : 4.6 

 Let � = < Ā,� >  be a cubic subgroup of R. Then � = < Ā,� >  is a cubic 

weak bi-ideal of R if and only if ��� ⊑ �. (ÿ. ă. , ĀĀĀ ¦ Ā ÿÿĂ ��� § �) 
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Proof: 

 Assume that � = < Ā,� >  is a cubic weak bi-ideal of R. 

 Let ĉ, Ċ, ċ, ā, Ă * � such that ĉ = Ċċ and Ċ = āĂ. Then 

  ĀĀĀ(ĉ)  = {þÿÿ {(ý=þÿ��ý ĀĀ)(Ċ), Ā(ċ)}} 
     = {þÿÿ { þÿÿ {Ā(ā), Ā(Ă), Ā(ċ)}}þ=ýþ��ýý=þÿ��ý

 

     =  ý=þÿ��ý  {þÿÿ {þÿÿ {þ=ýþ��ý Ā(ā), Ā(Ă), Ā(ċ)}}  
     =  {þÿÿ{Ā(ā), Ā(Ă), Ā(ċ)}}ý=ýþÿ��ý

 

     f  Ā(āĂċ)ý=ýþÿ��ý
 

     = Ā(ĉ) 
If ĉ cannot be expressed as ĉ = Ċċ then ĀĀĀ(ĉ) = 0 f Ā(ĉ). 
In both cases ĀĀĀ ¦ Ā. 

  ���(ĉ)  = {þÿĉ {(ý=þÿ��� ��)(Ċ),��(ċ)}} 
     = {þÿĉ { þÿĉ {�(ā),�(Ă),�(ċ)}}þ=ýþ���ý=þÿ���

 

     =  ý=þÿ���  {þÿĉ {þÿĉ{þ=ýþ��� �(ā),�(Ă),�(ċ)}}  

     =  {þÿĉ{�(ā),�(Ă),�(ċ)}}ý=ýþÿ���
 

     g  �(āĂċ)ý=ýþÿ��� 
 

     = �(ĉ) 
If ĉ cannot be expressed as ĉ = Ċċ then ���(ĉ) = 1 > �(ĉ). 
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In both cases ��� § �. 

Hence ��� ⊑ �. 
Conversely, 

 Assume that ��� ⊑ � holds. 

To prove that � =  < Ā,� > is a cubic weak bi-ideal of R. 

For any ĉ, Ċ, ċ, ÿ * � such that ÿ = ĉĊċ then 

 Ā(ĉĊċ)  = Ā(ÿ) g (ĀĀĀ)(ÿ) 
   =  ÿ=Āā��ý þÿÿ {(ĀĀ)(Ā), Ā(ā)}  

   =  ÿ=Āā��ý {þÿÿ { þÿÿ{Ā(ā), Ā(Ă)} , Ā(ā)}}Ā=ýþ��ý
   

   =  ÿ=ýþā��ý  {þÿÿ{Ā(ā), Ā(Ă)} , Ā(ā)} 
 Ā(ĉĊċ) g þÿÿ {Ā(ĉ), Ā(Ċ), Ā(ċ)} 
 �(ĉĊċ) = �(ÿ) f (���)(ÿ)  
   =  ÿ=Āā��� þÿĉ {(��)(Ā),�(ā)}  

   =  ÿ=Āā��� {þÿĉ { þÿĉ {�(ā), �(Ă),�(ā)}}Ā=ýþ���  

   =  ÿ=ýþā��� {þÿĉ {(�(ā),�(Ă),�(ā)}  

            �(ĉĊċ)            f þÿĉ {�(ĉ),�(ĉ), �(ĉ)} 
Hence � = < Ā, � >  is a cubic weak bi-ideal of R. 
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Theorem : 4.7 

 Let �1and �2 be two cubic weak bi-ideal of R then the product �1�2 is a cubic 

weak bi-ideals of R. 

Proof: 

 Let �1 =  < Ā1, �1 >  and �2 = < Ā2, �2 > be two cubic weak bi-ideals of R. 

Since Ā1 and Ā2 are interval-valued fuzzy weak bi-ideals of R then 

(Ā1Ā2)(ĉ 2 Ċ)   =  ý2þ=ýþ    ��ý þÿÿ {Ā1(ā), Ā2(Ă)} 
                g  ý2þ=ý1þ12ý2þ2≤(ý12ý2)(þ12þ2)                     ��ý þÿÿ {Ā1(ā1 2 ā2), Ā2(Ă1 2 Ă2)} 
                g ĄĆāþÿÿ {þÿÿ {Ā1(ā1), Ā1(ā2)},þÿÿ {Ā2(Ă1)Ā2(Ă2)}} 
     =  ĄĆāþÿÿ {þÿÿ {Ā1(ā1), Ā2(Ă1)},þÿÿ {Ā1(ā2)Ā2(Ă2)}} 
                = þÿÿ {  þÿÿ {ý=ý1þ1��ý Ā1(ā1), Ā2(Ă1)},  þÿÿ {þ=ý2þ2��ý Ā1(ā2), Ā2(Ă2)}} 
                = þÿÿ {(Ā1Ā2)(ĉ), (Ā1Ā2)(Ċ)} 
It follows that (Ā1Ā2) is an interval-valued fuzzy subgroup of �. Further  

(Ā1Ā2)(Ā1Ā2)(Ā1Ā2)     = Ā1Ā2(Ā1Ā2Ā1)Ā2  
      ¦ Ā1Ā2(Ā2Ā2Ā2)Ā2 

      ¦ Ā1(Ā2Ā2Ā2) 
      ¦ (Ā1Ā2) 
Therefore (Ā1Ā2) is an interval-valued fuzzy weak bi-ideals of R. 

Since �1, �2 are fuzzy weak bi-ideals of R, then 
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(�1�2)(ĉ 2 Ċ) = þÿĉ {ý2þ=ýþ��� �1(ā), �2(Ă)} 
    f  ý2þ=ý1þ12ý2þ2≤(ý1−ý2)(þ12þ2)                         ��� þÿĉ {�1(ā1 2 ā2),�2(Ă1 2 Ă2)} 
    f ÿÿĄþÿĉ {þÿĉ{�1(ā1),�1(ā2)},þÿĉ {�2(Ă1)�2(Ă2)}} 
               = iÿĄþÿĉ {þÿĉ {�1(ā1),�2(Ă1)},þÿĉ {�1(ā2)�2(Ă2)}} 
  = þÿĉ {  þÿĉ {ý=ý1þ1��� �1(ā1),�2(Ă1)},  þÿĉ {þ=ý2þ2��� �1(ā2),�2(Ă2)}} 
              = þÿĉ {(�1�2)(ĉ), (�1�2)(Ċ)} 
It follows that (�1�2) is an interval-valued fuzzy subgroup of �. Further  

(�1�2)(�1�2)(�1�2)   = �1�2(�1�2�1)�2  
        § �1�2(�2�2�2)�2 

        § �1(�2�2�2) 
        § (�1�2) 
Therefore (�1�2) is an interval-valued fuzzy weak bi-ideals of R. 

 Hence �1�2 = < (Ā1Ā2), (�1�2) > is a cubic weak bi-ideal of R. 

Remarks : 4.8 

 Let �1 and �2 be two cubic weak bi-ideals of R then the product �2�1 is also a 

cubic weak bi-ideal of �. 

Theorem : 4.9 

 Let � = < Ā,� > be a cubic weak bi-ideal of R, then the set  

 �� = {ĉ * �|�(ĉ) = �(0)} (ÿ. ă. , �� = {ĉ * �|Ā(ĉ) = Ā(0) ÿÿĂ �(ĉ) = �(0)} ) 
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is a weak bi-ideal of R. 

Proof: 

 Let � = < Ā,� > be a cubic weak bi-ideal of R. 

 Let ĉ, Ċ * �� 

 Then �(ĉ) = �(0) ÿÿĂ �(Ċ) = �(0)  (ÿ. ă. , ) Ā(ĉ) = Ā(0), �(ĉ) = �(0)  
and Ā(Ċ) = Ā(0), �(Ċ) = �(0). 
 Since Ā is an interval-valued fuzzy weak bi-ideal of R, we have Ā(ĉ) = Ā(0) 
and Ā(Ċ) = Ā(0). 
 Ā(ĉ 2 Ċ)  g  þÿÿ{µ(x), µ(y)} = þÿÿ {Ā(0), Ā(0)} and � is a fuzzy weak  

bi-ideal of R,  

we have �(ĉ) = �(0) and �(Ċ) = �(0) then 

 �(ĉ 2 Ċ)  f  þÿĉ{�(ĉ),�(Ċ)} = þÿĉ{�(0),�(0)} = �(0) 
Thus ĉ 2 Ċ * �� 

 For every ĉ, Ċ, ċ * ��. Then �(ĉ) = �(0), �(Ċ) = �(0) and �(ċ) = �(0).  
Since Ā is an interval-valued fuzzy weak bi-ideal of R, we have Ā(ĉ) = Ā(0),  
Ā(Ċ) = Ā(0) and Ā(ċ) = Ā(0) 
then Ā(ĉĊċ) g þÿÿ{Ā(ĉ), Ā(Ċ), Ā(ċ)} = þÿÿ{Ā(0), Ā(0), Ā(0)} = Ā(0) 
and � is a fuzzy weak bi-ideal of R, we have �(ĉ) = �(0), �(Ċ) = �(0) and  

�(ċ) = �(0) and  
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�(ĉĊċ) f þÿĉ{�(ĉ),�(Ċ),�(ċ)} =  þÿĉ {�(0), �(0),�(0)} = �(0). 
Thus ĉĊċ * �� 

 Hence �� is a cubic weak bi-ideal of R. 

Theorem : 4.10     

 The direct product of cubic weak bi-ideal of near-rings is also a cubic weak      

bi-ideal.  

Proof: 

 Let �� = < Ā�, �� > be cubic weak bi-ideals of near-rings �� for ÿ = 1,2, & ÿ. 
 Let ĉ = (ĉ1, ĉ2, & ĉ�), Ċ = (Ċ1, Ċ2, & Ċ�) and  

ċ = (ċ1, ċ2, & ċ�) * �1 × �2 ×&× ��. 
 Ā�(ĉ 2 Ċ) = Ā�((ĉ1, ĉ2, & ĉ�) 2 (Ċ1, Ċ2, & Ċ�)) 
       = Ā�(ĉ1 2 Ċ1, ĉ2 2 Ċ2, & , ĉ� 2 Ċ�) 
       = þÿÿ {Ā1(ĉ1 2 Ċ1), Ā2(ĉ2 2 Ċ2), & , Ā�(ĉ� 2 Ċ�)} 

       g þÿÿ {þÿÿ{Ā1(ĉ1), Ā1(Ċ1)} , þÿÿ{Ā2(ĉ2), Ā2(Ċ2)},& ,   
                                                                                         þÿÿ{Ā�(ĉ�), Ā�(Ċ�)}} 
       = þÿÿ {þÿÿ{Ā1(ĉ1), Ā2(ĉ2), & Ā�(ĉ�)} ,þÿÿ{Ā1(Ċ1), Ā2(Ċ2),& Ā�(Ċ�)}} 
       = þÿÿ {(Ā1 × Ā2 × &Ā�)(ĉ1, ĉ2, & ĉ�), (Ā1 × Ā2 × &Ā�)(Ċ1, Ċ2, & Ċ�)} 
       = þÿÿ {Ā�(ĉ), Ā�(Ċ)} 
 ��(ĉ 2 Ċ) = ��((ĉ1, ĉ2, & ĉ�) 2 (Ċ1, Ċ2, & Ċ�)) 
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       = ��(ĉ1 2 Ċ1, ĉ2 2 Ċ2, & , ĉ� 2 Ċ�) 
       = þÿĉ {�1(ĉ1 2 Ċ1), �2(ĉ2 2 Ċ2),& , ��(ĉ� 2 Ċ�)} 

       f þÿĉ {þÿĉ{ω1(x1),ω1(y1)} ,þÿĉ{�2(ĉ2),�2(Ċ2)},& ,   
                                                                            þÿĉ{��(ĉ�),��(Ċ�)}} 
       = þÿĉ {þÿĉ{�1(ĉ1),�2(ĉ2), &��(ĉ�)}, 
                                                         þÿĉ{�1(Ċ1),�2(Ċ2),&��(Ċ�)}} 
       = þÿĉ {(�1 × �2 ×&��)(ĉ1, ĉ2, & ĉ�), 
                                                             (�1 × �2 ×&��)(Ċ1, Ċ2, & Ċ�)} 
       = þÿĉ {��(ĉ),��(Ċ)} 
and Ā�(ĉĊċ) = Ā�((ĉ1, ĉ2, & ĉ�)(Ċ1, Ċ2, & Ċ�)(ċ1, ċ2, & ċ�)) 
          = Ā�(ĉ1Ċ1ċ1, ĉ2Ċ2Ċ2, & , ĉ�Ċ�ċ�) 
          = þÿÿ {Ā1(ĉ1Ċ1ċ1), Ā2(ĉ2Ċ2Ċ2), & , Ā�(ĉ�Ċ�ċ�) 
                     g þÿÿ {þÿÿ{Ā1(ĉ1), Ā1(Ċ1), Ā1(ċ1)} ,þÿÿ{Ā2(ĉ2), Ā2(Ċ2), Ā2(ċ2)},& ,    
                                                                               þÿÿ{Ā�(ĉ�), Ā�(Ċ�), Ā�(ċ�)}} 
                     = þÿÿ {þÿÿ{Ā1(ĉ1), Ā2(ĉ2), & Ā�(ĉ�)}, 
                                   þÿÿ{Ā1(Ċ1), Ā2(Ċ2),& Ā�(Ċ�)} ,þÿÿ{Ā1(ċ1), Ā2(ċ2), &Ā�(ċ�)} 
                     = þÿÿ {(Ā1 × Ā2 × &Ā�)(ĉ1, ĉ2, & ĉ�), (Ā1 × Ā2 × &Ā�)(Ċ1, Ċ2, & Ċ�)  
       (Ā1 × Ā2 × &Ā�)(ċ1, ċ2, & ċ�)} 
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                     = þÿÿ {Ā�(ĉ), Ā�(Ċ), Ā�(ċ)} 
��(ĉĊċ)        = ��((ĉ1, ĉ2, & ĉ�)(Ċ1, Ċ2, & Ċ�)(ċ1, ċ2, & ċ�)) 
          = ��(ĉ1Ċ1ċ1, ĉ2Ċ2Ċ2, & , ĉ�Ċ�ċ�) 
          = þÿĉ {�1(ĉ1Ċ1ċ1),�2(ĉ2Ċ2Ċ2), & , ��(ĉ�Ċ�ċ�) 
                     f þÿĉ {þÿĉ{�1(ĉ1), �1(Ċ1),�1(ċ1)}, 
                              þÿĉ{�2(ĉ2),�2(Ċ2),�2(ċ2)},& , þÿĉ{��(ĉ�),��(Ċ�), ��(ċ�)}} 
                     = þÿĉ {þÿĉ{�1(ĉ1),�2(ĉ2), &��(ĉ�)}, 
                            þÿĉ{�1(Ċ1),�2(Ċ2),&��(Ċ�)} ,þÿĉ{�1(ċ1),�2(ċ2),&��(ċ�)}} 
                   = þÿĉ {(�1 × �2 ×&��)(ĉ1, ĉ2, & ĉ�), 
                              (�1 × �2 ×&��)(Ċ1, Ċ2, & Ċ�), (�1 × �2 × &��)(ċ1, ċ2, & ċ�)} 
                   = þÿĉ {��(ĉ),��(Ċ),��(ċ)} 
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INTRODUCTION 

Graph theory is a major area of combinatorics, and during recent decades, 

graph theory has developed into a major area of mathematics. In addition to its 

growing interest and importance as a mathematical subject, it has applications to 

many fields. The paper written by Leonhard Euler on the Seven Bridges of 

Konigsberg and published in 1736 is regarded as the first paper in the history of graph 

theory. 

If the vertices of the graph are assigned values subject to certain conditions is 

known as graph labeling. Graph labeling was first introduced in the mid sixties. A 

dynamic survey on graph labeling is regularly updated by Gallian [7] and it is 

published by Electronic Journal of Combinatory. Vast amount of literature is available 

on different types of graph labeling and more than 1000 research papers have been 

published so far in past three decades. 

Graph labeling problems have three important characteristics. 

1. A set of numbers from which vertex labels are chosen. 

2. A rule that assigns a value to each edge. 

3. A condition that these values must satisfy. 

The brief summary of definitions and other information which are necessary for the 

present investigation are given below. Beginning with simple, finite, connected and 

undirected graph ă = (ý(ă), ā(ă)) with ý vertices and þ edges. For all other 

terminology and notations in graph theory I follow West [16]. 
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Labeled graphs have variety of applications in coding theory, particularly for missile 

guidance codes, design of good radar type codes and convolution codes with optimal 

autocorrelation properties. Labeled graph plays vital role in the study of X-ray 

crystallography, communication network and to determine optimal circuit layouts. A 

systematic presentation of diverse applications of graph labeling is given by 

J.C.Bermond [3] and a detailed study of variety of applications is given by Bloom and 

Golomb [4]. 
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1 .PRELIMINARIES 

Definition :1.1 

A graph ă =  (ý (ă), ā(ă)) consists of a set of objects ý (ă) = {ÿ1, ÿ2, & } 

called vertices, and another set ā(ă) = {ÿ1, ÿ2, & } whose elements are called edges, 

such that each edge ÿā is identified with an unordered pair (ÿÿ, ÿĀ)ofvertices. The set ý(ă) is called the vertex set of ă and ā(ă) its edge set .The number of vertices in ý(ă) is called  the order of ă and the number of edges in ā(ă) is called the size of ă. A graph ă of order ý and size þ is called a (ý, þ )graph. 

Definition :1.2 

The vertices ÿÿ, ÿĀ associated with edge ÿā are called the end vertices of ÿā. 

An edge having the same vertex as both its end vertices is called a self-loop or loops. 

Two or more edges associated with a given pair of vertices are called parallel edges. 

A graph that has neither self-loops nor parallel edges is called a simple graph. 

Definition :1.3 

 A graph with a finite number of vertices as well as a finite number of edges is 

called a finite graph. 

Definition :1.4  

When a vertex ÿÿ is an end vertex of some edge ÿĀ, ÿÿand ÿĀ are said to be 

incident with(on or to)each other. Two non parallel edges are said to be adjacent if 

they are incident on a common vertex. Similarly two vertices are said to be adjacent if 
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they are the end vertices of the same edge. A vertex of degree one is called a pendant 

vertex or an end vertex. 

Definition :1.5  

The degree of a vertex ÿ in a graph ă is defined as the number of edges of ă 

incident on ÿ, with self-loops counted twice. 

Definition :1.6  

A subgraph of a graph ă =  (ý (ă), ā(ă)) is a graph Ą =  (ý (Ą), ā(Ą)) 

with ý (Ą)  ⊆  ý (ă) and ā(Ą)  ⊆  ā(ă).  

Definition :1.7 

If ÿ is an edge in graph ă, then � 2 �denotes a subgraph of ă obtained by 

deleting ÿ from ă. Deletion of an edge does not imply deletion of its end vertices. 

Definition :1.8 

A walk is defined as a finite alternating sequence of vertices and edges 

beginning and ending with vertices, such that each edge is incident with the vertices 

preceding and following it. No edge appears more than once in a walk. However, a 

vertex may appear more than once. 

Definition :1.9 

  Vertices with which a walk begins and ends are called its terminal vertices. A 

walk that begins and ends at the same vertex is called a closed walk. A walk that is 

not closed is called an open walk. 
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Definition :1.10 

An open walk in which no vertex appears more than once is called a path. A 

path on n vertices is denoted by �Ā. The number of edges in a path is called the length 

of a path. 

Definition :1.11 

  A closed walk in which no vertex (except the initial and the final vertex) 

appears more than once is called a cycle. A cycle on Ā vertices is denoted by ÿĀ . 

Definition :1.12 

A graph ă is said to be connected if there is at least one path between every 

pair of vertices in ă. 

Definition :1.13 

A tree is a connected graph without any cycles. 

Definition :1.14 

 A simple graph in which there exists an edge between every pair of vertices is 

called a complete graph. A complete graph on Ā vertices is denoted by ÿĀ. 

Definition :1.15 

A bipartite graph is one whose vertex set can be partitioned into two subsets ÿ and Ā so that each edge has one end in ÿ and the other end in Ā; such a partition (ÿ, Ā ) is called a bipartition of the graph. 

 



6 

 

Definition :1.16 

A complete bipartite graph is a simple bipartite graph with bipartition (ÿ, Ā ) in which each vertex of ÿ is joined to each vertex of Ā . If |ÿ|  =  ÿ and |Ā| = Ā , then a complete bipartite graph with bipartition (ÿ, Ā ) is denoted by ÿÿ,Ā. 

Definition :1.17  

The graph ÿ1,Āis called a star. The vertex of  ÿ1,Ā with degree Ā is called the 

apex or central vertex. 

Definition :1.18 

 Let ă1 = (ý1, ā1)and ă2 = (ý2, ā2) be two graphs. Then ă1 and ă2 are said to 

be disjoint if they have no vertex in common. Ifă1 and ă2are disjoint graphs, then the 

join of ă1and ă2is denoted by ă1 + ă2and is defined as 

ý(ă1 + ă2) =  ý1 ∪ ý2 and  ā(ă1 + ă2) =  ā1 ∪ ā2  ∪ {þÿ ∶ þ � ý1 , ÿ � ý2 }. 

Definition :1.19 

For n ≥ 4, the wheel on Ā vertices, denoted by þĀ, is defined to be the graph            ÿ1 + ÿĀ21. 
Definition :1.20 

The corona ă1 ⊙ ă2of two graphs ă1and ă2 is defined as the graph obtained 

by taking one copy of ă1(with ý vertices) and ý copies of ă2 and then joining the ÿþ/ 

vertex of ă1to all the vertices in the ÿþ/copy of  ă2. The graph �Ā ⊙ ÿ1is called a 

comb.  
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Definition :1.21 

The bistar þÿ,Ā  is the graph obtained by making the two central vertices of ÿ1,ÿ and ÿ1,Ā adjacent. 

Definition :1.22 

The friendship graph ĂĀ can be constructed by joining Ā copies of the cycle 

graph ÿ3with a common vertex. 

Definition :1.23  

Let ă be a graph with fixed vertex ÿ. The comb of ă is the graph (�ÿ  ; ă) 

obtained from ÿ copies of ă and the path �ÿ ∶ þ1, þ2, & , þÿ by joining þÿ with vertex ÿ of the ÿþ/ copy of ă by means of an edge for 1 f  ÿ f  ÿ.  

Definition :1.24  

Ladder graph ĀĀ is a planar undirected graph with 2Ā vertices and             Ā + 2(Ā 2 1) edges. The ladder graph can be obtained as the cartesian product of two 

path graphs, one of which has only one edge : ĀĀ = �Ā ∗ �1 . 
Definition :1.25 

The gear graph, also sometimes known as a bipartite wheel graph, is a wheel 

graph with a graph vertex added between each pair of adjacent graph vertices of the 

outer cycle . The gear graph has nodes and edges. 
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Definition :1.26 

A triangular snake is a connected graph all of whose blocks are triangles. A 

triangular snake is a triangular cactus whose block-cut point graph is a path. 

Equivalently it is obtained from a path �Ā ∶ þ1, þ2, & , þĀ+1 by joining þÿand þÿ+1 to a 

new vertex ÿÿ for 1 f  ÿ f  Ā. A triangular snake has 2Ā +  1 vertices and 3Ā edges, 

where Ā is the number of blocks in the triangular snake. It is denoted by ÿĀ. 

Definition :1.27 

A fan graph Ăÿ,Ā is defined as the graph join ÿÿ + �Ā, where ÿÿ is the empty 

graph on ÿ nodes and �Āis the path graph on Ā nodes. The case ÿ = 1 corresponds to 

the usual fan graphs, while ÿ = 2 corresponds to the double fan, etc. 

Definition :1.28 

Double star ÿ(�,Ā,Ā) is a tree obtained from the star ÿ1,Ā by adding a new 

pendant edge of the existing Ā pendant vertices. It has 2Ā + 1 vertices and 2Ā edges. 

Definition :1.29 

A sun graph þĀ is a cycle on ý vertices with an edge terminating in a vertex of 

degree 1 attached to each vertex on the cycle. 

Definition :1.30 

A butterfly graph is a planar undirected graph with 5 vertices and 6 edges. It 

can be constructed by joining 2 copies of the cycle graph ÿ3 with a common vertex 

and is therefore isomorphic to the friendship graph Ă2. 

 

https://en.wikipedia.org/wiki/Planar_graph
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Definition :1.31 

For each point ÿ of a graph ă take a new vertex ÿ′and join ÿ′ to those points 

of ă adjacent to ÿ. The graph thus obtained is called the splitting graph of ă and is 

denoted as þ′(ă). 

Definition :1.32 

A book graph with Ā pages is defined as the Cartesian product of the 

complete bipartite graph ÿ1,Āand a path of length 1 and is denoted by þĀ. 

Definition :1.33 

A crown graph ýĀ is formed by adding to the Ā points ÿ1, ÿ2, & , ÿĀof a cycle ÿĀ , Ā more pendant points þ1, þ2, & , þĀ and Ā more lines þÿÿÿ , ÿ = 1,2,3, & . , Ā for   Ā g 3 . 

Definition :1.34 

A pentagonal snake is a connected graph all of whose blocks are pentagons. 

A pentagonal snake is a pentagonal cactus whose block-cut point graph is a path. 

Equivalently it is obtained from a path �Ā ∶ þ1þ2 & þĀ+1by joining þÿ and þÿ+1 to a 

new verticesÿÿ , Āÿ  , āÿ  for 1 f  ÿ f  Ā . A pentagonal snake has 2Ā +  3 vertices 

and 5Ā edges, where Ā is the number of blocks in the pentagonal snake. i.e. The 

pentagonal snake is obtained from the path �Āby replacing each edge of thepath by a 

pentagon ÿĀ . 
Definition :1.35 

The middle graph of ă, denoted by ā(ă), is ý (ă) ∪ ā(ă) such that two vertices ā, Ă in the vertex set of ā(ă) are adjacent in ā(ă) in case one of the following holds. 
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(i) ā, Ă are in ā(ă) and ā, Ă are adjacent in ă. (ii) ā is iný (ă), y is in ā(ă) and ā, Ă 

are incident in ă. 

Definition :1.36 

A shell graph þĀ is the graph obtained by taking Ā 2  3 concurrent chords in 

cycle ÿĀ . The vertex at which all the chords are concurrent is called the apex vertex. 

The shell is also called fan ĀĀ21. i.e. þĀ =  ĀĀ21 = �Ā21 + ÿ1. 

Definition :1.37 

Let ă = (ý, ā)  be a graph. A difference labeling of ă is an injection Ā 

from ý to the set of non- negative integer with weight function Ā∗on ā given by   Ā∗(þÿ) = |Ā(þ) 2 Ā(ÿ)| for every edge in ă. ý graph with a difference labeling 

defined on it is called a labeled graph . 

Definition :1.38 

 If the vertices of the graph are assigned values subject to certain conditions is 

known as Graph labeling . 
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CHAPTER  2 

2. SQUARE DIFFERENCE LABELING OF SOME GRAPHS 

2.1     Introduction 

Definition : 2.1.1 

Let ă = (ý(ă), ā(ă)) be a graph. Then ă is said to be a square difference 

labeling if there exists a bijection Ā ∶ ý(ă) → {0,1,2, & , ý 2 1} such that the induced 

function Ā∗ ∶ ā(ă) → Ă given by Ā∗(þÿ) = |[Ā(þ)]2 2 [Ā(ÿ)]2| 
for every þÿ ∈ ā(ă) are all distinct. 

Definition : 2.1.2 

Any graph which admits square difference labeling is called square 

difference graph. 

2.2  Main Results 

Here we prove that the sun, triangular snake , Butterfly, book, splitting graph, 

cycle , graph ÿ2 + ÿÿ1 , path and bistars admit square difference labelling. 

Theorem : 2.2.1 

The Sun graph þĀ is a square difference graph. 

Proof :  

Let ÿ1, ÿ2, & . , ÿĀ be the vertices of cycle þĀ and þ1, þ2, & . , þĀ be the end 

vertices of each edge attached to ÿ1, ÿ2, & . , ÿĀ . 
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Here ý(þĀ) =  {0,1, & . , Ā 2 1} 

ā(þĀ) =  {þÿÿÿ/1 f ÿ f Ā} ∪ {ÿÿÿÿ+1/1 f ÿ f Ā 2 1} ∪ { ÿÿÿ1/ÿ ∈ Ā}    
Define Ā: ý(þĀ) → {0,1, & . , ý 2 1} as follows 

Ā(þÿ)  =  2ÿ 2 2   ,        1 f ÿ f Ā                          
 Ā(ÿÿ)  =  2ÿ 2 1   ,          1 f ÿ f Ā     
ThenĀ∗: ā(ă) → Ă given by  

Ā∗(þÿ+1ÿÿ+1)   =  ÿÿ+12 2 þÿ+12  ,       0 f ÿ f Ā 2 1   
Ā∗(ÿÿÿÿ+1)  =  ÿÿ+12 2 ÿÿ2,      1 f ÿ f Ā 2 1  

                            Ā∗(ÿÿÿ1)  =  ÿÿ2 2 ÿ12         ,       ÿ ∈ Ā 

Clearly we have, 

Ā∗(ÿÿÿÿ+1)   =  8ÿ           ,            1 f ÿ f Ā 2 1 

Ā∗(þÿ+1ÿÿ+1) =  4ÿ + 1  ,             0 f ÿ f Ā 2 1 

                           Ā∗(ÿÿÿ1)  =  4ÿ(ÿ 2 1), ÿ ∈ Ā  
Hence the edge labels are distinct. 

Therefore the sun graph þĀ is a square difference graph. 
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Example  : 2.2.1 

 

Figure 1 : Square difference labeling of þ6. 

Theorem  : 2.2.2 

The triangular snake ÿĀ is a square difference graph. 

Proof :  

We define a function Ā ∶  ý(ă)→{ 0, 1, 2, & , Ā 2 1 } by  

Ā(þÿ)  = 2ÿ        ,           ÿ is even 

Ā(ÿÿ)  =  2ÿ 2 1 ,         ÿ is odd 

Then Ā∗: ā(ă) → Ă given by  

Ā∗(þÿþÿ+1)   =  þÿ+12 2 þÿ2       ,       1 f ÿ f Ā 
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Ā∗(þÿ+1ÿÿ+1)  =  ÿÿ+12 2 þÿ+12    ,       0 f ÿ f Ā 2 1  
                           Ā∗(ÿÿþÿ+1)   =  þÿ+12 2 ÿÿ2       ,       1 f ÿ f Ā  

We have , 

Ā∗(þÿþÿ+1)  =  4(2ÿ 2 1)  , 1 f ÿ f Ā 

Ā∗(þÿ+1ÿÿ+1)  =  4ÿ + 1       ,         0 f ÿ f Ā 2 1  
                                           Ā∗(ÿÿþÿ+1)  = 4ÿ 2 1        ,         1 f ÿ f Ā 

Hence the edge labels are distinct. 

Therefore the triangular snake ÿĀ is a square difference graph.  

Example : 2.2.2

Theorem : 2.2.3 

The Butterfly graph þĀĀ is a square difference graph. 

Proof : 

Let the cycles be denoted  by ă1, ă2, & & . , ăĀ. All the cycles meet at one 

vertex, let it be þ. 

Let us define a function  Ā ∶  ý(ă)→{ 0, 1, 2, & , Ā 2 1 } as follows 
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Ā(þ) = 0    
                                                  Ā(ÿÿ) = ÿ ,                ÿ = 1,2,3, & 

Then Ā∗: ā(ă) → Ă given by   

Ā∗(þÿÿ) =  ÿÿ2 2 þ2,    ÿ = 1,2,3, & 

Clearly , 

Ā∗(þÿÿ) = ÿ2,                ÿ = 1,2,3, & 

Hence the edge labels are distinct. 

Therefore the Butterfly graph  þĀĀ is a square difference graph. 

Example : 2.2.3 

 

Theorem : 2.2.4 

The splitting graph of path þ′(�Ā) is a square difference graph. 
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Proof : 

Let the vertex set  ý(þ′(�Ā)) = {ÿÿ/1 f ÿ f Ā} ∪ {ÿÿ′/1 f ÿ f Ā} 

and the edge set 

ā(þ′(�Ā)) = {ÿÿÿÿ+1/1 f ÿ f Ā 2 1} ∪ {ÿÿÿÿ+1′ /1 f ÿ f Ā 2 1 } ∪ 

                                     {ÿÿ′ÿÿ+1/1 f ÿ f Ā 2 1}  
where ÿ1′ , ÿ2′ , & , ÿĀ′  are the new vertices joined corresponding to ÿ1, ÿ2, & , ÿĀof the 

path�Ā.  

Define Ā ∶ ý(þ′(�Ā)) → {0,1, & , Ā 2 1} by 

                                              Ā(ÿÿ) = 2ÿ 2 2 ,       1 f ÿ f Ā  
                                             Ā(ÿÿ′) = 2ÿ 2 1 ,       1 f ÿ f Ā 

Then Ā∗: ā(ă) → Ă given by  

      Ā∗(ÿÿÿÿ+1) =  ÿÿ+12 2 ÿÿ2   ,           1 f ÿ f Ā 2 1      
Ā∗(ÿÿÿÿ+1′ ) =  ÿÿ+1′  2 2 ÿÿ2     ,         1 f ÿ f Ā 2 1 

                                    Ā∗(ÿÿ′ÿÿ+1) =  ÿÿ+12 2 ÿÿ′  2 ,          1 f ÿ f Ā 2 1 

Clearly we have, 

                                   Ā∗(ÿÿÿÿ+1) = 4(2ÿ 2 1) ,      1 f ÿ f Ā 2 1 

Ā∗(ÿÿ′ÿÿ+1) = 4ÿ 2 1    ,         1 f ÿ f Ā 2 1 

Ā∗(ÿÿÿÿ+1′ ) = 12ÿ 2 3  ,        1 f ÿ f Ā 2 1 
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Hence the edge labels are distinct. 

Therefore the splitting graph of path þ′(�Ā) is a square difference graph. 

Example : 2.2.4 

 

Theorem : 2.2.5 

The book graph þĀ is a square difference graph. 

Proof :  

Let ý(þĀ) = {þ, ÿ}  ∪ {þÿ , ÿÿ/1 f ÿ f Ā} 

and ā(þĀ) =  {þÿ}  ∪ {þþÿ/1 f ÿ f Ā} ∪ {ÿÿÿ/1 f ÿ f Ā} ∪ {þÿÿÿ/1 f ÿ f Ā} 

Define Ā ∶ ý(þĀ) → {0,1, & , Ā 2 1} by 

Ā(þ)  = 1 

Ā(ÿ)  = 0 

Ā(þÿ)  = 2ÿ + 1 ,      1 f ÿ f Ā 

Ā(ÿÿ)  = 2ÿ ,               1 f ÿ f Ā 
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Then Ā∗:  ā(ă) → Ă given by  

Ā∗(þÿ) = 1 

 Ā∗(þþÿ) =  þÿ2 2 þ2 ,         1 f ÿ f Ā 

Ā∗(ÿÿÿ)  =  ÿÿ2 2 ÿ2  ,         1 f ÿ f Ā 

Ā∗(þÿÿÿ) =  þÿ2 2 ÿÿ2  ,         1 f ÿ f Ā 

Clearly , 

Ā∗(þÿ) = 1 

 Ā∗(þþÿ) =  8 ÿ(ÿ + 1)2  ,         1 f ÿ f Ā 

Ā∗(ÿÿÿ)  =  4ÿ2      ,         1 f ÿ f Ā 

Ā∗(þÿÿÿ) = 4ÿ + 1 ,         1 f ÿ f Ā 

Hence the edge labels are distinct. 

Therefore the book graph þĀ is a square difference graph. 
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Example : 2.2.5 

 

Theorem : 2.2.6 

The cycles ÿā are square difference graph. 

Proof: 

Let ÿā be a cycle of length ā and let ÿā = (þ1þ2, & , þāþ1) 

Define Ā ∶ ý(ÿā) → {0,1, & ā 2 1} by 

Ā(þÿ) = ÿ 2 1  ,               1 f ÿ f ā 

The induced function Ā∗: ā(ÿā) → Ă by 

Ā∗(þÿþÿ+1) =  þÿ+12 2 þÿ2  ,           1 f ÿ f ā 2 1 

Ā∗(þāþ1) = þā2 2 þ12 

Clearly, 

Ā∗(þÿþÿ+1) = 2ÿ 2 1       ,       1 f ÿ f ā 2 1 
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Ā∗(þāþ1) = (ā 2 1)2 

Hence the edge labels are distinct. 

Therefore the cycle graph ÿā is a square difference graph. 

Example : 2.2.6 

 

Theorem : 2.2.7 

The graph �Ā2 is a square difference graph.  

Proof: 

Let �Ā: þ1, þ2, & , þĀbe a path. Let ă = �Ā2 

Here ý = |ý(ă)| = Ā  and  þ = |ā(ă)| = 2Ā 2 3 

Define a vertex labeling  Ā: ý(ă) → {0,1,2, & , ý 2 1} by 

Ā(þÿ) = ÿ 2 1,      1 f ÿ f Ā 

And the induced edge labeling function Ā∗ ∶ ā(ă) → Ă by 



21 

 

Ā∗(þÿþÿ+1) = þÿ+12 2 þÿ2,        1 f ÿ f Ā 2 1 

Ā∗(þÿþÿ+2) = þÿ+22 2 þÿ2,        1 f ÿ f Ā 2 2 

Clearly, 

Ā∗(þÿþÿ+1) = 2ÿ 2 1,        1 f ÿ f Ā 2 1 

Ā∗(þÿþÿ+2) = 4ÿ,                1 f ÿ f Ā 2 2 

Hence the edge labels are distinct. 

Therefore the graph �Ā2 is a square difference graph. 

Example : 2.2.7 

 

Theorem : 2.2.8 

The graph ă = ÿ2 + ÿÿ1 is a square difference graph. 

Proof : 

Let ý(ă) = {þ, ÿ, Ā2, Ā3, & , Āÿ+1} and ā(ă) = {þÿ} ∪ {þĀÿ , ÿĀÿ ∶ 2 f ÿ fÿ + 1} 

Then ă is of order ÿ + 2 and size 2ÿ + 1. 
Let us define Ā: ý(ă) → {0,1, & , ÿ + 2} by  
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Ā(þ) = 0  
Ā(ÿ) = 1 

Ā(Āÿ) = ÿ,      2 f ÿ f ÿ + 1 

The induced function Ā∗: ā(ă) → Ă  by 

Ā∗(þÿ) =  ÿ2 2 þ2 

                                                Ā∗(þĀÿ) = Āÿ2 2 þ2,              2 f ÿ f ÿ + 1 

Ā∗(ÿĀÿ) =  Āÿ2 2 ÿ2,            2 f ÿ f ÿ + 1 

Clearly , 

Ā∗(þÿ) =  1 

Ā∗(þĀÿ) =  ÿ2 ,              2 f ÿ f ÿ + 1 

Ā∗(ÿĀÿ) =  ÿ2 2 1 ,      2 f ÿ f ÿ + 1 

Hence the edge labels are distinct. 

Therefore the graph ă = ÿ2 + ÿÿ1 is a square difference graph. 
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Example : 2.2.8 

 

Theorem : 2.2.9 

The graph ÿ1 + ÿĀ is a square difference graph. 

Proof: 

The graph ÿ1 + ÿĀ has Ā + 1 vertices and 2Ā edges. Let þ be vertex of  ÿ1 

and be the vertices of ÿ1, ÿ2, & , ÿĀ the cycle.  

Define a vertex labeling  Ā ∶ ý(ÿ1 + ÿĀ) → {0,1, & , Ā 2 1} by 

Ā(þ) = 0 

Ā(ÿÿ) = ÿ , 1 f ÿ f Ā 

And the induced edge labeling function Ā∗ ∶ ā(ă) → Ă by 

Ā∗(þÿÿ) = ÿÿ2 2 þ2,        1 f ÿ f Ā 

Ā∗(ÿÿÿÿ+1) = ÿÿ+12 2 ÿÿ2 ,     1 f ÿ f Ā 2 1 

Ā∗(ÿ1ÿĀ) = ÿĀ2 2 ÿ12 
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Clearly, 

Ā∗(þÿÿ) = ÿ2 ,            1 f ÿ f Ā 

Ā∗(ÿÿÿÿ+1) = 2ÿ + 1 ,    1 f ÿ f Ā 2 1  
Ā∗(ÿ1ÿĀ) = ÿ2 2 1 ,     ÿ = Ā  

Hence the edge labels are distinct. 

Therefore ÿ1 + ÿĀ  the graph is a square difference graph. 

 

Example : 2.2.9 

 

Theorem : 2.2.10 

            The bistars þĀ,Ā are square difference graphs . 

 

 



25 

 

Proof : 

Let þ and ÿ be the apex vertices of the bistar. Let þ1, þ2, & , þĀ , ÿ1, ÿ2, & , ÿĀ 

be the pendant vertices of the bistar þĀ,Ā. 

The vertex set is ý(þĀ,Ā) = {þ , þÿ ∶ 1 f ÿ f Ā}and the edge set is                ā(þĀ,Ā) = {þþÿ ∶ 1 f ÿ f Ā} ∪ {ÿÿÿ ∶ 1 f ÿ f Ā} ∪ {þÿ} .                                                                    

Hence the order of the graph is ý = |ý (þĀ,Ā)| = 2Ā + 2 and the size is                   þ = |ā(þĀ,Ā)| =  2Ā + 1. 
Label the vertex þ by 0 , ÿ by 1, þ1, þ2, & , þĀ by 3, 5, 7, . . . 2Ā +  1 and  ÿ1, ÿ2, & , ÿĀ 

by 2, 4, 6, . . . , 2Ā. The elements of the first edge set are 32, 52, 72, & , (2Ā + 1)2 and 

the second edge set are 22, 42, 62, & , Ā2.  

The edge weight of þÿ is 1. Since these edge sets are disjoint it satisfies the definition 

of square difference labeling.  

Hence the bistars þĀ,Ā are square difference graphs. 

Example2.2.10 
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CHAPTER  3 

3 .CUBE DIFFERENCE LABELING OF SOME GRAPHS 

3.1    Introduction 

Definition : 3.1.1 

Let ă = (ý(ă), ā(ă)) be a graph. Then ă is said to be a cube difference 

labeling if there exists a bijection Ā: ý(ă) → {0,1,2, & , ý 2 1} such that the induced 

function Ā∗ ∶ ā(ă) → Ă given by Ā∗(þÿ) = |[Ā(þ)]3 2 [Ā(ÿ)]3| 
for every þÿ ∈ ā(ă) are all distinct. 

Definition : 3.1.2 

Any graph which admits cube difference labeling is called cube difference 

graph. 

3.2    Main Results 

Definition : 3.2.1 

A coconut tree graph ÿÿ(ÿ, Ā) is the graph obtained from the path �Āby 

appending ÿ new pendant edges at an end vertex of �Ā . 
Definition : 3.2.2 

A Helm ĄĀ , Ā g  3 is the graph obtained from a crown ýĀ by adding a new 

vertex joined to every vertex of the unique cycle of the crown . 
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Theorem : 3.2.3 

The wheel graphs þĀ admit cube difference labeling. 

Proof : 

Let ÿ0be the central vertex andÿ1, ÿ2, & , ÿĀbe the rim vertices of the cycle ÿĀ. 

Define 

Ā(ÿ0) = 0 

             and               Ā(ÿÿ) = ÿ ,           1 f ÿ f Ā 

and the induced edge function Ā∗: ā(ă)  →  Ă define by                                          Ā∗(þÿ) = |[Ā(þ)]3 2 [Ā(ÿ)]3|. 
The edge sets are obtained by defining 

Ā∗(ÿÿ) = ÿ3 ,                        1 f ÿ f Ā 

  and Ā∗(ÿÿÿÿ+1) = 3ÿ2 2 3ÿ + 1 ,    1 f ÿ f Ā 

The edge sets are disjoint ,the edge weights are distinct and in increasing order. 

So the wheels þĀ admit the cube difference labeling. Hence the wheels þĀ are cube 

difference graphs. 
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 Example : 3.2.3 

 

Theorem  : 3.2.4 

The paths �Ā are cube difference graphs. 

Proof : 

Let �Ā ∶  þ1, þ2, & , þĀ be the path and let ÿÿ = þÿþÿ+1(1 f ÿ f Ā 2 1) be the 

edges. Here the order of the graph is Ā and the size of the graph is Ā 2 1. Define Ā ∶ ý (ă) → {0,1,2, . . . , Ā 2 1} by 

Ā(þÿ) = ÿ 2 1,    1 f ÿ f Ā 

and the induced edge function Ā∗: ā(ă)  →  Ă define by Ā∗(þÿ) = |[Ā(þ)]3 2[Ā(ÿ)]3|. 
Then the edge labeling are 

Ā∗(ÿÿ) = 3ÿ2 2 3ÿ + 1,      1 f ÿ f Ā 2 1 
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The edge weights of the edge set are in the increasing order. So the paths admit cube 

difference labeling. Hence the paths �Ā are cube difference graphs. 

Example : 3.2.4 

 

Figure 2: Cube difference graph of �6. 
 

Theorem : 3.2.5 

The cycles ÿĀ are cube difference graphs. 

Proof : 

  Let ÿĀ ∶  þ1þ2 & þĀþ1 be the cycle. Then the edges are ÿÿ = þÿþÿ+1, (1 f Ā 21) and ÿĀ = þĀþ1. Here the order and the size of the graphs are Ā.  

Define Ā ∶  ý (ă)  →  {0,1,2, . . . , Ā 2 1} by 

Ā(þÿ) = ÿ 2 1,     1 f ÿ f Ā 

and the induced edge function Ā∗: ā(ă)  →  Ă define by  

Ā∗(þÿ) = |[Ā(þ)]3 2 [Ā(ÿ)]3|. 
 That is Ā∗(ÿÿ) = 3ÿ2 2 3ÿ + 1,     1 f ÿ f Ā 2 1 

and Ā∗(ÿĀ) = (Ā 2 1)3 
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The edge weights are distinct and in increasing order. So the cycles admit the cube 

difference labeling. Hence the cycles ÿĀ are cube difference graphs. 

Example : 3.2.5 

 

Figure 3: The Cube difference graph of ÿ8. 

 

Theorem : 3.2.6 

The star graphs ÿ1,Ā admit cube difference labeling. 

Proof : 

Let ÿ be the apex vertex and let ÿ1, ÿ2, & , ÿĀ be the pendant vertices of the star ÿ1,Ā . The edge set is {ÿÿÿ : 1 f ÿ f Ā}. Here the order of the graph is Ā + 1 and the 

size of the graph is Ā. Define Ā ∶ ý(ă)  → {0,1,2, & , Ā} by  

Ā(ÿ) = 0 

                                               Ā(ÿÿ) = ÿ ,    1 f ÿ f Ā 

and the induced edge function  Ā∗: ā(ă) → Ă is defined by  
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Ā∗(þÿ) = |[Ā(þ)]3 2 [Ā(ÿ)]3| 
That is  

Ā∗(ÿÿ) =  ÿ3 , 1 f ÿ f Ā 

The edge weights are distinct and in increasing order. So the stars ÿ1,Ā admit the cube 

difference labeling. Hence the stars ÿ1,Ā are cube difference graphs. 

Example 3.2.6 

 

 

Theorem : 3.2.7 

The shell graphs þĀ ,Ā23 , Ā g  4 admit cube difference labeling. 

Proof : 

  Let ă be the shell graph þĀ ,Ā23 . Let þ1, þ2, & , þĀ be the vertices and let               ÿÿ = þÿþÿ+1 , (1 f ÿ f Ā 2 1),ÿĀ = þ1þĀ and ÿĀ = þ1þĀ23 (Ā + 1 f Ā f 2Ā 2 3) be 

the edges of ă. Here the order the graph ý =  Ā and the size of graph þ =  2Ā 2 2 

For 1 f  ÿ f  Ā define 
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Ā(ÿÿ) = ÿ 2 1 

Then the edge labeling are Ā∗(ÿÿ) = 3ÿ2 2 3ÿ + 1,      1 f ÿ f Ā 2 1 Ā∗(ÿĀ) = (Ā 2 1)3 

and  Ā∗(ÿĀ) = (Ā 2 (Ā 2 1))3 , Ā + 1 f Ā f 2Ā 2 3 

Here all the three edge sets are disjoint. They have no elements in common. Hence the 

shell graphs þĀ ,Ā23  are cube difference graphs. 

Example : 3.2.7 

 

Theorem : 3.2.8 

Coconut trees admit cube difference labeling. 

Proof : 

Let ÿ0, ÿ1, & , ÿÿ  be the vertices of a path, having path length ÿ(ÿ g  1) and ÿÿ+1, ÿÿ+2, & , ÿĀ be the pendant vertices, being adjacent with ÿ0. For 0 f  Ā f  ÿ, 
Define  
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Ā(ÿ0) = 0 

Ā(ÿÿ) = ÿ ,   1 f ÿ f ā 

Ā(ÿā) = ā ,    ÿ + 1 f ā f Ā 

The edge labeling are defined by Ā∗(ÿā) = ā3 ,   ÿ + 1 f ā f Ā 

Ā∗(ÿÿÿÿ+1) = 3ÿ2 2 3ÿ + 1 , 1 f ÿ f ā 

The edge weights are distinct and in increasing order. So the coconut trees admit the 

cube difference labeling. Hence the coconut trees are cube difference graphs. 

Example : 3.2.8 

 

 

Theorem : 3.2.9 

The dragon graphs ĀĀ(ÿ) are cube difference graph. 
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Proof : 

Let þ1, þ2, & , þĀ be the vertices of the cycle part of dragon graph ĀĀ(ÿ) and 

let Ā +  1, Ā +  2, . . . , Ā +  ÿ be the vertices of the path part of the dragon graph. 

The number of vertices of the dragon graph ĀĀ(ÿ) is Ā +  ÿ and the number of 

edges is Ā +  ÿ 2 1. The vertex set of the dragon graph ĀĀ(ÿ) is {þÿ ∶ 1 f ÿ f Ā + ÿ}and the edge sets are {þÿþÿ+1: 1 f ÿ f Ā + ÿ 2 1} and {þÿþÿ}. 

For 1 f ÿ f Ā + ÿ , define 

                                                     Ā(þÿ) = ÿ 2 1 ,    1 f ÿ f Ā + ÿ 2 1 

Then the edge labeling are                                      Ā∗(þÿþÿ+1) = 3ÿ2 2 3ÿ + 1 ,     1 f ÿ f Ā + ÿ 2 1 

and  Ā∗(þ1þÿ) = (ÿ + Ā 2 1)3 

The elements of the first edge set are 1,7,19, & , (ÿ + Ā)3 2 (ÿ + Ā 2 1)3 i.e the 

difference between each number increases by multiples of 6. The singleton set 

consists of ÿ3.Therefore these two edges sets are distinct. So the dragon graphs ĀĀ(ÿ) admit the cube difference labeling. Hence the dragon ĀĀ(ÿ)graphs are cube 

difference graphs. 

Example : 3.2.9 
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Theorem : 3.2.10 

The helm graphs ĄĀadmit cube difference labeling for Ā g  3. 
Proof: 

 Let þ be the central vertex , let þ1, þ2, & , þĀ be the vertices of ÿĀ and let ÿ1, ÿ2, & , ÿĀbe the pendant vertices adjacent to ÿ1, ÿ2, & , ÿĀ respectively. Let the 

edges be ÿ1, ÿ2, & , ÿ3Ā .Therefore the edge sets are {þþÿ ∶ 1 f ÿ f Ā} , {þÿþÿ+1 ∶ 1 fÿ f Ā 2 1} ,  {þÿÿÿ ∶ 1 f ÿ f Ā 2 1} and {þ1þĀ21} . 
Define Ā(ÿ) = 0 

and  Ā(ÿÿ) = ÿ ,    1 f ÿ f 2Ā 2 2 

Then the edge labeling are 

Ā∗(þþÿ) =  ÿ3 ,    1 f ÿ f Ā 

Ā∗(þÿÿÿ) =  (Ā + ÿ 2 1)3 2 Ā3 , 1 f ÿ f Ā 2 1 

Ā∗(þÿþÿ+1) = 3ÿ2 2 3ÿ + 1 ,   1 f ÿ f Ā 2 2 

and      Ā∗(þ1þĀ21) = (Ā 2 1)3 

The weights of the edge sets are in the increasing order and the sets will never 

intersect at anywhere. So the helm graphs admit cube difference labeling. Hence the 

helm graphs ĄĀare cube difference graphs. 
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Example : 3.2.10 

 

 Figure 8 :Cube difference labeling ofĄ5 . 

 

 

Theorem : 3.2.11 

 The pentagonal snakes (ÿÿ5) are cube difference graphs . 

Proof : 

 Let the graph be ă = (ÿÿ5) . Let be the vertices þ1, þ2, & , þĀ be the 

vertices of the graph (ÿÿ5) . 
|ý(ÿÿ5) | = 4ā + 1 ,      1 f ā 

|ā(ÿÿ5) | = 5ā ,              1 f ā 

Define Ā ∶ ý(ÿÿ5)  → {0,1,2, & ,5ā} by 
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Ā(ÿÿ) = ÿ 2 1 , 1 f ÿ f 5ā , 1 f ā 

The edge labeling are 

Ā∗(þÿþÿ+1) = 3ÿ2 + 3ÿ + 1 ,   0 f ÿ f ā , 1 f Āā 2 3 

Ā∗(þ4ÿ+1þ4ÿ+5) = 192ÿ2 2 192ÿ + 64 ,   0 f ÿ f ā , 1 f ā 2 1 

Since both the sequence of the edge labeling are in increasing order. The pentagonal 

snakes (ÿÿ5) admit the cube difference labeling. Hence the pentagonal snakes (ÿÿ5) 

are cube difference graphs .  

Example : 3.2.11 

 

 

Theorem : 3.2.12 

The middle graph of a path ā(�Ā)are cube difference graphs .  

Proof : 

         Let  þ1, þ2, & , þĀbe the vertices of a path of length Ā 2 1. 
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Let þĀ+1, þĀ+2, & , þ2Ā21be the vertices of the mid points of the edges of the path  .  |ý(ā(�Ā))| = 2Ā 2 1 ,       Ā g 3 

 |ā(ā(�Ā))| = 2Ā + 2,         Ā g 3   
Define Ā ∶ ý(ā(�Ā)) → {0,1,2, & ,2Ā 2 2} by Ā(þÿ) = ÿ 2 1 ,   1 f ÿ f 2Ā 2 1 

The edge labeling are  Ā∗(þÿþÿ+1) = 3ÿ2 + 3ÿ + 1 ,   0 f ÿ f 2Ā 2 1 Ā∗(þ2ÿþ2ÿ+2) = 24ÿ2 + 48ÿ + 26 ,   0 f ÿ f Ā 2 2 

Since all the edge labeling are in increasing order. The middle graphs of paths ā(�Ā) 

satisfies the cube difference labeling. Hence the middle graphs of the paths ā(�Ā)are 

cube difference graphs. 

Example : 3.2.12 
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CHAPTER  4 

4 . SOME SPECIAL TYPES OF DIFFERENCE GRAPHS 

4.1      Absolute Difference of Square Sum and Sum Mean Prime 

Labeling of  Some  star Graphs 

Introduction 

Definition : 4.1.1 

Let ă =  (ý(ă), ā(ă)) be a graph with ý vertices and þ edges . Define a 

bijection Ā ∶  ý(ă)  →  {1,2, & , ý} by Ā(ÿÿ) =  ÿ , for every ÿ from 1 to ý and define a 1 2 1 mapping  Ā�þýýýÿ�∗ ∶ ā(ă) → set of natural numbers Ă  by   

Ā�þýýýÿ�∗ (þÿ) =  12  |Ā(þ)2 + Ā(ÿ)2 2 {Ā(þ) + Ā(ÿ)}| . 
 The induced function Ā�þýýýÿ�∗  is said to be an absolute difference of square sum and 

sum mean prime labeling, if for each vertex of degree at least 2, the gcin of the labels 

of the incident edges is 1. 

Definition : 4.1.2 

A graph which admits absolute difference of square sum and sum mean prime 

labeling is called an absolute difference of square sum and sum mean prime graph.  

4.2  Main Results  

Theorem : 4.2.1 

Double graph of star ÿ1,Ā(Ā > 2)admits absolute difference of square sum and sum 

mean prime labeling. 
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Proof: 

Let ă = Ā(ÿ1,Ā) and let ý1 , ý2, & , ý2Ā+2 are the vertices of ă.  

Here |ý(ă)| =  2Ā + 2 and |ā(ă)| = 4Ā . 
Define a function Ā ∶ ý → {1,2, & ,2Ā + 2}by 

Ā(ÿÿ) = ÿ ,         ÿ = 1,2, & ,2Ā + 2 . 

 Clearly Ā is a bijection. 

For the vertex labeling Ā, the induced edge labeling Ā�þýýýÿ�∗  is defined as follows  

 Ā�þýýýÿ�∗ (ÿ1ÿÿ+2) =  ÿ(ÿ + 3)2 + 1 ,                        ÿ = 1,2, & , Ā 

Ā�þýýýÿ�∗ (ÿ2ÿÿ+2) =  ÿ(ÿ + 3)2 + 2 ,                        ÿ = 1,2, & , ĀĀ�þýýýÿ�∗ (ÿ1ÿĀ+ÿ+2)
=  (Ā + ÿ + 2)2 2 Ā 2 ÿ2 2 1 ,           ÿ = 1,2, & , Ā 

Ā�þýýýÿ�∗ (ÿ2ÿĀ+ÿ+2) =  (Ā + ÿ + 2)2 2 Ā 2 ÿ2  ,                 ÿ = 1,2, & , Ā 

Clearly Ā�þýýýÿ�∗  is an injection. 

gcin of(ý2) = gcd of {Ā�þýýýÿ�∗ (ÿ2ÿ3) , Ā�þýýýÿ�∗ (ÿ2ÿ4)} = gcd of {4 ,7} = 1 . 

gcin of(ý1) =gcd of {Ā�þýýýÿ�∗ (ÿ1ÿ5) , Ā�þýýýÿ�∗ (ÿ1 ÿ3)} = gcd of {10 ,3} = 1 . 

gcin of(ýÿ+2) =gcd of {Ā�þýýýÿ�∗ (ÿ2ÿÿ+2) , Ā�þýýýÿ�∗ (ÿ1 ÿÿ+2)} 
= gcd of {ÿ(ÿ+3)2 + 2 , ÿ(ÿ+3)2 + 1} 

= 1 ,       ÿ = 1,2, & , Ā. 
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gcin of (ýĀ+ÿ+2) =gcd of {Ā�þýýýÿ�∗ (ÿ2ÿĀ+ÿ+2) , Ā�þýýýÿ�∗ (ÿ1 ÿĀ+ÿ+2)} 

=gcd of {(Ā+ÿ+2)22Ā2ÿ2  , (Ā+ÿ+2)22Ā2ÿ2 2 1                                                        = 1 ,               ÿ = 1,2, & , Ā.  

So, gcin of each vertex of degree greater than one is 1. Hence Ā(ÿ1,Ā) admits  

absolute difference of square sum and sum mean prime labeling . 

Example : 4.2.1 

 

Theorem : 4.2.2 

 Splitting graph of star ÿ1,Ā (Ā > 2) admits absolute difference of square sum and 

sum mean prime labeling.  

Proof : 

Let ă =  þ′(ÿ1,Ā)and let ý1, ý2, & , ý2Ā+2 are the vertices of ă. Here |ý(ă)| =2Ā + 2 and  |ā(ă)| =  3Ā.  

Define a function Ā ∶ ý → {1,2, & ,2Ā + 2} by      
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Ā(ÿÿ) = ÿ ,         ÿ = 1,2, & ,2Ā + 2 . 

 Clearly Ā is a bijection. 

 For the vertex labeling Ā, the induced edge labeling Ā�þýýýÿ�∗ is defined as follows 

Ā�þýýýÿ�∗ (ÿ1ÿÿ+2)  =   ÿ(ÿ + 3)2 + 1 ,                        ÿ = 1,2, & , Ā 

Ā�þýýýÿ�∗ (ÿ2ÿÿ+2)  =   ÿ(ÿ + 3)2 + 2 ,                       ÿ = 1,2, & , Ā 

Ā�þýýýÿ�∗ (ÿ1ÿĀ+ÿ+2)  =  (Ā + ÿ + 2)2 2 Ā 2 ÿ2 2 1 ,           ÿ = 1,2, & , Ā 

Clearly Ā�þýýýÿ�∗  is an injection. 

gcin of (ýÿ+2) =gcd of {Ā�þýýýÿ�∗ (ÿ2ÿÿ+2) , Ā�þýýýÿ�∗ (ÿ1 ÿÿ+2)} 

= gcd of {ÿ(ÿ+3)2 + 2 , ÿ(ÿ+3)2 + 1} 

= 1 ,       ÿ = 1,2, & , Ā. 
So, gcin of each vertex of degree greater than one is 1. Hence þ′(ÿ1,Ā)admits  

absolute difference of square sum and sum mean prime labeling. 

 

 

 

 

 

 

 



43 

 

Example : 4.2.2 

 

 

Theorem : 4.2.3 

Let ă be the graph obtained by joining each vertex of star ÿ1,Āto vertices of path �2 by 

edges  (Ā >  2) admits absolute difference of square sum and sum mean prime 

labeling. 

Proof : 

Let ă be the graph and let ý1, ý2, & , ýĀ+2  are the vertices of ă. Here |ý(ă)| =Ā + 2 and  |ā(ă)| = 2Ā + 1. 

Define a function Ā ∶ ý → {1,2, & , Ā + 2}by 

Ā(ÿÿ) = ÿ ,         ÿ = 1,2, & , Ā + 2 . 

Clearly Ā is a bijection.  

For the vertex labeling Ā, the induced edge labeling Ā�þýýýÿ�∗  is defined as follows 
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Ā�þýýýÿ�∗ (ÿ1ÿÿ+2)  =   ÿ(ÿ + 3)2 + 1 ,                        ÿ = 1,2, & , Ā 

Ā�þýýýÿ�∗ (ÿ2ÿÿ+2)  =   ÿ(ÿ + 3)2 + 2 ,                       ÿ = 1,2, & , Ā Ā�þýýýÿ�∗ (ÿ1ÿ2)  =  3. 

Clearly Ā�þýýýÿ�∗  is an injection. 

gcin of (ý2) = gcd of {Ā�þýýýÿ�∗ (ÿ1ÿ2) , Ā�þýýýÿ�∗ (ÿ2ÿ3)} = gcd of {1 , 4 } = 1 . 

gcin of (ý1) =gcd of {Ā�þýýýÿ�∗ (ÿ1ÿ2) , Ā�þýýýÿ�∗ (ÿ1 ÿ3)} = gcd of {1 ,3} = 1 . 

gcin of (ýÿ+2)  =gcd of {Ā�þýýýÿ�∗ (ÿ2ÿÿ+2) , Ā�þýýýÿ�∗ (ÿ1 ÿÿ+2)} 
= gcd of {ÿ(ÿ+3)2 + 2 , ÿ(ÿ+3)2 + 1} 

= 1 ,       ÿ = 1,2, & , Ā. 
So, gcin of each vertex of degree greater than one is 1. Hence ă admits absolute 

difference of square sum and sum mean prime labeling. 

4.3        Absolute Difference of Cubic and Square Sum Labeling of a 

Class of Trees 

Introduction 

Definition : 4.3.1 

Let ă =  (ý(ă), ā(ă)) be a graph. A graph ă is said to be absolute difference 

of the sum of the cubes of the vertices and the sum of the squares of the vertices, if 

there exist a bijection Ā ∶ ý(ă) → {1,2, & , ý}such that the induced function        Ā�þýýý∗ ∶ ā(ă) → multiples of 2 is given by 
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Ā�þýýý∗ (þÿ) =  Ā(þ)3 + Ā(ÿ)3 2 (Ā(þ)2 + Ā(ÿ)2) 

is injective. 

Definition : 4.3.2 

A graph in which every edge associates distinct values with multiples of 2 is 

called the sum of the cubes of the vertices and the sum of the squares of the vertices. 

Such a labeling is called an absolute difference of cubic and square sum labeling or an 

absolute difference of css-labeling.  

4.4    Main Results 

Definition : 4.4.1 

An (Ā, ā) – banana tree, is a graph obtained by connecting one leaf of each of Ā copies of a ā- star graph with a single root vertex that is distinct from all stars.  

Definition : 4.4.2 

An(Ā, ā) -firecracker is a graph obtained by the concatenation of  Āā-stars by 

linking one leaf from each . 

Theorem : 4.4.3 

 The banana tree  þ(Ā,ā) is the absolute difference of the css-labeling. 

Proof : 

Let ă = þ(Ā,ā) and let ý1, ý2, & , ýĀā+1  are the vertices of ă.  

Here ý(ă) = Āā + 1  and  ā(ă) =  Ā 

Define a function Ā ∶ ý → {1,2, & , Āā + 1} by 
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Ā(ÿÿ) = ÿ ,         ÿ = 1,2, & , Āā + 1 . 

For the vertex labeling Ā, the induced edge labeling Ā�þýýý∗  is defined as follows   Ā�þýýý∗ [ÿ(Ā21)ā+1ÿÿ+(Ā21)ā+1] = {(Ā 2 1)ā + 1}2{(Ā 2 1)ā} +                                                            {ÿ + (Ā 2 1)ā + 1}2{ÿ + (Ā 2 1)ā+1} ,                                                                                                                          Ā = 1,2, & , Ā and  ÿ = 2,4, & , (ā 2 1) 

Ā�þýýý∗ [ÿ(ÿ21)ā+2ÿĀā+1] = {(ÿ 2 1)ā + 2}2{(ÿ 2 1)ā + 1} + (Āā+1)2(Āā) , ÿ = 1,2, & , ā 

All edge values of ă are distinct, which are multiples of 2.That is the edge values of ă 

are in the form of an increasing order. Hence þ(Ā,ā) admits absolute difference of css-

labeling. 

Example : 4.4.3 

 

 

Theorem : 4.4.4 

Fire cracker graph ĂĀ,ā is the absolute difference of the css-labeling. 
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Proof : 

        Let ă = ĂĀ,ā and let ý1, ý2, & , ýĀā   are the vertices of ă. 

Here   ý(ă) = Āā and    ā(ă) = Āā 2 1.  

Define a function Ā ∶ ý → {1,2, & , Āā}by 

Ā(ÿÿ) = ÿ ,         ÿ = 1,2, & , Āā . 

For the vertex labeling Ā, the induced edge labeling Ā�þýýý∗  is defined as follows 

Ā�þýýý∗ (ÿĀā+1ÿĀā+ÿ+1) =  (Āā + 1)2(Āā) + (Āā + ÿ + 1)2(Āā + ÿ) , 
Ā = 0,1,2, & , Ā 2 1 

       ÿ = 1,2,3, & , ā 2 1 

Ā�þýýý∗ (ÿÿāÿ(ÿ+1)ā)  =  (ÿā)2(ÿā 2 1) + {(ÿ + 1)ā}2{ÿ + 1)ā 2 1}, 
                                                   ÿ = 1,2, & , Ā 2 1 

All edge values of ă are distinct, which are multiples of 2.That is the edge values of ă 

are in the form of an increasing order. Hence ĂĀ,ā admits absolute difference of css-

labeling. 
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Example : 4.4.4 

 

 

Theorem : 4.4.5 

The (Ā; ā; ÿ) 2double star tree is the absolute difference of the css-labeling. 

Proof : 

Let ă be the (Ā; ā; ÿ)-double star tree and let ý1, ý2, & , ýĀ+ā+ÿ22 are the 

vertices of ă. Here|ý(ă)| = Ā + ā + ÿ 2 2 and |ā(ă)| = Ā + ā + ÿ 2 3.  

Define a function Ā ∶  ý → {1,2,3, & , Ā + ā + ÿ 2 2} by       Ā(ÿÿ) = ÿ ,         ÿ = 1,2, & , Ā + ā + ÿ 2 2 . . 
 For the vertex labeling Ā, the induced edge labeling Ā�þýýý∗  is defined as follows 

Ā�þýýý∗ (ÿÿÿÿ+1) =  (ÿ + 1)2ÿ + (ÿ)2(ÿ 2 1) , ÿ = 1,2, & , Ā 2 1 Ā�þýýý∗ (ÿ1ÿĀ+ÿ) =  (Ā + ÿ)2(Ā + ÿ 2 1), ÿ = 1,2, & , ā 2 1Ā�þýýý∗ (ÿĀÿĀ+ā+ÿ21)=  (Ā)2(Ā 2 1) + (Ā + ā + ÿ 2 1)2(Ā + ā + ÿ 2 2), ÿ = 1,2, & , ÿ 2 1 

All edge values of ă are distinct, which are multiples of 2 .That is the edge values of ă are in the form of an increasing ordser. Hence (Ā; ā; ÿ) double star tree admits 

absolute differencse of css-labelings. 
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                                           CHAPTER 1    

                                                                     PRELIMINARIES 

 

Definition: 1.1 

            A graph G consists of a pair (�(�),ÿ (�)) where  �(�) ÿĀ � non-empty finite 

set whose elements are called  points or vertices and  ÿ(�) is called a set of 

unordered pairs of distinct elements of   �(�). The elements of  ÿ(�) are called lines 

or  edges  of the graph G. 

Definition: 1.2 

              Two vertices Ă and ă  in a graph are said to be connected if there is a (Ă, ă) 

path in  �. A graph �  is connected if any two vertices are connected. A graph which 

is not connected is said to be disconnected. 

Definition: 1.3 

               If  ą = {Ă, ă} ∈ ÿ(�), the line ą is said to join Ă and ă. We write ą = Ăă 

and say that the points Ă and ă are adjacent. We also say  that  the point Ă and the 

line ą  are  incident with each other. 

Definition: 1.4 

              A simple graph � is said to be a complete graph if every vertex is adjacent 

to all other vertices. A complete graph with Ą vertices is denoted by āĀ. 
Definition: 1.5  

              Two vertices Ă and   ă are said to be adjacent if (Ă, ă) ∈ ā are called 

adjacent vertices. If two edges are said to be adjacent if they have a vertex in 

common are called adjacent lines. 
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 Definition: 1.6          

               A vertices of a graph �(�, ā) is said to be odd vertices if its degree is an 

odd number . A vertices of  a  graph � is  be even vertices if  its degree is  an  even. 

Definition: 1.7          

             A walk is a alternating sequence of vertices and edges of a graph such that ă0,ÿ1,ă1,ÿ2,, & & ÿāăā   end with vertices . 

Definition: 1.8 

              A graph   is called a bigraph or bipartite graph if  � can be partitioned into 

two disjoint subsets  �1 and �2 such  that every line of  � joins a point of  �1 to a point 

of �2.  (�1,�2) is called a bipartition of  � . If further  � contains every line joining 

the points of  �1 to the point of  �2 then � is called a complete bigraph. 

Definition: 1.9 

              A  bijection of a  mapping that is  both one-to-one and onto.  A function 

 which relates each member of  a set ÿ to a separate and distinct member of another 

 set  Ā, where each member in Ā also has a corresponding member in ÿ. 

Definition: 1.10 

             A closed trial in which the origin and internal vertices are distinct is called a 

cycle. A cycle of length  Ą is called a  Ą 2 ýĆýĂÿ and is denoted by ýĀ. 
Definition: 1.11 

             A graph  � is called labeled if  its p points are distinguished from one 

another by name such as ă1, ă2, & & . , ă�. 
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Definition: 1.12 

            A cycle graph is connected graph where every vertex is adjacent to two other 

distinct vertices. 

Definition: 1.13 

              If  (ÿ, Ā) is a bipartition of a graph  � such that every vertex in ÿ is adjacent 

to every vertex in Ā.  Then the graph  � is called a complete bipartite graph. 

              If   |ÿ| = ă  and   |Ā| = Ą ,  then the complete bipartite graph is denoted by āÿ,Ā. 

Definition: 1.14  

              A complete bipartite graph  ā1,Ā21 is called a star graph with Ą vertices. It is 

denoted by ÿĀ 
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  CHAPTER 2                            

                        A LOWER BOUND AND UPPER BOUND 

        FOR THE MAGIC NUMBER 

                               Definition: 2.1 

               If a graph  � with ă  vertices and e edges is labeled  with numbers 1  through  ă + ÿ  such that every vertex and its incident edges adds up to the same number, 

the  � is a vertex–magic graph. We call this number the magic number. 

Definition: 2.2 

              If a graph  �  with  ă  vertices and ÿ edges is labeled with numbers 1  through       ă + ÿ  such that every edge and its two adjacent vertices adds up to same magic 

number, then �  is an edge-magic graph. 

Example: 

 

 

                                                                               

                                               Figure 2.1 

  A cycle graph with a magic number of 10.  If the labels are rotated clockwise, 

an edge-magic graph is Created with a magic number of 10. 
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                2.1.  A LOWER BOUND FOR THE MAGIC NUMBER 

Lemma: 2.1.1 

              If  � is a vertex-magic graph with   ă vertices and  ÿ  edges, then  

 
(Ā+�)(Ā+�+1)2Ā + � �ÿÿĀ = ā. 
Proof:  

Let ��ÿÿ  be the sum of all vertex labels and ā�ÿÿ   be the sum of all edge 

labels of graph G. Since each edge is incident to two vertices, each edge label will be 

counted towards it two adjacent vertices magic numbers, Therefore, 

                                                          ��ÿÿ + 2ā�ÿÿ = ăā. 

Since edges and vertices are labeled 1 through ă + ÿ, 
        ��ÿÿ + ā�ÿÿ = 1 + 2+. & & & & . . +(ă + ÿ) = (Ā+�)(Ā+�+1)2  

Therefore,                                

(Ā+�)(Ā+�+1)2Ā + ā�ÿÿ = ăā 

                                                  

(Ā+�)(Ā+�+1)2Ā + ��ÿ�Ā = ā 

Theorem: 2.1.2 

              Let � be a graph with ă vertices and ÿ edges. If � is a vertex-magic graph, 

then the magic number, ā, is bounded such that 

              
�(�+1)+(Ā+�+1)(Ā+�)2Ā f ā f ÿ + �(�+1)+(Ā+�+1)(Ā+�)2Ā    
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Proof: 

            From  lemma 2.1.1  we can conclude that  ā�ÿÿ = ăā 2 (Ā+�+1)(Ā+�)2  

The minimum  ā�ÿÿ   occurs when numbers 1 through  ÿ  are assigned to the edges 

Therefore, 

                                       
�(�+1)2 f ā�ÿÿ 

            The maximum  ā�ÿÿ  occurs when numbers  ă + 1 through  ă + ÿ are assigned 

to the edges. Hence, 

                                       ā�ÿÿ f ∑ ă + ÿ�ÿ=1  

                                                 = ∑ ă�ÿ=1 + ∑ ÿ�ÿ=1  

                                                 = ăÿ + �(�+1)2  

Hence, 

                          
�(�+1)2 f ā�ÿÿ f ăÿ + �(�+1)2  

                                       
�(�+1)2 f ăā 2 (Ā+�+1)(Ā+�)2 f ăÿ + �(�+1)2  

                  
�(�+1)+(Ā+�+1)(Ā+�)2Ā f ā f ÿ + �(�+1)+(Ā+�+1)(Ā+�)2Ā  

Corollary: 2.1.3 

              Let be � a cycle graph with ă  vertices. If  � is a vertex–magic graph, then 

the magic number, ā, is bounded such that   
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52 ă + 32 f ā Ą/ÿÿÿ ă ÿĀ ąþþ 

and 

                           
52 ă + 2 f ā Ą/ÿÿÿ ă ÿĀ ÿăÿĄ 

Proof: 

            For every cycle graph,  ă = ÿ.  By substituting ă in for   ÿ  in Theorem 2.1.1,  

We obtain, 

                               ā g Ā(Ā+1)+(2Ā+1)(2Ā)2Ā  

                                  = 2ă + 1 + Ā+12  

                                  = 52 ă + 32 

            When ă is odd , ă + 1 is divisible by 2, so the minimum magic number for a 

cycle graph with an odd number of vertices is   52 ă + 32  . For an example 2.1.4  of how 

to apply this bound to a vertex-magic. 

            This formula,  ā = 2ă + 1 + Ā+12  is possible only if  ă  is odd, and a better 

bound can be found if ă  is even. 

             The minimum vertex labelling for a cycle graph occurs when numbers 1 

through ă  are assigned to the edges. From Lemma 2.1.1,   2ă + 1 + ��ÿ�Ā = ā. This 

implies that  ā�ÿÿ  must be divisible by  ă  . The edge labelings be in order to have a 

minimum vertex labelings  for an even cycle graph where  ā�ÿÿ  is divisible by ă. 
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            If   ă  is even, can edges be labeled with numbers 1 through ă. If this labeling 

is used, then   ā = 2ă + 1 + Ā+12 .  We know that  ă + 1 must be divisible by 2, 

however if  ă is even, then  ă + 1 cannot be divisible by 2. Therefore, the numbers 1 

through cannot be used for the edges to find a minimum labeling. 

             Although the edge labeling of 1 through  ă cannot be used for a minimum 

labeling, consider adding  
Ā2  to one of the labels. Example 2.1.5  and  2.1.6   ā�ÿÿ   can 

be adjusted so that the magic number is an integer. Adding  
Ā2 to   ā�ÿÿ   if  ă is even 

will create a valid edge labeling. Note that this new  ā�ÿÿ   is divisible by ă. 
                                  ā�ÿÿ = 1 + 2 + 3 & & & + ă + Ā2, 

                                     = Ā(Ā+1)2 + Ā2 

As before, 

                                       ā  = 2ă + 1 + ��ÿ�Ā , 

                                            g 2ă + 1 + Ā(Ā+1)+Ā2Ā  

                                            = 2ă + 1 + Ā+22 , 

                                            = 52 ă + 2 

Example 2.1.4: 

              Let � be graph with  ă = 15 ăÿÿāÿýÿĀ . If  � is a vertex magic what would 

the minimum magic number. 
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              The smallest  ā�ÿÿ  comes from labeling the edges with numbers 1 through 

15.  By  corollary 2.1.3 , the magic number for this particular graph would be 

 
52 (15) + 32 = 39 

                                Example 2.1.5: 

             Let  � be a cycle graph with  ă = 4 ăÿÿāÿýÿĀ. what are some combinations of 

vertex labelings that could be used in creating a vertex-magic graph with a 

minimum ā. 
             Being by making  ā�ÿÿ = 1 + 2 + 3 + 4. Since ă = 4,  and 4 does not divide ā�ÿÿ = 10,  then  ā�ÿÿ  must be adjusted  such that ā�ÿÿ is divisible by  ă. The edge 

labels cannot be shifted down because the smallest numbers are already on the edges. 

The closest  multiple 4 after 10 is 12. Therefore,  ā�ÿÿ  must be shifted from 10 to 12 

by adding 2. There are numerous ways of doing this. By adding 2 to 4,  ā�ÿÿ  
becomes 1 + 2 + 3 + 6.  since the sum of the edges equals 12,  {1,2,3,6} is a valid 

edge labeling for finding a possible minimum  ā. 

Example  2.1.6: 

              Let � be a cycle graph with  ă = 6 ăÿÿāÿýÿĀ . What is a valid ā�ÿÿ  that can 

be used to make � Vertex- magic with a minimum  ā. 
              By using the same technique, the edge labelings can be altered for ă = 6, 
Let ā�ÿÿ = 1 + 2 + 3 + 4 + 5 + 6. Since this sum 21 is not divisible by 6, we must 

add 3 to obtain 24 which is divisible by 6. Therefore, the minimum magic number is 

24 when  ă = 6. 
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                  2.2  AN UPPER BOUND FOR THE MAGIC NUMBER 

Corollary: 2.2.1 

               Let  � be a graph with ă vertices. If  � is a vertex-magic graph, then the 

magic number, ā, is bounded such that 

                                       ā f 72 ă + 32  Ą/ÿÿÿ ă ÿĀ ąþþ, 
And 

                                       ā f 72 ă + 1 Ą/ÿÿÿ ă ÿĀ ÿăÿĄ 

Proof: 

            The upper bound would occur on any graph when the largest numbers,  ă + 1 

through 2ă,  are placed on the edges. Therefore, 

                              ā�ÿÿ    = ∑ ă + ÿĀÿ=1 , 
                                           = ă2 + Ā(Ā+1)2 , 
                                           = 2Ā2+Ā(Ā+1)2  

                                           = 2Ā2+Ā2+Ā2  

                                           = 3Ā2+Ā2    

                                           = Ā(3Ā+1)2 . 

Also,          
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                                         ā = 2ă + 1 + ��ÿ�Ā , 

                                            f 2ă + 1 + Ā(3Ā+1)2Ā , 

                                             = 2ă + 1 + Ā+12 , 

                                             = 72 ă + 32 

      As in the case of the lower bound, 2 must divide  ă + 1 and ă must 

divide  ā�ÿÿ . For any cycle graph with an odd number of vertices, this holds true 

when the edges are the largest numbers. So, the maximum possible ā for any cycle 

graph with an odd number of vertices is   72 ă + 32.. However, a cycle graph with an 

even number of vertices is more difficult. 

              When looking at the upper bound for ā  of a cycle graph with an even 

number of vertices, assume that the numbers  ă + 1 through  2ă are placed on the 

edges. Since  ă + 1  is not divisible by 2, one must alter the edge labelings. To find 

the lower bound for the magic number when ă is even, the number ā�ÿÿ was 

increased, but in this case, the numbers cannot be increased because no label can be 

greater than 2ă . So, in order to find an   ā�ÿÿ   divisible by ă,  the original  ā�ÿÿ  
must be decreased, In example  2.2.2  and  2.2.3 

             For any cycle graph with an even number of vertices, the number   Ā2   must be 

subtracted from the original sum. Therefore, 

                                  ā�ÿÿ = Ā(3Ā+1)2 2 Ā2 

                                           = 3Ā2+Ā2 2 Ā2 
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                                              = 3Ā22 + Ā2 2 Ā2 

= 3ă22  

                                        = Ā(3Ā)2  

Thus,    

                                        ā   = 2ă + 1 + ��ÿ�Ā  

                                              f 2ă + 1 + (3Ā)2  

                                              = 72 ă + 1 

Example 2.2.2 

            Let �  be a cycle graph with ă = 4 ăÿÿāÿýÿĀ. What are some possible 

combinations of vertex labelings such that  �  has a maximum ā. 

             Label the graph such that  ā�ÿÿ = 8 + 7 + 6 + 5 = 26 . The largest number 

less than 26 that is divisible by 4 is 24. Therefore 2, or 
Ā 2 , must be subtracted 

from  ā�ÿÿ  making the magic number 15. One possible edge labeling is  {8,7,6,3} By 

changing the 5 to a 3,  ā�ÿÿ becomes 8 + 7 + 6 + 3  which is divisible by ă. 

Therefore, the edges labelings could possibly be used to label this graph with the 

maximum ā. 

Example 2.2.3 

           Let � be a cycle graph with ă = 6. What is the maximum  ā�ÿÿ  for � such 

that � is vertex-magic. 
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           If � is labeled with the largest numbers on the edges, � has an ā�ÿÿ of 21. The 

next  ā�ÿÿ less than 21 that divides 6 is 18. Thus, 3 must be subtracted from the 

original ā�ÿÿ  to make the new  ā�ÿÿ equal to 18. This edge labeling has a magic 

number of  22. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                       14 

                                               CHAPTER 3    

         MAXIMUM AND MINIMUM MAGIC NUMBER FOR 

                          ODD AND EVEN CYCLES GRAPHS 

3.1 Maximum and Minimum Magic Number For Odd Cycle Graphs 

                               Theorem: 3.1.1 

             Let  � be a cycle graph with  ă vertices where  ă is odd. There exists a vertex-

magic labeling with the numbers 1 to ă located on the vertices and a magic number 

of   72 ă + 32 ,  the upper bound for the magic number.  

 

 

                

 

                             

.                                                               Figure 3.1             

               Vertices of a general cycle graph labeled with the smallest numbers 

                                Proof: 

            Label the vertices with the consecutive numbers 1 through ă in a clockwise 

manner. Assume in this paper that no two edges of the cycle graph cross. An edge is 

to the right of a vertex if it is adjacent and clockwise to that vertex, and an edge is to 
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ă 
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5

2 (32) ă 2 (12) 

    

(32) ă + (12) 

          (32)  ă 2 (32)     ă 2
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2ă 

2ă-1 

2ă 2 2 
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the left of a vertex if it is adjacent and clockwise to that vertex, and an edge is to the 

left of a vertex if it is adjacent and counterclockwise to that vertex. Starting with the 

edge to the right of the vertex labeled 1, go clockwise around the polygon twice 

labeling every other edge with consecutive numbers  ă + 1 through  2ă in descending 

order starting with 2ă. Any vertex of a cycle graph can be categorized into one of the 

following two categories 

     

Description of 

Case 

  

    Vertex label  

 

       Left edge     

         Label 

 

       Right Edge  

          Label 

Every other 

Vertex starting  

With 1 

          2ÿ + 1 

ÿ = 0, & . , ă 2 12  

         

     3Ā2 + 12 2 ÿ                        2ă 2 ÿ           
Every other 

Vertex starting  

With 2 

          2ÿ + 2 ÿ = 0, & . , Ā212  -1 

 

       2ă 2 ÿ  3ă2 2 12 2 ÿ 
                                   

   A vertex in the first case will have a magic number of 

                                      2ÿ + 1 + 3Ā2 + 12 2 ÿ + 2ă 2 ÿ = 7Ā2 + 32. 

   A vertex in the second case will have a magic number of 

                                  2ÿ + 2 + 2ă 2 ÿ + 3Ā2 2 12 2 ÿ = 7Ā2 + 32. 

   Thus, this graph is vertex-magic with a magic number of   
7Ā2 + 32. 
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                                                         Figure 3.2 

                          A cycle graph with 3 vertices and a magic number of 12. 

 

 

 

 

            

                                                                                    

                                                          Figure 3.3                 

                         A cycle graph with 5 vertices and a magic number of 19. 

 Now, assign the largest numbers to the vertices. As expected, the maximum magic       

number is  fixed and depends only on the number of vertices. 
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                               Theorem: 3.2 

              Let  � be a cycle graph with ă  vertices where ă is odd. There exists a vertex-

magic labeling with the numbers  ă + 1 to  2ă located on the vertices and a magic 

number of   52 ă + 32 ,  the lower bound for the magic number. 

 

 

 

 

 

 

                                                                Figure 3.4                      

                        The vertices of a cycle graph labeled with the large numbers 

                               Proof:   

           A cycle graph can be labeled with the largest numbers on the vertices. Label 

the vertices with the  Consecutive numbers numbers  ă + 1 through  2ă in a clockwise 

manner.  Starting with the edge to the right of verteą  ă + 1,  go clockwise around the 

polygon twice labeling every other edge with consecutive numbers 1 through ă in 

descending  order starting with ă. The vertices of the cycle graph can be categorized 

into one of the following categories.  

                                 

ă + 4 

ă+3 

ă+2 

ă+1 

2ă 

ă+5 

ă+6 ă-2 

 

(12) ă 2 (12) 

 

(12) ă+(12) ă 

ă 2 1 (12) ă 2 (32) 
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                             - 

      A vertex in the first case will have a magic number of 

                                                                     ă + 1 + 2ÿ + ă 2 ÿ + Ā+122ÿ2 = 5Ā2 + 32 . 
                                         A vertex in the second case will have a magic number of  

                                                                     ă + 2 + 2ÿ + ă 2 ÿ + Ā2122ÿ2 = 5Ā2 + 32 . 
                                          This cycle graph is vertex-magic with a magic number of   

5 Ā2 + 32. 

                                                   

  

                                                                            

      

                                                                                

 

                                                       Figure 3.5 

                         A cycle graph with 3 vertices and a magic number of 9. 

       

Description of 

Case 

 

    Vertex label 

 

       Left Edge   

          Label      

 

    Right Edge      

        label 

Every other  

Vertex starting   

With  ă + 1 

     ă + 1 + 2ÿ 
ÿ = 0, & . , ă 2 12  

 

     Ā2 + 12 2 2ÿ2  

 

     

        ă 2 ÿ 
Every  other 

Vertex starting   

With ă + 2 

      ă + 2 + 2ÿ ÿ = 0, & . , Ā212  -1 

 

 

      ă 2 ÿ  

  ă2 2 12 2 2ÿ2  

 

6 5 

4 

    1 

2 3 
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                                                                                         Figure 3.6 

                                                         A cycle graph with 5 vertices and a magic number of 14. 
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 3. 2.  Minimum Magic Number For Even Cycle Graphs  

 Conjecture 3.2.1: 

             Let � be a graph with ă vertices where ă is even. There exists a vertex-     

magic labeling for � with Minimum magic number  ā = 52 ă + 2. 
             If we can find edge labelings that create a vertex-magic graph, then by adding 

the two incident edges of a vertex and subtracting that sum from the magic number, 

the vertex labels can be easily obtained. The edges of a cycle graph with an even 

number of vertices can be labeled as follows: 

               Let ă = 2Ą.  The value of Ą can be either even or odd, and the constructio of 

the vertex-magic graph depends on Ą.  If  Ą is even, the following is a construction    

for how to label the edges. 

      

S 

 

 

                                                                                               

                                                        

                                                                             Figure 3.7  

                                        The edges of a cycle graph                
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ÿ+12  ,                     ÿ = 1, 3, & , Ą + 1, 

                                    3Ą ,                   ÿ = 2, 
                              ÿÿ  =      2Ā+ÿ2  ,              ÿ = 4,6, . . Ą,                                      2Ā+ÿ212 ,          ÿ = Ą + 3, Ą + 5, & ,2Ą 2 1, 
                                    

 ÿ+22   ,               ÿ = Ą + 2, Ą + 4, & 2Ą. 
                                                           

             A cycle graph with ă = 8 and Ą = 4 should have a minimum ā of 22. By 

using the given edge labelings for an even Ą, one can find the edges and vertices for 

this graph. 

                                                                       

      

                                  

 

                                                         Figure 3.8                 

                        A cycle graph with the minimum magic number of 22. 

                                      The type of labeling occurs when Ą = 6 or  ă = 12. Using conjecture 3.2.1, we  

         Calculate  that the magic number should be 32.    
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         If  Ą is odd a similar technique can be used to label the cycle graph.                                                 

 

                                                            

           

 

 

 

                                                                             

                                                 Figure 3.9 

                         A  cycle graph with the minimum magic number of 32. 

   

                                       ÿ+12  ,                  ÿ = 1, 3, & , Ą, 
                                3Ą ,                ÿ = 2, 

                                  2Ā+ÿ+22  ,        ÿ = 4,6, . . Ą-1, 

                         ÿÿ=  
Ā+32  ,            ÿ = Ą + 1, 

                                                              
2Ā+ÿ2   ,           ÿ = Ą + 3, Ą + 5, & . . ,2Ą 2 2 

                                                               
ÿ+32  ,            ÿ = Ą + 2, Ą + 4, & & ,2Ą 2 1 

                                                                          Ą + 2,            ÿ = 2Ą     
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Figure 3.10 and 3.11  Vertex–magic cycles where n is odd. If  ă = 6, then n = 3 and  

the magic number is 17. 

 

 

 

 

 

 

 

 

                                                         Figure 3.10                 

                         A cycle graph with the minimum magic number  

  Vertex- magic labeling when ă = 10. Thus n = 5, and the magic number is 27. 

 

 

 

 

 

                                                                              

                                                                                         Figure  3.11 

                        A  cycle graph with the minimum magic numbers of 27. 
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 We have to just shown how to produce vertex-magic graphs with the minimum magic  

 for both even and odd cycles. We have also shown how to create vertex-magic graphs 

 With the maximum magic number for odd cycles 

                               3.3  Maximum Magic Number For Even Cycle Graphs 

Theorem: 3.3.1  

            Let � be a cycle graph with ă  vertices where ă  is even. If Conjecture 3.2.1 

holds then there exists a vertex-magic labeling for � with the maximum magic 

number  ā = 72 ă + 1. 
            To obtain the minimum ā  in conjecture 3.2.1 for an even the edge labeling 

should be 1,2,3, & & , ă 2 1, ă + Ā2 . In order to obtain the maximum  ā the edge labels 

should be  2ă, 2ă 2 1, & . , ă + 2, ă + 1 2 Ā2. These values are exactly  2ă + 1 minus 

the numbers on the edges in the minimum labeling. The following cases produce the 

edge  labelings for a  maximum magic vertex graph. Using the maximum  ā  we can 

subtract the  sum  of the two edges  in order to label each vertex. Again, let  ă = 2Ą 

and let  Ą  be even. 

                                                                                2ă 2    ÿ+12 + 1 ,                  ÿ = 1, 3, & , Ą + 1,                                                                                                   2ă 2 3Ą + 1 ,                  ÿ = 2, 

                                ÿÿ  =         2ă 2   2Ā+ÿ2 + 1 ,              ÿ = 4,6, . . Ą, 

                                               2ă 2 2Ā+ÿ212 + 1 ,              ÿ = Ą + 3, Ą + 5, & ,2Ą 2 1,  
                                                                                 2ă 2 ÿ+22 + 1 ,                   ÿ = Ą + 2, Ą + 4, & . . ,2Ą, 
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                                      Now let Ą be odd, subtracting the edge labels of the algorithm in conjecture 3.2.1  

                                      From  2ă  and adding 1, a new edge labeling with a maximum ā can be obtained. 

    

                                                                              

  

 

 

                                                          Figure 3.12 

                        A cycle graph with the maximum magic number of 29. 

 

 

  

 

 

                                    

                                                          Figure  3.13  

                         A cycle graph with the maximum magic number of 43. 
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                                                                   2ă 2 ÿ+12 + 1,                 ÿ = 1,3, & . , Ą, 
                                2ă 2 3Ą + 1 ,                ÿ = 2, 

                                                                             2ă 2  2Ā+ÿ+22 + 1 ,        ÿ = 4,6, . . Ą-1, 

                  ÿÿ =         2ă 2 Ā+32 + 1,                  ÿ = Ą + 1, 

                                                                   2ă 2 2Ā+ÿ2 + 1 ,                ÿ = Ą + 3, Ą + 5, & . . ,2Ą-2 

                                                                   2ă 2 ÿ+32 + 1,                  ÿ = Ą + 2, Ą + 4, & . . ,2Ą 2 1, 
                                                                   2ă 2 (Ą + 2) + 1,          ÿ = 2Ą, 

   Different algorithms can be found for other odd cycle graphs such that the magic 

numbers are within the range for ā. Since we have found algorithms for creating 

vertex-magic graphs such that the magic number is the magic number is the minimum 

and maximum bound, we can conclude that the bounds are sharp.   

 

 

   

 

 

                                                       Figure 3.14 

                          A cycle graph with the maximum magic number of 22 
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                                                    Figure  3.15 

                        A cycle graph with the maximum magic number of 36. 
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                                                  CHAPTER  4                              

                 ODD AND EVEN NUMBERS ON THE VERTICES 

Theorem: 4.1 

              Let � be a cycle graph with ă vertices where ă is odd. There exists a vertex-

magic labeling for � with the odd numbers from 1 to 2ă 2 1 located on the vertices 

and a magic number of  3ă + 2. 

                       

 

 

 

 

  

                                                              Figure 4.1            

                      The vertices of a general cycle graph labeled with odd numbers 

                                Proof:  

          In order to label an odd cycle graph with odd numbers on the vertices, the 

vertices can be labeled with the consecutive odd numbers 1 through 2ă 2 1 in a 

clockwise manner. Starting with the edge to the right of the vertex labeled 1, go 

clockwise around the polygon twice labeling every other edge with consecutive even 

numbers  2 through  2ă  in descending order starting with 2ă. 
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 In general, any vertex of this labeling can be categorized into one of the following 

categories. 

  

Description of     

Case 

 

  Vertex Label 

 

     Left Edge  

      Label 

 

     Right Edge   

       Label 

Every other  

Vertex starting 

With 1 

       4ÿ + 1 

ÿ = 0, & . , ă 2 12  

 

 ă + 1 2 2ÿ  2ă 2 2ÿ 
Every other 

Vertex starting  

With 3  

         4ÿ + 3 ÿ = 0, & . , Ā212 2 1 

 2ă 2 2ÿ  ă 2 1 2 2ÿ 
 

In the first case, the magic number is 4ÿ + 1 + ă + 1 2 2ÿ + 2ă 2 2ÿ, or  3ă + 2. In 

the second case, the magic number is 4ÿ + 3 + 2ă 2 2ÿ + ă 2 1 2 2ÿ, which is also 3ă + 2.  Therefore, the graph is vertex-magic with a magic number of  3ă + 2. 
 

 

 

                           

                                                Figure 4.2 

                       A cycle graph  with 3 vertices and a magic number of  11. 
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                                                  Figure 4.3 

                   A cycle graph with 5 vertices and a magic number of 17 

Using similar ideas, one can label an odd cycle graph with the even numbers on the 

vertices. Like the odd numbers on the vertices, the even number on the vertices 

produce a pattern that is dependent upon the number of vertices. 

Theorem :4.2 

               Let � be a cycle graph with ă vertices where  ă is odd. There exists a vertex-

magic labeling for � with the even numbers from 2 to  2ă located on the vertices and 

a magic number of  3ă + 1. 

 

                                         

 

 

                                                                    Figure 4.4 

                      The vertices of a general cycle graph labeled with even numbers 
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Proof: 

         In order to label an odd cycle graph with even numbers on the vertices, the 

vertices can be labeled with the consecutive even numbers 2 through  2ă in a 

clockwise manner. Starting with the edge to the right of the vertex labeled 2, go 

clockwise around the polygon twice labeling every other edge with consecutive odd 

numbers 1 through  2ă 2 1 in descending order starting with  2ă 2 1. in general , any 

vertex of this labeling can be categorized into one of the following categories.     

 

 

 

   

s 

 

 

 

In the first  case, the magic number is 4ÿ + 2 + ă 2 2ÿ + 2ă 2 1 2 2ÿ,  or  3ă + 1. In 

the second case, the magic number is 4ÿ + 4 + 2ă 2 1 2 2ÿ + ă 2 2ÿ 2 2, or 3ă + 1.  
Therefore, the graph is vertex-magic with a magic number of  3ă + 1. 
 

 

   

Description of 

Case                  

 

  Vertex Label 

 

      Left Edge  

        Label           

 

     Right Edge   

       Label 

Every other  

Vertex starting 

With  2 

 

       4ÿ + 2 

ÿ = 0, & . , ă 2 12  

 

 

        ă 2 2ÿ  2ă 2 1 2 2ÿ 
Every other 

Vertex starting 

With 4 

         4ÿ + 4 

 ÿ = 0, & . , Ā212 2 1 

 

   2ă 2 1 2 2ÿ  ă 2 2ÿ 2 2 
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Finding the average of the minimum and maximum bounds, we get 

 72Ā+32+52Ā+322 = 3ă + 32 

       

                                               

                

 

                                           

                                                 Figure 4.5 

                      A cycle graph with 3 vertices and a magic number of 10. 

 

                                      

 

 

 

                                                     

                                                    Figure 4.6 

                          A cycle graph with 5 vertices and a magic number of 16. 
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This value is not a possible for  . However the two  middle ā values,           

3ă + [32] = 3ă + 1  and   3ă + [32] = 3ă + 2  occur when the even  and odd numbers 

are placed on the vertices respectively.     
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                                                 CHAPTER 5 

                           SUPER VERTEX–MAGIC LABELING 

                                Definition: 5.1 

               A vertex magic labeling Ā is called super vertex-magic labeling if 

 Ā(ā) = {1,2,3, & , �} and Ā(�) = ={� + 1, � + 2, & . , �}.  A graph G is called super  

vertex-magic if there exists a super vertex-magic labeling of G. 

Lemma:5.1 

                If a nontrivial graph G is Super vertex-magic then the magic number ā is 

given by  ā = � + Ā+12 + �(�+1)Ā  

Proof: 

               Let Ā  be a super vertex magic-labeling of a graph G with the magic number ā. Then  

Ā(ā) = {1,2,3, & . �, }   and   � = Ā(Ă) + ∑  Ā(Ăă) Ā∈�(ÿ) , for all  Ă ∈V. 

Then,                ăā = ∑ Ā(Ă) ÿ∈� + ∑  ÿ∈� ∑ Ā(Ăă) Ā∈�(ÿ)  

                                = ∑  Ā(Ă)ÿ∈� + 2 ∑  �∈� Ā(ÿ) 

                                = (� + 1) + (� + 2) + ⋯ + (� + ă) + �(� + 1) 

                                 = �ă + �(�+1)2 + �(� + 1) 

Thus,                    ā = � + (Ā+1)2 + �(�+1)Ā  
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                                Theorem: 5.2 

            A path  �Ā is super vertex- magic if and only if   Ą  is odd and  Ą g 3. 
Proof : 

            Suppose there exists a super vertex-magic labeling Ā of �Ā with the magic 

number ā. 

Then by lemma  5.1   ā = Ą 2 1 + Ā+12 + Ā(Ā21)Ā = 5Ā232  

Since ā is an integer,  Ą must be odd. 

Let n be an odd integer, 

V(�Ā) = {ă1, ă2, & . , ăĀ} and  E(�Ā) = {ÿÿ = ăÿăÿ+1/ 1 f ÿ f Ą 2 1} 

Define Ā: V∪E→ {1,2, & . ,2Ą 2 1} as follows:  

Ā(ă1) = 2Ą 2 1  

Ā(ăÿ) = Ą 2 2 + ÿ for  2f ÿ f Ą 

Ā(ÿÿ) = Ā2ÿ2   if  ÿ  is  odd 

            = Ą 2 ÿ2   if  ÿ  is even. 

It is easily seen that Ā  is a super vertex-magic labeling with the magic number  
5Ā232 . 

  

                     

                                                       Figure 5.1 
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Theorem 5.3: 

              A cycle  ýĀ is super vertex –magic if and only if  Ą is odd. 

Proof: 

               Suppose there exists a super vertex-magic labeling Ā of ýĀ with the magic 

number ā. 

Then by Lemma 5.1  ā = Ą + Ā+12 + Ā(Ā+1)Ā = 5Ā232  

Since ā is an integer,  Ą must be odd. 

Let Ą be an odd integer, 

V(ÿĀ) = {ă1, ă2, & . , ăĀ} and  E(ÿĀ) = {ăĀă1} ∪ {ăÿăÿ+1/ 1 f ÿ f Ą 2 1} 

Define Ā: V∪E→ {1,2, & . ,2Ą} as follows:  

Ā(ăÿ) = 2Ą + 1 2 ÿ  for  1f ÿ f Ą 

Ā(ăÿăÿ+1) = ÿ+12    if  ÿ is odd 

                 = Ā+1+ÿ2    if  ÿ  is even 

Ā(ăĀă1) = Ā+12   

It is easily seen that Ā is a super vertex-magic labeling with the magic number 
 5Ā+32 . 

 

 

 



                                                                                                                       37 

 

                

 

 

                                                            Figure 5.2 

 Theorem: 5.4  

             Let � be a graph  and  ā  is a bijection from ā onto   {1,2,3, & , �} . Then g can 

be extended to a super vertex-magic labeling of  G  if and only if   

{Ą(Ă) = ∑ ā(Ăă)/Ă ∈ � Ā∈�(ÿ) } consists of   |ă| sequential integers.  

                                Proof: 

           Assume that {Ą(Ă). Ă ∈ �}  consists of  |�|  sequential integers. Let 

 ā = min {Ą(Ă)/Ă ∈ �}.  

Define Ā:  � ⋃   ā → {1,2,3, & , ă + �} as Ā(ąĆ) = ā(ąĆ) for xy∈ ā and  

Ā(ą) = ā + ă + � 2 Ą(ą). Then Ā(ā) = {1,2,3, & . , �} .and   

Ā(�) = {� + ă, ă + � 2 1, & . � + 1}. Hence Ā  is a super vertex-magic labeling 

With  ā = ā + ă + �. 

Suppose g can be extended to a super vertex-magic labeling Ā of � with a constant  ā.  

Now let  
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ā =  min {Ą(Ă)/Ă ∈ �}. Since for every  Ă ∈ �,   Ā(Ă) + Ą(Ă) = ā,  we have  

W(Ă) = ā 2 Ā(Ă). Thus 

 {Ą(Ă)/Ă ∈ �} = {ā 2 � 2 ă, ā 2 � 2 ă + 1, & ā 2 � 2 1} = {ā, ā + 1, & . ā + ă 2 1}. 

Theorem: 5.5 

            A star graph   ÿĀ is super vertex-magic if and only if  Ą = 2 

Proof: 

            Let V(ÿĀ) = {ý, Ă1, Ă2, & . ĂĀ} and  E(ÿĀ) = {ýĂÿ/1 f ÿ f Ą}. Let Ā  be super  

Vertex-magic labeling of  ÿĀ. Then by theorem 5.4   

{Ą(Ă)/Ă ∈ �} = {1,2, & & . , Ą + 1}. Again 

Ą(ý) = Ā(Ā+1)2  and  w(Ăÿ) = ÿ  for 1f ÿ f Ą.  Hence Ą+1=
Ā(Ā+1)2   Thus Ą=2 , When,  Ą = 2, ÿĀ = �� which is super vertex-magic. 

                               5.2  Super Vertex–Magic Labeling On a Disconnected Graph 

                               Theorem: 5.2.1 

          ăÿĀ,  is super vertex- magic labeling if and only if both m and n are odd.  
Proof: 

         Suppose there exists a super vertex magic labeling of ăÿĀ,  with the magic 

number ā.  Then by   

Lemma 5.1 
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          ā=mn+ ÿĀ+12 + ÿĀ(ÿĀ+1)ÿĀ = 5ÿĀ+32  

Thus, ā is an integer only when both ă and Ą are odd.  Let ă and Ą are odd                  

integers. Assume that the graph  ăÿĀ,  has vertex set 

� = �1 ∪ �2 ∪ & .∪ �ÿ. where  �ÿ = {ăÿ1, ăÿ2, & . , ăÿĀ},  and the edge 

ā = ā1 ∪ ā2 ∪ & & .∪ āÿ where  āÿ = {ÿÿ1, ÿÿ2, & . . ÿÿĀ}, and ÿÿĀ = ăÿĀăÿĀ+1
 

 for 1f ÿ f ă,  1f Ā f Ą 2 1,   ÿÿĀ = ăÿĀăÿ1 

Define Ā:  � ⋃   ā → {1,2,3, & ,2ăĄ} as follows: 

For  1f ÿ f (ÿ21)2  

Ā(ăÿĀ)  = (2Ą 2 Ā)ă + 1 2 2ÿ  for 1f Ā f Ą 2 2 

        = ăĄ + ÿ for  Ā = Ą 2 1 

         = 12 (4Ą 2 1)ă + 12 + ÿ  for   Ā = Ą 

Ā(ÿÿĀ) = 12 (Ā 2 1)ă + ÿ for  Ā = 1,3, & . , Ą 2 2 

            = 12 (Ą + Ā)ă + 12 + ÿ  for   Ā = 2,4, & , Ą 2 1 

             = 12  (Ą + 1)ă + 1 2 2ÿ  for   Ā = Ą 

For 

              
ÿ+12 f ÿ f ă 

Ā(ăÿĀ)  = (2Ą + 1 2 Ā)ă + 1 2 2ÿ  for  1f Ā f Ą 2 2 
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            = ăĄ + ÿ  for  Ā = Ą  

            = 12 (4Ą 2 3)ă + 12 + ÿ for   Ā = Ą 

Ā(ÿÿĀ) = 12 (Ā 2 1)ă + ÿ  for   Ā = 1,3, & , Ą 2 2           

           = 12 (Ą + Ā 2 2)ă + 12 + ÿ  for  Ā = 2,4, & , Ą 2 1              
           = 12  (Ą + 3)ă + 1 2 2ÿ   for  Ā = Ą 

 It is easily that verified that Ā  is a super vertex-magic labeling of ăÿĀ 

                                     with  ā = 5ÿĀ+32  

 

 

 

 

                                                       Figure 5.3 
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                                                                           CHAPTER 6 

                                APPLICATION OF VERTEX MAGIC LABELING OF GRAPH 

                               A company want to distribute equal number  to its departments such that each 

                        computer is either by one department or by two departments, here the problem is to 

                        find the number of computers allotted to each department and also to find number of 

                        computers utilized by one department and number of computers used by two  

                        departments. Representing this situation as a graph by considering the departments as

                        vertices and if two departments shares computers then there is an edge between the 

                        corresponding vertices. Considering the vertex magic labeling to this graph we are                        

                        able to get the solution needed. 

                                  Problem: 6.1 

          A company wants to provide  exact numbers of computers or workstations to its 

5 departments  Ā1, Ā2, Ā3, Ā4, Ā5, departments are utilizing computers in such a 

manner that the departments  Ā1 and Ā2,   Ā2 and Ā3,  Ā3 and Ā4,   Ā4 and  Ā5 are 

sharing few computers. Find the number of computers required for a department. Find 

the exact number of computers utilized for two departments. 

Solution: 

         For each  ÿ = 1,2,3,4,5,  we take the department   Āÿ    as the vertex ăÿ   and if 

departments Āÿ    and ĀĀ  are sharing computers then we take an edge between ăÿ and ăĀ .    
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                                             The graph corresponding to the given circumstance is given in figure 6.1 

 

 

 

 

                                                            Figure 6.1      

                   Consider vertex Magic Total Labeling (VMTL) of the given graph 

 

 

  

                                                    Figure 6.2 

            The sum of the labels on the vertex and the incident edges is a constant ā , 

this ā provides the exact number of computers or workstations required for a 

particular department. The vertex labels expresses the exact number of computers 

utilized by one department. Also it gives the edge labels by the another department. 

Here  ā = 3 so each department utilizes 3 computers. We catalog the vertex and edge 

labels as in the following 
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The entry in the diagonal of the table shows the exact number of computers utilized 

by number one department. The other table shows the number of computers utilized 

by the respective pair of computers. 

Problem: 6.2    

        A company wants to provide equal number of computers to its 5 departments 

Administrators, Human resources, Logistics, Finance and Accounts. In order to 

reduce the idle time of the computers the company wants few computers are utilized 

by two  departments. The computers shared by the departments are Human resource 

and Logistics, Human resource and Administrators, Administrators and Accounts and 

Finance and Logistics. Find the exact number of computers required and also number 

of computers utilized by each department. Find the number of computers utilized by 

one department and by two departments. 

      Dept �ÿ �Ā   �ā �Ă �ă 

        �ÿ          6         3          0          0                          0 

�Ā          3         7          1          0         0 

        �ā          0         1          8          4         0 

�Ă          0         0          4          9         2 

�ă          0         0          0          2         5 

 

 

 u 
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Solution: 

                 Let us denote the departments Administrators, Human resource, Logistics, 

Finance and Accounts as the vertices   ă1, ă2, ă3, ă4, ă5  respectively. We can take an 

edge between vertices if there is a sharing of computers between the corresponding 

departments. The reverse vertex magic total labeling graph is shown in figure. 

 

               

                      

                                    .  

                                                          Figure 6.3                                    

     This VMT labeling gives the magic constant  ā = 2 . Thus 2 computers are utilized 

by each department.The number of computers utilized by one department and which 

are utilized by two departments are given in the following table. 

 

 

                                  

 

 

 

           

      Dept �ÿ �Ā �ā �Ă �ă 

       �ÿ          7          1          0         0         4 

�Ā          1          6          3         0         0 

�ā          0          3         10         5         0 

�Ă          0          0          5         9         2 

�ă          4          0          0         2         8 
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The entry in the diagonal of the table shows the number of computers utilized by                                                                       

 one department.  The other entries are the number of computers utilized by the         

 respective pair of elements. 

                                Remark: 

         1. The vertex magic labeling considered in the problems  6.1 and  6.2  are also a 

super vertex magic labeling(SVM). In this SVM labeling, the edge labels are smaller 

than the vertex labels. The computers shared by more than one department have to be 

installed with more software or with more equipment. So the company has to spent 

more money on the computers which are utilized by more than one department. If a 

SVM is considered for the graph (if it exists for the graph) which is drawn according 

to the situation described, then the number of computers which are utilized by more 

than one department is minimized Hence the amount spent by the company on those 

computers is minimized. 

         2. Suppose the company needs computers in large numbers, then consider the 

multiple of the labeling with any number 
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                                                            CHAPTER 1 

                                                       PRELIMINARIES 

In this chapter we present some basic definitions in graph theory that are needed for 

subsequent chapters. 

Definition:1.1 

A Graph is an order triple G  =(V(G),E(G),IG) where V(G) is a nonempty set of 

vertices, E(G) is a set of edges disjoint from V(G) and I(G) is an incidence relation that 

associates with each element of E(G) an unorder pair of elements of V(G). 

Definition:1.2 

The graph G is called a Planar Graph if it has a digraph in which no two edges 

intersect at a vertex or a point other than a vertex. 

Definition:1.3 

The vertex v is incidence with an edge e if it is n points of e. Therefore every edges 

incidence with its n vertex. 

Two Vertices are Adjacent if they are incident with same edge. Two Edges are 

Adjacent if they are incident with same vertex. 

Definition:1.4 

An edge starting and ending with the same vertex is called a Loop. 

An edge with distinct ends is called a Link. 
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Definition:1.5 

A graph G is said to be a Finite Graph if it is a vertex set and edge set are finite 

Defintion:1.6 

A graph G is called a Simple Graph if it has no loops and no two of  links join the 

same pair of vertices. 

Defintion:1.7 

A simple graph G is said to be a Complete Graph if every vertex is adjacent to all 

the other vertices                           

Defintion:1.8 

A Graph G is said to be Bipartite Graph if V(G) is partitioned into two sets x and y 

such that every edge of G has one end in x and another end in Y. The pair (X,Y) is called a 

Bipartition of V. 

Defintion:1.9 

If (X,Y) is a bipartition of a graph G such that every vertex in x is adjacent to every 

vertex in Y. Then the graph G is called a Complete Bipartite Graph 

Definition:1.10 

Two graphs G and H are said to be Isomorphic if there are two bijection 

θ:V(G)→V(H) and ∅:E(G)→E(H) such that ∅(IG(e)= uv ↔ IH(e))=θ(u) θ(v) ∀ e *E(G) 
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Definition:1.11 

Let G=(V,E,IG) be a graph. A graph H=(V’,E’,IH) is a Subgraph of G if V’ V, 

E’ E and IG  IH. 

A Subgraph H of G is a Proper Subgraph if V(H)  V(G). 

           If H is a subgraph of G,then G is a Supergraph of H. 

Definition:1.12 

The Degree (or) Valency of a vertex in a graph G is a number of edges of  incident 

with v, counting each loop twice. 

Definition:1.13 

A graph G is Regular if degree of each vertex is the same. 

A graph G is K-Regular Graph if the degree of each vertex is k. 

Definition:1.14 

A finite sequence in which vertices and edges alternatively and which begins and 

ends with vertices is called a Walk. 

A walk in which edges are not repeated is called a Trail. A walk in which vertices 

are not repeated is called a Path. 

Definition:1.15 

Two vertices u,v in a graph G are said to be Connected if there is (u,v) path in G. 

A Graph G is Connected Graph if any two vertices are connected. 
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Definition:1.16 

A walk is Closed Walk  if it has positive length and its origin and terminus are             

same. 

A path is called the Closed Path if its origin and terminus are the same. 

Definition:1.17 

A non-trivial closed of a graph G is called the Cycle of G (or) edges are not repeated. 

A closed trivial in which the origin and the internal vertices are distinct is called a     

Cycle. 

A cycle of length k is called a K-Cycle 

Definition:1.18 

A graph is Acycle if it has no cycle. 

A connected acycle graph is called Tree.  

A forest is an acycle graph (or) a collection of tree is called a Forest 

Definition:1.19 

A tree is said to be a Spanning Tree of a connected graph G if it is a subgraph of G 

and it contains all vertices of G. 

Definition:1.20 

A Tour of G is a closed walk that traverses each edge exactly once. 

A trail in a graph containing all the edges of G is called an Euler Trail of G. 

A graph G is said to be Traversable if it contains euler trail. 
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Definition:1.21  

Let G=(V,E) be a graph. A set D of vertices in a graph G is called Dominating Set 

of G if every vertex in V-D  is adjacent to some vertex in D. The minimum cardinality of the 

dominating sets of G is called the Domination number  ( ) of G 

Example:1.22 

 

 

 

 G  

                                                        Fig1.1 

                                         {V2,V6} is a dominating set 

Example :1.23 

If K2 is a complete graph, then  (K2)=1 

                                                   

                                   =1 

                 Fig 1.2 

{v}is a dominating set of the complete graph K2. 

 

If K3 is a complete graph ,then  (K3)=1 

v 

v1 

v  

v3 

v4 

v5 

v6 

v7 
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                                   K3 

                              =1 

  

                                                    Fig 1.3 

In general  (Kn)=1 

Example:1.24 

If S3 is a star graph, then  (S3)=1 S3 

 

 

      =1 

 

 Fig 1.4 

   {v} is the minimal dominating set of S3 

 (Sn)=1,n 1 

  Example:1.25 

   If Wn be the wheel graph, then  (Wn)=1 

    

                                     

 

v 

v 
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                       W5  

   =1 

 

 

 

 

                    Fig1.5 

   {v} is the minimal dominating set of W5,  (W5)=1, 

  Definition:1.26 

  A problem is called NP (nondeterministic polynomial) if its solution can be    

guessed and verified in polynomial time. Nondeterministic means that no particular rule is 

followed to make the guess. 

  Definition:1.27 

    NP-complete problem is any of a class of computational problems for which 

no efficient solution algorithm has been found. Many significant computer science problems 

belong to this class. Eg. The traveling salesman problems , satisfiability problems and graph 

covering problems. 

  Defintion:1.28 

  A Pendent Vertex can also be found to be described as end vertex.In the 

context of trees, a pendent vertex is usually known as a terminal node ,a leaf node or just 

leaf .A leaf vertex (pendent vertex) is a vertex with degree one 

v 
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                                                             CHAPTER 2 

TOTAL DOMINATION OF GRAPHS 

Total domination of graphs consists of characterizations  whose total dominating 

graphs are complete bipartite and  Eulerian . In this chapter  some properties of total 

dominating graph are also obtained . 

Definition:2.1 

A set D of vertices in G is a Total Dominating Set of G if every vertex of G is 

adjacent to some vertex in D. 

Definition:2.2 

The Total Domination Number    (G) of G is the minimum cardinality of a total 

dominating set in G 

Definition:2.3. 

A total dominating set D is said to be a  Minimal total dominating set if for any 

vertex v*     * + is not a total dominating set of G.A total dominating set with 

minimum cardinality is called Minimum Total dominating set. 

Example :2.4 

The Graph G1 

 Fig 2.1 

 

 

      v  

v1 

v3 

   

v 4 

v4 

v5 

v6 
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The Graph G2 

 

 

 

 K3,3 

 

                                                       Fig 2.2 

1.Total domination number of G1 is 2,since {v3,v4} is a minimum total dominating set. 

2.Total domination number of G2 is 2,since {v1,v4} is a minimum total dominating set 

Theorem:2.5 

If S is a minimal dominating set of a graph G without isolated vertices, 

then V(G)-S is a dominating set of G.  

Proof: 

Let v*S. 

      Suppose that there exists a vertex w in V(G)-S such that  (w) S={v}. 

       Hence v is adjacent to some vertex in V(G)-S. 

       Suppose next that v is adjacent to no vertex in S. 

     Then v is an isolated vertex of the subgraph <S>. 

       Since v is not isolated in G the vertex V is adjacent to some vertex of V(G)-S. 

v1 
 

 

�6 v5 v4 

v  v3 
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       Thus V(G)-S is a dominating set of G. 

Note:2.6 

We note that any graph G without isolated vertices has a total dominating set. 

   Thus we consider only graphs without isolated vertices. 

Defintion:2.7 

The Total Minimal Dominating Graph   (G) of a graph G is the intersection 

graph defined on the family of all minimal total dominating sets of vertices of  G . 

Defintion:2.8 

The Common Minimal Total Dominating Graph    (G) of a graph G  is the 

graph with same vertex set as G with two vertices in    (G) adjacent if there exists a 

minimal total dominating set in G containing them. 

Theorem:2.9 

A nontrivial graph  is bipartite if and only if all its cycles are even. 

Definition:2.10 

Let G=(V,E) be a graph. Let S be the set of all minimal total dominating sets of 

G.The Total dominating Graph   (G) of G is the graph with the vertex set V S in which 

two vertices u and v are adjacent if u*V and v is a minimal total dominating set of G 

containing u. 

Example:2.11 

A graph G and its total dominating graph   (G) are shown 
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                                       Dt(G) G  

                                       Fig 2.3            Fig 2.4 

Proposition:2.12 

   If G has a vertex which does not lie in any minimal total dominating set, then    (G) is disconnected. 

Proof: 

Let u  be a vertex of a graph G.  

If u does not lie in any minimal total dominating set,  

then u is an isolated vertex in    (G). 

Hence    (G) is disconnected. 

Theorem:2.13 

If G is a graph without isolated vertices, then    (G) is bipartite. 

Proof:                                                                                                                                                                        

By definition, no two vertices corresponding to vertices of G in    (G) are adjacent .  

4 

 

{1,4} 

1 

{1,2} 2 

{2,3} 

{3,4} 

3 

       4 3 

1 2 
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Also  no two vertices corresponding to minimal total dominationg sets of G in    (G) are adjacent. 

                         Then   (G) has no odd cycles. 

                           (G) is bipartite. 

Theorem:2.14 

The total dominating graph    (G) of G is complete bipartite if and only if 

G=m  ,m 1. 

Proof: 

            Suppose   (G) is complete bipartite. 

Clearly  V(  (G))= 1     ,where  1 is all vertices of G and    is the set of all 

minimal total dominating sets of  of G. 

We now prove that G=m   ,m    
On the contrary, assume G m  . 

Then there exists a component  1 in G which is not   . 

Let v be a vertex of  1. 

Then v*G. 

We consider the following two cases: 

Case1: 

Suppose  v   D,where D is an minimal total dominating set in G. 
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  Then the corresponding vertex of v is an isolated vertex in   (G). 

It implies that the corresponding vertices of D and v are not adjacent in   (G). 

Thus   (G) is not complete bipartite, which is a contradiction. 

Case:2 

Suppose there exist two minimal total dominating sets  1 and    such that v*  1 

and  v    . 

Thus the corresponding vertices of v and     are not adjacent in   (G). 

Hence   (G) is not complete bipartite,which is a contradiction. 

From Case 1 and Case2, we conclude that every component of G is     
Thus G=m  ,m 1. 

Conversely, suppose G=m  ,m 1. 

Then there exists exactly one minimal total dominating set containing all 

 vertices of  G. 

   Then I V(  (G)) I=2m+1. 

 Thus by definition   (G))= 1      
  Hence   (G) is complete bipartite.                                                                   

Theorem:2.15 

     Consider the total dominating graph   (G))= 1    if and only if G=m  ,m 1. 
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Proof:  

Suppose   (G))= 1    ,m 1. 

Then   (G)) is complete bipartite. 

Then, G=m  ,m 1. 

Conversely, suppose G=m  ,m 1. 

Then  there exists exactly one minimal total dominating set containing all vertices 

of G. 

Thus by definition,   (G))= 1     
The double star          the graph obtained from joining the centers of two stars  

The centers of   1    and   1     are called central vertices of     . 

Thus       has m+n+2  vertices. 

Theorem: 2.16 

If                       , 1    , then   (    )=(m+n)  1     

Proof: 

Let      be a double star, 1     and u and v be central vertices of       
Then     has exactly one minimal total dominating set D containing the central 

vertices u and v of       
Then D={u,v}. 



15 

 

Thus the vertex set of   (    ) in V  ,where V is a vertex set of      and hence   (    ) has m+n+2+1 vertices. 

The corresponding vertices of D and u are adjacent  

 Also the corresponding vertices of D and v are adjacent in   (    ) and all other 

vertices of   (    ) are isolated vertices.  

Thus   (    ) is disconnected and   (    )=(m+n)  1    . 

Theorem:2.17 

Let G be a nontrivial connected graph. 

Let S(G) be the subdivision graph of G . 

The graphs   (G)) and S(G) are isomorphic if and only if every pair of vertices  

forms a minimal total dominating set of G. 

Proof: 

Let G be a nontrivial connected  graph.  

Suppose   (G)) = S(G) 

Since G is connected, S(G) is connected. 

For each edge         of G,    is a new vertex such that      and        
are edges of S(G). 

Since   (G)= S(G),it implies that every pair of vertices      forms a minimal total 

dominating set of G.   
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Conversely, suppose every pair of vertices of G forms a minimal total dominating set 

of  G.  

Then they are adjacent in G. 

Clearly for each minimal total dominating set D of G, the corresponding vertex of D 

in   (G)  is adjacent with exactly two  vertices .  

Hence   (G) = S(G). 

Corollary:2.18 

If                               ( )     ( ) 
Theorem:2.19 

A connected graph G is Eulerian if and only if every vertex of G has even degree.  

Note:2.20 

We characterize total dominating graphs which are Eulerian. 

Theorem:2.21 

Let G be a nontrivial connected graph. 

The total dominating graph   (G) of G is Eulerian if and only if the following 

conditions hold: 

i) every minimal total dominating set contains even number of vertices 

ii)every vertex of G is in even number of minimal total dominating sets of G. 

Proof: 

Suppose   (G) is Eulerian. 
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On the contrary ,if condition (i) is not satisfied, then there exists a minimal total 

dominating set containing odd number of vertices and hence   (G) has a  vertex of 

odd degree. 

               (G) is not eulerian, a contradiction. 

Similarly we can prove (ii). 

Conversely, suppose the given conditions are satisfied.  

Then the degree of each vertex in   (G) is even. 

Hence ,   (G) is eulerian. 

Theorem:2.22 

Let   (G)=2.If every vertex is in exactly two minimal total dominating sets of G,  

Then   (G) is Hamiltonian. 

Proof:  

Clearly   (G)=   (G) and   (G) is connected.  

Let v*   and D be a minimal total dominating set of G.  

Then    ( )      ( )D=2. 

Hence    (G) is connected 2-regular. 

 Thus   (G) is Hamiltonian 

Theorem:2.23 

Let G be a graph.Then   (G-{e})   (G). 
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Proof 

Let G be a graph and edge e=uv be an edge of graph G. 

 Let S be   the set of graph G. 

 Now consider the graph G-{e}. 

 Suppose T is   set of graph G-{e}. 

 Now T is total dominating set in graph G also. 

  So,   (G)  | |  (G-{e})means   (G-{e})   (G). 

Corollary:2.24 

(i)If G has n vertices and no isolates ,then   (G)   n-  ( )+1 

(ii)If G is connected and   (G)   n -  ( ) 
Theorem:2.25 

Let G be a graph with no isolated vertices. Then     
  . 

Proof : 

Let D V(G) be a   set. 

Since G has no isolated vertices, every v*D has at least one neighbor in V-D. 

This means that V-D is also a dominating set. 

If | |    ,then V-D is a smaller dominating set,contradicting the choice of D as   

a   set. 
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Theorem:2.26 

Let G be a graph of order n with no isolated vertices. Then       

Proof: 

Let S be a   set of G. 

Every vertex of G is adjacent to some vertex of S. 

That is, N(S)=V(G). 

Since every v*S can have at most   neighbours,it follows that  

    | |=n. 

Theorem;2.27 

Prove that  ( )     (G)    ( ) 
Proof : 

Since every total dominating set is a dominating set the first inequality holds.  

To prove the second inequality, let D be a dominating set with   elements say 

v1,v2,v3,…,  . 

For each vi*D,choose one vertex ui*V-D such that viui*E. 

This is possible since G has no isolated vertices 

                                                                               

 

 



20 

 

 

 

 

 

 

   

 

                                                                          Fig 2.5 

 

The graph illustrating the above theorem 

Now the set {v1,v2,v3,…,  ,u1,u2,…,  } is a total dominating set of G.  

 Hence       . 

                         Hence  ( )     (G)    ( ) 
Theorem:2.28 

For any graph without isolated vertices, prove that  +i=p 

Proof: 

Let D be an minimum independent dominating sets with i vertices, V-D contains the 

remaining p-i vertices, which is a dominating set of G, 

Since G has no isolated vertices. 

So   p-i. Hence that  +i=p                                   

D 
V 
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                                                          CHAPTER 3 

                                                     FACTOR DOMINATION  

Factor Domination of graphs is concerned with a domination concept defined for a 

graph and specific factoring of that graph. 

Definition: 3.1 

A graph   (   ) has a t-factoring into factors  1         if each 

 graph    (     ) has node set    V and the collection { 1        }forms a 

partition of E. 

Definition:3.2  

Let   (   ) be a graph having the t-factoring  1         
Then(i)       is a factor dominating set for each    , 1     and 

        (ii)the factor domination number   ( 1        ) is the size of  a smallest 

factor dominating set. 

Observation: 3.3 

Let H be a graph with factors  1        . 
Then    1    *  +     ∑      1  

Observation:3.4 

The decision problem of determining whether a graph and associated factoring have 

a factor domination set of size  k or less is NP-complete. 
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Proof: 

Restrict t=1.The problem reduces to Dominating set. 

Note:3.5 

General Factorings 

Throughout this section we assume that the graph H is factored into  1        , and 

that the node set is { 1        }. 

The next observation shows that the problem of finding    can be reduced to 

determining the ordinary domination number  of a specially constructed graph. 

Observation:3.6 

There is a graph    ,constructible from H and its factors , such that  (  )      

Proof : 

Construct    on p(t+1)nodes from disjoint copies of H,  1        . 
Additional edges connect    of H to          and to all nodes of    which are 

adjacent to    1 j          
It follows that some minimum dominating set of    is contained in the copy of H 

and it is clear that the same nodes form a factor dominating set of H and its 

factorization ; 

Thus     (  ). 
The reverse inequality is obtained by observing that the nodes of any factor 

dominating set, when interpreted as nodes of H in   ,form a dominating set of    
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Note:3.7  

   We now concentrate on finding bounds for     

           Theorem:3.8 

Let  1    …   be any permutation of 1,2,…,t and k be any integer such that 

                        1        
           Then max{  (             )   (                 )+    ( 1        )                  (             )    (                 )+ 

          Note:3.9 

The next two theorems present upper bounds for     
Here    is the minimum degree of    and    is the node covering number of H. 

          Theorem:3.10 

                  p -     1        *  }. 

Proof: 

Let    be any set of        1     *  + nodes. 

Clearly    is a factor dominating set. 

Theorem: 3.11 

Let I be the set of nodes in H which are isolated in at least one   . 
Then      +| |. 



24 

 

Proof: 

Let X be a minimum node cover of H. 

Suppose v is a non-isolated node of    with incident edge e.  

Then e is also an edge of H so X dominates v in   . 
It follows that X    is a factor dominating set. 

Theorem: 3.12 

                            
Proof: 

Let     be a minimum factor dominating set. 

If    , any node v in H-  must have in H at least t edges to    so it can be 

dominated in each   . 
Hence |  |  .  
If t   ,no such node v can exist and H-   must be empty . 

i.e.,    p. 

Theorem:3.13.  

If t  , then           else    p 

Proof: 

When     then shows    p. 

Thus assume t   and let    be a minimum factor dominating set. 
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If    =V(H),then    p  +   +t   +t-2 and the result holds.  

If    V(H),let v*  -  . 

 v is adjacent to at least t nodes of   . 

Let X    be a set of t-1 nodes contained in the neighborhood of v in H. 

In H every node of H-(   {v}) is adjacent to atleast one node of   -X. 

Thus (    )  {v} dominates H so      -X +1=  -(t-1)+1 

Theorem :3.14. 

   pt/( +t) 

Proof: 

If   =p,the result holds.  

Thus we may assume t   and       
    be a minimum factor dominating set. 

Each node of H-   ∅ has at least t edges to    for a total of at least (p-  )t such 

edges.  

Thus (p-  )t ∑     ( ) *        
Solving for   yields the result. 

Definition:3.15  

            The Invariant    is the cardinality of the largest set of nodes X such that in 



26 

 

 each   ,       there is a spanning forest in which X is independent and each node of X 

has degree one. 

Theorem: 3.16  
                                               +  =p.  

Proof:  

If    =p, then   =0 and the result holds.  

Thus we may assume t   and     p. 

Let   be a minimum factor dominating set. 

 In each   arbitrarily select for each node of   -   one edge between it and   . 

The subgraph of    thus formed is a union of stars centered on the nodes of     and 

is a spanning forest of    . 
In each of these spanning forests the nodes of       are independent and have 

degree one  it follows that        . 

Now suppose X is a set of   nodes satisfying the requirements of invariant.  

Then the nodes of H-X form a factor dominating set and    p-   . 

               Note:3.17 

In this section we restrict attention to 2-factors of the complete graph      
Thus  1   and      To simplify notation we employ     ( ) and      ( ). 
The same convention will apply to other graphical invariants of G and   
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We begin by noting that observation 3.3 may be rephrased for this special case as 

max{  ,   +        +  . 
Equility with max{ ,    + is achieved by several classes of graphs and we list a few 

with easily computed values. 

Here    is the complete graph, Cp is the cycle ,Wp is the wheel ,and G* is the 

complete r-partite graph              
(i)   (  ,    )=p 

(ii)   (Cp,,  p)=3   {                    ,    -                              

(iii)   (Wp,,  p)={                        

(iv)   (G*,G   *)=r 

A more general class of graphs for which   = max{  ,   + is given in the following. 

Theorem : 3.18 

                                          *     +  
Proof: 

Assume G is disconnected. 

Any dominating set of G must contain at least one node from each of its components 

and such a set c ear y dominates G   

Note:3.19 

 We will see other conditions which guarantee   =max{  ,   },but we first give  
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a result which shows there are graphs for which   may have any of the values between 

max{  ,   } and  +   . 
Theorem: 3.20 

For any integers m,n and k such that 2 m        ,there exist graphs G for 

which       =n and   =k. 

Theorem: 3.21 

   If G and G  are connected, then 

               (i)  =max{  ,     for d d     
               (ii)    max{3,  ,     for d  d   , 
               (iii)   max{  ,   + 2 for d  d   , 
               (iv)   min {      }+1 for d=d  2. 

Proof: 

Without loss of generality assume d      and that nodes x and y have 

 distance d in G. 

Let X denote the set of nodes containing x and its neighbors in G and similarly 

define Y for y. 
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                                                      CHAPTER 4 

                                         PERFECT DOMINATION  

Perfect domination is closely related to perfect codes and perfect codes have been  

used in Coding Theory.In this chapter we study the effect of removing a vertex from the 

graph on perfect domination. 

Definition: 4.1  

             A Subset S of V(G) is said to be a Perfect Dominating Set if for each vertex v not 

in S, v is adjacent to exactly one vertex of S. 

Example:4.2 

Consider the path P4 with four vertices v1,v2,v3,v4. The set S={ v2,v3,} is perfect 

dominating set in this graph. It may be noted that if G is a graph then V(G) is always a 

perfect dominating set of G. 

 

                                                                   Fig 4.1 

Definition: 4.3 

             A perfect dominating set S of the graph G is said to be Minimal Perfect 

Dominating Set if for each vertex v in S,S-{v} is not a perfect dominating set. It may be 

noted that it is not necessary that a proper subset  of minimal perfect dominating set is not a 

perfect dominating  set. 

 

 

v1 v  v3 v4 
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  Example:  

            Consider the cycle graph G=C6 with six vertices 1,2,3,4,5,6.Then obviously  

V(G) is a minimal perfect dominating set of G. However the set {1,4} is proper 

subset of V(G) and is a  perfect dominating set in the graph G. 

Definition: 4.5 

           A perfect dominating set with smallest cardinality is called Minimum 

Perfect Dominating Set. It is called     set of the graph G. 

           Definition :4.6 

           The cardinality of a minimum perfect dominating set is called the Perfect             

Domination Number of the graph G. It is denoted as    ( ) The perfect 

domination number of cycle C6 is 2 and that of the path P3is also 1. 

Defintion: 4.7  

 Let S be a subset of V(G) and v*     
Then the Perfect Private Neighbourhood of v with respect to 

      *   +   * *  ( )     ( )    * ++  {v,is adjacent to no vertex of 

S or at least vertices of S} 

          Theorem:4.8 

            A perfect dominating set S of G is minimal perfect dominating set if and only 

if for  each vertex v is S. Ppf[v,s] is non- empty. 

         Proof: 

       Suppose S is minimal and v*  . 



31 

 

Therefore there is a vertex w not in S-{v} such that either w is adjacent to no vertex 

of S-{v} or w is adjacent to at least two vertices of S-{v}. 

If    ,then this implies that v* P pf[V,S]. 

If     then it is impossible that w is adjacent to at least two vertices of S-{v} 

because S is a perfect dominating set. 

                        Therefore w is not adjacent to any vertex of S-{v}. 

Since S is a perfect dominating set w is adjacent to only v in S.  

That is N(w) S={v}. 

Thus w* P pf[V,S]. 

Conversely suppose v*S and P pf[V,S] contain some vertex w of G. 

If w=v, then w is either adjacent to atleast two vertices of s-{v} is not a perfect 

dominating set. 

If w v,then N(w) ) S={v} implies that w is not adhacent to any vertex of S-{v}. 

Thus ,in all cases S-{v} is not a perfect dominating set if v*S. 

Thus S is minimal 

            Note:4.9 

                              A dominating set on path G=P5 with five vertices v1,v2,v3,v4,v5. 

Note that S={v2,v5} is minimum and therefore minimal perfect dominating set. 

Ppf[v2,S]={v1,v2,v3}. 

Now we define the following symbols  
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V+
p f= {v*  (G):    (G)<    (G-V))} 

V-
pf = { v*  (G):    (G)>    (G-V))} 

V0
pf = { v*  (G):    (G)=    (G-V))} 

Lemma :4.10 

                           Let v*  (G) and suppose v is a pendent vertex and has a neighbour w of degree  

                           atleast two.If v*  pf then     (G-V)=    (G)-1 

Proof: 

  Let S1 be a minimum perfect dominating set of G-{v}.  

 If w*  1,then  1 is a perfect dominating set of G with +| 1|<   (G). 

That is    (G)  | 1|<   (G) this is a contradiction.  

Therefore w  S1. 

Let S=S1 {w}. 

Then S is a minimum perfect dominating set of G. 

 Therefore is    (G) | |   | 1|    +   (G-V)+1. 

Theorem :4.11 

Let v be a vertex of G.  

Then v*V+
pf if and only if the following conditions are satisfies. 

(1)v belongs to every    set ofG 
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(2)No subset S of G-{v} which is either disjoint from N[v] or intersects N[v] in at 

least two vertices and | |     ( )can be a perfectly dominating set of G-{v}. 

Proof: 

 (1)Suppose v*V+
pf . 

Suppose S is a      set of G which does not contain v then S is a perfect dominating 

set of G-{v}. 

Therefore    (   )  | |     ( ). 
Thus v  V+

pf.This is a contradiction . 

Thus, v must belong to every    set of G. 

(2)If there is set S which satisfies the condition stated in (2). 

Then S is a perfect dominating set of G-{v} and therefore     (   )      ( ). 
This is a contradiction. 

Conversely assume that (1) and (2) hold. 

Suppose v*V0
pf . 

Let S be a minimum perfect dominating set of G-{v}.  

Then | |     ( ). 
Suppose v is not adjacent to any vertex of S. 

Then S is disjoint from N[v], | |     ( ) and S is a  perfectly dominating set of 

 G-{v}.This violates (2).  
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Suppose v is adjacent to exactly one vertex of S then S is a minimum perfect 

dominating set of G not containing v which violates (1).  

Suppose v is adjacent to at least two vertices of S. 

Then S N[v] in atleast two vertices and S is a perfectly dominating set of G-{v} 

with 

 | |     ( ) which again violate (2). 

Thus v*V0
pf implies (1) or (2)violated. 

Suppose v*V-
pf.Let S1 be a minimum perfectly dominating set of G-{v}.Then | 1|<   (G). 

If v is not adjacent to any vertex of S1 then as above (2) is violated.  

If v is adjacent to exactly one vertex of S1 then S1 is a perfectly dominating set of G 

with | 1|<   (G)- which is a contradiction. 

If v is adjacent to at least two vertices of S1 then  1  N[v] in at least two 

vertices, | 1|     (G) and S1 is a perfect dominating set of G-{v}-which again 

violates (2). 

Thus v*Vpf implies that (2) is violated. 

Thus v does not belongs to V0
pf or Vpf. 

Hence v*V+
pf 

         Theorem :4.12                                                                                                                                

Let v be a pendent vertex which has the neighbor w of degree at least two then   
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v*Vpf if and only if there is    set S containing w and not containing v such that 

Ppf[w,S]={v} 

            Proof: 

               Supposev*V-
pf . 

               Let S1 be a minimum perfect dominating set of G-{v}. 

Then ,w does not belong to S1. 

Let S=S1 {w}.Then S is    containing w. 

Since S1 is a perfect dominating set of G-{v}, w is adjacent to some vertex of S1. 

Therefore w  Ppf[w,s]. 

If x is any vertex different from v such that x is adjacent to w then x is also 

adjacent to some vertex of S1 because S1 is a perfect dominating set of G-{v}. 

Thus x   Ppf[w,s].Further v is adjacent to only w of S therefore Ppf[w,s]={v}. 

Conversely, Suppose there is a    set S containing w such that Ppf[w,s]={v}. 

Let S1=S-{w}.Let x be any vertex of G-{v} which is not in S-{v}. 

Since x  Ppf[w,s], x must be adjacent to some unique vertex S1. 

Thus, S1 is a minimum perfect dominating set of G-{v} with , | 1|     (G). 

Thus,v*V-
pf . 

            Example 4.12: 

Consider the path G=P4 with vertices 1,2,3,4.Then    (G)=2. 
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Let v=1 and w=2. Now    (G-1)=1. 

Thus 1*    also S=(2,3) is    set of G, containing w=2 and Ppf[2,S]={1}. 

            Theorem:4.14 

 Let S1 and S2 be two disjoint perfect dominating sets of G. Then | 1|=|  | 
            Proof: 

   For every vertex x in S1 there is a unique vertex v(x) in S2 which is adjacent to x.  

Also for every vertex y in S2 there is a unique vertex u(y) in S1 which is 

 adjacent to y.  

It may be noted that these functions are inverses of each other.  

Therefore | 1|=|  |. 
            Corollary:4.15 

  If in a graph G there are perfect dominating sets S1 and S2 such  

             that | 1|  |  |.S1 S2 φ 

          Corollary:4.16 

 Let G be a graph with n vertices.  

 If there is a perfect dominating set S with  | 1|<n/2 or  n/2. 

                          Then V(G)-S is not a perfect dominating set. 
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                                                                       CHAPTER 5 

                                                        EQUITABLE DOMINATION 

                  In Equitable Dominatioon, the characterization of the equitable dominating 

graphs which are either connected or complete are obtained. 

Definition:5.1 

                 Let G=(V, E) be a graph. A subset D of V is said to be a Equitable Dominating 

Set of if for every v *V -D there exists a vertex u *D such that uv*E(G ) and 

 |d (u )-d (v)|  1. 

Definition:5.2  

                The minimum cardinality of such a dominating setD is called the Equitable 

Domination Number of G and is denoted by   (G) . 

Definition:5.3 

                An equitable dominating set is said to be Minimal Equitable Dominating Set if 

no proper subset of D is an equitable dominating set.  

Definition 5.4:  

   A vertex u *V is said to be Degree Equitable with a vertex v *V if and 

 |d (u )-d (v)|  1.  

Definition:5.5 

                 A vertex u *V is said to be an Equitable Isolate if|d (u )-d (v)|    ∀v *V 
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Definition: 5.6 

 A minimal equitable dominating set of maximum cardinality is called    Set and 

its cardinality is denoted by    (G) .  

            Definition :5.7  

   Let u *V . The Equitable Neighborhood of u denoted by   (u ) is defined as  

              by   (u )={v *V / *N(u), d (u )-d (v)|   +. 
 Definition: 5.8 

 A subset S of V is called an Equitable Independent Set, if for any u *    v      (u ) for all v*   * +.  
Definition:5.9 

 The maximum cardinality of S is called Equitable Independence Number of  

Gand is denoted    (G) .  

Definition: 5.10  

 The maximum order of a partition of V into equitable dominating sets is called 

Equitable Domatic Number of G and is denoted by   ( ) 
 Definition :5.11 

  The Equitable Dominating Graph ED (G) of a graph G is a graph with 

V(ED(G))=V(G) D(G) where D(G) is the set of all minimal equitable dominating sets of G 

and u,v *  (  ( ))are adjacent to each other if u *V (G) and v is a minimal equitable 

dominating set of G containing u .  
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            Example :5.12 

              An example of the equitable dominating graph ED(G)of a graph G is given below:  

. 

  

   

 

    

                                Fig 5.1                                              Fig 5.2 

            Theorem :5.13 

     Let G be a graph without equitable isolated vertices. If D is a  minimal  

                             equitable  dominating set, then V-D is an equitable dominating set.  

             Theorem :5.14 

   A graph is Eulerian if and only every of vertex of G is of even degree. 

            Theorem :5.15 

   For any graph G with p  2 and without equitable isolated vertices, the equitable 

dominating graph ED(G) of G is connected if and only if   (G)<p-1. 

             Proof:  

                               Let   (G)<p-1. Let D1 and D2 be two minimal equitable dominating sets of G      

       We consider the following cases:-  

v1 

v  

v3 v4 {v1,v4} 

v5 

v1 {v1,v3} 
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Case i):  

Suppose there exists two vertices u* D1 and v*D2  such that u and v are not adjacent 

to each other.    

Then, there exists a maximal equitable independent set  D3 containing u and v.  

Since every maximal equitable independent set is a minimal equitable dominating 

set, D3 is a minimal equitable dominating set joining D1 and D2 .  

Hence there is a path in ED (G) joining the vertices of V (G ) together with the 

minimal equitable dominating sets of G.  

Thus, ED (G) is connected.  

Case ii):  

Suppose for any two vertices u* D1 and  *D2  there exists a vertex w does not 

belong to D1  D2 such that w is adjacent to neither u not v.  

Then, there exists two maximal equitable independent sets  D3 and D4 containing 

u,w and w,v respectively.  

Thus, the vertices u,v,w and the minimal equitable dominating sets D1 ,D2,D3,D4 are 

connected by the path D1- u –D3- w-D4- v –D2 . 

 Thus, ED( G) is connected.  

 Conversely, suppose that ED(G) is connected. 

 Let us assume that   (G)=p-1.  and let {u}be a vertex of degree p -1.  
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Then, {u} is a minimal equitable dominating set of G and V-D has a minimal 

equitable dominating set say D’ .  

This implies that ED (G) has at least two components, a contradiction.  

Hence,   (G)<p-1.  

Hence the result. 

            Remark :5.16 

 In ED (G) , any two vertices u and v of V (G ) are connected by a path of length at 

most four.  

           Theorem :5.17 

 For any graph with   (G)<p-1 and without equitable isolated vertices, 

 diam (ED( G))   5.  

           Proof: 

 As   (G)<p-1 , G is connected.  

Let ED(G)=V   where Y is the set of all minimal equitable dominating sets of G.  

Let u ,v *V  Y.  

Then, diam( ED( G ))  4 if u, v* V , or u ,v* Y , . 

 On the other hand, if u* V and v *Y then v =D is a minimal equitable dominating 

set of G . 

If u*    then d(u,v)  ;Otherwise, there exists a vertex w*    such that 

d(u,v)  (   )   (   )        proves the result.  
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           Theorem 5.18 

                        For any graph without equitable isolated vertices, ED (G ) is a complete bipartite      

graph if and on y if    p . 

           Proof:  

                      Suppose that ED (G ) is not a complete bipartite graph with G   p 

.          As G   p the minimal equitable dominating set of G is V (G) , every isolated  

                     vertex   in ED (G) is adjacent to the vertex V (G).  

                    This implies that ED (G ) is K1,p , which is a contradiction.  

                    Thus, ED(G) is complete bipartite graph.  

                    Conversely, suppose that ED(G) is complete bipartite graph and G    p.  

                    Thus G contains a nontrivial subgraph G1 .  

                    Then, for some vertex  u *G1 ,there exists a minimal equitable dominating  

                    sets   and    with u * D and u  D , which is a contradiction to the fact 

                    that G is complete bipartite graph with  u *G1 . 

                    Hence G    p , 
                   This complete the proof.  

           Theorem: 5.19  

 For any graph G without equitable isolated vertices,   ( )    (ED(G)). 
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  Further, the equality holds if and only if V (G) can be partitioned into union of    

disjoint minimal equitable dominating sets of cardinality one. 

  Proof:  

  Let S be the maximum order of equitable domatic partition of V (G). 

 If every equitable dominating set is minimal and S consists of all minimal  

equitable dominating sets of G , then S is a maximum equitable independent sets of 

ED( G) .  

 Hence .   ( )    (ED(G)).  

 Otherwise, let D be a maximum equitable independent set with D   S .  

 Hence, D is a minimal equitable dominating set of G. 

  Let u* D . Then, there are two following cases: 

Case i):  

If u*D’ where D’* S  .  

Then, clearly S  *u} is a equitable independent set in ED( G) .  

Hence the result holds. 

 Case ii): If u    ' , where  ’* S. 

 Then, there exists a vertex w *V(G) such that S  *u,w}  is an equitable 

independent set.  

Hence the result. 
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  Clearly, the equality condition follows as every component of ED (G ) is K2 as   

V(G) is the union of disjoint minimal equitable dominating sets of cardinality one.  

  This completes the proof.  

             Corollary :5.20 

                          For any graph G ,  |  (  ( )|    ( ) 
              Theorem: 5.21 

  For any graph G without equitable isolated vertices p+de  p’  p(  (G)+1),where p 

' is the number of vertices of ED(G) .  

Further the lower bound is attained if and only if every minimal equitable 

dominating set of G is independent . 

 The upper bound is attained if and only if every maximum equitable independent set 

is of cardinality one.  

                  Proof:  

The graph ED(G) has the vertex set V (G ) D (G). 

 It has at least  de(G) number of minimal equitable dominating sets, hence the lower  

bound follows. 

 Clearly upper bound follows as every maximal equitable independent set is a 

minimal equitable dominating set .  

Every vertex is present in at most(p-1) minimal equitable dominating sets. Further, 

suppose that p+ de(G) =p’ .  

As there are de(G)  number of minimal equitable dominating sets  
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Each vertex is present in exactly one of the minimal equitable dominating set . 

 Hence these minimal equitable dominating sets are independent.  

Also, suppose that every maximum equitable independent set is of cardinality one .  

These are minimal equitable dominating sets of G and are independent and as every 

vertex is present in at most (p-1)minimal equitable dominating set, the equality 

holds.  

This implies the necessary condition. 

 Converse of the result trivially holds. 

           Theorem :5.22 

For any graph G without equitable isolated vertices .    ( ) /      (   )  , 
where q' is the number of edges of ED (G) .  

Further, the lower bound is attained if and only if every minimal equitable 

dominating set is independent and the upper bound is attained if and only if G is 

 (p-2)- regular.  

             Proof: 

 Suppose the lower bound is attained.  

As every vertex must be in exactly one of the dominating set, Cleary every minimal 

equitable dominating set is independent.  

As every vertex is in at most (p-1) minimal equitable dominating set, upper bound 

follows. Suppose the upper bound is attained. 
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Then, each vertex is in exactly (p-1) minimal equitable dominating sets and hence G 

is (p-2)- regular.  

This completes the proof.  

        Theorem: 5.23  

For any graph G with p  3 ,  (ED(G)=1 if and only if G =  p ,where   p is the 

complement of Kp or ED (G) has an equitable isolated vertex.  

                Proof:  

 Suppose that   (ED(G)=1. 

 Then, ED (G) has a vertex D with D=V(G). 

Thus ED(G)is K1,p and hence G    p . 

Otherwise, suppose assume that ED(G)has no equitable isolated vertex and 

V(E (G)) p’   Then  ( ED(G)     .  

If D is an equitable dominating set, then V-D is an equitable dominating set and 

hence   (ED(G)    , a contradiction.  

Hence ED (G) has an equitable isolated vertex.  

The converse is obvious.  

             Theorem :5.24 

If a graph G is connected, (p-1)- regular and without equitable isolated vertices then, 

   ( ED(G)   
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                Proof: 

 As G is connected and  ( )   p-1, ED(G) is disconnected.  

Also, we know that every vertex is present in at most (p-1) minimal equitable 

dominating sets. Thus, ED(G) is a disconnected graph with each of the component 

being K2 , there are p number of components.  

Hence   ( ED(G)   .  

                Theorem :5.25 

        For any graph G of order p   2, without equitable isolated vertices and   
 ( )   p-1, the equitable dominating graph ED (G) of a graph G is a tree if and only 

if G     p . 

                  Proof:  

     As G is a graph of order p  2, without equitable isolated vertices and  ( )   p-1   

ED(G) is connected. 

 Suppose assume that ED (G) of G is a tree. 

 Then, clearly G has no cycle. 

 On the contrary assume that G    p Then,   (ED(G))   . 

 Hence there exists at least two minimal equitable dominating sets containing where 

u and v are any two vertices in G .  

If u and v are in the same minimal equitable dominating set D then, u-D-v-u is a 

cycle in ED(G) , a contradiction.  

On the other hand, if u and v are in different minimal equitable dominating set. 
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Then, there exists vertices u1 , v1 and the minimal equitable dominating sets D1, D2 

and D3 such 

 that uu1*D1,u1v1*D2 and v1v*D3. 

Thus , u and v  are connected by two paths in ED(G) , a contradiction. 

 Hence G    p 

 Conversely, suppose that G    p and  ( )   p-1 . 

 Then, ED(G) is connected.  

Also,   (ED(G))  . i.e., there exists a minimal equitable dominating set D with  

D =V(G).  

Thus, ED (G) is connected,K1,p has no cycle.  

Hence ED(G) is a tree. 

 This completes the proof.  

             Theorem :5.26  

For any graph G , ED(G) is either connected or has at most one component that is 

not K2 

              Proof:  

We consider the following cases:- 

 Case i):  

If  ( )   p-1, then, ED (G) is connected. 
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                        Case ii):  

 If  ( )   ( ) =p-1, then G=Kp . 

 Hence each of the vertex v*  ( ) is a minimal equitable dominating set of G and  

hence each of  the component of ED (G) is K2 . 

 Case iii): 

 If  ( )   ( ) =p-1  . 

 Let v1, v2, v3,… vn be n vertices of G of degree p-1. 

 Let H=G/{ v1, v2, v3,… vn } then  ( )   ( )   . 

 Hence , ED (H) is connected. 

 Since ED(G)= ( (  ( )   ( 1)   (  )    (  ))are the graphs joining v1, v2,   

v3,… vn with {v1}, {v2},{ v3 ,…,{ vn} respectively.  

 Then, exactly one of the component of ED( G) is not K2 .  

  Hence the proof 

 

              Theorem: 5.27 

 If G is a r- regular graph with   ( )    and every vertex is in exactly even number 

of minimal equitable dominating sets then ED (G) is Eulerian. 

            Proof: 

 Let G is a r regular graph.  
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Since each of the vertex of G is in even number of minimal equitable dominating 

sets, each ofthen contributes even number to the degree of the vertex in ED(G)  

And as  ( )     each of the minimal equitable dominating set of G is a vertex of 

degree two in ED(G) . 

 Thus, ED (G) is Eulerian.  

              Theorem: 5.28  

Let G be a graph with  ( )      and   ( )   .  

If every vertex is present in exactly two minimal equitable dominating sets then, 

E(G) is Hamiltonian.  

               Proof: 

  As  ,  ( )      , G is connected .  

Also, since every vertex is present in exactly two minimal equitable dominating sets, 

   (G)=   ( )and also deg(u) = deg(D)=2  in ED (G) , where D is a minimal 

equitable dominating set in G . 

 Thus, ED (G) is connected and 2-regular. 

 Hence ED (G ) is Hamiltonian.  
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                                                        CHAPTER-I 

                                                  PRELIMINARIES 

 In this chapter I give all the basic definitions and results which are used in the 

subsequent chapters. 

Definition : 1.1 

 By a near-ring, we shall mean an algebraic system (Ć, +, . ), where 

a) (Ć, +) forms a group. 

b) (Ć, . ) forms a semi-group. 

c) þ(ÿ + Ā) = þÿ + þĀ and  (þ + ÿ)Ā = þĀ + ÿĀ for all þ, ÿ, Ā * Ć 

((i.e) right and left distributive laws hold) 

Definition : 1.2 

 For a near-ring, the zero-symmetric part of Ć denoted by Ć0is defined by Ć0 = {ÿ * Ć|ÿ0 = 0} and the constant part of Ć denoted by Ć = {ÿ *  Ć|ÿ0 = ÿ}. It 
is well known that Ć0 and Ćā are subnear-rings of Ć. 
Definition : 1.3 

 A subgroup ą of Ć with ąą ⊆ ą is called a sub near-ring of Ć. 
Definition : 1.4 

 A non-empty subset I of a near-ring Ć is a subnear-ring of ý if and only if þ 2ÿ * ā and þÿ * ā for all þ, ÿ * ā. 
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Definition : 1.5 

 A normal subgroup I of Ć is called a right ideal if āĆ ⊆ ā and denoted by ā ⊲ÿ Ć. It is called a left ideal if n(Ą + ÿ) 2 ÿĄ * ā for all ÿ, Ą * Ć and ÿ * ā and 

denoted by ā ⊲� Ć. If such a normal subgroup ā is both left and right ideal in Ć, then 

it is called an ideal in Ć and denoted by ā ⊲ Ć. 
Definition : 1.6 

 Let Ā be an initial universal set and ý be the set of parameters. Let ý be a 

subset of ý. Let �(Ā) denote the power set of Ā. A pair (þ, ý) is called a soft set over Ā, where þ is a mapping given by  þ: ý → �(Ā). 
 For each þ * ý, þ(þ) is the set of þ- approximate elements of the soft set (þ, ý). 
Definition : 1.7 

 For two soft sets (þ, ý) and (ÿ, þ) over a common universe Ā, we say that (þ, ý) is a soft subset of (ÿ, þ) if ý ⊆ þ and þ(þ) ⊆ ÿ(þ) for all þ * ý. It is denoted 

by (þ, ý) ⊆ (ÿ, þ). (þ, ý) is said to be soft super set of (ÿ, þ), if (ÿ, þ) is a soft 

subset of (þ, ý). 
Definition : 1.8 

 For a soft set (þ, ý), the set þĆāā(þ, ý) = {þ * ý|þ(þ) b ∅} is called the 

support of the soft set (þ, ý). The null soft set is a soft set with an empty support, and 

a soft set (þ, ý) is non-null if   þĆāā(þ, ý) b ∅. 
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Definition : 1.9 

 Two soft sets (þ, ý) and (ÿ, þ) over a common universe Ā are said to be soft 

equal if  (þ, ý) ⊆ (ÿ, þ) and (ÿ, þ) ⊆ (þ, ý). It is denoted by (þ, ý) = (ÿ, þ). 
Definition : 1.10 

 Let Ć be a soft set relation on (þ, ý), then 

(i) Ć is reflexive if þ(þ) × þ(þ) * Ć ∀ þ * ý. 
(ii) Ć is symmetric if þ(þ) × þ(ÿ) * Ć ÿ þ(ÿ) × þ(þ) * Ć 

              ∀ (þ, ÿ) * ý × ý. 
(iii) Ć is transitive if þ(þ) × þ(ÿ) * Ć and þ(ÿ) × þ(Ā) * Ć 

             ⇒ þ(þ) × þ(Ā) * Ć ∀ þ, ÿ, Ā * ý.  
(iv) Ć is equivalence if it is reflexive, symmetric and transitive. 

(v) Ć is an identity if þ b ÿ, þ(þ) × þ(ÿ) * Ć but 

 þ(þ) × þ(ÿ) + Ć ∀ þ, ÿ * ý.  
 (ÿ, Ă. , ) þ(þ) × þ(ÿ) * Ć ÿ þÿ ∀ þ, ÿ * ý 

Definition : 1.11 

 Let (þ, ý), (ÿ, þ) and (Ā, ÿ) be three soft sets over a common universe. Let ý 

be a soft set relation from (þ, ý) to (ÿ, þ) and þ be a soft set relation from (ÿ, þ) to (Ā, ÿ). Then, a new soft set relation from (þ, ý) to (Ā, ÿ) called the composition of ý 

and þ denoted by þ Ā ý is defined as follows : 

 If þ(þ) * (þ, ý) and Ā(Ā) * (Ā, ÿ), then 

 þ(þ) × Ā(Ā) * þ Ā ý Ā þ(þ) × ÿ(ÿ) * ý and ÿ(ÿ) × Ā(Ā) * þ,  
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for some  ÿ(ÿ) * (ÿ, þ). 
Definition : 1.12 

 Let (þ, ý) and (ÿ, þ) be two non-empty soft sets over Ā. Then a soft set 

relation ă from (þ, ý) to (ÿ, þ) written ă: (þ, ý) → (ÿ, þ) is called a soft set function 

if every element in the domain of ă has a unique element in the range                        

of  ă.  If þ(þ)ă ÿ(ÿ),  i.e., þ(þ) × ÿ(ÿ) * (ÿ) * ă, then we write  ă(þ(þ)) = ÿ(ÿ). 
Definition : 1.13 

 A function ă from (þ, ý) to (ÿ, þ) is called 

(i) Injective (one-to-one) if þ(þ) b þ(ÿ) ÿ ă(þ(þ)) b ă(þ(ÿ)) 

(ii) Surjective (onto) if range ă = (ÿ, þ) 

(iii) Bijective (one-to-one and onto) if ă is both injective and surjective. 

Definition : 1.14 

 The identity soft set function I on a soft set (þ, ý) is defined by 

 I : (þ, ý) → (þ, ý) such that ā(þ(þ)) = þ(þ) ∀ þ(þ) * (þ, ý). 
Definition : 1.15 

 If  (þ, ý) and (ÿ, þ) are two soft sets over a common universe Ā then "(þ, ý)  
AND (ÿ, þ)" is a soft set denoted by (þ, ý) ∧ (ÿ, þ) and is defined by  

(þ, ý) ∧ (ÿ, þ) = (Ā, ý × þ) where Ā(þ, ÿ) = þ(þ) + ÿ(ÿ) for all (þ, ÿ) * ý × þ. 
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Definition : 1.16 

 Let (þ, ý) and (ÿ, þ) be two soft sets in a soft class (Ā, ý) with ý + þ b ∅. 
The interesection of two soft sets (þ, ý) and (ÿ, þ) over a common universe U is the 

soft set (Ā, ÿ) where ÿ = ý + þ, and Ā(Ā) = þ(Ā) + ÿ(Ā) for all Ā * ÿ. We write (þ, ý) + (ÿ, þ) = (Ā, ÿ). 
Definition : 1.17 

 Let (þ, ý) and (ÿ, þ) be two soft sets over a common universe Ā such that ý + þ b �. Then the restricted intersection of (þ, ý) and (ÿ, þ) is defined as (þ, ý) +� (ÿ, þ) = (Ā, ÿ) where ÿ = ý + þ and for all Ā * ÿ, Ā(Ā) = þ(Ā) + ÿ(Ā). 
Definition : 1.18 

 The extended intersection of two soft sets (þ, ý) and (ÿ, þ) over a common 

universe Ā is defined as (þ, ý) +� (ÿ, þ) = (Ā, ÿ), where ÿ = ý , þ and  

for all Ā * ÿ. 
      Ā(Ā)= {       þ(Ā)          ÿă Ā * ý 6 þ      ÿ(Ā)           ÿă Ā * þ 6 ýþ(Ā)  + ÿ(Ā)  ÿă Ā * ý + þ 

Definition : 1.19 

 The union or extended union of two soft sets (þ, ý) and (ÿ, þ) over a common 

universe Ā is defined as (þ, ý) ,� (ÿ, þ) = (Ā, ÿ), where ÿ = ý , þ and for all  

 Ā * ÿ. 
       Ā(Ā) = {       þ(Ā)          ÿă Ā * ý 6 þ      ÿ(Ā)           ÿă Ā * þ 6 ýþ(Ā)  , ÿ(Ā)  ÿă Ā * ý + þ 
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Definition : 1.20 

 The restricted union of two soft sets (þ, ý) and (ÿ, þ) over a common 

universe Ā is defined as  (þ, ý) ,� (ÿ, þ) = (Ā, ÿ), where ÿ = ý + þ and for all  

 Ā * ÿ, Ā(Ā) = þ(Ā) , ÿ(Ā). 
Definition : 1.21 

 Let {(þ�, ý�)|ÿ * ā} be a non-empty family of soft sets over a common universe Ā. The extended intersection of these soft sets is defined to be the soft set (ÿ, þ) such 

that þ =,�*� ý� for all þ * þ, ÿ(þ) =+�*�(ý) þ�(þ) for all þ * þ where  

ā(þ) = {ÿ * ā|þ * ý�}.  In this case we write +� (þ�, ý�) = (ÿ, þ). 
Definition : 1.22 

 Let {(þ�, ý�)|ÿ * ā} be a non-empty family of soft sets over a common universe Ā. The restricted intersection of these soft sets is defined to be the soft set (ÿ, þ) such 

that þ =+�*� ý� for all þ * þ, ÿ(þ) =+�*�(ý)  þ�(þ) for all þ * þ where 

 ā(þ) = {ÿ * ā|þ * ý�}.  In this case we write +� (þ�, ý�) = (ÿ, þ). 
Definition : 1.23 

 Let {(þ�, ý�)|ÿ * ā} be a non-empty family of soft sets over a common universe Ā. The extended union of these soft sets is defined to be the soft set  (ÿ, þ) such that þ =,�*� ý� for all þ * þ,  ÿ(þ) =,�*�(ý)  þ�(þ) for all þ * þ where 

 ā(þ) = {ÿ * ā|þ * ý�}.  In this case we write ,� (þ�, ý�) = (ÿ, þ). 
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Definition : 1.24 

 Let {(þ�, ý�)|ÿ * ā} be a non-empty family of soft sets over a common universe Ā. The restricted union of these soft sets is defined to be the soft set (ÿ, þ) such that þ =+�*� ý� for all þ * þ,  ÿ(þ) =,�*�(ý)  þ�(þ) for all þ * þ where  

ā(þ) = {ÿ * ā|þ * ý�}.  In this case we write ,� (þ�, ý�) = (ÿ, þ). 
Definition : 1.25 

 Let {(þ�, ý�)|ÿ * ā} be a non-empty family of soft sets over a common universe Ā. The AND soft set ⋀ (þ�, ý�)�*�  of these soft sets is defined to be the soft set (Ā, þ) 

such that  þ = Π�*�ý� and  Ā(þ) =+�*�(ý)  þ�(þ) for all þ = (þ�)�*� * þ. 
Definition : 1.26 

 A fuzzy set � in  Ā and  �: Ā → [0,1].  The set of all fuzzy sets of Ā is denoted 

by þ(Ā). 
Definition : 1.27 

 Let � be a fuzzy set in Ā and ą * [0,1]. Then the crisp set 

 �ā = {þ * Ā| �(þ) > ą}  is called a level subset of �. 
Definition : 1.28 

 The support of a fuzzy set �,  denoted by þĆāā(�) is defined as 

 þĆāā(�) = {þ * Ā| �(þ) > 0}. 
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Definition : 1.29 

 Let (ÿ, +) be a group and � be a fuzy set in ÿ. Then � is said to be a fuzzy 

subgroup if :  

a) �(þ + ÿ) g þÿÿ {�(þ), �(ÿ)} for all þ, ÿ * ÿ. 
b) �(2þ) g �(þ) for all þ * ÿ. 

Definition : 1.30 

 Let (ÿ, +) be a group and � be a fuzzy set in ÿ. Then � is said to be a normal 

fuzzy subgroup if : 

a) � is a fuzzy subgroup of ÿ. 
b) �(þ) = �(ÿ + þ 2 ÿ) for all þ, ÿ * ÿ.  

Definition : 1.31 

 A fuzzy set � of a near-ing Ć is said to be a fuzzy subnear –ring of Ć if for all þ, ÿ * ÿ. 
a) �(þ + ÿ) g þÿÿ{�(þ), �(ÿ)} for all þ, ÿ * ÿ 

b) �(2þ) g �(þ) for all þ * ÿ 

c) �(xy) g  þÿÿ{�(þ), �(ÿ)} 

Definition : 1.32 

        Let � be a normal empty fuzzy set in a near-ring Ć. Then � is a fuzzy ideal of Ć 

if  

a) �(þ + ÿ) g þÿÿ  { �(þ), �(ÿ)} for all þ, ÿ * Ć 
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b) �(2þ) g �(þ) for all  þ * Ć 

c) �(þ) = �(ÿ + þ 2 ÿ) for all þ, ÿ * Ć 

d) �(þÿ g �(ÿ) for all þ, ÿ * Ć 

e) �{(þ + ÿ)ÿ 2 þÿ} g �(ÿ) for all þ, ÿ * Ć 

If � satisfies (a), (b), (c) and (d) then it is called a fuzzy left ideal of Ć and if it 

satisfies (a), (b), (c) and (e) then it is called a fuzzy right ideal of Ć. 
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                                                         CHAPTER – II 

                                                 SOFT NEAR RINGS 

 In this chapter, I collect the definition of soft near-rings and some important 

definitions and some theorems. 

Definition : 2.1 

 Let (þ, ý) be a non-null soft set over a near-ring Ć. Then (þ, ý) is called a soft 

near-ring over Ć if þ(þ) is a subnear-ring of Ć for all þ * þĆāā(þ, ý). 
Example : 2.2 

 Consider the additive group (ý6, +).  Under a multiplication defined by 

following table, (ý6, +, . ) is a (right) near-ring. 

. 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 3 1 5 3 1 5 

2 0 2 4 0 2 4 

3 3 3 3 3 3 3 

4 0 4 2 0 4 2 

5 3 5 1 3 5 1 

  Let (þ, ý) be a soft set over ý6, where ý = ý6  and þ: ý → �(ý6) is a set-

valued function defined by þ(þ) = {ÿ * ý6| þÿ * {0,3}} for all þ * ý. 
 Then þ(0) = þ(3) = ý6 and þ(1) = þ(2) = þ(4) = þ(5) = {0,3} are 

subnear-rings of ý6. Hence (þ, ý) is a soft near-ring over ý6. 
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Example : 2.3 

 Consider the additive group (ý6, +). Under a multiplication defined by 

following table, (ý6, +, . ) is a (right) near-ring. 

Let (ÿ, ý) be a soft set over ý6 , where ÿ: ý → �(ý6) is defined by 

ÿ(þ) = {ÿ * ý6|þÿ * {1,2,3}}  for all þ * ý. 
. 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 3 1 5 3 1 5 

2 0 2 4 0 2 4 

3 3 3 3 3 3 3 

  0 4 2 0 4 2 

5 3 5 1 3 5 1 

Then ÿ(1) = {0,1,3,4} (Since {0,1,3,4} ⊈{1,2,3}) is not a subnear-ring of ý6 and 

hence (ÿ, ý) is not a soft near-ring over ý6. 

Theorem : 2.4 

 Let (þ, ý), (ÿ, þ) and  (ă, ý) be soft near-ring over Ć. Then 

a) If it is non-null, then the soft set (þ, ý) ∧�  (ÿ, þ) is a soft near-ring over Ć. 
b) If it is non-null, then the bi-intersection (þ, ý) +� (ă, ý) is a soft near-ring 

over Ć. 
c) If ý and þ are disjoint, then (þ, ý) ⊔� (ÿ, þ) is a soft near-ring over Ć. 

Proof : 
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 Given (þ, ý), (ÿ, þ) and (ă, ý) be soft near-ring over Ć. 
a) To prove : If it is non-null, then the soft set (þ, ý) ∧� (ÿ, þ) is a soft near-ring over Ć 

By the definition of AND. 

Given (þ, ý) ∧�  (ÿ, þ) = (Ā, ý × þ) where   

 Ā(þ, ÿ) = þ(þ) + ÿ(ÿ) ∀ (þ, ÿ) * ý × þ. 
By hypothesis, (Ā, ý × þ), is non-null soft set over Ć.  
 If (þ, ÿ) * þĆāā(Ā, ý × þ), then Ā(þ, ÿ) = þ(þ) + ÿ(ÿ) b � 

 ÿ þ(þ) b � þÿā ÿ(ÿ) b � 

Since  (þ, ý)þÿā (ÿ, þ) are soft near-ring of Ć, þ(þ) and ÿ(ÿ) are 

 subnear-ring of Ć. 
Hence  Ā(þ, ÿ) is a subnear-ring ∀ þ, ÿ * þĆāā(Ā, ý × þ) 

Therefore (Ā, ý × þ) is a soft near-ring over Ć. 
b) To prove : If it is non-null, then the bi-intersection (þ, ý)  +� (ă, ý) is a soft 

 near-ring ove Ć. 
By the definition of Restricted Intersection, 

 Let (þ, ý) +� (ă, ý) = (Ā, ý) where  Ā(þ) = þ(þ) + ă(þ)∀ þ * ý 

By hypothesis, (Ā, ý) is a non-null soft set over Ć. 
 If þ * þĆāā(Ā, ý) then Ā(þ) = þ(þ) + ă(þ) b � 
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 ÿ þ(þ) b � þÿā ă(þ) b � 

Since (þ, ý)þÿā (ă, ý) are soft near-rings of Ć, þ(þ) and K(þ) are 

 subnear-rings of Ć. 
Hence  Ā(þ) is a subnear-ring of Ć ∀ þ * þĆāā(Ā, ý) 

Therefore (Ā, ý) is a soft near-ring over Ć. 
c) To prove : If ý and þ are disjoint, then (þ, ý) ⊔� (ÿ, þ) is a soft near-ring over Ć. 
By the definition of Extended Union, 

 Let (þ, ý) ⊔� (ÿ, þ) = (Ā, ý , þ) 

  Where Ā(þ) = {       þ(þ)          ÿă þ * ý 6 þ      ÿ(þ)           ÿă þ * þ 6 ýþ(þ)  + ÿ(þ)  ÿă þ * ý + þ  ∀ þ * ý , þ 

If ý + þ = �, it follows that either þ *  ý 6 þ  Āă þ *  þ 6 ý  ∀ þ * ý , þ 

              āă þ *  ý 6 þ then Ā(þ) = þ(þ) is a subnear-ring of Ć and  

  āă þ *  þ 6 ý then Ā(þ) = ÿ(þ) is a subnear-ring of Ć  

Therefore (Ā, ý , þ) is a soft near-ring over Ć. 
Definition : 2.5 

 Let (þ, ý) and (ÿ, þ) be two soft near-rings over Ć1 and Ć2 respectively. The 

product of soft near-rings (þ, ý) and (ÿ, þ) is defined as  

(þ, ý) × (ÿ, þ) = (Ā, ý × þ),  where Ā(þ, ÿ) = þ(þ) × ÿ(ÿ)  ∀ þ, ÿ * ý × þ. 
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Theorem : 2.6 

 Let (þ, ý) and (ÿ, þ) be two soft near-rings over Ć1 and Ć2 respectively. If it 

is non-null, then the product (þ, ý) × (ÿ, þ) is a soft near-ring over Ć1  ×  Ć2. 

Proof : 

 Given (þ, ý) and (ÿ, þ) be two soft near-rings over Ć1 and Ć2 

To prove : If it is non-null, then the product (þ, ý) × (ÿ, þ) is a soft near-ring over Ć1  ×  Ć2. 

By the definition of product of soft near-rings, 

 Let (þ, ý) × (ÿ, þ) = (Ā, ý × þ) where Ā(þ, ÿ) = þ(þ) × ÿ(ÿ) 

 ∀ þ, ÿ * ý × þ 

By hypothesis, (Ā, ý × þ) is non-null soft set on  Ć1  ×  Ć2. 

 If (þ, ÿ) * þĆāā(Ā, ý × þ) then  Ā(þ, ÿ) = þ(þ) × ÿ(ÿ) b ∅. 

 ⇒ þ(þ) b ∅ and  ÿ(þ) b ∅ 

 Since (þ, ý) and (ÿ, þ) are soft near-rings of over Ć1  ×  Ć2. 

 Therefore þ(þ) is a subnear-ring of  Ć1 .and ÿ(þ) is a subnear-rings of Ć2. 

It follows that Ā(þ, ÿ) is a subnear-ring of Ć1  ×  Ć2 ∀ þ, ÿ * þĆāā(Ā, ý × þ) 

 Therefore (Ā, ý × þ) is a soft near-ring over Ć1  ×  Ć2. 
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Note : 2.7 

 For a near-ring Ć, we can obtain at least two soft near-rings over Ć using Ć0 

and Ćā from  Definition 1.2.  We give these soft near-rings by the following: 

Note : 2.8 

 Let Ć be a near-ring, ý = Ć0 and let þ0 : ý → �(Ć) be a set-valued function 

defined by  þ0(þ) = {ÿ * ý|ÿþ * Ć0}  for all þ * ý. Then (þ0, Ć0)  is a soft near-ring 

over Ć. To see this, we need to show the following. 

1) þ 2 ÿ * þ0(þ)  

2) þÿ * þ0(þ) 

for all þ * þĆāā(þ0, Ć0) and for all þ, ÿ * þ0(þ). 
To prove (1), we need to show that þ 2 ÿ * Ć0 and (þ 2 ÿ)þ * Ć0. 

Since þ, ÿ * þ0(þ),  then þ * Ć0,  ÿ * Ć0 , þþ * Ć0 and ÿþ *  Ć0. 

Since (Ć0, +) is a subgroup of (Ć, +), then þ 2 ÿ *  Ć0 and 

 (þ 2 ÿ)þ = þþ = ÿþ * Ć0 

Therefore (1) is satisfied. 

To prove (2), we need to show that þÿ * Ć0 and (þÿ)þ * Ć0 

Since þ, ÿ, þþ, ÿþ * Ć0, then (þÿ)0 = þ(ÿ0) = þ0 = 0 and 

  ((þÿ)þ)0 = þ(ÿþ)0 = þ0 = 0. 
 Hence þÿ * Ć0 and (þÿ)þ * Ć0 
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Therefore (2) is satisfied. 

 Therefore þ0(þ) is a subnear-ring of Ć for all þ * þĆāā(þ0, Ć0) 

 (i.e,) (þ0, Ć0) is a soft near-ring over Ć. 
Note : 2.9 

 Let Ć be a near-ring, þ = Ć and let þā ∶ þ → �(Ć) be a set – valued function 

defined by  þā(þ) = {ÿ * þ|ÿþ * Ćā} for all þ * þ. Then  (þā , Ć) is a soft near-ring 

over Ć. In fact, for all  þ * þĆāā(þā, Ć) and for all þ, ÿ * þā(þ). 
To see this, we need to show the following: 

1) þ 2 ÿ * þ0(þ) 

2) þÿ * þ0(þ) 

for all þ * þĆāā(þ0, Ć0) and for all þ, ÿ * þ0(þ). 
To prove (1), ((þ 2 ÿ)þ)0 = (þþ)0 2 (ÿþ)0 = þþ 2 ÿþ = (þ 2 ÿ)þ 

Since þþ * Ćā and  ÿþ * Ćā. Then (þ 2 ÿ)þ = þþ 2 ÿþ * Ćā . 
(i.e) (1) is satisfied. 

To prove (2), ((þÿ)þ)0 = þ((ÿþ)0) = þ(ÿþ) = (þÿ)þ,  since  ÿþ * Ćā 

Then (þÿ)þ * Ćā  ⇒ þÿ * þā(þ) 

(i.e) (2) is satisfied. 

 Therefore þā(þ) is a subnear-ring of Ć, for all þ * þĆāā(þā , Ć)  (i.e.) (þā, Ć) 

is a soft near-ring over Ć. 
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Definition : 2.10 

 Let (þ, ý)  be a soft near-ring over Ć.  We have the following: 

a) (þ, ý)  is called trivial if þ(þ) = {0�}  ∀ þ * þĆāā(þ, ý) 

b) (þ, ý)  is said to be whole if þ(þ) = Ć  ∀ þ * þĆāā(þ, ý) 

Proposition : 2.11 

 Let (þ, ý)  and (ÿ, þ) be soft near-rings over Ć, where ý + þ b ∅. Then, 

a) If (þ, ý) and (ÿ, þ) are trivial soft near-rings over Ć, then (þ, ý) +� (ÿ, þ) is a trivial soft near-ring over Ć. 
b) If (þ, ý) and (ÿ, þ)are whole soft near-rings over Ć, then (þ, ý) +� (ÿ, þ)  

is a whole soft near-ring over Ć. 
c) If (þ, ý) is a trivial soft near-ring over Ć and (ÿ, ý) is a whole soft near-

rings over  Ć, then (þ, ý) +� (ÿ, ý)  is a trivial soft near-ring over Ć. 
Proof : 

 Given (þ, ý) and (ÿ, þ) be soft near-rings over Ć, where ý + þ b ∅ 

a) To prove : If (þ, ý) and (ÿ, þ) are trivial soft near-rings over Ć, then (þ, ý) +� (ÿ, ý)  is a trivial soft near-ring over Ć. 
Since (þ, ý) is trivial then  þ(þ) = {0�}  ∀ þ * þĆāā (þ, ý) 

Also (ÿ, þ) is trivial then ÿ(þ) = {0�}  ∀ þ * þĆāā (ÿ, þ) 

By the definition of Restricted Intersection, 

Let (þ, ý) +� (ÿ, þ) = (Ā, ÿ) where ÿ = ý + þ and  ∀ Ā * ÿ, Ā(Ā) = þ(Ā) + ÿ(Ā)  
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Since by hypothesis, ý + þ b ∅ ⇒  ÿ b ∅ 

 Therefore Ā(þ) = {0�}  ∀ þ * þĆāā (Ā, ÿ) 

  ⇒ (Ā, ÿ) is trivial soft near-ring over Ć. 
 Therefore (þ, ý) +� (ÿ, þ) is trivial soft near-ring over Ć. 
b) To prove : If (þ, ý) and (ÿ, þ) are whole soft near-rings over Ć, then (þ, ý) +� (ÿ, þ) is a whole soft near-ring over Ć. 
Since (þ, ý) is whole then þ(þ) = Ć   ∀ þ * þĆāā (þ, ý) 

Also (ÿ, þ) is whole then ÿ(þ) = Ć  ∀ þ * þĆāā (ÿ, þ) 

By the definition of Restricted Intersection, 

 Let (þ, ý) +� (ÿ, þ) = (Ā, ÿ) where ÿ = ý + þ and ∀ Ā * ÿ, 
   Ā(Ā) = þ(Ā) + ÿ(Ā). 

Since by hypothesis,  ý + þ b ∅  ⇒  ÿ b ∅ 

 Therefore Ā(þ) = Ć  ∀ þ * þĆāā (Ā, ÿ) and ÿ = ý + þ 

 ⇒  (Ā, ÿ) is whole soft near-ring over Ć. 
 Therefore (þ, ý) +� (ÿ, þ) is whole soft near-ring over Ć. 
c ) To prove : If (þ, ý) is a trivial soft near-ring over Ć and (ÿ, ý) is a whole soft 

near-rings over Ć, then (þ, ý) +� (ÿ, ý) is a trivial soft near-ring over Ć. 
Since (þ, ý) is trivial then þ(þ) = {0�}  ∀ þ * þĆāā(þ, ý) 
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Also (ÿ, ý) is whole then ÿ(þ) = Ć  ∀ þ * þĆāā(ÿ, ý) 

By Theorem 2.4 (b),  (þ, ý) +� (ÿ, ý) is a soft near-ring over Ć. 
 Therefore (þ, ý) +� (ÿ, ý) = {0�}  +�  Ć = {0�} 

 Therefore  (þ, ý) +� (ÿ, ý) is a trivial soft near-ring over Ć. 
Proposition : 2.12 

 Let (þ, ý) and (ÿ, þ) be two soft near-rings over Ć1  and Ć2 respectively. 

Then, 

a) If (þ, ý) and (ÿ, þ) are trivial soft near-rings over Ć1 and Ć2 respectively, 

then the product (þ, ý) × (ÿ, þ) is a trivial soft near-ring over Ć1 × Ć2. 

b) If (þ, ý) and (ÿ, þ) are whole soft near-rings over Ć1  and Ć2 respectively, 

then the product (þ, ý) × (ÿ, þ) is a whole soft near-ring over Ć1 × Ć2. 

Proof :  

 Given (þ, ý) and (ÿ, þ) be two soft near-rings over Ć1 þÿā Ć2  respectively. 

a) To prove : If (þ, ý) and (ÿ, þ) are trivial soft near-rings over Ć1 þÿā Ć2 

respectively, then the product (þ, ý) × (ÿ, þ) is a trivial soft near-ring over Ć1 × Ć2. 

 Since (þ, ý) and (ÿ, þ) is trivial soft near-rings,  

þ(þ) = {0�} ∀ þ * þĆāā(þ, ý) and  ÿ(ÿ) = {0�}  ∀ ÿ * þĆāā(ÿ, þ) 

By the definition of Product of Soft Near-Rings, 

 (þ, ý) × (ÿ, þ) = (Ā, ý × þ) where  Ā(þ, ÿ) = þ(þ) × ÿ(ÿ) ∀ þ, ÿ * ý × þ  
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By Theorem 2.6, 

 (þ, ý) and (ÿ, þ) are trivial. So they are non-null. 

 ÿ (Ā, ý × þ) is a soft near-ring over Ć1 × Ć2. 

 Since (þ, ý) is trivial   ÿ  þ(þ) = {0�}   ∀ þ * þĆāā(þ, ý)  
 and (ÿ, þ) is trivial  ÿ   ÿ(ÿ) = {0�}   ∀ þ * þĆāā(ÿ, þ)  
 Therefore Ā(þ, ÿ) =  þ(þ) × ÿ(ÿ) 

 ÿ  Ā(þ, ÿ) = {0�} × {0�} 

 ÿ  Ā(þ, ÿ) = {0�}  

Therefore  (Ā, ý × þ) is trivial 

Therefore (þ, ý) × (ÿ, þ) is a trivial soft near-ring over Ć1 × Ć2. 

b) To prove : If (þ, ý) and (ÿ, þ) are whole  soft near-ring over Ć1 and Ć2 

respectively, then the product (þ, ý) × (ÿ, þ) is a whole soft near-ring over  Ć1 × Ć2. 

     Since (þ, ý) and (ÿ, þ) are whole soft near-rings, þ(þ) = Ć 

 ∀ þ * þĆāā(þ, ý) and  ÿ(ÿ) = Ć  ∀ þ * þĆāā(ÿ, þ) 

By the definition of Product of Soft Near-Rings, 

      (þ, ý) × (ÿ, þ) = (Ā, ý × þ) where  Ā(þ, ÿ) = þ(þ) × ÿ(ÿ)   ∀ (þ, ÿ) * ý ×  þ 

By Theorem 2.6, 

 (þ, ý) and (ÿ, þ) are whole, So they are non-null. 
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 ÿ (Ā, ý × þ) is a soft near-ring over  Ć1 × Ć2. 

 Since (þ, ý) is trivial   ÿ   þ(þ) = Ć  ∀ þ * þĆāā(þ, ý) 

 and   (ÿ, þ) is trivial  ÿ   ÿ(ÿ) = Ć  ∀ ÿ * þĆāā(ÿ, þ) 

 Therefore Ā(þ, ÿ) = þ(þ) × ÿ(ÿ). 
 ÿ Ā(þ, ÿ) = Ć × Ć 

 ÿ Ā(þ, ÿ) = Ć 

 Therefore (Ā, ý × þ) is whole. 

 Therefore (þ, ý) × (ÿ, þ) is a whole soft near-ring over Ć1 × Ć2. 

Definition : 2.13 

    Let  (þ, ý) and  (ÿ, þ) be soft near-rings over Ć. Then the near-ring (þ, ý) 

is called a soft subnear-ring of (ÿ, þ) if it satisfies : 

a) ý ⊂ þ 

b) þ(þ) is a subnear-ring of  ÿ(þ) for all  þ * þĆāā(þ, ý) 

Proposition : 2.14 

 Let (þ, ý) and (ÿ, þ) be soft near-rings over Ć.  Then we have the following: 

a) If  þ(þ) ⊂ ÿ(þ) for all  þ * ý, then (þ, ý) is a soft subnear-ring of (ÿ, ý) 

b) (þ, ý) +� (ÿ, ý) is a soft subnear-ring of both ( þ, ý) and (ÿ, ý) if it is 

non-null. 

c) If (ÿ, þ) ⊂� (þ, ý), then (ÿ, þ) is a soft subnear-ring of  (þ, ý). 
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Proof : 

 Let (þ, ý) and (ÿ, þ) be soft near-rings over Ć. 
a) To prove : If þ(þ) ⊂ ÿ(þ) for all þ * ý,  then  (þ, ý) is a soft subnear-ring 

of(ÿ, ý). 
If þ(þ) ⊂ ÿ(þ)  ∀ þ * ý, then it is obvious that þ(þ)is a subnear-ring of  ÿ(þ).  

By the definition of soft subnear-ring, then the result is true. 

b) To prove :   (þ, ý) +� (ÿ, ý)  is a soft subnear-ring of both (þ, ý) and (ÿ, ý) if it 

is non-null.  

By (a), (þ, ý) is a soft subnear-ring of (ÿ, ý). 
Now by Theorem 2.4 (b) “ If it is non-null, then the bi-intersection (þ, ý) +� (ă, ý) is 

a soft near-ring over Ć. " 

 Hence (þ, ý) +� (ÿ, ý) is a soft subnear-ring of both (þ, ý) and (ÿ, ý). 
c) To prove : If (ÿ, þ) ⊂� (þ, ý), then (ÿ, þ) is a soft subnear-ring of (þ, ý) 

 Since þ(þ) and ÿ(þ) are subnear-ring of Ć for all þ * þĆāā(þ, ý) and þ *þĆāā(ÿ, þ) and ÿ(þ), þ(þ) are identical approximations for all þ * þĆāā(ÿ, þ) and þ ⊆ ý. 
By part (a), (ÿ, þ) is a soft subnear-ring of (þ, ý). 
 

                                                      



23 

 

                                                   CHAPTER – III 

                SOFT IDEALS AND IDEALISTIC SOFT NEAR RINGS 

 In this chapter, I collect the definition of soft ideals and idealistic soft near-

rings and some important definitions and some theorems and propositions. 

Definition : 3.1 

 Let (þ, ý) be a soft near-ring over Ć. ý non-null soft set (ÿ, ā) over Ć is called 

a soft left (respectiviely right) ideal of (þ, ý) denoted by (ÿ, ā) ⊲�� (þ, ý) 

(respectively (ÿ, ā) ⊲ÿ� (þ, ý)) if it satisfies : 

a) ā ⊂ ý 

b) ÿ(þ) ⊲� þ(þ) (respectively ÿ(þ) ⊲ÿ þ(þ) ∀þ * þĆāā(ÿ, ā)). 
If (ÿ, ā) is both soft left and soft right ideal of (þ, ý), then it is said that (ÿ, ā) is a soft 

ideal of (þ, ý) and denoted by (ÿ, ā) ⊲� (þ, ý). 
Example : 3.2 

 Consider the additive group (ý6, +). Under a multiplication defined by 

following table, (ý6,+, . ) is a (right) near-ring. 

. 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 3 1 5 3 1 5 

2 0 2 4 0 2 4 

3 3 3 3 3 3 3 

4 0 4 2 0 4 2 

5 3 5 1 3 5 1 
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 Let (þ, ý) be a soft set over  ý6,  where ý = ý6 and þ: ý → �(ý6) is a set-

valued function defined by þ(þ) = {ÿ * ý6 |þÿ * {0,2,4}}  for all þ * ý. 
 Then þ(0) = þ(2) = þ(4) = ý6 and þ(1) = þ(3) = þ(5) = ∅ are  

subnear-rings of ý6. Hence (þ, ý) is a soft near-ring over ý6. 
 Now,  Let ā = {0,2,4} and ÿ: ā → �(Ć) be a set-valued function defined by 

 ÿ(þ) = {ÿ * ā | þÿ * {0,2,4}   ∀þ * ā. 
Then ÿ(0) = ÿ(2) = ÿ(4) = {0,2,4}.  It is easily seen that for all 

 þ * þĆāā(ÿ, ā) = {0,2,4}, ÿ(þ) ⊲ þ(þ) and hence (ÿ, ā) ⊲� (þ, ý). 
Theorem : 3.3 

 Let (ÿ1, ā1) and (ÿ2, ā2) be soft left ideals (respectively soft right ideals, soft 

ideals) of a soft near-ring (þ, ý) over a near-ring Ć. Then the soft set (ÿ1, ā1) +� (ÿ2, ā2) is a soft left ideal (respectively soft right ideal, soft ideal) of (þ, ý) if it is non-null. 

Proof : 

 We give the proof for soft left ideals; the same proof can be seen for soft right 

ideals and hence for soft ideals. 

 Assume that (ÿ1, ā1) ⊲�� (þ, ý) and (ÿ2, ā2) ⊲�� (þ, ý). 
By the definition of Restricted Intersection, 

 (ÿ1, ā1) +� (ÿ2, ā2) = (ÿ, ā) where ā = ā1 + ā2 and 

 ÿ(þ) = ÿ1(þ) + ÿ2(þ) ∀þ * ā. 
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Since ā1 ⊂ ý þÿā ā2  ⊂ ý, is is clear that ā ⊂ ý. 
 Suppose that the soft set (ÿ, ā) is non-null. 

If þ * þĆāā(ÿ, ā), then ÿ(þ) = ÿ1(þ)  + ÿ2(þ) b ∅. 
Since ÿ1(þ) ⊲� þ(þ), ÿ2(þ) ⊲� þ(þ), and the intersection of left ideals is a left ideal 

in near-rings, ÿ(þ) ⊲� þ(þ) ∀þ * þĆāā(ÿ, ā). 
 Therefore (ÿ1, ā1) +� (ÿ2, ā2) ⊲�� (þ, ý). 

Theorem : 3.4 

 Let (ÿ1, ā1) and (ÿ2, ā2) be soft left ideals (respectively soft right ideals, soft 

ideals) of a soft near-ring (þ, ý) over a near-ring Ć. Then the soft set (ÿ1, ā1) ⊔� (ÿ2, ā2) is a soft left ideal (respectively soft right ideal, soft ideal) of (þ, ý) 

if ā1 and ā2 are disjoint. 

Proof : 

 We give the proof for soft left ideals; the same proof can be seen for soft right 

ideals and hence for soft ideals. 

 Assume that  (ÿ1, ā1) ⊲�� (þ, ý) and   (ÿ2, ā2) ⊲�� (þ, ý). 

By the definition of Extended Union, 

(ÿ1, ā1)  ⊔� (ÿ2, ā2) = (ÿ, ā)  where ā = ā1 , ā2  and for all þ * ā 

            ÿ(þ) =  {      ÿ1(þ)             ÿă þ * ā1 6 ā2      ÿ2(þ)             ÿă þ * ā2 6 ā1 ÿ1(þ) , ÿ2(þ)  ÿă þ * ā1 + ā2 

Since  ā1 ⊂ ý and  ā2 ⊂ ý , it is clear that  ā ⊂ ý . 
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 If ā1 + ā2 = ∅,  then for all  þ * þĆāā(ÿ, ā),  we know that either  þ * ā1 6 ā2  or  þ *ā2 6 ā1 

 If  þ * ā1 6 ā2, then ∅ b ÿ1(þ) = ÿ(þ) ⊲� þ(þ) and 

 If  þ * ā2 6 ā1, then ∅ b ÿ2(þ) = ÿ(þ) ⊲� þ(þ) for all  þ * þĆāā(ÿ, ā). 
 Therefore (ÿ1, ā1) ⊔� (ÿ2, ā2) ⊲�� (þ, ý). 
Example : 3.5 

 Let (þ, ý) be the soft near-ring over the near-ring  Ć = (ý6, +, . ) and let (ÿ, ā) ⊲� (þ, ý) be the ones given in Example 3.2 

 (where þ(þ) = {ÿ * ý |þÿ * {0,2,4}} ∀þ * ý) and  

ÿ(þ) = {ÿ * ā|þÿ * {0,2,4}} ∀þ * ā.  ĄĂą ă: ý → �(Ć) be a set-valued function 

defined by  ă(þ) = {ÿ * ý|þÿ = 0} for all þ * ý. 
Then ă(0) =  ý6, ă(1) =  ∅, ă(2) = {0,3}, ă(3) = ∅, ă(4) = {0,3} þÿā ă(5) = ∅. 
Since ă(þ) ⊲ þ(þ)  ∀þ * þĆāā(ă, ý),  then (ă, ý) ⊲� (þ, ý). 
Now we consider the bi-intersection of the soft ideals (ă, ý) and (ÿ, ā). 
 Then (ă, ý) +� (ÿ, ā) = (Ā, ā) where ý + ā = ā and 

Ā(þ) = ă(þ) + ÿ(þ) ∀þ * ā. 
Since Supp(Ā, ā) = {0,2,4}, it is non-null. 

For all þ * ā þĆāā(Ā, ā), we see that Ā(0) = {0,2,4} ⊲ þ(0) = ý6,   
 Ā(2) = {0} ⊲ þ(2) = ý6, and   Ā(4) = {0} ⊲ þ(4) = ý6  
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 Therefore (ă, ý) +� (ÿ, ā) ⊲� (þ, ý). 
Now, we consider (ă, ý) ⊔� (ÿ, ā). Then (ă, ý) ⊔� (ÿ, ā) = (ÿ, ý) where ý , ā = ý 

and  

                    ÿ(þ) =   {                 ă(þ)     ÿă þ * ý 6 ā = {1,3,5}      ÿ(þ)      ÿă þ * ā 6 ý =  ∅ ă(þ) , ÿ(þ)      ÿă þ * ý + ā = {0,2,4}        ∀þ * ý 

Then  þĆāā (ÿ, ý) = {0,2,4} and ÿ(0) = ý6, ÿ(2) = {0,2,3,4} = ÿ(4). 
Nevertheless,  ÿ(2) is not an ideal of þ(2) and hence (ă, ý)  ⊔� (ÿ, ā) is not a soft 

ideal of (þ, ý). 
Namely, we see that the condition 8disjoint9 cannot be removed from the Theorem 3.4 

Definition : 3.6 

 Let (þ, ý) be a soft near-ring over Ć. If for all þ * þĆāā(þ, ý) þ(þ) ⊲� Ć 

(respectively þ(þ) ⊲ÿ Ć, þ(þ) ⊲ Ć), then 

(þ, ý) is called a left idealistic (respectively right idealistic, idealistic) soft near-ring 

over Ć. 
Example : 3.7 

 Let the soft near-rings (þ, ý) and (ă, ý) be the ones given in Example 3.2 

over the near-ring Ć = (ý6, +, . ). Then for all þ * þĆāā(þ, ý) = {0,2,4}, þ(þ) ⊲ Ć,(ÿ. Ă. ) (þ, ý) is an idealistic over Ć.  
Since  þĆāā(ă, ý) = {0,2,4} and ă(0) = ý6 ⊲ Ć, ă(2) = ă(4) = {0,3} ⊲ Ć. Then (ă, ý) is also an idealistic soft near-ring over Ć. 
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Theorem : 3.8 

 Let (þ, ý) and (ÿ, þ) be  idealistic soft near-rings over Ć. Then we have the 

following: 

a) If it is non-null, (þ, ý) +� (ÿ, þ) is an idealistic soft near-rings over Ć. 
b) If ý and þ are disjoint,  then (þ, ý) ⊔� (ÿ, þ) is an idealistic soft near-ring 

over Ć. 
c) If it is non-null, (þ, ý) ∧� (ÿ, þ) is an idealistic soft near-ring over Ć. 

Proof : 

 Let (þ, ý) and (ÿ, þ) be idealistic soft near-rings over Ć. 
(a) To prove : If it is non-null, (þ, ý) +� (ÿ, þ) is an idealistic soft near-ring over Ć. 
By the Theorem 2.4(b). 

 (þ, ý) +� (ÿ, þ) is a soft near-ring over Ć. 
By hypothesis, (þ, ý) and (ÿ, þ) be idealistic soft near rings over Ć. 
 Then ((þ, ý) +� (ÿ, þ) is an idealistic soft near-rings over Ć. 
(b) To prove : If ý and þ are disjoint, then (þ, ý) ⊔� (ÿ, þ) is an idealistic soft 

 near-ring over Ć. 
By the Theorem 2.4( c), 

 (þ, ý) ⊔� (ÿ, þ) is a soft near-ring over Ć. 
By hypothesis, (þ, ý) and (ÿ, þ) be idealistic soft near rings over Ć. 
 Therefore (þ, ý) ⊔� (ÿ, þ) is an idealistic soft near-rings over Ć. 



29 

 

(c)To prove: If it is non-null, (þ, ý) ∧� (ÿ, þ) is an idealistic soft near-ring over Ć. 
By the Theorem 2.4 (a), 

 (þ, ý) ∧� (ÿ, þ) is a soft near-ring over Ć. 
By hypothesis, (þ, ý) and (ÿ, þ) be idealistic soft near rings over Ć. 
 Therefore (þ, ý) ∧� (ÿ, þ) is an idealistic soft near-rings over Ć. 
Definition :3.9 

 A near-ring Ć is said to satisfy the condition (C) if ā ⊲ Ă ⊲ Ć, then  ā ⊲ Ć.  
Example :3.10 

 Consider the additive group (ý6, +). Under a multiplication defined by 

following table, (ý6, +, . ) is a (right) near-ring. 

. 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 3 1 5 3 1 5 

2 0 2 4 0 2 4 

3 3 3 3 3 3 3 

4 0 4 2 0 4 2 

5 3 5 1 3 5 1 

 

Let (þ, ý) be a soft set over ý6,  where ý = ý6, and þ: ý → �(ý6) is a set-valued 

function defined by þ(þ) = {ÿ * ý6|þÿ * {0,2,4}}  for all þ * ý. 
 Then þ(0) = þ(2) = þ(4) = ý6 and  þ(1) = þ(3) = þ(5) =  ∅ are 
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 subnear-ring of  ý6. 
Hence (þ, ý) is a soft near-ring over ý6 

Then for all þ * þĆāā(þ, ý) = {0,2,4}, þ(þ) ⊲ Ć. 
 Now, Let ā = {0,2,4} and ÿ: ā → �(Ć) be a set-valued function defined by 

ÿ(þ) = {ÿ * ā|þÿ * {0,2,4}}  ∀þ * ā 

Then ÿ(0) = ÿ(2) = ÿ(4) = {0,2,4}.  It is easily seen that for all 

 þ * þĆāā(ÿ, ā) = {0,2,4}, 
 ÿ(þ) ⊲ þ(þ) and hence (ÿ, ā) ⊲� (þ, ý). 
 Hence, ÿ(þ) ⊲ þ(þ) þÿā þ(þ) ⊲ Ć. By condition (C), ÿ(þ) ⊲ Ć. 
Proposition :3.11 

 Let Ć be a near-ring which satisfies the condition (C) and let (þ, ý) be an 

idealistic soft near-ring over Ć. If (ÿ, ā) is a soft ideal of (þ, ý), then (ÿ, ā) is also an 

idealistic soft near-ring over Ć. 
Proof : 

 If (ÿ, ā) ⊲� (þ, ý) then for all þ * þĆāā(ÿ, ā), ÿ(þ) ⊲ þ(þ) 

Since(þ, ý) is an idealistic soft near-ring over Ć, then 

 for all þ * þĆāā(þ, ý), þ(þ) ⊲ Ć 

So we have ÿ(þ) ⊲ þ(þ) ⊲ Ć for all þ * þĆāā(ÿ, ā). 
Since Ć satisfics condition(C), ÿ(þ) ⊲ Ć for all  þ * þĆāā(ÿ, ā). 
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ÿ(þ) is also a subnear-ring of Ć for all þ * þĆāā(ÿ, ā), since every ideal of Ć is also 

a subnear-ring of Ć. 
 Therefore (ÿ, ā) is a soft near-ring over Ć. 
 Furthermore, (ÿ, ā) is an idealistic soft near-ring over Ć. 
Example : 3.12 

          Let (þ, ý) be the soft near-ring over Ć  and let (ÿ, ā)  ⊲� (þ, ý) be the ones 

given in Example -3.2. It is seen that (ÿ, ā) is also an idealistic soft near-ring over Ć. 
Definition :3.13 

 Let (þ, ý) and (ÿ, þ) be soft near-ring over two near-rings Ć1 and Ć2   
respectively.  

Let ă: Ć1 → Ć2 and  Ą: ý → þ be two mappings. Then the pair (ă, Ą) is called a soft 

mapping from (þ, ý) to (ÿ, þ). A soft mapping (ă, Ą) is called soft homomorphism if 

it satisfies the conditions below: 

a) ă is a near-ring homomorphism 

b) Ą is a mapping. 

c) ă(þ(þ)) = ÿ(Ą(þ))  for all þ * ý. 
If (ă, Ą) is a soft homomorphism and ă and Ą are both surjective, then we say the (þ, ý) is softly near-ring homomorphic to (ÿ, þ) under the soft homomorphism (ă, Ą), which is denoted by (þ, ý)~(ÿ, þ). Then (ă, Ą) is called a soft near-ring 

homomorphism. Furthermore, if ă is an isomorphism of near-rings and Ą is a bijective 

mapping, then (ă, Ą) is said to be a soft near-ring isomorphism. In this case, we say 

that (þ, ý) is soft isomorphic to (ÿ, þ), which is denoted by (þ, ý) ≃ (ÿ, þ). 
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Example :3.14 

 Consider the additive group (ý6, +). Under a multiplication defined by 

following table, (ý6, +, . ) is a (right) near-ring.  

. 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 3 1 5 3 1 5 

2 0 2 4 0 2 4 

3 3 3 3 3 3 3 

4 0 4 2 0 4 2 

5 3 5 1 3 5 1 

 

 Let (þ, ý) be a soft set over ý6, where ý = ý6 and þ: ý → �(ý6) is a set-

valued function defined by þ(þ) = {ÿ * ý6|þÿ * {0,2,4}} for all þ * ý. 
 Then þ(0) = þ(2) = þ(4) = ý6 þÿā þ(1) = þ(3) = þ(5) = ∅ are  

subnear-ring of ý6.  

Hence (þ, ý) is a soft near-ring over ý6 

 Let ă ∶  ý6 → {0,2,4} be the mapping defined by ă(þ) = 4þ. Obviously,  ă is 

an epimorphism of near-rings. 

 Let Ą ∶  ý6 → {0,2,4} ÿÿ Ą(þ) = 2þ for all þ * ý6. Then one can easily say 

that Ą is surjective. 

 Let (þ, ý6) be a soft set over ý6,  where þ: ý6 → �(ý6) is a function by  
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 þ(þ) = {0} , {ÿ * ý6|3þ = ÿ}  for all þ * ý6. It can be easily illustrated that þ(þ) ={0,3} is a subnear-ring of ý6 for all þ * ý6. Thus (þ, ý6) is a soft near-ring over ý6. 
 Let (ÿ, {0,2,4}) be a soft set over {0,2,4}, where ÿ: {0,2,4} → �{0,2,4}  is a 

funtion with  ÿ(þ) = {ÿ * {0,2,4}|þ0 = ÿ} ∀ þ * {0,2,4}. Then one can show that (ÿ, {0,2,4}) is a soft near-ring over {0,2,4}. 

 Furthermore, ă(þ(þ)) = ă({0,3}) = {0} and ÿ(Ą(0)) = ÿ(0) = {0}, 
ÿ(Ą(1)) = ÿ(2) = {0}, ÿ(Ą(2)) = ÿ(4) = {0}, ÿ(Ą(3)) = ÿ(0) = {0}, ÿ(Ą(4)) = ÿ(2) = {0}, ÿ(Ą(5)) = ÿ(4) = {0}, for all  þ * ý6. 

 So it is to say that ă(þ(þ)) = ÿ(Ą(þ))  ∀  þ * ý6. 

 Therefore (ă, Ą) is a soft near-ring homomorphism and (þ, ý6)~(ÿ, {0,2,4}). 
Theorem : 3.15 

 Let  (þ, ý), (ÿ, þ) and (Ā, ÿ) be soft near-rings over Ć1, Ć2  and Ć3   
respectively. Let the soft mapping (ă, Ą) from (þ, ý) to (ÿ, þ) is a soft 

homomorphism from Ć1 to Ć2  and the soft mapping (ă7, Ą7) from (ÿ, þ) to  (Ā, ÿ) a 

soft homomorphism from Ć2  to Ć3  . Then the soft mapping (ă7 Ā ă, Ą7 Ā Ą) from (þ, ý) to (þ, ý) to (Ā, ÿ) is a soft homomorphism from Ć1 to Ć3 .  
Proof : 

 Let the soft mapping (ă, Ą) from Ć1   to Ć2   be a soft homomorphism from (þ, ý) to (ÿ, þ). 
 Then there exists a near-ring homomorphism ă such that ă: Ć1   → Ć2 and a 

mapping Ą such that Ą ∶ ý → þ which satisfy ă(þ(þ)) = ÿ(Ą(þ)) for all þ * ý. 
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 And let the soft mapping (ă7, Ą7) from  Ć2 to Ć3 be a soft homomorphism 

from (ÿ, þ) to (Ā, ÿ). 
 Then there exists a near-ring homomorphism  ă7 such that ă7: Ć2 → Ć3 and a 

mapping  Ą7  such that Ą7 ∶ þ → ÿ which satisfy  ă7(ÿ(þ)) = Ā(Ą7(þ)) for all þ *þ. 
 We need to show that (ă7 Ā ă7) (þ(þ)) =  Ā((Ą7 Ā Ą)(þ))  for all þ * ý. 
Let þ * ý, then 

((ă7Ā ă)(þ(þ)) = (ă7 (ă(þ(þ))) = (ă7 (ÿ(Ą(þ))) = Ā ((Ą7 (Ą(þ)))= Ā((Ą7 Ā Ą)(þ))    
Therefore, the proof is completed. 

Theorem : 3.16 

 The relation ≃ is an equivalence relation on soft near-rings. 

Theorem : 3.17 

 Let Ć1 and Ć2 be near-rings and (þ, ý), (ÿ, þ) be soft sets over Ć1 and Ć2, 

respectively.  

If (þ, ý) is a soft near-ring over Ć1 and (þ, ý) ≃ (ÿ, þ), then (ÿ, þ) is a soft near-ring 

over Ć2. 
Proof : 

 We need to show that ÿ(ÿ) is a subnear-ring of Ć2 for all  ÿ * þĆāā(ÿ, þ). 
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Since (þ, ý) ≃ (ÿ, þ), there exists a near-ring epimorphism ă from Ć1 to Ć2 and a 

bijective mapping Ą from A to B which satisfies ă(þ(þ)) = ÿ(Ą(þ))  for all þ * ý. 
 Assume that (þ, ý) is a soft near-ring over Ć1. Then þ(þ) is a subnear-ring of Ć1 for all þ * þĆāā(þ, ý), therefore ă(þ(þ)) is a subnear-ring of Ć2  

for all þ * þĆāā(þ, ý). 
 Since Ą is a bijective mapping, for all ÿ * þĆāā(ÿ, þ) ⊆ þ,  there exists an þ * ý such that  ÿ = Ą(þ). 
 Hence ÿ(ÿ) is a subnear-ring of Ć2 for all ÿ * þĆāā(ÿ, þ) since 

 ă(þ(þ)) =  ÿ(ÿ). 
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                                              CHAPTER – IV 

                                      FUZZY SOFT NEAR RINGS 

 In this chapter, I collect the definition of fuzzy soft near-rings and idealistic 

fuzzy soft near-rings and some important definitions and some theorems. 

Definition : 4.1 

 Let (Ć, +, . ) be a near-ring and ý be the set of parameters and ý ⊂ ý. 
 Let þ be a mapping given by þ: ý → [0,1]� where [0,1]� is the collection of 

all fuzzy subsets of Ć. Then (þ, ý) is called fuzzy soft near-ring over Ć if and only if 

for each þ * ý, the corresponding fuzzy subset þÿ = (= þ(þ)) of Ć is a fuzzy sub 

near-ring of Ć. (i.e.), 

a) þÿ(þ + ÿ) g þÿÿ(þÿ(þ), þÿ(ÿ)) 

b) þÿ(2þ) g þÿÿ(þÿ(þ))  
c) þÿ(þÿ) g þÿÿ(þÿ(þ), þÿ(ÿ)) for all þ, ÿ * Ć 

Example : 4.2 

 Let Ć = {þ, ÿ, Ā, ā}  be a a non-empty set with two binary operations 8+9 and 

8.9 defined as follows: 
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Then ( Ć, +, . ) is a near-ring. 

Let (þ, ý) be a soft set over Ć, where ý = Ć and þ: ý → �(Ć) is a set-valued 

function defined by  

þ(þ) = {ÿ * Ć|þÿ * {þ, ÿ}}  for all þ * ý. 
Then þ(þ) = þ(ÿ) = þ(Ā) = Ć and þ(ā) = {þ, ÿ} are all subnear-rings of Ć. 
 Hence (þ, ý) is a soft near-ring over Ć. 
Let ý = {Ă1, Ă2, Ă3} be  the set of parameters. 

Define a fuzzy soft set  (þ, ý) on  a near-ring Ć by 

 

 

: 

 

+ A b c D 

a A b c D 

b B a d C 

c C d b A 

d D c a B 

. a b c d 

a a a a a 

b a a a a 

c a a a a 

d a b c d 

F Ă1 Ă2 Ă3 

a 0.2 0.4 0.7 

b 0.2 0.3 0.6 

c 0.1 0.2 0.3 

d 0.1 0.2 0.3 
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Then clearly the fuzzy soft set  (þ, ý) is a fuzzy soft near-ring over a near-ring Ć. 
Theorem : 4.3 

 Let (þ, ý) be a fuzy soft set over a near-ring Ć. Then (þ, ý) be a fuzzy soft 

near-ring over Ć if and only if for each þ * ý and þ, ÿ * Ć the following conditions 

hold: 

a) þÿ(þ 2 ÿ) g þÿÿ(þÿ(þ), þÿ(ÿ)) 

b) þÿ(þÿ) g þÿÿ(þÿ(þ), þÿ(ÿ)) 

Proof : 

 Let (þ, ý) be a fuzzy soft near-ring over Ć. 

 Let þ * ý and þ, ÿ * Ć. Then 

(a) þÿ(þ 2 ÿ) =  þÿ(þ + (2ÿ)) g þÿÿ(þÿ(þ), þÿ(2ÿ)) 

              g þÿÿ(þÿ(þ), þÿ(ÿ)) 

Since (þ, ý) is a fuzzy soft near-ring over Ć, the second condition holds. 

Conversely, let (þ, ý) be a fuzzy soft set over a near-ring Ć satisfying the given 

conditions. 

Now consider þÿ(0) = þÿ(þ 2 þ) g þÿÿ(þÿ(þ), þÿ(þ)) 

           g þÿ(þ) 

Thus þÿ(0) g þÿ(þ)  for all   þ * Ć  

Also þÿ(2þ) g þÿ(þ)  for all   þ * Ć  
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Therefore, þÿ(þ 2 ÿ) = þÿ(þ + (2ÿ))   
             g þÿÿ(þÿ(þ), þÿ(2ÿ)) 

             g þÿÿ(þÿ(þ), þÿ(ÿ)) 

Hence the theorem. 

Theorem: 4.4 

 Let (þ, ý) and (ÿ, þ) be two fuzzy soft near-ring over Ć. If (þ, ý) ⋀ (ÿ, þ) ia 

non-null, then it is a fuzzy soft near-ring over Ć. 
Proof : 

 Let (þ, ý) and (ÿ, þ) be two fuzzy soft near-ring over Ć. 
 Let (þ, ý)⋀(ÿ, þ) = (Ā, ý × þ), where Ā(þ, ÿ) = Āÿ,Ā = þÿ + ÿĀ  for all (þ, ÿ) * ý × þ. 
Since (Ā, ý × þ) is non-null, there exists a pair (þ, ÿ) * ý × þ such that 

 Āÿ,Ā = þÿ ⋀ ÿĀ b 0�. 

Since þÿ  isy a fuzzy sub near-ring of Ć for all þ * ý and ÿĀ is a fuzzy sub near-ring 

of Ć for all ÿ * þ and since the intersection of two fuzzy sub near-ring of Ć is a 

subnear-ring of Ć. 
Therefore, Āÿ,Ā = þÿ + ÿĀ is a sub near-ring of Ć. 
 Hence (þ, ý) ⋀(ÿ, þ) = (Ā, ý × þ)  is a fuzzy soft near-ring over Ć. 
Theorem:4.5 
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 Let (þ, ý) and (ÿ, þ) be two fuzzy soft near-rings over Ć. If (þ, ý) +� (ÿ, þ) 

is non-null, then it is a fuzzy soft near-ring over Ć. 
Proof : 

 Let (þ, ý) +� (ÿ, þ) = (Ā, ÿ) where ÿ = ý + þ. 
 Let Ā * ÿ. 
Since (þ, ý) +� (ÿ, þ) = (H,C),  wher ÿ = ý + þ and Āā = þā +  ÿā for all Ā * ÿ. 
Since (Ā, ÿ) is non-null, there exists Ā * ÿ such that Āā(þ) b ∅ for some þ * Ć  
Since intersection of two sub near-rings is a sub near-ring we see that þā + ÿā is a 

fuzzy sub near-ring of Ć. 
 Hence (þ, ý) +� (ÿ, þ) is a fuzzy soft near-ring over Ć. 
Theorem : 4.6 

 Let (þ, ý) and (ÿ, þ) be two fuzzy soft near-ring over Ć. Then  the extended 

intersection (þ, ý) +� (ÿ, þ) is a fuzzy soft near-ring over Ć. 
Proof ; 

 Let (þ, ý) and (ÿ, þ) be two fuzzy soft near-rings over Ć. 
 Let (þ, ý) +� (ÿ, þ) = (Ā, ÿ) where ÿ = ý , þ. 
Then consider the following cases : 

(i)   If  Ā * þ 6 ý, then Āā = ÿā for all Ā * ÿ. 
 Since ÿā is fuzzy sub near-ring of Ć, Āā is a fuzzy sub near-ring of Ć. 
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(ii) If Ā * ý 6 þ then Āā = þā for all Ā * ÿ. 
 Since þā is fuzzy sub near-ring of Ć, Āā is a fuzzy sub near-ring of Ć. 
(iii) If Ā * ý + þ then Āā = þā + ÿā for all Ā * ÿ. 
 Since intersection of two fuzzy sub near-rings of Ć is a fuzzy sub near-ring of Ć we see that þā + ÿā is a fuzzy sub near-ring of Ć. 
 Therefore Āā  is a fuzzy sub near-ring of Ć. 
Thus in any case, Āā  is a fuzzy sub near-ring of Ć. 
 Hence, (þ, ý) +� (ÿ, þ) = (Ā, ÿ) is a fuzzy soft near-ring over Ć. 
Theorem : 4.7 

 Let , (þ, ý) and (ÿ, þ) be two fuzzy soft near-rings over  Ć.  Then the 

extended union , (þ, ý) ,� (ÿ, þ) is a fuzzy soft near-ring over , Ć if , ý + þ = � 

Proof : 

 Let (þ, ý) and (ÿ, þ) be two fuzzy soft near-rings over Ć. 
 Let (þ, ý) ,� (ÿ, þ) = (Ā, ÿ) where ÿ = ý , þ. 
If Ā * ÿ, since ý + þ = ∅ then either Ā * ý or Ā * þ. 
If Ā * ý, then Āā = þā  
If Ā * þ then Āā = ÿā  
 Since þā , ÿā is a fuzzy sub near-ring of Ć, 

Thus in both cases, Āā is a fuzzy sub near-ring of Ć. 
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 Hence, (þ, ý) ,� (ÿ, þ) = (Ā, ÿ) is a fuzzy soft near-ring over Ć. 
 

Theorem : 4.8 

 Let {(þ�, ý�)|ÿ * ā} be a non-empty family of fuzzy soft near-rings over Ć. 
Then we have the following : 

a) If ∧ {((þ�, ý�)|ÿ * ā} is non-null, then it is a fuzzy soft near-ring. 

b) If + {(þ�, ý�)|ÿ * ā} is non-null, then it is a fuzzy soft near-ring. 

c) If  {ý�|ÿ * ā} are pairwise disjoint and , {(þ�, ý�)|ÿ * ā} is non-null, then it is a 

fuzzy soft near-ring. 

Proof : 

 Let {(þ�, ý�)|ÿ * ā} be a non-empty family of fuzzy soft near-ring over Ć. 
(i) Let ∧ {(þ�, ý�)|ÿ * ā} = (ÿ, þ) where þ =  ý1 × ý2 × & & × ý�  

 and ÿĀ = ∧ {þ�(ÿ�)|ÿ * ā} for all ÿ�  * þ. 
Suppose the fuzzy soft set (ÿ, þ) is non-null. 

If ÿ * þĆāā(ÿ, þ),  then ÿĀ =∧ þ�(ÿ�). 
Since  (þ�, ý�) is a fuzzy soft near-ring for all ÿ * ā, then þ�(ÿ�) is a fuzzy sub near-

ring of Ć. 
Hence (ÿ, þ) is a fuzzy sub near-ring of Ć for all ÿ * þĆāā(ÿ, þ). 
 Hence if  ∧ {(þ�, ý�)|ÿ * ā}  is non-null, then it is a fuzzy soft near-ring. 

(ii) Let + {(þ�, ý�)|ÿ * ā} = (ÿ, þ) where þ =+ ý�  and  ÿĀ =+ {þ�(ÿ�)|ÿ * ā}. 
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Suppose the fuzzy soft set (ÿ, þ) is non-null. 

If ÿ * þĆāā(ÿ, þ), then ÿĀ =+ þ�(ÿ�) is non-null. 

Since (þ�, ý�) is fuzzy soft near-ring for all ÿ * ā, then þ�(ÿ�) is a fuzzy sub near-ring 

of Ć for all ÿ * ā 

Hence (ÿ, þ) is a fuzzy sub near-ring of Ć  for all ÿ * þĆāā(ÿ, þ). 
 Thus  + {(þ�, ý�)|ÿ * ā} is a fuzzy soft near-ring. 

(iii) Let , {(þ� , ý�)|ÿ * ā} = (ÿ, þ) where þ = , ý� and {ý�|ÿ * ā} are pairwise 

disjoint and 

     ÿĀ = , {þ�(ÿ�)|ÿ * ā}. 
Suppose the fuzzy soft set (ÿ, þ) is non-null. 

If ÿ * þĆāā(ÿ, þ), then ÿĀ = , þ�(ÿ�) is non-null. 

Since (þ� , ý�) is a fuzzy soft near-ring for all ÿ * ā, then þ�(ÿ�) is a fuzzy sub near-ring 

of Ć for all ÿ * ā. 
Hence (ÿ, þ) is a fuzzy sub near-ring of Ć for all ÿ * þĆāā(ÿ, þ). 
 Thus if {ý�|ÿ * ā} are pairwise disjoint and , {(þ�, ý�)|ÿ * ā} is non-null, then 

it is a fuzzy soft  

near-ring. 

Definition :4.9 

 let (þ, ý) be a fuzzy soft near-ring over Ć. The (þ, ý) is said to be an idealistic 

fuzzy soft near-ring if þÿ is a fuzzy ideal of Ć for all þ * þĆāā(þ, ý). (ÿ. Ă) 
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a) þÿ(þ + ÿ) g þÿÿ {þÿ(þ), þÿ(ÿ)} for þ, ÿ * Ć 

b) þÿ(2þ) g þÿ(þ) for all þ * Ć 

c) þÿ(þ) = þÿ(ÿ + þ 2 ÿ) for all þ, ÿ * Ć 

d) þÿ(þÿ) g þÿ(ÿ) for all þ, ÿ * Ć 

e) þÿ{(þ + ÿ)ÿ 2 þÿ} g þÿ(ÿ) for all þ, ÿ, ÿ * Ć 

If þÿ satisfies (þ), (ÿ), (Ā)and (ā)  then it is called left idealistic fuzzy soft near-ring 

of Ć and if it satisfics (þ), (ÿ), (Ā) and (Ă) then it is called right idealistic fuzzy soft 

near-ring of Ć.  
 Theorem : 4.10 

 Let (þ, ý) be a fuzzy soft set over a near-ring Ć and þ ⊆ ý. If (þ, ý) is an 

idealistic fuzzy soft   near-ring then (þ, þ) is an idealistic fuzzy soft near-ring over Ć, 
provided that it is non-null. 

Proof : 

 Let (þ, ý)  be a non-null fuzzy soft set and þ ⊆ ý.  
 Let þ * þĆāā (þ, þ). 

Then þ * þĆāā(þ, þ) implies that þ * þĆāā(þ, ý) 

 Let (þ, ý) be an idealistic fuzzy soft near-ring over Ć. 
Then þÿ is a fuzzy ideal of Ć for all þ * þĆāā(þ, ý) 

But since þ ⊆ ý, þ * þĆāā(þ, ý) implies that þ * þĆāā(þ, þ) 

 Hence þÿ is a fuzzy ideal of Ć for all þ * þĆāā(þ, þ). 

 Therefore (þ, þ) is an idealistic fuzzy soft near-ring over Ć. 
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Theorem :4.11 

 Let (þ, ý) and (ÿ, þ) be two idealistic fuzzy soft near-rings over a near-ring Ć. Then the restricted intersection of (þ, ý) and (ÿ, þ) is an idealistic fuzzy soft near-

ring over Ć  if it is non-null. 

Proof : 

           Let (þ, ý) and (ÿ, þ) be two idealistic fuzzy soft near-rings over a near-ring Ć. 
           Let (þ, ý) +� (ÿ, þ) = (Ā, ÿ) where ÿ = ý + þ and for all Ā * ÿ, 
 Ā(Ā) = þ(Ā) + ÿ(Ā).  

Suppose, (Ā, ÿ) is non-null. 

 Then there exists þ * þĆāā(Ā, ÿ) such that Āÿ = þÿ + ÿÿ b 0�. 

Since þÿ and ÿÿ are fuzzy ideals of Ć, it follows that Āÿ is fuzzy ideal of Ć for all þ *þĆāā(Ā, ÿ). 

 Hence, (þ, ý) +� (ÿ, þ) = (Ā, ÿ) is an idealistic fuzzy soft near-ring over Ć. 
Theorem: 4.12 

 Let (þ, ý) and (ÿ, þ) be two idealistic fuzzy soft near-rings over a near-ring Ć. Then the extended intersection of (þ, ý) and (ÿ, þ) is an idealistic fuzzy soft near-

ring over Ć, if it is non-null. 

Proof : 

 Let (þ, ý) and (ÿ, þ) be two idealistic fuzzy soft near-rings over a near-ring Ć 
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 Let Ā * þĆāā(Ā, ÿ). 

If Ā * ý 6 þ   then the Ā(Ā) = þ(Ā) = þā  is fuzzy ideal of Ć. 

 Therefore Ā(Ā) = Āā is a idealistic fuzzy soft near-ring over Ć. 
Similarly, if  Ā * þ 6 ý   then Ā(Ā) = ÿ(Ā) = ÿā and since ÿā is fuzzy ideal of Ć. 
 Therefore Ā(Ā) = Āā is a idealistic fuzzy soft near-ring over Ć. 
Again,  if  Ā * ý + þ  and  Ā(Ā) = þ(Ā) + ÿ(Ā).  
Since intersection of two fuzzy ideals of if  ý is a fuzzy ideal of  Ć. 
 Therefore Ā(Ā) = þ(Ā) + ÿ(Ā) is a fuzzy ideal of Ć. 
 Hence, (Ā, ÿ) = (þ, ý) +� (ÿ, þ) is an idealistic fuzzy soft near-ring over Ć, 
if it is non-null. 

Theorem : 4.13 

 Let (þ, ý) and (ÿ, þ) be two idealistic fuzzy soft near-rings over a near-ring Ć. If ý and þ are disjoint then the extended union (þ, ý) ,� (ÿ, þ) ia an idealistic 

fuzzy soft near-ring over Ć. 
Proof : 

           Let (þ, ý) and (ÿ, þ) be two idealistic fuzzy soft near-rings over a near-ring Ć. 
 Let ý and þ be disjoint. 

If ý + þ = ∅ then for  þ * þĆāā(Ā, ÿ) we have either þ * ý 6 þ   or  þ * þ 6 ý .    
If þ * ý 6 þ then Āÿ = þÿ is a fuzzy ideal of Ć and so  Āÿ is an idealistic fuzzy soft 

near-ring. 
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If þ * þ 6 ý then  Āÿ = ÿÿ is a fuzzy ideal of Ć and so  Āÿ is an idealistic fuzzy soft 

near-ring. 

Thus for all þ * þĆāā(Ā, ÿ), Āÿ is a fuzzy ideal of Ć. 
 Hence, the extended union (þ, ý) ,� (ÿ, þ) is an idealistic fuzzy soft near-ring 

over Ć. 
Note : 4.14 

 If ý and þ are not disjoint then the theorem is not true since the union of two 

fuzzy ideals of a near-ring Ć is not a fuzzy ideal of a near-ring Ć. 
Theorem:4.15 

 Let (þ, ý) and (ÿ, þ) be two idealistic fuzzy soft near-rings over a near-ring Ć. Then  (þ, ý)  ∧ (ÿ, þ) = (Ā, ý × þ) is an idealistic fuzzy soft near-ring over Ć,  if 
it is non-null. 

Proof : 

           Let (þ, ý) and (ÿ, þ) be two idealistic fuzzy soft near-rings over a near-ring Ć. 
 Let (þ, ý)⋀(ÿ, þ) = (Ā, ý × þ) where Ā(ÿ,Ā) = þÿ⋀ÿÿ for all (þ, ÿ) * ý × þ. 
Suppose (Ā, ý × þ) is non-null fuzzy soft set. 

If (þ, ÿ) * þĆāā(Ā, ý × þ), then Ā(ÿ,Ā) = þÿ  ⋀ ÿÿ b 0� . 
Since (þ, ý) and (ÿ, þ) are two idealistic fuzzy soft near-rings over a near-ring Ć, we 

conclude that þÿ   þÿā  ÿĀ are fuzzy ideals of Ć. 
 Since intersection of two fuzzy ideals of Ć is a fuzzy ideals of Ć. 
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 Therefore Ā(ÿ,Ā) is a fuzzy ideal of Ć for all (þ, ÿ) * þĆāā(Ā, ý × þ). 
 Thus, (þ, ý) ⋀ (ÿ, þ) = (Ā, ý × þ) is an idealistic fuzzy soft near-ring 

 over N. 
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                                                     CHAPTER-V 

                                              FUZZY SOFT IDEALS 

Definition : 5.1 

 Let (ý, +, . ) be a ring and ý be a parameter set and ý ⊆ ý. Let ℐ be a mapping 

given by ℐ ∶ ý → �(ý). Then (ℐ, ý) is called a soft left ideal over ý if and only if for 

each þ * ý, ℐ(þ) is a left ideal of  ý (i.e,) 

 (i) þ, ÿ * ℐ(þ)  ⇒  þ 2 ÿ * ℐ(þ) 

 (ii) þ * ℐ(þ), ă * ý ⇒  ă. þ * ℐ(þ) 

Definition : 5.2 

 Let (ý, +, . ) be a ring and ý be a parameter set and ý ⊆ ý. Let ℐ be a mapping 

given by ℐ ∶ ý → �(ý). Then (ℐ, ý) is called a soft right ideal over ý if and only if for 

each þ * ý, ℐ(þ) is right ideal of  ý  ( i.e,) 

 (i) þ, ÿ * ℐ(þ)  ⇒  þ 2 ÿ * ℐ(þ) 

 (ii) þ * ℐ(þ), ă * ý ⇒  ă. þ * ℐ(þ) 

Definition : 5.3 

 Let (ý, +, . ) be a ring and ý be a parameter set and ý ⊆ ý. Let ℐ be a mapping 

given by ℐ ∶ ý → �(ý). Then (ℐ, ý) is called a soft ideal over ý if and only if for each þ * ý, ℐ(þ) is a ideal of ý i.e. 

 (i) þ, ÿ * ℐ(þ)  ⇒  þ 2 ÿ * ℐ(þ) 

 (ii) þ * ℐ(þ), ă * ý ⇒  ă. þ * ℐ(þ) 

Definition : 5.4 

 Let (ý, +, . ) be a ring and ý be a parameter set and ý ⊆ ý. Let ℐ be a mapping 

given by ℐ ∶ ý → [0,1]� ,  where [0,1]� denotes the collection of all fuzzy subsets of ý. 
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Then (ℐ, ý) is called fuzzy soft left ideal over ý if and only if for each þ * ý, the 

corresponding fuzzy subset ℐÿ ∶ ý → [0,1] is a fuzzy left ideal of ý ( i.e.) 

 (i) ℐÿ(þ 2 ÿ) g ℐÿ(þ) 7 ℐÿ(ÿ) 

 (ii) ℐÿ(þ. ÿ) g ℐÿ(ÿ), ∀þ, ÿ * ý. 

Definition : 5.5 

 Let (ý, +, . ) be a ring and ý be a parameter set and ý ⊆ ý. Let ℐ be a mapping 

given by ℐ ∶ ý → [0,1]� ,  where [0,1]� denotes the collection of all fuzzy subsets of ý. 

Then (ℐ, ý) is called fuzzy soft right ideal over ý if and only if for each þ * ý, the 

corresponding fuzzy subset  ℐÿ ∶ ý → [0,1] is a fuzzy right ideal of ý  (i.e.) 

 (i) ℐÿ(þ 2 ÿ) g ℐÿ(þ) 7 ℐÿ(ÿ) 

 (ii) ℐÿ(þ. ÿ) g ℐÿ(þ), ∀þ, ÿ * ý. 

Definition : 5.6 

 Let (ý, +, . ) be a ring and ý be a parameter set and ý ⊆ ý. Let ℐ be a mapping 

given by ℐ ∶ ý → [0,1]� , where [0,1]� denotes the collection of all fuzzy subsets of ý. 

Then (ℐ, ý) is called fuzzy soft ideal over ý if and only if for each þ * ý,the 

corresponding fuzzy subset  ℐÿ ∶ ý → [0,1] is a fuzzy right ideal of ý  (i.e.) 

 (i) ℐÿ(þ 2 ÿ) g ℐÿ(þ) 7 ℐÿ(ÿ) 

 (ii) ℐÿ(þ. ÿ) g þþþ{ ℐÿ(þ), ℐÿ(ÿ)}, ∀þ, ÿ * ý 

Theorem : 5.7 

 Let (ý, +, . ) be a ring and ý be a parameter set and ý ⊆ ý. Then (ℐ, ý) is 

fuzzy soft left (respectively right) ideal over ý if and only if for each þ * ý, the 

corresponding fuzzy subset ℐÿ of  ý satisfy following conditions: 

 (i) ℐÿ(þ 2 ÿ) g ℐÿ(þ) 7 ℐÿ(ÿ) for all þ, ÿ * ý 

 (ii) ��° ℐÿ f ℐÿ(respectively  ℐÿ°�� f ℐÿ) 
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Where �� stands for the characteristic function of ý. 

Proof : 

 Suppose (ℐ, ý) is a fuzzy soft left ideal over ý. Then for each þ * ý, the 

corresponding fuzzy subset ℐÿ of ý satisfy two conditions 

 (1)  ℐÿ(þ 2 ÿ) g ℐÿ(þ) 7 ℐÿ(ÿ) 

 (2)  ℐÿ(þ. ÿ) g ℐÿ(ÿ), ∀þ, ÿ * ý. 

Let Ā be an element of R. Then 

 (�� ° ℐÿ)(Ā)  =  {þÿÿ {ÿ=ý.þĀĂý ��(þ), ℐÿ(ÿ)}}  

   =  {min {ℐÿ(ÿ)} f ℐÿ(þ 2 ÿ)ÿ=ý.þĀĂý
  

   = ℐÿ(Ā) 

If Ā can not be expressed as Ā = þ. ÿ where þ, ÿ * ý, then (��  ° ℐÿ)(Ā) = 0 f ℐÿ(Ā) 

holds. 

Therefore  �� ° ℐÿ f ℐÿ. 

Conversely, let (ℐ, ý) be a fuzzy soft subset over ý such that for each þ * ý the 

corresponding fuzzy subset  ℐÿ of R satisfy given two conditions. 

 (i) ℐÿ(þ 2 ÿ) g ℐÿ(þ) 7 ℐÿ(ÿ)  for all þ, ÿ * ý 

 (ii) �� ° ℐÿ f ℐÿ 

 Let þ, ÿ * ý then we have ℐÿ(þ. ÿ) g (�� ° ℐÿ)(þ. ÿ) 

               =  {þÿÿ {��(ā),ý.þ=ý.þĀĂý ℐÿ(Ă)}} 

               g þÿÿ{��(þ), ℐÿ(ÿ)} = ℐÿ(ÿ). 
This shows that for each þ * ý, ℐÿ is a fuzzy left ideal of ý. 

So (ℐ, ý) is fuzzy soft left ideal over ý. Similar proof for a fuzzy soft right ideal 

 over ý.  

This completes the proof. 
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Theorem : 5.8 

 Let (ý, +, . ) be a ring and ý be a parameter set and ý ⊆ ý. Then (ℐ, ý) is a 

fuzzy soft left (respectively right) ideal over R iff for each ℐÿ(þ * ý ) each level 

subset (ℐÿ)ā, ą * ýþ(ℐÿ) is a left (respectively right) ideal of R where ℐÿ is the fuzzy 

subset of ý corresponding to þ * ý. 
Proof: 

 Suppose (ℐ, ý) is a fuzzy soft left ideal over ý. Then for each þ * ý the 

corresponding fuzzy subset  ℐÿ is a fuzzy left ideal of ý. 

Now let  ą * ýþ(ℐÿ) and þ, ÿ * (ℐÿ)ā, ă * ý . 

Since ℐÿ is a fuzzy left ideal of R, then ℐÿ(þ 2 ÿ) g ℐÿ(þ) 7 ℐÿ(ÿ) g ą and  ℐÿ(ă. þ) g ℐÿ(þ) g ą. This implies that þ 2 ÿ * (ℐÿ)ā and ă. þ * (ℐÿ)ā. 

So (ℐÿ)ā is a left ideal of ý for each  ą * ýþ(ℐÿ) 

Conversely, let (ℐÿ)ā is a left ideal of R for each ą * ýþ(ℐÿ) and corresponding to each þ * ý and also let  þ, ÿ * ý. 

Suppose  ℐÿ(þ 2 ÿ) < ℐÿ(þ) 7 ℐÿ(ÿ) = ą1 (say). 

This implies þ, ÿ * (ℐÿ)ā1  but þ 2 ÿ + (ℐÿ)ā1. This contradicts to (ℐÿ)ā1 is a left ideal 

of  R.  

So ℐÿ(þ 2 ÿ) g ℐÿ(þ) 7 ℐÿ(ÿ) & & & & & & & & &  (1) 

Again suppose  ℐÿ(þ. ÿ) < ℐÿ(ÿ) = ą2 (say). 

This implies ÿ * (ℐÿ)ā2 but  þ. ÿ + (ℐÿ)ā2. This contradicts to (ℐÿ)ā2  is a left ideal 

 of ý.  

So ℐÿ(þ. ÿ) g ℐÿ(ÿ) & & & & & & & & & &   (2) 

So (1) and (2) together implies ℐÿ is a fuzzy left ideal of ý for each þ * ý. 

Similar proof for fuzzy soft right ideal over R. This completes the proof. 
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Theorem : 5.9 

 Let (ý, +, . ) be a ring and ý be a parameter set and ý ⊆ ý. If (ā, ý) be a soft 

subset over ý, where (ā, ý) = {(þ, ā(þ): ā(þ) be the subset of R corresponding to þ *ý} and we define a fuzzy subset  ℐÿ of ý corresponding to þ * ý by  

   ℐÿ(þ)  = {Ą  ÿă þ * ā(þ)ą  Āą/ĂăýÿĄĂ  

for all þ * ý  and  Ą, ą * [0,1] with Ą > ą. 

Then (ℐ, ý) is a fuzzy soft left (respectively right) ideal over ý if and only if (ā, ý) is a 

soft left (respectively right) ideal over ý, where (ℐ, ý) = {(þ, ℐÿ) ∶ þ * ý}. 

Proof: 

At first left  (ℐ, ý) be a fuzzy soft left ideal over R. Then for each þ * ý, ℐÿ is a fuzzy 

left ideal of R. 

Let þ, ÿ * ā(þ)  and  ă * ý. Then ℐÿ(þ) = ℐÿ(ÿ) = Ą. 
Hence ℐÿ(þ 2 ÿ) g ℐÿ(þ) 7 ℐÿ(ÿ) = Ą.  So þ 2 ÿ * ā(þ). 

Again ℐÿ(ă. þ) g ℐÿ(þ) = Ą. So  ă. þ * ā(þ). Hence ā(þ) is a left ideal of R for each þ * ý. 
So, (ā, ý) is a soft left ideal of over R. 

Conversely, let (ā, ý) be a soft left ideal over R. Then for each þ * ý, ā(þ) is a left 

ideal of R.  Let þ, ÿ * ý, then the following four cases arise for consideration: 

Case (i) : þ, ÿ * ā(þ) ⇒ þ 2 ÿ * ā(þ), þ. ÿ * ā(þ)  [as ā(þ) is a left ideal of ý] 

   ⇒ ℐÿ(þ 2 ÿ) = þ = ℐÿ(þ) = ℐÿ(ÿ) = ℐÿ(þ. ÿ). 
Case (ii): þ, ÿ * ā(þ), ÿ + ā(þ) ⇒ ℐÿ(þ) = Ą  þÿā  ℐÿ(ÿ) = ą. 
Case (iii): þ, ÿ + ā(þ), ÿ * ā(þ) ⇒ þ. ÿ * ā(þ) [as ā(þ) is a left ideal of ý] 
   ⇒ ℐÿ(þ. ÿ) = þ, = ℐÿ(þ) = ą, ℐÿ(ÿ) = Ą. 
Case (iv): þ, ÿ + ā(þ) ⇒ ℐÿ(þ) = ℐÿ(ÿ) = ą. 
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For each case we have ℐÿ(þ 2 ÿ) g ℐÿ(þ) 7 ℐÿ(þ) and ℐÿ(þ. ÿ) g ℐÿ(ÿ). 

So (ℐ, ý) is a fuzzy soft left ideal over ý. 

This completes the proof.  
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1. PRELEMINARIES 

 

In this chapter we give basic information which will be used in the remainder  

of the project. In this section we give some basic definitions related to graph theory,  

which is a background in the Edge graceful labeling.  

 

Definition: 1.1 

A graph G = (V, E) is a finite non empty set V of objects called vertices  

together with a set E of unordered pairs of distinct vertices called edges. 

 

Definition: 1.2  

                                                The Cardinality of the vertex set of graph G is called the order of G and is  

denoted by p. The Cardinality of its edge set is called the Size of G and is denoted by  

q. A graph with p vertices and q edges is called a (p, q) - graph. 

 

 Definition: 1.3 

       If e= (u, v) is an edge of G, we write e = uv and we say that u and v are  

adjacent vertices of G. If two vertices are adjacent, then they are said to be  

neighbours. Further, vertex u and edge e are said to be incident with each others, as 

 are v and e. If two distinct edges f and g are incident with a common vertex, then f  

and g are said to be adjacent edges. 

 

Definition: 1.4 

An edge having the same vertex as both its end vertices is called as self-loop  

or loop. 
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Definition: 1.5 

 

   The number of edges incident on a vertex v with self-loops counted twice is  

called the degree of the vertex v. It is denoted by d(v).the maximum degree of a  

graph G is denoted by∆(ă) and the minimum degree of G is denoted by �(ă). A  

vertex with degree 0 is called an isolated vertex. A vertex with degree 1 is called  

Pendant vertex. 

A graph is regular of degree r if every vertex of G has degree r. Such graphs  

are called r-regular graphs. 

 

Definition: 1.6 

A graph H is a subgraph of a graph G, if all the vertices and all the edges H  

are in G, and each edge of H has the same end vertices as in G. 

 

Definition: 1.7  

 A Spanning subgraph of G is a subgraph H withý(Ą) = ý(ă). 
(i.e) Hand G having exactly the same vertex set. 

 

Definition: 1.8 

 A graph in which any two distinct vertices are adjacent is called a complete  

graph and is denoted by ÿý. 
 

Definition: 1.9 

 Two graphs G and G′ are said to be isomorphic, if there is a one to one  

correspondence between their vertices and between their edges, such that the 
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 incidence relationship is preserved. 

 

Definition: 1.10 

A Walk is a finite alternating sequence of vertices and edges, beginning and  

ending with vertices such that each edge is incident with the vertices proceeding and  

succeeding it [ No edge appear more than once]. 

 

Definition: 1.11 

A walk which beginning and ends with the same vertex is called a closed 

walk which no vertex appears more than once is called a path. 

 

Definition: 1.12 

 A walk in which no vertex (except the initial and final vertex) appears more  

than once is called cycle .A graph with exactly one cycle  is called a unicycle graph. 

 

Definition: 1.13 

Any cycle with a pendent edge attached at each vertex is called a Crown 

 graph and is denoted by ÿĀ+(Ā g 3). 
 

Definition: 1.14 

 Armed crowns are obtained from cycle by attaching paths of equal lengths at  

each vertex of the cycle. We dente an armed crown byÿĀ ⊝ �ÿ  where �ÿ  is a path  

of length m-1, where  ÿĀ is a Ā 2 cycle. 
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Definition: 1.15 

 A Wheel is a graph obtained from a cycle by adding a new vertex and edges 

Joining to all the vertices of a cycle, the new edges are called the spokes of the wheel.   

The wheel of n vertices is denoted by þĀ. 

 

Definition: 1.16 

 A labeled graph is a graph whose vertices are each assigned an element from 

 a set of symbols (letters, usually, but this is unimportant). The important thing 

 is to note is that the vertices can be distinguished one from another. 

 

Definition: 1.17 

Let G = (V, E, F) be a simple graph with order n and size m. 

                                                Let V = {Ā1, Ā2, & , ĀĀ} and E = {þ1, þ2, & , þÿ}. Let each node vi be labeled  

with distinct nonnegative integer xi . A map f defined on the Cartesian product of the  

set of labels of vertices to the set of labels of edges is called ifÿ(Ăÿ, ĂĀ) = |Ăÿ 2 ĂĀ|  
such that each |Ăÿ 2 ĂĀ|  is distinct and varies from l to m and the group G is called 

 graceful graph.   
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2. STRONG EDGE-GRACEFUL LABELING OF SOME 

SPECIALGRAPHS 

 

Introduction: 

 In 1985, Lo[18] introduced edge-graceful graph which is dual notation of  

graceful labeling. Every edge-graceful graph is Anti magic Lo[18] found a necessary  

condition for a graph with p vertices and q edges to be edge graceful as 

ă(ă + 1) ≡  Ă(Ă 2 1)2  (ÿāý Ă). 
   Strong edge-graceful labeling was studied in detail by Subbiah. In this  

chapter, we obtain strong-edge-graceful labeling of some special graphs.  

 

Definition: 2.1 

 A graph G with p vertices and q edges is said to be an Edge-graceful  

labeling if there exists a bijection f from the edge set {1,2, & , ă} so that the induced  

mapping  ÿ+ from the vertex set to the set {0,1, & , Ă 2 1} given by,   ÿ+(Ă) = ∑{ÿ(Ăă): Ăă ∈ ā(ă)}(ÿāý Ă) is a bijection. 

 

Remark:2.2 Lo’s Necessary Condition [18]  

 If a graph G= (Ă, ă) is edge-graceful then  ă(ă + 1) ≡  ý(ý21)2  (ÿāý Ă). 
 

Definition: 2.3 

 A (Ă, ă) graph G is said to have a strong edge-graceful labeling if there exits  

an injection f from the edge set {1,2, & , [3þ2 ]} so that the induced mapping ÿ+   
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from the vertex set  {0,1, & ,2Ă 2 1} defined by a 

  ÿ+(Ă) = ∑{ÿ(Ăă): Ăă ∈ ā(ă)}(ÿāý 2Ă) are  

distinct. A graph G is said to be Strong edge-graceful labeling. Here,[x] denotes the  

integer part of x.     

Illustration: 2.4 

Consider the graph G in figure 2.4.1 

 

 

Figure 2.4.1: G 

 

Here p=11, q=11. So, we define ā(ă) → {1,2, & ,11} and we obtain induced 

 map ÿ+: ý(ă) → {1,2, & ,10}. 

The EGL of G is given in the figure 2.4.2 
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Figure 2.4.2 EGL of G 

 

Illustration: 2.5 

 Consider the graph �6. Here p=6 and q=5. Lo’s condition is not satisfied.  

Hence,�6 is not an Edge-graceful graph.   

 

 

Figure 2.5.1: �ą 

Illustration: 2.6 

In Illustration 2.5 we have seen that �6 is not EGC. But it is SEGG as given in  

the figure 2.6.1 

 

Figure 2.6.1 SEGL of: �ą
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Remark: 2.7 

 An edge-graceful (Ă, ă) graphs can be proved as strong edge-graceful  

graphs, where as the converse need not be true. 

 

Definition: 2.8 

 A Vertex Switching þ� of a graph G is the graph obtained by taking a vertex  

v of G, removing all the edges incident at v and adding joining v to every other vertex  

which are not adjacent to v in G. 

 

Theorem: 2.9 

 Switching of a pendent vertex in a path �Ā(Ā g 4) is a strong edge-graceful 

graph. 

Proof: 

 Let {Ā1, Ā2, & , ĀĀ} be the vertices path �Ā. Let ă� be the graph obtained by  

switching a pendent vertex in �Ā. Without loss of generality, let the switched vertex  

be Ā1. Let {þ1, þ2, & , þĀ22, þĀ24, & , þ2Ā24} be the edges of ă�. 

We note that |ý(ă�)| = Ă = Ā and  |ā (ă�)| = ă = 2Ā 2 4 

Case1: n ≡ ÿ, Ā, Ă (ÿā� ă) 

We first label the edges as follows: 

Define ÿ: ā(ă�) → {1,2, & , [3þ2 ]} by  

 ÿ(þÿ) = 2Ā 2 ÿ,           1 f ÿ f Ā 2 2 

 ÿ(þÿ) = 2Ā 2 ÿ 2 3,      Ā 2 1 f ÿ f 2Ā 2 4 

 

Then the induced vertex labels are:  
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 ÿ+(Ā1) = { Ā+12 ,Ā + 1,1,            Ā ≡ 0(ÿāý 4)Ā ≡ 1(ÿāý 4)Ā ≡ 3(ÿāý 4) 

 ÿ+(Āÿ) = 2Ā 2 ÿ + 1,    2 f ÿ f Ā 2 1 

 ÿ+(ĀĀ) = 0 

Case2: n ≡ ā (ÿā� ă) 

 ÿ(þÿ) = 2Ā 2 ÿ,           1 f ÿ f Ā 2 2 

 ÿ(þĀ21) = Ā 2 2,         ÿ(þĀ) = 2Ā    

 ÿ(þÿ) = 2Ā 2 ÿ 2 3,       Ā 2 1 f ÿ f 2Ā 2 4 

Then the induced vertex labels are:  

 ÿ+(Ā1) = Ā+82  

 ÿ+(Āÿ) = 2Ā 2 ÿ + 1,   2 f ÿ f Ā 2 1 

 ÿ+(ĀĀ21) = 5,           ÿ+(ĀĀ) = 0 

 Clearly all the vertex labels are distinct. Hence, the above defined  

edge labeling function  ÿ+: ý(ă) → {1,2, &  ,2p-1}. Hence f is a strong edge- 

graceful labelling. 

 Thus, switching of a pendent vertex in a path Pn, (ng4) is a strong edge- 

graceful graph. 

 

Illustration: 2.10 

 The SEGL of switching of a pendent vertex in the path P7 are shown in the  

figure 2.10.1 
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Figure 2.10.1 SEGL of switching of a pendent vertex in the path �Ć 

 

Theorem: 2.11 

 Switching of a vertex in a cycle Cn, (ng 4) is astrong edge-graceful graph. 

Proof: 

 Let Ā1, Ā2, & , ĀĀ be the vertices of ÿĀ. Let G’ be the graph obtained by  

switching the vertex V1. 

Let {þ1, þ2, & , þĀ22, þĀ24, & , þ2Ā24} be the edges of ă� which are denoted as in figure.  

We note that |ý(G′)| = Ă = Ā and |ā(G′)| = ă = 2Ā 2 5 

 

Figure 2.11.1: Ordinary labeling of switching of a vertex in a cycle ÿĀ 
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Case1: n ≡ ÿ, Ā, Ă (ÿā� ă), (Ā g Ć) 

We first label the edges as follows: 

Define ÿ: ā(ă�) → {1,2, & , [3þ2 ]} by  

 ÿ(þÿ) = 2Ā 2 1,           1 f ÿ f Ā 2 3 

 ÿ(þÿ) = Ā 2 3,                 Ā 2 2 

 ÿ(þĀ21) = { 2Ā,8,Ā 2 2,          Ā ≡ 0(ÿāý 4)Ā ≡ 1(ÿāý 4)Ā ≡ 3(ÿāý 4) 

 ÿ(þÿ) = 2Ā 2 ÿ 2 4,     Ā f ÿ f 2Ā 2 5 

Then the induced vertex labels are:  

 ÿ+(Ā1) = {Ā+122 ,4,6,             Ā ≡ 0(ÿāý 4)Ā ≡ 1(ÿāý 4)Ā ≡ 3(ÿāý 4) 

 ÿ+(Āÿ) = 2Ā 2 ÿ + 1,   2 f ÿ f Ā 2 1 

 ÿ+(ĀĀ) = Ā 2 3 

Case2: n ≡ ā (ÿā� ă), (Ā g Āÿ) 

 ÿ(þÿ) = 2Ā 2 ÿ,              1 f ÿ f Ā 2 4 

 ÿ(þĀ21) = Ā + 2,            ÿ(þĀ21) = Ā + 1    

 ÿ(þÿ) = 2Ā 2 ÿ 2 4,          Ā 2 1 f ÿ f 2Ā 2 5 

Then the induced vertex labels are:  

 ÿ+(Ā1) = Ā+62  

 ÿ+(Āÿ) = 2Ā 2 ÿ + 1,        2 f ÿ f Ā 2 3 

 ÿ+(ĀĀ22) = Ā + 2   ;     ÿ+(ĀĀ21) = Ā  ;  ÿ+(ĀĀ) = Ā + 1  

 Clearly all the vertex labels are distinct. Hence,  the above defined  
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edge labeling function  ÿ+: ý(ă) → {1,2, &  ,2p-1}. Hence f is a strong edge-

graceful labeling. 

Thus, switching of a pendent vertex in a path Cn, (ng4) is a strong edge-graceful 

graph. 

 

Illustration: 2.12 

     The SEGL of switching of a pendent vertex in the path C8 are shown in the 

 figure 2.10.1 

 

Figure 2.12.1 SEGL of switching of a vertex in ÿć 

 

Definition: 2.13 

 Let �Ā denote the path on n vertices .Then the join of ÿ1 with �Ā is defined as  

fan and is denoted by ĂĀ (i.e) ĂĀ = ÿ1 + �Ā. 
Theorem: 2.14 

 Switching of a vertex in a fan Fn, (ng 3) is astrong edge-graceful graph. 

 Let {Ā1, Ā2, & , ĀĀ }be the vertices of ĂĀ. Let ă� be the graph obtained by 

 switching the vertex V1. Let {þ1, þ2, & , þĀ22, þĀ21, & , þ3Ā25} be the edges of ă�  
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which are denoted as in figure.2.14.1 

We denote that |ý(G′)| = Ă = Ā + 1 and |ā(G′)| = 3Ā 2 5 

 

 

 

Figure 2.14.1: Ordinary labeling of switching of a vertex in a fan ýĀ 

 

Case1: n ≡ ÿ (ÿā� ă) 

We first label the edges as follows: 

Define ÿ: ā(ă�) → {1,2, & , [3þ2 ]} by  

 ÿ(þÿ) = ÿ,                   1 f ÿ f Ā 2 2 

 ÿ(þÿ) = 3Ā 2 ÿ + 1,    Ā 2 1 f ÿ f 2Ā 2 3 

 ÿ(þÿ) = ÿ + 6,              2Ā 2 2 f ÿ f 3Ā 2 5 

Then the induced vertex label are: 

 ÿ+(Ā1) = Ā + 1 ;       ÿ+(Ā2) = 1             ÿ(Āÿ) = 2Ā 2 2;              3 f ÿ f 2Ā 2 3 

 ÿ+(ĀĀ) = Ā 2 1 ;       ÿ+(Ā) = 2Ā 2 1 
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Case2: n ≡ Ā (ÿā� ă) 

 ÿ(þÿ) = ÿ,                       1 f ÿ f Ā 2 2 

 ÿ(þÿ) = 2Ā + 3,             ÿ = Ā 2 1    

 ÿ(þÿ) = 2Ā 2 ÿ + 1,        Ā f ÿ f 2Ā 2 3 

 ÿ(þÿ) = ÿ + 6,               2Ā 2 2 f ÿ f 3Ā 2 6 

 ÿ(þÿ) = 2(Ā + 1),          ÿ = 3Ā 2 5    

 

Then the induced vertex labels are:  

 ÿ+(Ā1) = Ā+52  

 ÿ+(Āÿ) = 2ÿ 2 2,         2 f ÿ f Ā 2 1 

 ÿ+(ĀĀ22) = 0,   ;          ÿ+(Ā) = 3Ā212  

 

Case3: n ≡ Ā (ÿā� ă) 

 ÿ(þÿ) = ÿ,                    1 f ÿ f Ā 2 2 

 ÿ(þÿ) = 3Ā 2 ÿ + 1,     Ā 2 1 f ÿ f 2Ā 2 3    

 ÿ(þÿ) = ÿ + 5,            2Ā 2 2 f ÿ f 3Ā 2 6 

 ÿ(þÿ) = Ā,                      ÿ = 3Ā 2 5    

 

Then the induced vertex labels are:  

 ÿ+(Ā1) = Ā 2 6         ÿ+(Ā2) = 1 

 ÿ+(Āÿ) = 2ÿ 2 3,         3 f ÿ f 2Ā 2 4 

 ÿ+(ĀĀ22) = Ā,   ;       ÿ+(Ā) = Ā 2 2 

 

Case4: n ≡ Ă(ÿā� ă), (Ā > Ă) 

 ÿ(þÿ) = ÿ,                  1 f ÿ f Ā 2 2 
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 ÿ(þÿ) = 3Ā 2 ÿ,         Ā 2 1 f ÿ f 2Ā 2 4  

 ÿ(þÿ) = 2(Ā + 1),      ÿ = 3Ā 2 5     

 ÿ(þÿ) = ÿ + 5,          2Ā 2 2 f ÿ f 3Ā 2 6 

 

Then the induced vertex label are: 

 ÿ+(Ā1) = 3Ā+92  

 ÿ+(Āÿ) = 2ÿ 2 4,       2 f ÿ f Ā 

          ÿ+(Ā) = Ā252  

 

 Clearly, all vertex labels are distinct. Hence, the above defined edge labelling  

function f +:V(ă�)→ {0,1,2, & , 2Ă 2 1}. Hence, f is a strong edge-graceful labeling. 

 Thus, switching of a vertex in a fan ĂĀ,(Ā g 4) is a strong edge- graceful 

graph. 

 

Illustration: 2.16 

    The SEGL of switching of a vertex in the fanĂ5 are shown in figure 2.15.1 

 

 

Figure 2.15.1: SEGL of switching of a vertex in ýĄ 
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Definition: 2.16 

 The wheel þĀ is defined as þĀ= ÿĀ+ÿ1, Where ÿĀ is the cycle of length n. 

 

Theorem: 2.17 

 Switching of a rim vertex in a wheel þĀ, (ng 4) is a strong edge-graceful 

graph. 

Proof:  

Let {Ā1, Ā2, & , ĀĀ} be the vertices of þĀ. Let ă� be the graph obtained by 

switching the vertex Ā1 . Let {þ1, þ2, & , þĀ22, þĀ24, & , þ2Ā24} be the edges of ă� 

 which are denoted as in figure.2.17.1   

We note that |ý(G′)| = Ă = Ā + 1 and |ā(G′)| = ă = 3Ā 2 6 

 

 

Figure2.17.1: Ordinary labeling of switching of a rim vertex þĀ 
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Case1: n ≡ ÿ (ÿā� ă), (Ā g ć) 

We first label the edges as follows: 

Define ÿ: ā(ă�) → {1,2, & , [3þ2 ]} by  

 ÿ(þÿ) = ÿ,                  1 f ÿ f Ā 2 2 

 ÿ(þÿ) = 3Ā 2 ÿ + 1,    Ā 2 1 f ÿ f 2Ā 2 4 

 ÿ(þ2Ā23) = 3Ā,   
 ÿ(þÿ) = ÿ + 5,              2Ā 2 2 f ÿ f 3Ā 2 6 

Then the induced vertex label are: 

 ÿ+(Ā1) = { 1,Ā + 7,       Ā = 4    Ā g 8 

ÿ+(Āÿ) = 2ÿ 2 4  ,        2 f ÿ f Ā 

 ÿ+(ĀĀ) = { 9,Ā 2 5       Ā = 4Ā g 8 

 

Case2: n ≡ Ā (ÿā� ă), (Ā g Ĉ) 

 ÿ(þÿ) = ÿ,                    1 f ÿ f Ā 2 2 

 ÿ(þĀ21) = 2Ā + 3,           
 ÿ(þÿ) = 3Ā 2 ÿ + 1,     Ā f ÿ f 2Ā 2 3 

 ÿ(þÿ) = ÿ + 6,            2Ā 2 2 f ÿ f 3Ā 2 6   

 

Then the induced vertex labels are:  

 ÿ+(Ā1) = Ā+52  

 ÿ+(Āÿ) = 2ÿ 2 2,        2 f ÿ f Ā 2 1 

 ÿ+(ĀĀ22) = 0,   ;         ÿ+(Ā) = 3Ā212  
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Case3: n ≡ ā(ÿā� ă), (Ā g ą) 

 ÿ(þÿ) = ÿ,                   1 f ÿ f Ā 2 2 

 ÿ(þÿ) = 3Ā 2 ÿ + 1,    Ā 2 1 f ÿ f 2Ā 2 3    

 ÿ(þÿ) = ÿ + 5,           2Ā 2 2 f ÿ f 3Ā 2 6 

 

  Then the induced vertex labels are:  

 ÿ+(Ā1) = 6         
 ÿ+(Āÿ) = 2ÿ 2 3,         2 f ÿ f Ā 2 1 

 ÿ+(ĀĀ) = 0,   ;            ÿ+(Ā) = Ā 2 2 

Case4: n ≡ Ă(ÿā� ă), (Ā g Ć) 

 ÿ(þÿ) = ÿ,                  1 f ÿ f Ā 2 2 

 ÿ(þÿ) = 3Ā 2 ÿ,         Ā 2 1 f ÿ f 2Ā 2 4  

 ÿ(þ2Ā23) = 2Ā + 2,        
 ÿ(þÿ) = ÿ + 5,          2Ā 2 2 f ÿ f 3Ā 2 6 

 ÿ(þ3Ā26) = 3Ā 

 

Then the induced vertex label are: 

 ÿ+(Ā1) = Ā+152  

 ÿ+(Āÿ) = 2ÿ 2 4,      2 f ÿ f Ā 

 ÿ+(ĀĀ21) = 2Ā 2 5,  ÿ+(ĀĀ) = Ā 2 2,       
         ÿ+(Ā) = Ā252  

 

 Clearly, all vertex labels are distinct. Hence the above defined edge labeling  

function induces the vertex labeling function ÿ+: V(ă�) → {0,1,2, & ,2Ă 2 1}. Hence,  
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f is a strong edge-graceful labeling. Thus, Switching of a vertex in a wheel þĀ is a  

strong edge-graceful graph for all ng 4. 

 We observe that switching of a rim vertex in wheel þ3 is disconnected graph  

with a unique vertex in one of the components. 

 Hence, it is not a strong edge-graceful graph. 

 

Illustration: 2.18 

 The SEGL of switching of a vertex in the wheel þ10 is shown in the figure 

2.18.1 

 

 

Figure 2.18.1: SEGL of þĀÿ
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3. STRONG EDGE-GRACEFUL LABELING IN THE 

CONTEXT OF SOME GRAPH OPERATIONS 

Introduction: 

     In the previous chapter, we discussed strong edge-gracefull labelling of some  

special graphs. In this chapter, we provide strong edge-graceful labeling of the graphs  

on the context of some graph operations. 

Definition: 3.1 

           An Alternative triangular snake �(�Ā) is agraph obtained from a path    ÿ1,ÿ2, ÿ3, …, ÿĀ by joining ÿÿand ÿÿ+1 (alternatively) to a new vertex Āÿ. That is,  

every alternative edge of a path is replaced by ÿ3. We observe than n is even. 

 

Theorem: 3.2  

           An alternative triangular snake �(�Ā), (n g 2) is a strong edge-graceful graph. 

Proof: 

           Let {ÿÿ, ĀĀ/1 f ÿ f Ā, 1 f Ā f Ā2} and {þÿ, þĀ′/1 f ÿ f Ā 2 1, 1 f Ā f Ā} be the 

vertices and edges of �(�Ā) as shown in figure 3.2.1. 

We note |ý(�(�Ā)) = 3Ā2 | and |ā(�(�Ā))| = 2Ā 2 1 

 

 

Figure 3.2.1: Ordinary labeling of �(�Ā)  
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We first label the edges of �(�Ā) as follows: 

Define ÿ: ā(�(�Ā)) → {1,2, & , [3þ2 ]} by  

 ÿ(þÿ) = 3Ā 2 ÿ 2 1,                   1 f ÿ f Ā 2 2 

 ÿ(þĀ21) = 1,           
 ÿ(þÿ′) = ÿ + 1,                                1 f ÿ f Ā 2 1 

 ÿ(þĀ′) = 2Ā 2 1        

        

 Then the induced vertex labels are:  

 

 ÿ+(ÿ1) = 0         
 ÿ+(ÿÿ) = 3Ā 2 ÿ,                             2 f ÿ f Ā, ÿ b Ā 2 1 

 ÿ+(ÿĀ21) = 2          
 ÿ+(Āÿ) = 4ÿ + 1,                             1 f ÿ f Ā212  

 ÿ+ (��2 ) = 3Ā 2 1         
 

 Clearly, all vertex labels are distinct. Hence the above defined edge labeling  

function induces the vertex labeling function ÿ+: ý(�(�Ā)) → {0,1,2, & ,2Ă 2 1}.  

 Hence, f is a strong edge-graceful labeling 

Thus, an alternative triangular snake �(�Ā) is a strong edge-graceful graph for 

all ng 2. 
Illustration: 3.3 

Strong edge-graceful labeling of �(�8) is shown in the figure 3.3.1 
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Figure 3.3.1: SEGL of �(�ć) 

 

Definition: 3.4 

A Double triangular snake Ā(�Ā)   consists of two triangular snakes that 

have a common path. 

 

Theorem: 3.5 

  The double triangular snake D (�Ā), (ng 2) is astrong edge-graceful graph. 

 

Proof: 

           Let {ÿÿ , āÿ, ĀĀ/1 f ÿ f Ā, 1 f Ā f Ā + 1} and  {ÿÿ, ĀÿþĀ/1 f ÿ f Ā 2 1, 1 f Ā f Ā} be the vertices and edge of Ā2(�Ā) as shown in  

the figure 3.5.1 

We note that |ý(Ā(�Ā))| = 3Ā + 1 and |ā(Ā(�Ā))| = 5Ā 
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Figure3.5.1: Ordinary labeling of Ā(�Ā) 

Case1: n > Ă 

We first label the edges of �(�Ā) as follows: 

Define ÿ: ā(Ā2(�Ā)) → {1,2, & , [3þ2 ]} by  

 ÿ(þÿ) = ÿ,                    1 f ÿ f Ā 

 ÿ(ÿ1) = {3Ā + 2,3Ā + 1,       Ā āýý    Ā þĀþĀ 

  ÿ(ÿÿ) = 4Ā2ÿ+22             2 f ÿ f 2Ā 2 2 ÿĀý ÿ þĀþĀ 

 ÿ(ÿÿ) = 8Ā2ÿ+52             3 f ÿ f 2Ā 2 1 ÿĀý ÿ āýý 

 ÿ(ÿ2Ā) = 6Ā + 3,         ÿ(Ā1) = 6Ā + 2,                     
 ÿ(ÿÿ) = 4Ā+ÿ2               2 f ÿ f 2Ā 2 2 ÿĀý ÿ þĀþĀ 

 ÿ(ÿÿ) = 8Ā+ÿ+12             3 f ÿ f 2Ā 2 1 ÿĀý ÿ āýý 

 

Then the induced vertex label are: 

 

             ÿ+(ÿ1) = {5Ā + 2,5Ā + 1,               Ā āýý                Ā þĀþĀ 

             ÿ+(ÿÿ) = 6Ā + 2ÿ + 4  ,         2 f ÿ f Ā 2 1 
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              ÿ+(ÿÿ) = 3Ā + 4   
 ÿ+(Ā1) = {3Ā + 3,3Ā + 2,          Ā āýý          Ā þĀþĀ 

 ÿ+(Āÿ) = 2ÿ 2 1,                 2 f ÿ f Ā 

 ÿ+(ĀĀ21) = 4Ā + 1,             ÿ+(āĀ) = 2Ā + 1      

 ÿ+(āÿ) = 2ÿ 2 2,                 2 f ÿ f Ā  

 

Case2 : n= Ă 

           Strong edge graceful labeling of Ā(�3) is shown in the figure 3.5.2 

 

 

Figure3.5.2: SEGL of Ā(�Ă) 

 

           Clearly, all vertex labels are distinct. Hence the above defined edge labeling  

function induces the vertex labeling function ÿ+: ý(Ā(�Ā)) → {0,1,2, & ,2Ă 2 1}.          

 Hence, f is a strong edge-graceful labeling. Thus, the double Triangular snake  

graph D(�Ā) is a strong edge-graceful graph for all ng2. 
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Illustration: 3.6 

           Strong edge-graceful labeling of D(�6) are shown in the figure 3.6.1 

Figure 3.6.1: SEGL of Ā(�Ć) 

Definition: 3.7 

The Cartesian product of G and H is a graph, denoted as GOH, whose vertex  

set is V(G) × ý(Ą). Two vertices (Ā, /) and (Ā′, /′) are adjacent precisely if Ā = Ā′  
and  //′ ∈ ā(Ą) or  ĀĀ′ ∈ ā(ă) and / = /′. 
 

Theorem: 3.8 

The Book graph ÿ1,Ā × �2 is a strong edge-graceful graph for all ng 2. 
Proof: 

            Let  {ÿ1, ÿ2, Ā1, Ā2, & , ĀĀ, Ā′1, Ā′2, & , Ā′Ā} be the vertices and  {þ, þ1, þ2, & , þĀ , þ′1, þ′2, & , þ′Ā, þ"1, þ"2, & , þ"Ā} be the edges of ÿ1,Ā × �2 as shown 

in  

the figure 3.8.1. we note that |ý(ÿ1,Ā × �2)| = 2Ā + 2 ÿĀý |ā(ÿ1,Ā × �2)| = 3Ā + 1. 
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Figure 3.8.1 Ordinary labeling of ÿĀ,Ā × �ā 

 

Case1: n ≡ ÿ(ÿā� ă) 

We first label the edges of as follows: 

Define ÿ: ā(ÿ1,Ā × �2) → {1,2, & , [3þ2 ]} by  

 ÿ(þÿ) = ÿ,                           1 f ÿ f Ā 

 ÿ(þ′ÿ) = 2Ā + ÿ,                 1 f ÿ f Ā 

 ÿ(þ"ÿ) = Ā + 1,                 1 f ÿ f Ā 

 ÿ(þ) = 3Ā + 1,     
                 
Then the induced vertex label are: 

              ÿ+(Āÿ) = Ā + 2ÿ  ,           1 f ÿ f Ā              ÿ+(Ā′ÿ) = 3Ā + 2ÿ  ,       1 f ÿ f Ā+22  

           ÿ+(Ā′ÿ) = 2ÿ 2 Ā 2 4  ,   Ā+42 f ÿ f Ā 

          ÿ+(ÿ1) = {Ā + 1,Ā 2 ÿ,             Ā ≡ 0(ÿāý 8)        Ā ≡ 4(ÿāý8)  
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 ÿ+(ÿ2) = { Ā + 1,3Ā + 3,          Ā ≡ 0(ÿāý 8)      Ā ≡ 4(ÿāý8)  

 

Case2: n ≡ Ā(ÿā� ă)                 ÿ(þÿ) = ÿ,                          1 f ÿ f Ā 

 ÿ(þ′ÿ) = 2Ā + ÿ,                 1 f ÿ f Ā 

 ÿ(þ"ÿ) = Ā + 1,                 1 f ÿ f Ā 

 ÿ(þ) = 3Ā + 2,   
                   
Then the induced vertex label are: 

              ÿ+(Āÿ) = Ā + 2ÿ  ,           1 f ÿ f Ā            ÿ+(Ā′ÿ) = 3Ā + 2ÿ  ,       1 f ÿ f Ā+32  

           ÿ+(Ā′ÿ) = 2ÿ 2 Ā 2 4  ,   Ā+52 f ÿ f Ā 

          ÿ+(ÿ1) = {7Ā+52 ,3Ā+92 ,            Ā ≡ 1(ÿāý 8)       Ā ≡ 5(ÿāý8)  

         ÿ+(ÿ2) = {7Ā+92 ,3Ā+52 ,            Ā ≡ 1(ÿāý 8)      Ā ≡ 5(ÿāý8)  

 

Case3: n ≡ ā(ÿā� ă)             ÿ(þÿ) = 2ÿ 2 1,                 1 f ÿ f Ā 

 ÿ(þ′ÿ) = 2ÿ,                        1 f ÿ f Ā 

 ÿ(þ"ÿ) = 2Ā + ÿ,               1 f ÿ f Ā 

 ÿ(þ) = {3Ā + 43Ā + 23Ā + 3              

Ā ≡ 2(ÿāý 12)Ā ≡ 6(ÿāý 12) Ā ≡ 10(ÿāý 12) 
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Then the induced vertex label are: 

Subcase1: n ≡ ą(ÿā� Āā) ÿ+(ÿ1) = 2  ,                      ÿ+(ÿ2) = Ā + 2 ÿ+(Āÿ) = 2Ā + 3ÿ 2 1,    1 f ÿ f 2Ā+23  

ÿ+(Āÿ) = 3ÿ 2 2Ā 2 5 ,    2Ā+53 f ÿ f Ā 

ÿ+(Ā′ÿ) = 2Ā + 3ÿ,           1 f ÿ f 2Ā+23  

ÿ+(Ā′ÿ) = 3ÿ 2 2Ā 2 4,     2Ā+53 f ÿ f Ā 

Subcase2: n ≡ ą(ÿā� Āā) ÿ+(ÿ1) = 0  ,                      ÿ+(ÿ2) = Ā ÿ+(Āÿ) = 2Ā + 3ÿ 2 1,    1 f ÿ f 2Ā+23  

ÿ+(Āÿ) = 3ÿ 2 2Ā 2 5 ,    2Ā+63 f ÿ f Ā 

ÿ+(Ā′ÿ) = 2Ā + 3ÿ,           1 f ÿ f 2Ā+33  

ÿ+(Ā′ÿ) = 3ÿ 2 2Ā 2 4,     2Ā+63 f ÿ f Ā 

Subcase3: n ≡ Āÿ(ÿā� Āā) ÿ+(ÿ1) = 1  ,                      ÿ+(ÿ2) = Ā + 1 ÿ+(Āÿ) = 2Ā + 3ÿ 2 1,    1 f ÿ f 2Ā+43  

ÿ+(Āÿ) = 3ÿ 2 2Ā 2 5 ,    2Ā+73 f ÿ f Ā 

ÿ+(Ā′ÿ) = 2Ā + 3ÿ,           1 f ÿ f 2Ā+13  

ÿ+(Ā′ÿ) = 3ÿ 2 2Ā 2 4,     2Ā+43 f ÿ f Ā 

Case4: n ≡ Ă(ÿā� ă) ÿ(þÿ) = 1,                           1 f ÿ f Ā 
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     ÿ(þ′ÿ) = 2Ā + ÿ,                         1 f ÿ f Ā 

 ÿ(þ"ÿ) = Ā + 1,                        1 f ÿ f Ā 

           ÿ(þ) = 4Ā + 4,                     
Then the induced vertex label are: ÿ+(Āÿ) = Ā + 2ÿ  ,           1 f ÿ f Ā ÿ+(Ā′ÿ) = 3Ā + 2ÿ  ,       1 f ÿ f Ā+32  

ÿ+(Ā′ÿ) = 2ÿ 2 Ā 2 4  ,   Ā+52 f ÿ f Ā 

 ÿ+(ÿ1) = {3Ā+32 ,7Ā+72 ,            Ā ≡ 3(ÿāý 8)       Ā ≡ 7(ÿāý8)  

  ÿ+(ÿ2) = { 3Ā+72 ,7Ā+112 ,          Ā ≡ 3(ÿāý 8)      Ā ≡ 7(ÿāý8)  

  

Clearly, all vertex labels are distinct. Hence,the above defined edge labeling  

function induces the vertex labeling function  ÿ+: ý(ÿ1,Ā × �2) → {0,1,2, & ,2Ă 2 1}.                             

Hence f is a strong edge-graceful labeling. 

Thus, the book graph ÿ1Ā ×  �2 is a strong edge-graceful graph for all ng 2 

 

Illustration: 3.9 

The strong edge-graceful labeling of ÿ1,6 × �2 is shown in the figure 3.9.1 
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                                       Figure 3.9.1 SEGL of ÿĀ,ą × �ā 

 

Theorem: 3.10 

The ladder ĀĀ=�Ā × �2 is a strong edge graceful graph for all ng 2. 
Proof: 

            Let {Āÿ/1 f ÿ f 2Ā} and {þÿ/1 f ÿ f 3Ā 2 2} be the vertices and edges of ĀĀ   

as shown in the figure 3.10.1. We note that |ý(ĀĀ) = 2Ā| and |ā(ĀĀ)| = 3Ā 2 2. 
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                               Figure 3.10.1: Ordinary labeling of ĀĀ 

We first label the edges of as follows: 

Define ÿ: ā(ĀĀ) → {1,2, & , [3þ2 ]} by  

         ÿ(þÿ) = ÿ,                             1 f ÿ f 3Ā 2 2,       ÿ b 2Ā 

               ÿ(þ2Ā) = {3Ā 2 1,3Ā,3Ā + 1,            Ā ≡ 0,2,3(ÿāý 6)Ā ≡ 1(ÿāý 6)  Ā ≡ 0,2,3(ÿāý 6) 
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Then the induced vertex label are:                                                                                       

              ÿ+(Ā1) = { 3Ā,3Ā + 1,3Ā + 2,             Ā ≡ 0,2,5(ÿāý 6)Ā ≡ 1(ÿāý6)Ā ≡ 3,4(ÿāý6)  

For Ā ≡ 2,5 (ÿāý 6) ÿ+(Āÿ) = 2Ā + 3ÿ 2 2  ,     2 f ÿ f 2Ā233  

ÿ+(Āÿ) = 3ÿ 2 2Ā 2 2  ,    2Ā+23 f ÿ f Ā 2 1 

            ÿ+(ĀĀ) = 2Ā 2 1  ,            
                                               ÿ+(ĀĀ+1) = 2Ā + 1 ,              ÿ+(Āÿ) = ÿ 2 1  ,                 Ā + 2 f ÿ f 2Ā 2 1         
                                              ÿ+(Ā2Ā) = Ā 2 2   

For Ā ≡ 0,3 (ÿāý 6)                 ÿ+(Āÿ) = 2Ā + 3ÿ 2 2  ,    2 f ÿ f 2Ā3  

              ÿ+(Āÿ) = 3ÿ 2 2Ā 2 2  ,    2Ā+33 f ÿ f Ā 2 1 

 ÿ+(ĀĀ) = 2Ā 2 1     
 ÿ+(ĀĀ+1) = 2Ā + 1               ÿ+(Āÿ) = ÿ 2 1  ,                    Ā + 2 f ÿ f 2Ā 2 1                    
           ÿ+(ÿ2) = {Ā 2 2,Ā,                   Ā ≡ 1(ÿāý 6)     Ā ≡ 4(ÿāý 6)  

 

For Ā ≡ 1,4 (ÿāý 6) 

 ÿ+(Āÿ) = 2Ā + 3ÿ 2 2  ,    2 f ÿ f 2Ā+13  

ÿ+(Āÿ) = 3ÿ 2 2Ā 2 2  ,    2Ā+43 f ÿ f Ā 2 1 

           ÿ+(ĀĀ) = 2Ā 2 1  ,            ÿ+(ĀĀ+1) = 2Ā + 1   
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 ÿ+(ĀĀ+1) = 2Ā + 1 ,              ÿ+(Āÿ) = ÿ 2 1  ,                 Ā + 2 f ÿ f 2Ā 2 1                    
           ÿ+(ÿ2) = {Ā 2 2,Ā,    

             Ā ≡ 1(ÿāý 6)             Ā ≡ 4(ÿāý 6) 

            Clearly, all vertex labels are distinct. Hence, the above defined edge labeling 

function induces the vertex labeling function ÿ+: ý(ĀĀ) → {0,1,2, & ,2Ă 2 1}.             

Hence, f is a strong edge-graceful labeling. 

 Thus, the ladder graph ĀĀ is a strong edge-graceful graph for all ng 2. 
Illustration: 3.11 

 The strong edge-graceful labeling of Ā13 are shown in the figure 3.11.1 

 

Figure 3.11.1: SEGL of ĀĀĂ 
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4. STRONG EDGE GRCEFUL LABELING OF PATH 

AND CYCLE RELATED GRAPHS 

 

Introduction: 

In this chapter we discuss about strong edge graceful labeling of path and  

cycle related graphs. 

 

Definition: 4.1 

The Middle graph of the graph G is the graph whose vertex set V(G) ∪ E(G)  

in which two vertices are adjoint if and only if they are adjacent of edges of G or one  

is a vertex of G and other is an edge incident on it. 

The middle graph is denoted by M(G). 

 

Theorem: 4.2 

The middle graph M(�Ā), ng 3 is a strong edge graceful graph. 

                                    Proof: 

Let {ÿÿ , ĀĀ/1 f ÿ f Ā, 1 f Ā f Ā 2 1} and {þÿ, þ′Ā/1 f ÿ f Ā 2 2, 1 f Ā f 2Ā 2 2}be the vertices and the edges of M (�Ā) as 

shown in the figure 4.2.1. 

We note that  |ý(ā(�Ā))| = 2Ā 2 1and |ā(ā(�Ā))| = 3Ā 2 4. 
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                        Figure 4.2.1: Ordinary labelling ā(�Ā) 

We first label the edges of as follows: 

Define ÿ: ā(ā(�Ā)) → {1,2, & , [3þ2 ]} by  

 ÿ(þÿ) = ÿ + 1,                           1 f ÿ f Ā+2 

 ÿ(þ′ÿ) = ă + 3,                  
 ÿ(þ′ÿ) = ă 2 ÿ + 2,                   2 f ÿ f 2Ā 2 3 

 ÿ(þ′2Ā22) = 1,     Then the induced vertex label are: 

           ÿ+(ÿ1) = ă + 3  ,     
        ÿ+(ÿÿ) = 2Ā 2 4ÿ + 1  ,         2 f ÿ f Ā212  

           ÿ+(ÿÿ) = 6Ā 2 4ÿ 2 1  ,           Ā+12 f ÿ f Ā 2 1            ÿ+(ÿĀ) = 1  ,                              ÿ  +(Ā1) = 2Ā 2 1                           ÿ+(Āÿ) = 2Ā 2 2ÿ  ,                  2 f ÿ f Ā 2 2           ÿ(ĀĀ21) = 2Ā + 1  
Case2: n is even (Ā g ą)             ÿ(þÿ) = ÿ + 1,                           1 f ÿ f Ā-2 

                                   ÿ(þ′ÿ) = ă                  
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               ÿ(þ′ÿ) = ă 2 ÿ + 1,            2 f ÿ f 2Ā 2 3 

              ÿ(þ′2Ā22) = 1                    
Then the induced vertex label are: ÿ+(ÿ1) = ă + 3  ,     ÿ+(ÿÿ) = 2Ā 2 4ÿ + 1  ,         2 f ÿ f Ā212  

ÿ+(ÿÿ) = 6Ā 2 4ÿ 2 1  ,          Ā+12 f ÿ f Ā 2 1 ÿ+(ÿĀ) = 1  ,                              ÿ  +(Ā1) = 2Ā 2 5                 ÿ+(Āÿ) = 2Ā 2 2ÿ 2 2  ,          2 f ÿ f Ā 2 2              ÿ+(ĀĀ21) = 2Ā 

Case3: Ā = Ă, ă 

      Strong edge-graceful labeling of M(�3) and M(�4) are shown in the 

 Figure 4.2.2 and figure 4.2.3 respectively. 

 

 

                                    Figure 4.2.2: SEGL of ā(�Ă) 
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Figure 4.2.3: SEGL of ā(�ă) 

 

Clearly, all vertex labels are distinct. Hence, the above defined edge labeling  

function induces the vertex labeling function ÿ+: ý(ā(�Ā)) → {0,1,2, & ,2Ă 2 1}.   

           Hence, f is a strong edge-graceful labeling 

          Thus, the middle graph M(�Ā) is a strong edge-graceful graph for all ng 3. 
 

Illustration: 4.3 

 The SEGL of M(�6) is shown in the figure 4.3.1. 

 

  

Figure 4.3.1: SEGL of ā(�ą) 
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Definition: 4.4 

      Consider two copies of cycle ÿĀ. Then the mutual duplication of a pair of  

vertices Āā and Ā′ā respectively from each copy of cyle ÿĀ produces a new graph G  

G such that N(Āā)=N(Ā′ā). 

 

Theorem:4.1 

     The mutual vertex duplication of a cycle ÿĀ(Ā g 4) is a strong edge-graceful  

graph. 

Proof: 

Let G′ denote the mutual vertex duplication of a cycle ÿĀ. Let {ÿÿ, Āÿ/1 f ÿ f Ā} be the vertices and {þÿ, Āÿ,þ′ĀĀ′Ā/1 f ÿ f Ā, 1 f Ā f 2} be the  

edges of the mutual vertex duplication of a life cycle ÿĀ as shown in the figure 4.5.1. 

    We note that |ý(ă′)| = 2Ā and |ā(ă′)| = 2Ā + 4. 

 

Figure 4.5.1: Ordinary labeling of mutual vertex duplication of a cycle ÿĀ 

Case1: n b ă, Ą, Ć, Ĉ 

We first label the edges of as follows: 

Define ÿ: ā(ă′) → {1,2, & , [3þ2 ]} by  ÿ(þÿ) = ÿ,                       1 f ÿ f Ā 
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 ÿ(Āÿ) = Ā + ÿ,                1 f ÿ f Ā 

 ÿ(þ′1) = {2Ā + 3,2Ā + 1,          Ā āýý          Ā þĀþĀ 

 ÿ(þ′2) = {2Ā + 3,2Ā + 1,          Ā āýý          Ā þĀþĀ 

 ÿ(Ā′1) = {2Ā + 7,2Ā + 3,          Ā āýý          Ā þĀþĀ 

            ÿ(Ā′2) = {2Ā + 5,2Ā + 4,          Ā āýý          Ā þĀþĀ 

 

Then the induced vertex label are: 

 ÿ+(Ā1) = {Ā + 13,Ā + 8,   
        Ā āýý          Ā þĀþĀ  

            ÿ+(Ā2) = {2Ā + 6,2Ā + 4,          Ā āýý          Ā þĀþĀ 

            ÿ+(Ā1) = 2ÿ 2 1,            3 f ÿ f Ā 2 1 

 ÿ+(ĀĀ) = {0,1,                    Ā āýý          Ā þĀþĀ 

 ÿ+(ÿ1) = {3Ā + 5,3Ā + 4,          Ā āýý          Ā þĀþĀ 

 ÿ+(Ā1) = {10,6,                   Ā āýý          Ā þĀþĀ 

             ÿ+(ÿÿ) =  2ÿ + 2Ā 2 1,     3 f ÿ f Ā 2 1 

 ÿ+(ÿĀ) = {2Ā + 4,2Ā + 3,          Ā āýý          Ā þĀþĀ 

 

Clearly, all vertex labels are distinct. Hence, the above defined edge labeling  

function induces the vertex labeling function ÿ+: ý(ă′) → {0,1,2, & ,2Ă 2 1}. 

 Hence, f is a strong edge-graceful labeling. 

            Thus, the mutual vertex duplication of a cycle ÿĀ(ng 4) is a strong edge-

graceful graph. 
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Illustration: 4.6 

 

 The SEGL of mutual vertex duplicationÿ10 is given in the figure 4.6.1 

 

Figure 4.6.1: SEGL of mutual vertex duplication of ÿĀÿ 

 

Definition: 4.7 

 Let G be a graph with two or more vertices then the Total graph �(þ) pf of  

a graph G is the graph whose vertex set is ý(ă) ∪ ā(ă) and two vertices are adjacent  

whenever they are either adjacent or incident in G. 

 

Theorem : 4.8 

The total graph �(�Ā)(Ā g 3) is a strong edge-graceful graph. 

                                    Proof: 

Let {ÿÿ , ĀĀ ,/1 f ÿ f Ā 2 1} be the vertices and {þÿ, þ′Ā , þ"ā,/1 f ÿ f Ā 2 1, 1 f Ā f 2Ā 2 2,1 f ā f Ā 2 2} be the edges of  �(�Ā)  

as shown in the figure 4.8.1. 

We note that |ý(�(�Ā))| = 2Ā 2 1 and |ā(�(�Ā))| = 4Ā 2 5. 
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Figure 4.8.1: Ordinary labelling �(�Ā) 

Case1: n b Ă, ă 

We first label the edges of as follows: 

Define ÿ: ā(�(�Ā)) → {1,2, & , [3þ2 ]} by  

              ÿ(þ1) = 4Ā 2 4                            
  ÿ(þÿ) = ÿ,                           2 f ÿ f Ā 2 1 

  ÿ(þ′ÿ) = 1     

           ÿ(þ′ÿ) = 3Ā 2 ÿ 2 2,              2 f ÿ f 2Ā 2 2 ÿĀý ÿ b 2Ā 2 3  

               ÿ(þ′2Ā22) = {2Ā + 7,2Ā + 3,           Ā āýý Ā þĀþĀ        
          ÿ(þ′ÿ) = 3Ā + ÿ 2 3,                  1 f ÿ f Ā 2 2 

Then the induced vertex label are: ÿ+(Ā1) = 4Ā 2 3                   ÿ+(Ā1) = 2Ā 2 7 ÿ+(Āÿ) = 2Ā 2 2ÿ ,                     3 f ÿ f Ā 2 2 

             ÿ+(ĀĀ21) = {3Ā 2 2,3Ā 2 1,             Ā āýý Ā þĀþĀ 

ÿ+(ĀĀ) = 2Ā 2 1      
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             ÿ+(ÿÿ) = 2Ā 2 3 ÿ+(ÿÿ) = 4Ā 2 2ÿ 2 6 ,             2 f ÿ f Ā 2 2 

             ÿ+(ÿĀ21) = {Ā 2 4,Ā 2 3,              Ā āýý Ā þĀþĀ 

Case2: n = Ă, ă 

 SEGL of �(�3) and �(�4) are shown in the figure 4.8.2 and figure 4.8.3  

respectively. 

 

 

Figure 4.8.2: SEGL of �(�Ă) 

 

 

Figure 4.8.3: SEGL of  �(�ă) 

 

Clearly, all vertex labels are distinct. Hence, the above defined edge labeling  

function induces the vertex labeling function ÿ+: ý(�(�Ā)) → {0,1,2, & ,2Ă 2 1}.           

           Hence, f is a strong edge-graceful labeling 

          Thus, the total graph T(�Ā) is a strong edge-graceful graph for all ng 3. 
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Illustration:4.9 

 

      The SEGL of T(�8) is shown in the figure 4.9.1. 

 

 

 

Figure 4.9.1: SEGL of  �(�ć) 

 

Definition: 4.10 

 

        For Ă g 4, a cycle (of order p) with one chord is a simple graph obtained from a       

p-cycle by adding a chord. Let p-cycle be Ā1, Ā1, & , ĀýĀ1. Without loss of generality,  

we assume that the chord joins Ā1 with any one ĀĀ , where 3 f Ā f Ă 2 1.This graph is  

denoted by ÿý(Ā).  
For example ÿý(5) means a graph obtained from a p-cycle by adding a chord 

 between the vertices Ā1 and Ā5. In this graph, ă = Ă + 1. 

Theorem: 4.11 

      The graph ÿĀ(Ā), (Ā g 4) is a strong edge-graceful graph. 

Proof: 

Let {Āÿ: 1 f ÿ f Ā} and {þÿ, þ: 1 f ÿ f Ā} be the vertices and the edges of  ÿĀ(Ā) as shown in the figure 4.11.1. 
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Let þ = (Ā1, ĀĀ) be the chord. We note that |ý(ÿĀ(Ā))| = Ā and  |ā(ÿĀ(Ā))| = Ā+1. 

 

 

                      Figure 4.11.1 Ordinary labeling of ÿĀ(Ā) 

 

Case1: n  ÿ� ā�� �Ā� Ā b Ā2Āā , Ă f Ā f Ā 2 Ā 

We first label the edges of as follows: 

Define ÿ: ā(�(�Ā)) → {1,2, & , [3þ2 ]} by  

         ÿ(þÿ) = ÿ + 1                        1 f ÿ f Ā     
       ÿ(þ) = 1,                            
Then the induced vertex label are: ÿ+(Ā1) = 6    ÿ+(Āÿ) = 2ÿ + 3              2 f ÿ f Ā 2 3 ÿĀý ÿ b Ā    ÿ+(ĀĀ) = 2Ā + 4 ,                Ā b Ā 2 1, Ā b Ā 2 2 

             ÿ+(ĀĀ22) = { 0,2Ā 2 1,             Ā = Ā 2 2Ā b Ā 2 2     



45 

 

            ÿ+(ĀĀ21) = {1,2,                    Ā = Ā 2 1Ā b Ā 2 1     
ÿ+(ĀĀ) = Ā + 3    

Case2: n  ÿ� ā�� �Ā� Ā b Ā2Āā , (Ā > Ą)  

 ÿ(þÿ) = Ā 2 ÿ + 2                        1 f ÿ f Ā     
 ÿ(þ) = 1,                            
Then the induced vertex label are: ÿ+(Ā1) = 2    ÿ+(Āÿ) = 2Ā 2 2ÿ + 3        2 f ÿ f Ā 2 1 ÿĀý ÿ b Ā212     

ÿ+ (Ā �−12 ) = Ā + 5 ,                ÿ+(ĀĀ) = Ā + 3    
Case3: n  ÿ� ā�� �Ā� Ā b Ā2Āā , (Ā > Ą)  

 ÿ(þ1) = {Ā + 1,Ā + 3,             Ā b Ā2 + 1Ā = Ā2 + 1     
  ÿ(þÿ) = ÿ                                   2 f ÿ f Ā     
  ÿ(þ) = 1,                            
Then the induced vertex label are: 

          ÿ+(Ā1) = {Ā + 4,Ā + 6,             Ā b Ā2 + 1Ā = Ā2 + 1     
ÿ+(Āÿ) = 2ÿ + 1,            2 f ÿ f Ā 2 2 ÿĀý ÿ b Ā ÿĀý Ā b Ā2 + 1   

ÿ+(ĀĀ) = 2Ā + 2           2 f ÿ f Ā 2 1 ÿĀý Ā b Ā 2 1  

             ÿ+(ĀĀ21) = {2Ā 2 1,0,              
Ā b Ā 2 2Ā = Ā 2 1     

 ÿ+(þĀ) = {1,3,                       Ā b Ā2 + 1Ā = Ā2 + 1     
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          Clearly, all vertex labels are distinct. Hence, the above defined edge labeling  

function induces the vertex labeling function ÿ+: ý(ÿĀ(Ā)) → {0,1,2, & ,2Ă 2 1}.         

          Hence, f is a strong edge-graceful labeling             Thus,T (ÿĀ(j) ) is a strong edge-graceful graph for all ng 4. 
Illustration: 4.12 

          SEGL of ÿ7(5) is shown in the figure 4.12.1 

  

Figure 4.12.1: SEGL of ÿĆ(Ą) 

 

Definition: 4.13 

 

         Duplication of a vertex Āā of a graph G produces a new graph ýĀ(ă) by  

adding a new vertex Ā′ā in such a way that N(Āā) = N (Ā′ā). 

 

Theorem:4.14 

           V D (�Ā), (ng 5) is a strong edge-graceful graph. 

Proof: 

          Let {Ā′, Āÿ/1 f ÿ f Ā} and{þÿ, þ′Ā/1 f ÿ f Ā 2 1, 1 f Ā f 2 } be the     
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  vertices and the edges of  ýĀ(�Ā) as shown in the figure 4.14.1. 

 

 

Figure 4.14.1 Ordinary labeling of ýĀ(�Ā) 

 

We note that |ý(ýĀ(�Ā))| = Ā + 1 and |ā(ýĀ(�Ā))| = Ā + 1. 
Case1: n g Ą �Ā� Ā b ć, Ĉ  
We first label the edges of as follows: 

Define ÿ: ā(ýĀ(�Ā)) → {1,2, & , [3þ2 ]} by  

 ÿ(þÿ) = ÿ                              1 f ÿ f Ā 

 ÿ(þÿ) = ÿ + 2,                      3 f ÿ f Ā 2 2 

         ÿ(þĀ21) = {Ā + 1,Ā + 2,                Ā āýý Ā þĀþĀ        
       ÿ(þ′ÿ) = 5 2 ÿ,                        1 f ÿ f Ā 2 2 

Then the induced vertex label are: ÿ+(Āÿ) = 7 2 2ÿ             1 f ÿ f 2              ÿ+(Ā3) = 10 ÿ+(Āÿ) = 2ÿ + 3 ,                4 f ÿ f Ā 2 2 

             ÿ+(ĀĀ21) = {2Ā + 1,0,            Ā āýý Ā þĀþĀ 

           ÿ+(ĀĀ) = {Ā + 1,Ā + 2,               Ā āýý Ā þĀþĀ 
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                    Hence, the above defined edge labeling function induces the vertex labeling  

function   ÿ+: ý(�(�Ā)) → {0,1,2, & ,2Ă 2 1}.               

        Hence, f is a strong edge-graceful labeling 

        Thus, ýĀ(�Ā), (ng 5) is a strong edge-graceful graph. 

Illustration: 4.15 

       The SEGL of  ýĀ(�6) is shown in the figure 4.15.1 

 

Figure 4.15.1: SEGL of ýĀ(�ą) 
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                                                 1 . PRELIMINARIES 

Definition: 1.1 

    A graph G(V,E) consists of a finite non-empty set V=V(G) of p points (called vertices) 

together with a prescribed set E=E(G) of q unordered pair of distinct vertices of  V. Each 

 pair e= {ć, Ĉ} of vertices in E is a line (called edge) of G. 

    We write e=uv for an edge and say that u and v are adjacent vertices; vertex u and 

edge þ are incident with each other,as are v and e. 

    If two distinct edges þ1 and  þ2 are incident with a common vertex then they are  

adjacent edges. 

Definition: 1.2 

    A walk of a graph g is an alternating sequence of vertices and edges   

Ĉ0, þ1, Ĉ1, & . . ĈĀ21, þĀ , ĈĀ beginning and ending with vertices, in which each edge is 

 incident with two vertices immediately preceding and following it. This walk joins  

Ĉ0 and ĈĀ, and may also be denoted Ĉ0 Ĉ1 Ĉ2 & . ĈĀ  ;it is sometimes called a Ĉ0 2 ĈĀwalk. 

It is closed if Ĉ0 =ĈĀ and is open otherwise. It is trail if all the edges  are distinct, and a 

 path if all vertices and edges are distinct. 

    If the walk is closed, then it is a cycle provided its n vertices are distinct and n≥3. A  

path on n vertices is denoted by ĀĀ and a cycle on n vertices is denoted by �Ā. 
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The cycle �3  is called a triangle. 

Definition: 1.3 

     A vertex v in G is called an isolated vertex if deg v=0 and it is called an end vertex 

(or pendant vertex) if deg v=1. An edge incident to a pendent vertex is called a pendant 

 edge. 

Definition: 1.4 

     The complete graph �� has every pair of its p vertices adjacent. Thus �� has (�2) 

 edges and is regular of degree p – 1. The graph ��̅̅̅̅   is totally disconnected and regular of 

degree 0 . 

Definition: 1.5 

     A bigraph (or bipartite graph) G is a graph whose vertex set V can be partitioned 

into two subsets  �1 and �2 such that every edge of G joins �1 with  �2. 

      If � contains every edge joining �1 and �2, then � is a complete bigraph. If �1 and �2 

have m and n vertices, We write � = �ÿ,Ā = �(ÿ, Ā). 

Definitions: 1.6 

      The square �2 of a graph G has V(�2) = V(G) with u,v adjacent in �2 whenever ý(ć, Ĉ) ≤2 in �. 
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Definition: 1.7 

      The complete bipartite graph �1,Ā is called a star graph and it is denoted by ÿÿ . 
Definition: 1.8 

    The union of two graphs �1  and �2 is a graph �1 ∪ �2 with  

V(�1 U �2) = V(�1)U V(�2) and E(�1 U �2) =  E(�1)U E(�2). The distinct union of ÿ 

copies of a graph � is denoted by ÿ�. 
Definition: 1.9 

    The join of two graphs�1 and �2 is a graph �1 + �2with  V(�1 U �2)=V(�1)U V(�2) 

and E(�1  ∪ �2)= E(�1)∪ E(�2) ∪ {ćĈ: ć ∈ �(�1)�Āý �(�2)}. 
Definition: 1.10 

     The graph  �Ā +Ĉ1 Ĉ3 is obtained from the cycle �Ā : Ĉ1 Ĉ2 & . ĈĀ Ĉ1 by adding an edge  

 between the vertices Ĉ1 and  Ĉ3. 

Definition: 1.11 

      The Corona �1ʘ�2 of two graphs �1  and �2 is obtained by taking one copy of �1 

  (with p vertices) and p copies of  �2 and then joining the ith vertex in the ith copy of  �2. 
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Definition: 1.12 

     The corona of a graph  � on Ă vertices Ĉ1, Ĉ2, & , Ĉ� is the graph obtained from � by 

adding Ă new vertices ć1, ć2, & , ć� and the new edges ć�Ĉ� for 1 ≤ ÿ ≤ Ă, denoted 

by� ⊙ �1.. The graph ĀĀ ⊙ �1 is called a comb. 

Definition: 1.13 

      The 2-corona of G is the graph obtained from G by identifying the center vertex of 

 the star ÿ2 a each vertex of G, denoted by  G ʘ ÿ2. 

Definition: 1.14 

    The balloon of a graph �, ĀĀ(�) is the graph obtained from � by identifying an end 

vertex  of ĀĀ at a vertex of �. 
Definition: 1.15 

   The balloon of the triangular snake ĀĀ(�ÿ) is the graph obtained from �ÿ by 

identifying an end vertex of the basic path in ĀĀ at  vertex of �ÿ 

Definition: 1.16 

   The H-graph of a path ĀĀ is the graph obtained from two copies of ĀĀ  with vertices 

 Ĉ1 , Ĉ2, & . , Ĉ�and ć1 , ć2, & . , ć� by joining the vertices Ĉ�+12  and  ć�+12   if n is odd and 

the vertices  Ĉ�+12  and ć�2   if n is even. 
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Definition: 1.17 

    Let�(�, �) be a graph with Ă  vertices and ă edges. For every assignment ÿ: �(�) →{0,1,2, & , ă}, an induced edge labeling ÿ∗: �(�) → {1,2, & , ă}  is defined by 

        ÿ∗(ćĈ) = { �(ÿ)+�(Ā)2 ,   ÿÿ ÿ(ć) �Āý ÿ(Ĉ)  �Ąþ āÿ Ć/þ ą�ÿþ Ă�Ą� �(ÿ)+�(Ā)+12 ,   ÿĆ/þĄĉÿąþ         
For every edge ćĈ ∈ �(�). If ÿ∗(�) = {1,2, & , ă}, then we say tthat ÿ is a mean labeling  

Of �. If a graph � admits a mean labeling then � is called a mean graph. 

Example: 1.18 

    A mean labeling of the cube ā3 is given in the Figure 1.1 
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            2. SUPER MEAN LABELING OF PAH AND H-GRAPH                     

                                          RELATED GRAPHS 

Definition: 2.1 

        Let G be a graph and  : V(G) → {1,2,3, & . . ā + Ă} be an injection.For each edge 

e=uv, the induced edge labeling ÿ∗ is defined as follows: 

          ÿ∗(þ) = { �(ÿ)+�(Ā)2 ,   �ÿ ÿ(ÿ) + ÿ(Ā)  �� þĀþÿ �(ÿ)+�(Ā)+12 ,   �ÿ ÿ(ÿ) + ÿ(Ā)   �� Āýý  

Then f is called a super mean labeling if 

ÿ(V(G)) U{ÿ*(e) :e ∈ E(G)} = {1,2,3, & . . ā + Ă} 
A graph that admits a super mean labeling is called a super mean graph. In this chapter, 

 the super meanness of the path �� , comb  �� ʘ  �1, the H-graph, the corona of a H-graph 

2 corona of a H-graph are discussed. 

Example: 2.2       

The super mean labeling of the graph �52 is shown in Figure 2.1 
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Theorem: 2.3 

     The path �� is a super mean graph. 

Proof: 

           Let ÿ1, ÿ2, & . , ÿ� be the vertices of the path �� . 

Define  : V(��) → {1,2,3, & , ā + Ă} as follows: 

                       ÿ (ÿ�)  =  2i – 1                         1 f � f ÿ 

For the vertex labeling f , the induced edge labeling f *  is defined as follows: 

                      ÿ∗ (ÿ�ÿ�+1)   = 2i,                    1 f � f ÿ 2 1 

Clearly, f is a mean labeling. Hence , the path  �� is a super mean graph. 

For example, the super mean labeling of the path �4 is shown in Figure 2.2 
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                                                                 Figure 2.2 

Theorem: 2.4 

        If the path  �� is a super mean , then the comb �� ʘ  �1  is a super mean graph. 

Proof: 

        By theorem 2.2, there exists a super mean labeling ÿ for �� .  
Let  ÿ1, ÿ2, & . , ÿ� be the vertices of the ��. 

                     Let  V (�� ʘ  �1 )  =  V (�� ) U { ÿ1′ , ÿ2′ , & . ÿ�′  } and 

                             E (�� ʘ  �1 )  =  E  (�� ) U { ÿ�ÿ�′: 1 f � f ÿ } 

Define ɡ : V (�� ʘ  �1 ) →  {1,2,3, & , ā + Ă} as follows: 

                          Ā(ÿ�)    =   ÿ ( ÿ� ) + 2i,                1 f � f ÿ  

                          Ā( ÿ1′ )   =  ÿ ( ÿ1 ) 

                           Ā (ÿ1′  )  =   ÿ ( ÿ� ) + 2i – 3,          2 f � f ÿ 
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For the vertex labeling ɡ  the induced edge labeling ɡ *  is defined as follows: 

                          Ā∗ ( ÿ�ÿ�+1 )   =   ÿ * ( ÿ�ÿ�+1 ) + 2i+1,     1f � f ÿ 2 1 

                           Ā∗ ( ÿ�ÿ�′ )     =   ÿ ( ÿ� ) + 2i – 1,             1 f � f ÿ 

Then, ɡ  is a super mean labeling and hence  �� ʘ  �1  is a super mean graph. 

For example, the super mean labeling of  �5 ʘ  �1  for the path  �5  is shown in Figure 2.3 
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Theorem:2.5 

          The H-graph G, is a super mean graph. 

Proof: 

        Let  Ā1, Ā2, & . , Ā�  and  ÿ1, ÿ2, & , ÿ�  be the vertices of the H-graph G. 

Define  : V(G) → {1,2,3, & , ā + Ă} as follows: 

                       ÿ (Ā�)  =  2i – 1,                         1 f � f ÿ 

                       ÿ (ÿ�)  =  2n + 2i – 1,                 1 f � f ÿ 

For the vertex labeling  , the induced edge  labeling ÿ *  is defined as follows: 

                      ÿ∗ (Ā�Ā�+1)  = 2i,                       1 f � f ÿ 2 1 

                     ÿ∗ (Ā�Ā�+1)  = 2i,                       1 f � f ÿ 2 1 

                      ÿ∗ (Ā�+12 ÿ�+12 )  = 2n                   if n is odd                   

                       ÿ∗ (Ā�2+ 1ÿ�2)     = 2n                  if n is even 

Clearly, ÿ is a super mean labeling. Hence , the H-graph G is a super mean graph. 

For example, the super mean labeling of H-graph ÿ1  and  ÿ2  are shown in Figure 2.4 
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Theorem: 2.6 

         If a H – graph G  is a super mean graph, G ʘ  �1 is a super mean graph. 

Proof: 

       By theorem 2.4, there exists a super mean labeling ÿ for g. 

Let Ā1, Ā2, & . , Ā�  and  ÿ1, ÿ2, & , ÿ�  be the vertices of the G. 

Let  V (G ʘ  �1 )  =  V (ÿ) U {Ā1′ , Ā2′ , & . , Ā�′ } U { ÿ1′ , ÿ2′ , & . ÿ�′  } and 

       E (G ʘ  �1 )  =  E (G) U { Ā�Ā�′ , ÿ�ÿ�′: 1 f � f ÿ } 

Define ɡ : V (G ʘ  �1 ) →  {1,2,3, & , ā + Ă} as follows: 

Figure 2.4 
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                          Ā (Ā�)    =   ÿ ( Ā� ) + 2i,                1 f � f ÿ 

                          Ā(ÿ�)    =   ÿ (ÿ�) + 2n + 2i,         1 f � f ÿ 

                          Ā( Ā1′ )   =   ÿ ( Ā1 ) 

                          Ā(Ā�′ )  =   ÿ ( Ā� ) + 2i – 3,          2 f � f ÿ 

                         Ā( ÿ�′)   =   ÿ ( ÿ�) + 2n + 2i + 3   1 f � f ÿ  

For the vertex labeling ɡ, the induced edge labeling ɡ* is defined as follows: 

                            Ā∗( Ā�Ā�+1 )  =  ÿ∗( Ā�Ā�+1 ) + 2i +1,          1f � f ÿ 2 1 

                           Ā∗ ( ÿ�ÿ�+1 )  = ÿ∗( ÿ�ÿ�+1 ) + 2n + 2i + 1,1 f � f ÿ 21 

                           Ā∗(Ā�Ā�′)       =  ÿ∗ (Ā�) + 2i – 1,                  1 f � f ÿ 

                          Ā∗(ÿ�ÿ�′)       =  ÿ∗ (ÿ�) + 2n + 2i – 1,          1 f � f ÿ 

                           Ā∗ (Ā�+12 ÿ�+12 )  = 2 ÿ∗ (Ā�+12 ÿ�+12 )  +1          if n is odd  

                           Ā∗  (Ā�2+ 1ÿ�2)    = 2 ÿ∗ (Ā�2+ 1ÿ�2)   + 1        if n is even 

Then, Ā is a super mean labeling and hence  G ʘ  �1 is a super mean graph.                    



13 

 

For example, the super mean labeling of  ÿ1 ʘ  �1 and  ÿ2 ʘ  �1 for the H-graphs ÿ1 and  ÿ2 are shown in Figure 2.5      

  

                                                                                                         

 

ÿ1 

ÿ2 
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              ÿ ⊙ �1                                       Figure 2.5                  ÿ ⊙ �2 

Theorem: 2.7 

            If a H – graph G is a super mean graph, then  G ʘ  ÿ2 is a super mean graph. 

Proof: 

         By theorem 2.3, there exists a super mean labeling ÿ  for G. Let  Ā1, Ā2, & . , Ā�  and 

  ÿ1, ÿ2, & , ÿ�  be the vertices of the G. 

Let �(ÿ) together with Ā1′ , Ā2′ , & . , Ā�′ , Ā1′′ , Ā2′′ , & . , Ā�′′, ÿ1′ , ÿ2′ , & . , ÿ�′   and  ÿ1′′, ÿ2′′, & . , ÿ�′′  
 form the vertex set of  G ʘ  ÿ2  and the edge set is �(ÿ)  together with 
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 {Ā�Ā�′ , Ā�Ā�′′ , ÿ�ÿ�′′, ÿ�ÿ�′′ ∶ 1 f � f ÿ} 

Define  ɡ : V (G ʘ  �1 ) →  {1,2,3, & , ā + Ă} as follows: 

                          ɡ (Ā�)    =   ÿ ( Ā� ) + 4 2 2,                1 f � f ÿ 

                          ɡ (Ā�′)   =   ÿ (Ā�)  + 4i 2 4,                1 f � f ÿ 

                          ɡ( Ā�′′)   =   ÿ ( Ā� ) + 4i,                    1 f � f ÿ 

                          ɡ (ÿ�)   =   ÿ ( ÿ� ) + 4n + 4i – 2,      1f � f ÿ 

                          ɡ( ÿ�′)   =   ÿ ( ÿ�) + 4n + 4i – 4,          1 f � f ÿ  

                          ɡ( ÿ�′′)   =   ÿ ( ÿ� ) + 4n + 4i,            1 f � f ÿ 

For the vertex labeling Ā, the induced edge labeling Ā *  is defined as follows: 

                         ɡ * (Ā�+12 ÿ�+12 )   = 3 ÿ * (Ā�+12 ÿ�+12 )                if n is odd  

                          ɡ * (Ā�2+ 1ÿ�2)    = 3 ÿ *  (Ā�2+ 1ÿ�2)                 if n is even 

                          ɡ * ( Ā�Ā�+1 )      =  ÿ * ( Ā�Ā�+1 ) + 4i,            1f � f ÿ 2 1 

                          ɡ * (Ā�Ā�′)            =  ÿ (Ā�) + 4i 2 3,                 1 f � f ÿ 

                          ɡ * (Ā�Ā�′′)           =  ÿ  (Ā�) + 4i 2 1,                 1 f � f ÿ 

                          ɡ * ( ÿ�ÿ�+1 )       = ÿ * ( ÿ�ÿ�+1 ) + 4n + 4i,      1 f � f ÿ 21 

                          ɡ * (ÿ�ÿ�′)            =  ÿ (ÿ�) + 4n + 4i 2 3,          1 f � f ÿ 

                          ɡ * (ÿ�ÿ�′′)           =  ÿ (ÿ�) + 4n + 4i 2 1,          1 f � f ÿ 
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Then, Ā is a super mean labeling and hence G ʘ  ÿ2  is a super mean graph. For example, 

the super mean labeling of  ÿ1ʘ ÿ2 and  ÿ2ʘ ÿ2 for the Ā - graphs ÿ1  and  ÿ2 are  in   

Figure 2.6 

 

 

  

ÿ1 
ÿ2 
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                                  ÿ1 ⊙ ÿ2                                                                         ÿ1 ⊙ ÿ2           

                                                               Figure 2.6     

Definition: 2.8 

     A triangular snake Ā� obtained from a path with vertices  Ā1 , Ā2, & . , Ā�+1  by 

joining Ā� and Ā�+1 to a new vertex  ā� for 1 f � f ÿ, that is, every edge of a path is 

replaced by a triangle �3. 
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  Theorem:2.9 

              The triangular snake Ā� Super  Mean graph 

Proof: 

      Let  ÿ1, ÿ2, & . , ÿ� , ÿ�+1  be the vertices on the path of length n in Ā� and let Ā�, 1 f� f ÿ  be the vertices of  Ā� in which  Ā� is adjacent to ÿ�  and ÿ�+1. 

Define ÿ ∶ �(Ā�) → {1,2,3, & , ā + Ă} as follows: 

                     ÿ(ÿ�)  = 5i 2  4,          1 f � f ÿ + 1                        ÿ(Ā�)   = 5i 2  2,           1 f � f ÿ    

For the vertex labeling ÿ,the induced edge labeling ÿ ∗ is defined as follows: 

                    ÿ ∗ (ÿ �Ā�)      =  5i – 3,      1 f � f ÿ 

                    ÿ ∗ (ÿ �ÿ�+1)  =  5i – 1,      1 f � f ÿ 

                    ÿ ∗ (ÿ �+1Ā�)  =  5i,            1 f � f ÿ 

Clearly, ÿ is a super mean labeling. Hence Ā� is a super mean graph. For example, the 

super mean labeling of Ā3  is shown in figure2.7  

 Ā3 

                                                                     Figure 2.7 
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Theorem: 2.10 

          The graph  Ā�ʘ �1  is a super mean graph, for ÿ g 1. 

Proof: 

     Let ÿ1, ÿ2, & . , ÿ� , ÿ�+1  be the vertices on the path of length n in Ā� and let Ā�,  1 f � f ÿ  be the vertices of  Ā� in which  Ā� is adjacent to ÿ�  and ÿ�+1. Let Ā�′Ā� be the 

path attached at each Ā�,1 f � f ÿ and ÿ�′ÿ�be the path attached at each ÿ� , 1 f � f ÿ + 1 

Define ÿ: �(Ā�ʘ�1) → {12,3, & , ā + Ă} as follows: 

                          ÿ(ÿ�)  = 9i – 6,   1 f � f ÿ + 1 

                          ÿ(Ā�)  = 9i – 4,   1 f � f ÿ 

                           ÿ(Ā�′)  = 9i – 2,    1 f � f ÿ                             ÿ(ÿ�′)  = 9i – 8,    1 f � f ÿ + 1 

For  the vertex labeling ÿ, the induced edge labeling ÿ * is defined as follows: 

                          ÿ ∗ (ÿ �ÿ�+1)  =  9i 2 1,      1 f � f ÿ 

                          ÿ ∗ (ÿ �Ā�)      =  9i 2 5,      1 f � f ÿ 

                        ÿ ∗ (Ā �Ā�+1)     =  9i,             1 f � f ÿ 

                        ÿ *(Ā�Ā�′)          = 9i 23,        1 f � f ÿ 

                        ÿ *(ÿ�ÿ�′)          = 9i 27,        1 f � f ÿ + 1 

Thus, ÿ is a super mean labeling and hence  Ā�ʘ �1  is a super mean graph, for ÿ g 1. 

For example, the super mean labeling of  Ā5ʘ �1 is shown in Figure 2.8  
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 Ā5 ⊙ �1 

                                                                Figure 2.8 
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               3. SUPER MEAN LABELING OF STAR AND CYCLE  

                    RELATED GRAPHS 

Definition: 3.1 

         Let � be a graph and ÿ ∶ �(�) → {1,2,3, & , ý + þ} be an injection. 

For each edge  þ = ÿĀ, the induced edge labeling ÿ * is defined as follows: 

        ÿ ∗  (þ)  =  { �(ÿ)+�(Ā)2�(ÿ)+�(Ā)+12          ÿÿ ÿ(ÿ) + ÿ (Ā)   ÿ� þĀþĀ 

Then f is called a super meanlabelingif ÿ(V(G)) U{ÿ*(e):e∈ E(G)} = {1,2,3, & . . ý + þ}. 

A graph that admits a super mean labeling is called a super mean graph. In chapter, the  

Super meanness of the star �1,Ā, bistar ýÿ,Ā for ÿ = Ā or ÿ = Ā + 1, þ2Ā for Ā g 3 and 

 Ā b 4, þ2Ā+1  for Ā g 1, union of super mean graphs, ÿþĀ- snake for ÿ g 1,Ā g 3 and 

 Ā b 4, dragon �Ā(þÿ) for ÿ g 3, þĀ + Ā1Ā3  for Ā g 5,and þÿ × �Ā for ÿ = 3,5 

 are discussed. 

Theorem: 3.2 

       The star �1,Ā  is a super mean graph, Ā f 3 

Proof: 

       The super mean labeling of �1,1 , �1,2 , and �1,3  are shown in figure 3.2 
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Remark: 3.3 

       �1,Ā is not a super mean graph for Ā > 3 and hence �1,Ā is a super mean graph 

except for Ā > 3. 
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Definition: 3.4 

      The bistar ýÿ,Ā is the graph obtained from �2  by identifying the center vertices  

�1,ÿ  and  �1,Ā  at the end vertices of �2 respectively. ýÿ,ÿ is often denoted by ý(ÿ). 
Theorem: 3.5 

     The bistar ýÿ,Ā is a super mean graph for ÿ = Ā  or ÿ = Ā + 1. 
Proof: 

Case (i): ÿ = Ā 

        Let �(ýÿ,Ā) = {ÿ, Ā, ÿÿ , Āÿ: 1 f ÿ f Ā} �Āý  
             �(ýÿ,Ā) = {ÿ, Ā, ÿÿÿ, ĀĀÿ: 1 f ÿ f Ā}. 

Define  ÿ: �(ýÿ,Ā) → {1,2,3, , . . , ý + þ}  as follows: 

                      ÿ(ÿ)  = 1 

                        ÿ(ÿÿ) = 4i – 1,           1 f ÿ f Ā 

                        ÿ(Ā) = 4n + 3 

                     ÿ(Āÿ) = 4i + 1,          1 f ÿ f Ā 

For the vertex labeling ÿ, the induced edge labeling ÿ* is defined as follows: 

                     ÿ∗(ÿĀ)  =  2n + 2, 

                     ÿ∗(ÿÿÿ)  = 2i,                       1 f ÿ f Ā 
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                     ÿ∗(ĀĀÿ)  = 2(Ā + ÿ) +  2,   1 f ÿ f Ā 

Clearly, ÿ is a super mean labeling. 

Case (ii): ÿ = Ā + 1 

Let   �(ýĀ+1,Ā)  =  {ÿ, Ā, ÿÿ, ĀĀ: 1 f ÿ f Ā + 1,1 f Ā f Ā}  and  

        �(ýĀ+1,Ā)  ={ÿĀ, ÿÿÿ, ĀĀĀ: 1 f ÿ f Ā + 1,1 f Ā f Ā}. 

Define  ÿ: �(ýĀ+1,Ā) → {1,2,3, , . . , ý + þ}  as follows: 

                      ÿ(ÿ)  = 3 

                        ÿ(ÿÿ) = 4i – 3,           1 f ÿ f Ā 

                        ÿ(Ā) = 4n + 5 

                     ÿ(Āÿ) = 4j + 3,          1 f ÿ f Ā 

For the vertex labeling ÿ, the induced edge labeling ÿ* is defined as follows: 

                     ÿ∗(ÿĀ)  =  2n + 4, 

                     ÿ∗(ÿÿÿ)  = 2i,                       1 f ÿ f Ā 

                     ÿ∗(ĀĀÿ)  = 2(Ā + Ā) +  4,   1 f ÿ f Ā 

Clearly, ÿ is a super mean labeling. 

Hence, ýÿ,Ā  is a super mean graph for ÿ = Ā  or ÿ = Ā + 1. 

For example, the super mean labeling of ý4,4  and ý5,4 are shown in Figure 3.3 
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ý4,4 

 

ý4,5      Figure3.3 
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Theorem: 3.6 

         Cycle  þ2Ā is a super mean graph for Ā g 3. 
Proof: 

         Let þ2Ā  be a cycle with vertices ÿ1, ÿ2, & , ÿ2Ā and edges þ1, þ2, & , þ2Ā . 
Define ÿ: �(þ2Ā) → {1,2,3, & , ý + þ} as follows: 

                      ÿ(ÿ1)        = 3 

                        ÿ(ÿÿ)          = 4i – 5,                  2 f ÿ f Ā         
                        ÿ(ÿĀ+Ā)      = 4n –  3Ā + 3,       1 f Ā f 2 

                     ÿ(ÿĀ+Ā+2)   = 4n 2 4j 2 2,        1 f ÿ f Ā 2 2 

For  the vertex labeling ÿ, the induced edge labeling ÿ ∗ is defined as follows: 

                    ÿ∗(þ1) = 2 

                    ÿ∗(þÿ) = 4i2 3,                  2 f ÿ f Ā 2 1 

                    ÿ∗(þĀ) = 4n2 2,  

                    ÿ ∗ (þÿ) = 4i2 3,  

                       ÿ∗(þĀ+1) = 4n2 1,  

                    ÿ∗(þĀ+Ā+1) = 4n2 4j,       1 f Ā f Ā + 1  



27 

 

Clearly, ÿ is a super mean labeling and hence þ2Ā  is a super mean graph. For example, 

the super mean labeling ofþ10  is shown in Figure 3.4 

 

Figure 3.4 

Theorem: 3.7 

      Cycle þ2Ā+1  is a super mean graph for Ā g 1. 

Proof: 

      Let  þ2Ā+1  be a cycle with vertices ÿ1, ÿ2, & . , ÿ2Ā+1  and edges þ1, þ2, & . , þ2Ā+1. 

Define ÿ: �(þ2Ā+1) → {1,2,3, & , ý + þ} as follows: 

                      ÿ(ÿ1)        = 1 

                        ÿ(ÿÿ)          = 4i – 5,                  2 f ÿ f Ā + 1        
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                        ÿ(ÿĀ+Ā+2)      = 4n –  4Ā + 2,       0 f Ā f Ā 2 1 

For  the vertex labeling ÿ, the induced edge labeling ÿ ∗ is defined as follows: 

                    ÿ∗ (þ1) = 2 

                    ÿ∗(þÿ) = 4i2 3,                  2 f ÿ f Ā + 1 

                     ÿ∗(þĀ+Ā+2) = 4n2 4j,      0 f Ā f Ā 2 1  

Clearly, ÿ is a super mean labeling and hence  þ2Ā+1  is a super mean graph. 

For example, the super mean labeling of þ9  is shown in Figure 3.5 

 

                                                                 Figure 3.5 
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Remark: 3.8 

     þ4  is not a super mean graph and hence the cycle þĀ  is a super mean graph for Ā g 3 

 and Ā b 4. 

Theorem: 3.9 

           If  �1, �2, �3, & . , �ÿ  are super mean graphs, then �1 ∪ �2 ∪ �3 ∪ & ∪ �ÿ is a 

super mean graph. 

Proof: 

      If  �1 = (ý1, þ1), �2 = (ý2, þ2), �3 = (ý3, þ3), & . , �ÿ = (ýÿ , þÿ)  are any ÿ super 

mean graphs with super mean labeling ÿ1, ÿ2, ÿ3, & . . , ÿÿ  respectively, then �1 ∪ �2 ∪�3 ∪ & ∪ �ÿ has ý1 + ý2 + ⋯ + ýÿ vertices and  þ1 + þ2 + ⋯ + þÿ  edges. 

       Let ÿ1ÿ(1 f ÿ f ý1), ÿ2ÿ(1 f ÿ f ý2), & . . , ÿÿÿ(1 f ÿ f ýÿ)  and  

þ1ÿ(1 f ÿ f þ1), þ2ÿ(1 f ÿ f þ2), & . . , þÿÿ(1 f ÿ f þÿ)  be the vertices and edges of the 

 graphs of the graphs  �1, �2, �3, & . , �ÿ  respectively. 

DefineĀ: �[�1 ∪ �2 ∪ �3 ∪ & ∪ �ÿ] → {1,2, & , ý1 + ý2+. . . +ýÿ + þ1 + þ2 + ⋯ + þÿ} 

 as follows: 

 Ā(ÿ1ÿ) = ÿ(ÿ1ÿ) 

 Ā(ÿ2ÿ) = ý1 + þ1 + ÿ(ÿ2ÿ) 

Ā(ÿ3ÿ) = ý1 + ý2 + þ1 + þ2 + ÿ3(ÿ3ÿ) 
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Ā(ÿ4ÿ) = ý1 + ý2 + ý3 + þ1 + þ2 + þ3 + ÿ4(ÿ4ÿ) 

 & & & & & & & & & & 

 & & & & & & & & & & 

Ā(ÿÿÿ) = ý1 + ý2 + ý3 + ⋯ + ýÿ21 + þ1 + þ2 + þ3 + ⋯ + þÿ21 + ÿÿ(ÿÿÿ) 

 Ā ∗ (þ1ÿ) = ÿ1 ∗ (þ1ÿ) 

Ā∗(þ2ÿ) = ý1 + þ1 + ÿ2 ∗ (þ2ÿ)  
Ā∗(þ3ÿ) = ý1 + ý2 + þ1 + þ2 + ÿ3 ∗ (þ3ÿ) 

Ā∗(þ4ÿ) = ý1 + ý2 + ý3 + þ1 + þ2 + þ3 + ÿ4 ∗ (þ4ÿ) 

 & & & & & & & &.  
 & & & & & & & &.  
Ā∗(þÿÿ) = ý1 + ý2 + ý3 + ⋯ + ýÿ21 + þ1 + þ2 + þ3 + ⋯ + þÿ21 + ÿÿ ∗ (þÿÿ) 

Then Ā is a super mean labeling. 

Hence, �1 ∪ �2 ∪ �3 ∪ & ∪ �ÿ is a super mean graph. 

For example, the super mean labeling of �1, �2, �3, �4 and �1 ∪ �2 ∪ �3 ∪ �4 

 are shown in Figure 3.6 
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Remark: 3.10 

    If � is a super mean graph, then ÿ� is also super mean graph, for all ÿ g 1. 
Definition: 3.11 

       A cycle snake ÿþĀ is the graph obtained from m copies of þĀ  by identifying the   

vertex  Ā(ā+2)Ā  in the jth copy at a vertex Ā1Ā+1  in the (j+1)th copy if Ā = 2ā + 1 and 

identifying  the vertex Ā(ā+1)Ā  in jth  copy at a vertex Ā1Ā+1 in the (j+1)th copy if Ā = 2ā. 
Theorem: 3.12 

     The graph ÿþĀ – snake, ÿ g 1, Ā g 3 and Ā b 4 has a super mean labeling. 

Proof: 

    We prove this result by induction on ÿ. 

Let  Ā1Ā , Ā2Ā , & , ĀĀĀ  be the vertices and þ1Ā, þ2Ā , & , þĀĀ be the edges of ÿþĀ 2 snake for 1 f Ā f ÿ. 
Let ÿ be a super mean labeling nof the cycle þĀ. 

When  ÿ = 1, by remark 3.4, þĀ is a super mean graph Ā g 3 and Ā b 4. 

Hence the result is true when  ÿ = 1. 

Let ÿ = 2 

The 2þĀ- snake is the obtained from 2 copies of þĀ by identifying the vertex Ā(ā+2)1 
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 in the first copy of þĀ at a vertex Ā12 in the second copy of þĀ, when Ā = 2ā + 1  

identifying the vertex Ā(ā+1)1 in the first copy of þĀ at a vertex Ā12 in the second copy of þĀ , when Ā = 2ā. 
Define a super mean labeling Ā of 2þĀ 2snake as follows: 

For 1 f ÿ f Ā, 
        Ā(Āÿ1) = ÿ(Āÿ1) 

        Ā(Āÿ2) = ÿ(Āÿ1) + 2Ā 2 1 

       Ā∗(þÿ1) = ÿ∗(þÿ1) 

       Ā∗(þÿ2) = ÿ∗(þÿ1) + 2Ā 2 1 

Thus, 2þĀ 2 snake is a super mean graph. 

Assume that ÿþĀ 2 snake is a super mean graph for any ÿ g 1.  To complete the 

induction process, it is enough to prove that (ÿ + 1)þĀ- snake is a super mean graph. 

Define a vertex labeling Ā of (ÿ + 1)þĀ- snake  as follows: 

       Ā (ĀÿĀ)     = ÿ(Āÿ1) + (Ā 2 1)(2Ā 2 1),   1 f ÿ f Ā, 2 f Ā f ÿ 

       Ā(Āÿ�+1) = ÿ(Āÿ1) + ÿ(2Ā 2 1),           1 f ÿ f Ā. 
For this vertex labeling Ā, the induced edge labeling Ā∗ is defined as follows: 

         Ā∗ (þÿĀ)  =  ÿ∗(þÿ1) + (Ā 2 1)(2Ā 2 1),   1 f ÿ f Ā, 2 f Ā f ÿ 
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         Ā∗(þÿ�+1) = ÿ∗(þÿ1) + ÿ(2Ā 2 1),           1 f ÿ f Ā. 
Then, Ā is a super mean labeling of (ÿ + 1)þĀ-snake and hence (ÿ + 1)þĀ- snake is a 

super mean graph. 

Hence,ÿþĀ – snake is a super mean graph for ÿ g 1, Ā g 3  and Ā b 4. 
For example, the super mean labeling of 4þ6 - snake and, 4þ5 - snake are shown in 

Figure3.7

 

4þ6- snake 

4þ5- snake                 Figure 3.7 
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Theorem: 3.13 

       If  � is a super mean graph, then �Ā(�)  is also a super mean graph. 

Proof: 

    Let  ÿ be a super mean labeling of �. Le  Ā1, Ā2, & , Ā�  be the vertices and þ1, þ2, & , þ� 

 be the edges  of �  and let ÿ1, ÿ2, & , ÿ�  and �1, �2 , & , �Ā21 be the vertices and edges of �Ā  respectively. 

Define Ā on �Ā(�)  as follows: 

            Ā(Āÿ) = ÿ(Āÿ)                             1 f ÿ f ý 

            Ā(ÿĀ) = ý + þ + 2Ā 2 2,             1 f Ā f Ā. 
For the vertex labeling Ā, the induced edge labeling Ā∗ is defined as follows: 

               Ā∗(þÿ) = ÿ∗(þÿ),                          1 f ÿ f þ 

              Ā∗(�Ā) = ý + þ + 2Ā 2 1,           1 f Ā f Ā 2 1. 
Clearly, Ā is a super mean labeling of �Ā(�).Hence �Ā(�) is  a super mean graph. 

Definition: 3.14 

     The dragon is a graph formed by joining the end vertex of a path (�Ā)  to a vertex of 

 the cycle  (þÿ) and is denoted by �Ā(þÿ). 
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Corollary: 3.15 

        Dragon �Ā(þÿ) is a super mean graph for ÿ g 3 and ÿ b 4. 
Proof: 

       Since þÿ is a super mean graph for ÿ g 3 and ÿ b 4. 
 By theorem 3.11, �Ā(þÿ)  for ÿ g 3 and ÿ = 4  is also a super mean graph. 

For example, the super mean labeling of �5(þ6) is shown in Figure 3.9. 

          

 

                                                           Figure 3.8 

Remark : 3.16 

     The converse of the theorem 3.11 need not true. 

For example, consider the graph þ4. �Ā(þ4) for Ā g 3  is a super mean graph  
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butþ4 is not a super mean graph. 

A super mean labeling of the graph �4(þ4) is shown in Figure 3.9. 

  

  

 

                                                           Figure 3.9 
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4. SUPER MEAN NUMBER OF GRAPHS 

Definition: 4.1 

       Let Ā: �(�) → {1,2, & , Ā}  be a function such that the label of the edge þÿ is 

 
�(ÿ)+�(Ā)2   or  

�(ÿ)+�(Ā)+12   according as Ā(þ) + Ā(ÿ)  is even or odd and 

Ā(�(�)) , {Ā∗(ÿ): ∈ �(�)} ⊆ {1,2,3, & , Ā}.  If Ā is the smallest positive integer 

Satisfying all the above conditions  that all the vertex and edge labels are  distinct and  

  there is  no common vertex and edge labels, then Ā  is called the Super mean number of  

a graph �  and it is denoted  by �ÿ(�). 
For example,�ÿ(�1,4) = 10  is shown in Figure 4.1 

 

                                Figure   4.1 

It is observed that �ÿ(�) g ý + þ,  where ý is the order and þ is the size of the graph �. 
Clearly, the equality holds for all super mean graphs.Super Mean number of  some 

standard graphs. 
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Theorem: 4.2 

     �ÿ(�1,Ā) = 2Ā + 2  for Ā = 4,5,6. 
Proof: 

       The vertex labeling and the corresponding induced edge labeling of �1,4, �1,5, �1,6 

are given in Figure  4.2 
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                                                                     �1,6 

                                                               Figure 4.2 

From the Figure 4.2, �ÿ(�1,4) = 10, �ÿ(�1,5) = 12 and �ÿ(�1,6) = 14. 
Thus we concluded   �ÿ(�1,Ā) = 2Ā + 2  for Ā = 4,5,6. 
Hence the result  follows: 

Theorem: 4.3 

     �ÿ(�1,Ā) f 4Ā 2 10, Ā g 7. 
Proof: 

        Let   �(�1,Ā) = {ÿ, ÿ1, ÿ2, & , ÿĀ} and 

                �(�1,Ā) = {ÿÿÿ: 1 f ÿ f Ā} 

Define Ā  on �(�1,Ā)  as follows: 

 Ā(ÿ) = 5, 
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 Ā(ÿÿ) = ÿ,                             1 f ÿ f 2 

  Ā(ÿ3) = 7, 
 Ā(ÿÿ) = 2ÿ + 3,                   4 f ÿ f 5 

 Ā(ÿÿ) = 15 + 4(ÿ 2 6),       6 f ÿ f Ā 2 1 

 Ā(ÿĀ) = 4Ā 2 10. 
Clearly, the vertex labels and edge labels are distinct and no vertex and edge labels are  

equal. 

Hence, �ÿ(�1.Ā) f 4Ā 2 10  for Ā g 7. 
Remark: 4.4 

        The star �1,Ā   is a super mean graph for Ā f 3, by remark 3.1 

Hence, �ÿ(�1,Ā) = 2Ā + 1  for Ā f 3. 
Theorem: 4.5 

        �ÿ(ý�1,Ā) f (2Ā + 1)ý + 1  for Ā = 5,6  and ý > 1. 
Proof : 

    Let  ÿ0, ÿÿÿ , 1 f Ā f ý, 1 f ÿ f Ā be the vertices and  ÿ0ÿÿÿÿ , 1 f Ā f ý, 1 f ÿ f Ā  be  

the edges of ý�1,Ā. 

Define Ā on �(ý�1.Ā), Ā = 5,6  as follows: 
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When ý = 1 an Ā = 5.  
Define Ā(ÿ01) = 5, 
            Ā(ÿÿ1) = ÿ,    1 f ÿ f 2. 

            Ā(ÿÿ1) = 7 + 3(ÿ 2 3),   3 f ÿ f 4. 
           Ā(ÿ51) = 12. 
When ý = 1 and Ā = 6 

           Ā(ÿ01) = 5, 
           Ā(ÿÿ1) = ÿ, 1 f ÿ f 2, 
           Ā(ÿ31) = 7, 
           Ā(ÿ41) = 11, 
           Ā(ÿ51) = 12, 
           Ā(ÿ61) = 14. 
For ý > 1,  label the vertices of  ý�1,5  and ý�1,6 as follows: 

           Ā (ÿ0ÿ) = Ā(ÿ01) + (2Ā + 1)(Ā 2 1),   2 f Ā f ý, 
           Ā(ÿ12) = Ā(ÿ11) + 2Ā,    
          Ā (ÿ1ÿ) = Ā(ÿ12) + (2Ā + 1)(Ā 2 2),   3 f Ā f ý, and   
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          Ā (ÿÿÿ) = Ā(ÿÿ1) + (2Ā + 1)(Ā 2 1),   2 f Ā f ý, 2 f ÿ f Ā. 
Clearly, the vertex  labels are distinct. Also the vertex labeling Ā induces distinct edge  

labels and Ā(�(�)) ⊆ {1,2,3 ⊆ (2Ā + 1)ý + 1} 2 Ā(�(�)). 
Hence �ÿ(ý�1,Ā) f (2Ā + 1)ý + 1. 
According to theorem 4.3, in the following Figure 4.3, the labeling of 5�1,5  shows that  

 �ÿ(�1,5) f 56. 

 

5�1,5 

                                                               Figure 4.3 
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Theorem: 4.6 

       When ý is an odd integer.  �ÿ(ý�1,Ā) f ý(2Ā + 2) + 3 for Ā > 6. 
Proof: 

    Let �(ý�1,Ā) = {ÿ0ÿ , ÿÿÿ: 1 f ÿ f Ā, 1 f Ā f ý} and �(ý�1,Ā) = {ÿ0ÿ , ÿÿÿ: 1 f ÿ f Ā,              1 f Ā f ý } 

Let ý = 2ā + 1  for some ā ∈ �+. 
Define Ā on �(ý�1,Ā) as follows: 

For 1 f Ā f 2ā, 
            Ā (ÿ02ÿ+1) = (4Ā + 4)Ā + 1,,   0 f Ā f ā 2 1. 
           Ā (ÿ02ÿ) = (4Ā + 3)Ā + Ā 2 1,   1 f Ā f ā. 
          Ā (ÿÿ2ÿ+1) = (4Ā + 4)Ā + 4ÿ 2 1,   1 f Ā f ā 2 1,1 f ÿ f Ā  and 

          Ā (ÿÿ2ÿ) = (4Ā + 4)(Ā 2 1) + 4ÿ + 1,   1 f Ā f ā, 1 f ÿ f Ā. 
When Ā = 2ā + 1, 
         (ÿ02Ā+1) = 4 + (2Ā + 2)2ā, 
         (ÿÿ2Ā+1) = ÿ + (2Ā + 2)2ā 2 1,            1 f ÿ f 2, 
          (ÿ32Ā+1) = 4 + (2Ā + 2)2ā, 
          (ÿÿ2Ā+1) = 2ÿ + (2Ā + 2)2ā + 2,           4 f ÿ f 5, 
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         (ÿÿ2Ā+1) = 4ÿ + (2Ā + 2)2ā 2 10,     6 f ÿ f Ā 2 1  and  

         (ÿĀ2Ā+1) = (2Ā + 2)2ā + 4Ā 2 11. 
Clearly, the vertex labels and the induced edge labels are distinct and further  

Ā(�(�)) + Ā(�(�)) = ∅.   �ÿ(ý�1,Ā) f ý(2Ā + 2) + 3 for Ā > 6 and ý is an odd 

integer. 

Thoerem: 4.7 

    +�ÿ , �1,Ā,  is a super mean graph for Ā f 4  and ÿ g 3. 
Proof: 

    Let �(+�ÿ , �1,Ā,) = {þ1, þ2, & & , þÿ , ÿ1, ÿ2, & & , ÿĀ , ÿ = þ1}  and  

          �(+�ÿ , �1,Ā,) = {þ1þ2, þ2þ3, & & , þÿþ1, þ1ÿÿ: 1 f ÿ f Ā}. 
For ÿ = 4,  the super mean labeling of the graphs +�4, �1,1,, +�4, �1,2,, +�4, �1,3,, and  

 +�4, �1,4,  are shown in Figure 4.4 
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                      +�ÿ , �1,3,                                                       +�ÿ , �1,4, 
                                                           Figure 4.4 

Case ( i ) :  Ā = 1,2 

 Define Ā  on � ++�ÿ , �1,Ā,, , Ā = 1,22, ÿ g 3  and ÿ b 4 as follows: 

Subcase  ( i )   When ÿ  is odd. 

Let ÿ = 2ā + 1, ā ∈ �+. 
            Ā(ÿÿ) = ÿ,                                    1 f ÿ f Ā    

           Ā(þ1) = 2Ā + 1,    
           Ā(þĀ) = 2Ā + 4Ā 2 5,                   2 f Ā f ā + 1 

          Ā(þā+1+Ā) = 2Ā + 4ā 2 4Ā + 6,   1 f Ā f ā. 
Subcase ( ii )   When ÿ is even. 

Let ÿ = 2ā, ā ∈ �+. 
            Ā(ÿÿ) = ÿ,                                    1 f ÿ f Ā    
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           Ā(þ1) = 2Ā + 1,    
           Ā(þĀ) = 2Ā + 4Ā 2 5,                   2 f Ā f ā. 
           Ā(þā+Ā) = 2Ā + 4Ā 2 3(Ā 2         1 f Ā f 2. 
          Ā(þā+2+Ā) = 2Ā + 4ā 2 4Ā 2 2,   1 f Ā f ā 2 2. 
Clearly,Ā  induces distinct edge labels and it can be verified that Ā induces a super mean 

Labeling and hence +�ÿ , �1,Ā,.  Ā = 1,2, ÿ g 3 and ÿ b 4 is a super mean graph. 

Case ( ii )  Ā = 3,4 

Define Ā  on �(+�ÿ , �1,Ā,), Ā = 3,4, ÿ g 3  and ÿ b 4  as follows; 

Label the vertices of �1,Ā , Ā = 3,4 as 

Ā(ÿÿ) = ÿ,       1 f ÿ f 2, 
Ā(ÿ3) = 7, and       

Ā(ÿ4) = 11  in the case of Ā = 4. 
Label the vertices of �ÿ  as follows: 

Subcase ( i )   When ÿ  is odd 

Let ÿ = 2ā + 1, ā ∈ �+. 
            Ā(þ1) = 5,                                       
           Ā(þĀ) = 2Ā + 4Ā 2 1,                        2 f Ā f ā. 
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           Ā(þā+Ā) = 2Ā + 4ā 2 4Ā + 6,           1 f Ā f ā 

          Ā(þ2ā+1) = 2Ā + 4.    
Subcase ( ii )   When ÿ is even. 

Let ÿ = 2ā  for some ā ∈ �+ 

            Ā(þ1) = 5,                                      
           Ā(þĀ) = 2Ā + 4ÿ 2 1,                             2 f Ā f ā 2 1 

           Ā(þā21+Ā) = 2Ā + 4ā 2 3(Ā 2 1),        1f Ā f 2. 
           Ā(þā+1+Ā) = 2Ā + 4ā 2 4Ā 2 2,            1 f Ā f ā 2 2  and 

          Ā(þ2ā) = 2Ā + 4.                                    1 f Ā f ā 2 2. 
Clearly,Ā induces distinct edge labels and it is easy to check that Ā generates a upper 

mean labeling and hence +�ÿ , �1,Ā,, Ā = 3,4, ÿ g 3 and ÿ b 4 is a super mean graph. 

Thus,+�ÿ , �1,Ā, is super mean graph for Ā f 4  and ÿ g 3.  
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Example: 4.8 
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                                                                         CHAPTER 1     

                                                                    PRELIMINARIES 

Definition: 1.1 

A graph G contains of a pair (ý(ÿ), ÿ(ÿ)) where V (G) is non empty finite set 

whose elements are called points or vertices and X (G) is called a set of unordered pairs 

of distinct elements of V(G).The elements of X(G) are called lines or edges of the graph. 

Definition: 1.2  

If the vertices of the graph are assigned values subject to certain conditions is 

known as labeling. 

Definition: 1.3 

A bijection of a mapping that is both one-to-one and onto. A function which 

relates each member of a set S to a separate and distinct member of another set T, where 

each member in T also has a corresponding member in S. 

Definition: 1.4 

A subdivision of a graph G is a graph resulting from the subdivision of edges in 

G. The subdivision of some edge e with end points {u,v} yields a graph containing one 

new vertex w, and with an edge set replacing e by two new edges, {u,w} and {w,v}. 

Definition: 1.5 

A vertex is a pendant if and only if it has a degree one. Deg (v).when (u, v) is 

an edge of the graph G with directed edges, u is said to be adjacent v and v is said to 

be adjacent from u.  
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Definition: 1.6 

An edge of a graph is said to be pendant if one of its vertices is a pendant 

vertex. 

Definition: 1.7  

An edge induced subgraph is a subset of the edges of a graph, together with 

any vertices that are their end points. 

Definition: 1.8 

The fixed number of a graph G is the minimum k, such that every k-set of 

vertices of G is a fixing set of G.A graph G is called a k-fixed graph if their fixing 

numbers are both k. 

Definition: 1.9 

        The joint of two vertex disjoint graphs ÿ1andÿ2, denoted by ÿ1 + ÿ2 or  ÿ1ýÿ2, 

is a graph such that 

                          1.ý(ÿ) = ý(ÿ1) , ý(ÿ2) 

                         2. E (G) =ý(ÿ1) , ý(ÿ2) , {ċČ: ċ ∈ ý(ÿ1), Č ∈ ý(ÿ2)} 

Definition: 1.10 

Bistar is the graph obtained by joining the apex vertices of two copies of star  

 �1,Ā 
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Definition: 1.11 

Let ÿ = (ý(ÿ), ý(ÿ)) be a graph. A mapping Ā: ý(ÿ) → {0,1} is called Binary 

vertex labeling of G and f (v) is called the label of the vertex v of G underf. For an edge ÿ = ċČ,  the induced edge labeling Ā∗(ÿ) = |Ā(ċ) 2 Ā(Č)|.  
Definition: 1.12 

 A binary vertex labeling of a graph G is called a Cordial labeling if |Č�(0) 2 Č�(1)| f 1and |ÿ�(0) 2 ÿ�(1)| f 1. A graph G is cordial if it admits cordial 

labeling. 

Definition: 1.13  

 A graph is said to be connected if there is a path between every pair of vertex to 

any other vertex, there should be some path to traverse. That is called the connectivity 

of graph. 

Definition: 1.14 

 A graph is disconnected if it at least two vertices of the graph are not connected 

by a path. If a graph G is disconnected, then every maximal connected Subgraph of G 

is called a connected component of the graph G.  

    Definition: 1.15  

 A graph that contains no cycles is called an acyclic graph. A connected acyclic 

graph is called tree. 
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Definition: 1.16   

 An apex graph is graph possessing at least one vertex whose removal results in 

a planar graph. 

Definition: 1.17  

 A graph is called planar if it can be drawn on a plane without intersecting edges. 

Definition: 1.18 

            A subtree of tree which is a child of node. The name emphasizes that everything 

which is a descendant of a tree node is tree, and is a subset of the larger tree. 
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                                                                                  CHAPTER 2 

                                                              PRIME CORDIAL LABELING FOR   

                                      CYCLE RELATED GRAPHS 

Definition: 2.1 

 A prime cordial labeling of a graph G with vertex set V (G) is a bijection 

Ā: ý(ÿ) → {1,2,3, & . , Ć} defined by        Ā(ÿ = ċČ) = 1;        if gcd (Ā(ċ), Ā(Č)) 

                                                                            Ā(ÿ = ċČ)  = 0;        otherwise 

and |ÿ�(0) 2 ÿ�(1)| f 1. A graph which admits prime cordial labeling is called a  

prime cordial graph. 

Example: 2.2 

                                         

                                                     Figure 2.1: Cycle þ6 

Definition: 2.3 

 Duplication of a vertex Čāby a new edge ÿ = Č′āČ"ā in a graph G produces a 

new graph ÿ′ Such that þ(Č′ā) + þ(Č"ā) = Čā. 
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                               Definition: 2.4 

 Duplication of an edge ÿ = ċČ by a new vertex w in a graph G produces a new 

graphÿ′ Such that þ(č) = {ċ, Č}. 
Definition: 2.5 

 Let graphs ÿ1, ÿ2, & . . , ÿĀ, Ą g 2 be all copies of a fixed graph G. Adding an 

edge between ÿÿ to ÿÿ+1 for i=1, 2,…, n21 is called the path union of G.  

Definition: 2.6 

 A Friendship graph þĀ is a one point union of n copies of cycle þ3. 

 Theorem: 2.7 

 The graph obtained by duplicating each edge by a vertex in cycle þĀadmits 

prime cordial labeling except for Ą = 4 

Proof:  

 If þĀ′
be the graph obtained by duplicating an each edge by a vertex in a cycle þĀthen let Č1, Č2, & . , ČĀ be the vertices of cycle þĀ and  Č′1, Č′2, & . , Č′Ā be the added 

verticesto obtain þ′Ā corresponding to the vertices Č1, Č2, & , ČĀ in þĀ. 

To define Ā ∶ ý(þ′Ā) → {1,2, & . ,2Ć}, we consider following two cases.  

Case 1: n is odd  

Sub case1: n = 3,5 
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The prime cordial labeling of þ ′Ā for n=3, 5 is as shown in figure 2.1 

 

                          Fig 2.2 Prime cordial labeling of þ′3 and þ′5 

      Ā(Čÿ′) =Ā (Č-�2.) + 2ÿ;         1 f ÿ f -Ā2. 
Ā (Č′-Ā2.+1) = 3, 

   Ā (Č′-Ā2.+1+ÿ) = 4ÿ + 1;       1 f ÿ f -Ą2. 
     In the view of the labeling pattern defined above we have  

               ÿ�(0) + 1 = ÿ�(1) = 3 -Ą2. + 2 

Case 2: n is even  

Sub Case 1: n=4  

      For the graph þ′4the possible pairs of labels of adjacent vertices are (1, 2), (1, 3), 

(1, 4), (1, 5),   (1, 6), (1, 7), (1, 8), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (3, 4), (3, 

5), (3, 6), (3, 7), (3, 8),  (4, 5), (4, 6), (4, 7), (4, 8), (5, 6), (5, 7), (5, 8), (6, 7), (6, 8), 

(7, 8).  
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 Then obviously ÿ�(0) = 5, ÿ�(1) = 7. That is,ÿ�(1) 2 ÿ�(0) = 2and in all other 

possible  Arrangement of vertex labels |ÿ�(0) 2 ÿ�(1)| g 2.Thus þ′4is not a prime 

cordial graph. 

Sub Case 2: n= 6, 8, 10  

         The prime cordial labeling of þ′6, þ′8 and þ′10 is as shown in Figure 2.2  

 

                                                           Fig 2.3 

                                  Prime cordial labeling ofþ′6 ,þ′8 and þ′10 
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Sub Case 3: ng 12 

`               Ā(Č1) = 2, Ā(Č2) = 4, Ā(Č3) = 8, Ā(Č4) = 10, Ā(Č5) = 14,   
 Ā(Č5+ÿ) = 14 + 2ÿ; 1 f ÿ f Ą2 2 6 

  Ā (Č�2) = 6,  
   Ā (ČĀ+12 +1) = 3,                                   

                                                           Ā (Č�2+1+ÿ) = 4ÿ + 1; 1 f ÿ f Ā2 2 1  
 Ā(Č ′1) = 2Ą,                                          

           Ā(Č ′1+ÿ) = Ā (ČĀ221) + 2ÿ; 1 f ÿ f Ą2 2  2 

                                                                 Ā (Č ′Ā2) = 12, 
                                                                Ā (Č ′Ā2+1) = 1, 

Ā (Č′Ā2+1+ÿ) = 4ÿ + 3;   1 f ÿ f Ą2 2 1 

In the above two cases we have|ÿ�(0) 2 ÿ�(1)| f 1 

Hence the graph obtained by duplicating each edge by a vertex in a cycle þĀ  admits 

prime cordial labeling except for Ą = 4. 
    Theorem: 2.8 

The graph obtained by duplicating a vertex by an edge in cycle þĀ is prime cordial 

graph.   
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    Proof:      

          If þ′Ā be the graph obtained by duplicating a vertex by an edge in cycle þĀ then 

Let Č1, Č2, & , ČĀ be the vertices of cycle þĀ and Č′1, Č′2, & . , Č′2Ā be the added vertices 

to obtain þ′Ācorresponding to the vertices Č1, Č2, & , ČĀ in þĀ. 
To define Ā ∶ ý(þ′Ā) → {1,2,3, & . ,3Ć}, we consider following two cases.  

Case 1: n is odd  

Sub Case 1: n=3, 5  

                The prime cordial labeling of þ′Āfor n=3, 5 is shown in figure 2.3

 

                                                           Fig 2.4 

                                          Prime cordial labeling of þ′3 and þ′5 

 

 

Sub Case 2: ng 7  
                                                Ā(Č1) = 2, Ā(Č2) = 4,                                                
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                                                     Ā(Č2+ÿ) = 6 + 2ÿ;   1 f ÿ f -Ā2. 2 2  

                                              Ā (Č�+12 ) = 3,                                                                                                
  Ā (ČĀ+12 +1) = 1,                                                                       

        Ā (Č-Ā2.+2+ÿ) = 6ÿ + 5;  1 f ÿ f -Ą2. 2 1                                    
  Ā(Č′ÿ) = Ā (Č-Ā2.) + 2ÿ;  1 f ÿ f 2 -Ą2.                                  
Ā (Č′2-Ā2.+1) = 6, Ā (Č′2-Ā2.+2) = 9,                               

 Ā (Č′2-Ā2.+3) = 5, Ā (Č′2-Ā2.+4) = 7,                                   
     Ā (Č′2-Ā2.+4+2ÿ21) = 6ÿ + 7; 1 f ÿ f -Ą2. 2 1                                  
    Ā (Č′2-Ā2.+4+2ÿ) = 6ÿ + 9;  1 f ÿ f -Ą2. 2 1                                        

Case 2: n is even  

  Sub Case 1: n= 4, 6 

 The prime cordial labeling of þ′Ā for Ą = 4, 6 is shown in figure 2. 4 
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                                                         Fig 2.5 

                               Prime cordial labeling of þ′4 and þ′6 

Sub Case 2: n g 8 

   Ā(Č1) = 2, Ā(Č2) = 4,  
   Ā(Č2+ÿ) = 6 + 2ÿ; 1 f ÿ f Ā2 2 3  

  Ā (Č�2) = 6,  
  Ā (Č�2+1) = 3,                                                                                                   
  Ā (Č�2+1+ÿ) = 6ÿ + 1;  1 f ÿ f Ā2 2 1 

  Ā(Č′ÿ) = Ā (Č�221) + 2ÿ;  1 f ÿ f Ą 

             Ā(Č′Ā+1) = 1, Ā(Č′Ā+2) = 5,                                                                
    Ā(Č′Ā+1+2ÿ) = 6ÿ + 3; 1 f ÿ f Ą2 2 1                                                 

           Ā(Č′Ā+2+2ÿ) = 6ÿ + 5; 1 f ÿ f Ą2 2 1                                                        
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         Thus in both the cases defined above we have ÿ�(0) = ÿ�(1) = 2Ą 

                        Hence þ′Ā admits prime cordial labeling.  

Theorem: 2.9 

 The friendship graph þĀ is a prime cordial graph for Ą g 3. 

Proof:   

 Let Č1 be the vertex common to all the cycles. Without loss of generality we 

start the label assignment fromČ1. 

To define Ā ∶ ý(þĀ) → {1,2,3, & . ,2Ą + 1}, we consider following two cases.  

Case 1: n is even  

         Let p be the highest prime such that 3Ć f 2Ą + 1, 
Ā(Č1) = 2Ć, 

         Now label the remaining vertices from 1to 2Ą + 1 except 2p.  

         In the view of the labeling pattern define above we have  

           ÿ�(0) = ÿ�(1) = 3Ą2  

Case 2: n is odd  

    Let Ć be the highest prime such that  2Ć f 2Ą + 1, 
                                Ā(Č1) = 2Ć, 

  Now label the remaining vertices from 1 to 2Ą + 1 except 2Ć. 
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  In the view of the labeling above defined we have  

                     ÿ�(0) + 1 = ÿ�(1) = 3-Ā2.+2 

Thus in above two cases |ÿ�(0) 2 ÿ�(1)| f 1 

Hence friendship graph admits prime cordial labeling. 

             Consider the friendship graphþ8. The labeling is as shown in figure 2.5. 

       

         

                                         Fig 2.6 

                             Prime cordial labeling of þ8 

Theorem: 2.10  

     þÿ , �Āis prime cordial if ă f 5 is odd and Ą g 6. 

Proof:  

 Let ÿ = (ý, ý, Ā) be disconnected graph þÿ , �Ā with order Ć = ă + Ą and 

size ć = ă + Ą 2 1. Here ċ1, ċ2, & , ċÿ , Č1, Č2, & , ČĀ are the vertices 



15 

 

whereċ1, ċ2, & , ċÿ be the vertices of the cycle þ3 and  Č1, Č2, & , ČĀ be the vertices of 

path �Ā. 

Define the function Ā: (ý(ÿ)) → {1,2, & . , ă + Ą} as follows, 

Case (i)   �Ā , �� 

                  If n is even, 

                 Ā(ċ1) = 1, Ā(ċ2) = 5, Ā(ċ3) = 7, Ā(ČĀ) = 3, Ā(ČĀ21) = 9. 

                                                    Ā(Čÿ) = 2ÿ, ÿ = 1,2, & . . , Ā+22                                                         
                   Ā(Čÿ) = Ā(Čÿ21) + 2, ÿ = Ą 2 2, Ą 2 3, & . , Ą + 42  

                If n is odd, 

                Ā(ċ1) = 1, Ā(ċ2) = 5, Ā(ċ3) = 7, Ā(ČĀ) = 3, Ā(ČĀ21) = 9. 

Ā(Čÿ) = 2ÿ, ÿ = 1,2, & . . , Ą + 32   .                         
                                                 Ā(Čÿ) = Ā(Čÿ21) + 2, ÿ = Ą 2 2, Ą 2 3, & & , Ā+52  

Case (ii) �� , �� 

                If n is even, 

                 Ā(ċ1) = 1, Ā(ċ2) = 3, Ā(ċ3) = 9. 
                                                     Ā(ċÿ+2) = 2ÿ + 1, ÿ = 2,3. 

     Ā(Čÿ) = 2ÿ, ÿ = 1,2, . . , Ą + 42 .                               
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Ā(ČĀ) = 11.                                           
                                                          Ā(Čÿ) = Ā(Čÿ+1) + 2,     ÿ = Ą 2 1, Ą 2 2, & , Ā+62 . 

                       If n is odd.            

Ā(ċ1) = 1, Ā(ċ2) = 3, Ā(ċ3) = 9.    
                                                                 Ā(ċÿ+2) = 2ÿ + 1, ÿ = 2,3.   
                                                                Ā(Čÿ) = 2ÿ, ÿ = 1,2, . . , Ā+52 .  
                                                                Ā(ČĀ) = 11.   

                       Ā(Čÿ) = Ā(Čÿ+1) + 2,     ÿ = Ą 2 1, Ą 2 2, & , Ą + 72 . 
Then the above function Ā admits the prime cordial labeling. Hence þÿ , �Āare prime 

cordial labeling. The generalized graph ofþÿ , �Āis shown in figure 2.7 

 

                   Figure 2.7 Disconnected graphs  þÿ , �Ā 
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                                            CHAPTER  3 

                         PRIME CORDIAL LABELING  FOR  

                             WHEEL RELATED GRAPHS 

 Definition: 3.1 

            A wheel graph þĀ is join of þĀ and �1. i.e. þĀ=þĀ+�1. Here the edges of þĀ 

are the rim edges of  þĀ. 

 Definition: 3.2 

           The gear graph ÿĀ is obtained from the wheel þĀ by subdividing each of its rim 

edge. 

Definition: 3.3 

            The helm ĀĀ is the graph obtained from a wheel þĀ by attaching a pendant 

 edge to each rim vertex of čĀ. 

Definition: 3.4 

             The closed helm þĀĀ is the graph obtained from a helm ĀĀ by joining each 

pendant vertex of  ĀĀ to from a cycle. 

                                  Theorem:  3.5 

            The graph obtained by joining two copies of wheel graph þĀ by a path of 

arbitrary length is prime cordial. 
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Proof: 

           Let G be the graph obtained by joining two copies of wheel graph þĀ by a path �ā of length ā 2 1.   Let ċ0 be the apex vertex and ċ1,ċ2, & , ċĀ be the successive rim 

vertices of first copy of wheel þĀ.  Let č0 be the apex vertex and č1, č2,…, čĀ be the 

successive rim vertices of second copy of wheel þĀ. Let Č1, Č2, & . , Čā be the vertices 

of path �ā with  Č1 = ċ0 and Čā = č0. Here we define labeling function 

 Ā: ý(ÿ) → {1,2, & . ,2Ą + ā} as follows.  

                                                                Ā(ċ0) = 1, Ā(ċ1) = 3, Ā(ċĀ) = 5  

                                                        Ā(ċÿ) = 4i+1;  2 f ÿ f -Ā2. 
                                                                                                               = 4(Ą 2 1) + 3;  (-Ą2.) + 1 f ÿ f Ą 2 1 

                                                                                          Ā(ČĀ) = 2(Ą + Ā) 2 1;   2 f Ā f +ā2,  
                                                                                                     = 2 (Ā 2 +ā2,) ;  (+ā2, + 1) f Ā f ā 

                                                                                           Ā(čÿ) = 2 (+ā2,) + 4(ÿ 2 1);   1 f ÿ f +Ā2, 

                                                                                                      = 2(+ā2, + 1) + 4(Ą 2 ÿ); (+Ā2, + 1) f ÿ f Ą 

 One can observe that the labeling defined above satisfies the conditions of prime 

cordial labeling and graph under consideration is prime cordial graph. 

                              Theorem:  3.6 

                                            The graph obtained by joining two copies of gear graph ÿĀ by a path of arbitrary 

                                    length is prime cordial. 
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                                Proof: 

 Let G be the graph obtained by joining two copies of gear graph ÿĀ by a path  �ā of length  ā 2 1. Let ċ0 be the apex vertex and ċ1, ċ2, & . , ċĀ be the rim vertices          

of þĀ corresponding to the first copy of  ÿĀ. Let ċ1′  , ċ2′  , & . , ċĀ′  be the vertices of first 

copy of ÿĀ which make subdivision of edges of corresponding þĀ, where ċÿ′ is adjacent 

to ċÿ and ċÿ+1, ÿ = 1,2, & , Ą1; ċĀ′ is adjacent to ċĀ and ċ1.Similarly let č0 be the apex 

vertex, č1, č2, & , čĀ be the rim vertices of  þĀ corresponding to the second copy of ÿĀ. 

Let č1′ , č2′ , & . , čĀ′  be the vertices of second of  ÿĀ which makes subdivision of the 

edges of correspondingþĀ, where č′ÿ is adjacent to  čÿ and čÿ+1 , ÿ = 1,2, & , Ą 21; čĀ′  is adjacent to čĀ and č1.Let Č1, Č2, & . , Čā be the vertices of path �ā with Č1 =ċ0 and Čā = č0. We define the labeling function  

                                    Ā ∶ ý(ÿ) → {1,2, & . . ,4Ą + ā} 

 Case 1:  ā = 2  

          Ā(ċ0) = 6, Ā(č0) = 1, Ā(ċ1) = 2, Ā(ċ1′ ) = 4 

                                                                        Ā(ċÿ) = 2(ÿ + 2);  2 f ÿ f Ą 

                                                                        Ā(ċÿ′) = 2(Ą + ÿ + 1); 2 f ÿ f Ą  

      Ā(čÿ) = 8ÿ 2 5;  1 f ÿ f +Ā2, 
                                                                                   = 8(Ą 2 ÿ) + 9; (+Ā2, + 1) f ÿ f Ą 

                Ā(čÿ′) = 8ÿ 2 1; 1 f ÿ f -Ā2. 

                                                                                  = 8(Ą 2 ÿ) + 5;  (-Ā2. + 1) f ÿ f Ą 
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   Case 2: ā = 3 

            Ā(ċ0) = 6, Ā(č0) = 1, Ā(ċ1) = 2, Ā(ċ1′ )= 4, Ā(Č2) = 3  

                                                                         Ā(ċÿ) = 2 (-ā2. + ÿ + 1) ;  2 f ÿ f Ą  

                                      Ā(ċÿ′) = 2 (-ā2. + Ą + ÿ) ; 2 f ÿ f Ą 

                                     Ā(čÿ) = 2 (+ā2,) + 8ÿ 2 7; 1 f ÿ f +Ā2,  

                            = 2(+ā2,) + 8(Ą 2 ÿ) + 7; (+Ā2, + 1) f ÿ f Ą   

                                                                           Ā(čÿ′) = 2 (+ā2,) + 8ÿ 2 3; 1 f ÿ f -Ā2. 
                 = 2(+ā2,) + 8(Ą 2 ÿ) + 3; (-Ā2. + 1) f ÿ f Ą 

                                     Case: 3  ā g 4 

                                                     Ā(č0) = 1, Ā(ċ1) = 2  

                                                                                                  Ā(ċ1′ ) = 4, Ā (Č-�2.) = 6 

                                                                                                  Ā(ċÿ)   = 2 (-ā2. + ÿ + 1) ; 2 f ÿ f Ą  

          Ā(ċÿ′) = 2 (-ā2. + Ą + ÿ) ; 2 f ÿ f Ą 

                                                                                Ā(ČĀ)  = 2Ā + 6; 1 f Ā f (-ā2. 2 1)  

                                                                                            = 2 (Ā 2 -ā2.) + 1; (-ā2. + 1) f Ā f ā 2 1 

                                                                               Ā(čÿ)  = 2 (+ā2,) + 8ÿ 2 7; 1 f ÿ f +Ā2,  
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                                                                                            = 2(+ā2,) + 8(Ą 2 ÿ) + 7; (+Ā2, + 1) f ÿ f Ą  

                                                                                 Ā(čÿ′) = 2 (+ā2,) + 8ÿ 2 3; 1 f ÿ f -Ā2.  
                                                        =2 (+ā2,) + 8(Ą 2 ÿ) + 3; (-Ā2. + 1) f ÿ f Ą 

  One can observe that in each case the labeling defined above satisfies the conditions 

of prime cordial labeling and the graph under consideration is prime cordial graph.  

 Example: 3.7 

 For the graphÿ20, |ý(ÿ20)|=41 and |ý(ÿ20)| = 60. It is easy visualize that  

ÿ�(0) = 30 = ÿ�(1) 

                                                The prime cordial labeling is shown in figure 3.1 

 

                                      

                                                                                                 Fig 3.1 
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 Theorem: 3.8 

              The graph obtained by joining two copies of Helm  ĀĀ by a path of arbitrary 

length is prime cordial. 

 Proof: 

              Let G be graph obtained by joining two copies of helm graph Ā Ā by a path �ā of length ā 2 1. Let ċ0 be the apex vertex, ċ1, ċ2, . . , ċĀ be the rim vertices and ċ1′ , ċ2′ , & , ċĀ′  be the pendant Vertices of first copy of helm ĀĀ. Let č0 be the apex 

vertex, č1, č2, & , čĀ be the rim vertices and č1′ , č2′ , & , čĀ′  be the pendent vertices of 

second copy of helm ĀĀ. Let Č1, Č2, & , Čā be the vertices of path �ā with Č1 = ċ0 and Čā = č0. 
                 To define labeling function Ā ∶ ý(ÿ) → {1,2, & ,4Ą + ā} we consider 

following cases. 

   Case 1: ā = 2 

                                                                       Ā(ċ0) = 2, Ā(č0) = 1  

                                                                                    Ā(ċÿ) = 2(ÿ + 1); 1 f ÿ f Ą  

                                                                                    Ā(ċÿ′) = 2ÿ + 1; 1 f ÿ f Ą 

                                                                                    Ā(čÿ) = 2(Ą + ÿ + 1); 1 f ÿ f Ą 

                                                                                    Ā(čÿ′) = 2(Ą + ÿ) = 1; 1 f ÿ f Ą 

                                      Case 2: ā = 3   

                        Ā(ċ0) = 2, Ā(č0) = 1, Ā(Č2) = 4Ą + 3, Ā(ċ1′ ) = 5, Ā(ċ2′ ) = 3 

                                                                                     Ā(ċÿ) = 2(ÿ + 1); 1 f ÿ f Ą 
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                                                                                     Ā(ċÿ′) = 2ÿ + 1; 3 f ÿ f Ą  

                                                                                     Ā(čÿ) = 2(Ą + ÿ + 1); 1 f ÿ f Ą 

                                                                                     Ā(čÿ′) = 2(Ą + ÿ) + 1; 1 f ÿ f Ą  

                                     Case 3: ā g 4 

                                                                        Ā(č0′)= Ā(Čā) = 1, Ā(ċ1′ ) = 5, Ā(ċ2′ ) = 3 

                                                                                    Ā (Č-�2.) = 2 

                                                                                    Ā(ċÿ) = 2(ÿ + 1); 1 f ÿ f Ą 

                                                                                    Ā(ċÿ′) = 2ÿ + 1; 3 f ÿ f Ą 

                                                                                    Ā(ČĀ) = 4Ą + 2(Ā + 1); 1 f Ā f (-ā2. 2 1) 

                                                                                               = 4Ą + 2 (Ā 2 -ā2.) + 1; (-ā2. + 1) f Ā f ā 2 1 

                                                                                    Ā(čÿ) = 2(Ą + ÿ + 1); 1 f ÿ f Ą 

                                                                                    Ā(čÿ′) = 2(Ą + ÿ) + 1; 1 f ÿ f Ą   

    One can observe that in each case the labeling defined above satisfies the conditions 

of prime cordial Labeling and the graph under consideration is prime cordial graph. 

Example: 3.9 

                                           The graph Ā13 and its prime cordial labeling is shown in Fig 3.2 
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                                                                                                                          Fig 3.2 

Theorem: 3.10 

                       The graph obtained by joining two copies of closed helm � �� by a 

path of arbitrary length is prime cordial. 

                              Proof:  

               Let G be the graph obtained by joining two copies of helm graph � �Ā by a 

path �ā of length  ā 2 1. Let ċ0 be the apex vertex, ċ1, ċ2, & , ċĀ  be the vertices of inner 

cycle and ċ1′ , ċ2′ , & , ċĀ′  be the vertices of outer cycle of the first copy of closed 

helm� �Ā. Similarly let č0 be the apex vertex, č1, č2, & , čĀ be the vertices of inner 

cycle and č1′ , č2′ , & , čĀ′  be the vertices of outer cycle of second copy of closed 

helm� �Ā. Let Č1, Č2, & , Čā be the vertices of path �ā with Č1 = ċ0 andČā = č0.  

To define labeling function Ā ∶ ý(ÿ) → {1,2, & ,4Ą + ā} we consider the following 

cases. 
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Case 1: ā = 2  

                   Ā(ċ0) = 6, Ā(č0) = 1, Ā(ċ1) = 4, Ā(ċ1′ ) = 2 

                      Ā(ċÿ) = 2 (-ā2.) + 8(ÿ 2 1); 2 f ÿ f (-Ā2. + 1) 

                                = 2 (-ā2. + 2) + 8(Ą 2 ÿ + 1); (-Ā2. + 2) f ÿ f Ą 

                      Ā(ċÿ′) = 2(-ā2. 2 1) + 8(ÿ 2 1); 2 f ÿ f (-Ā2. + 1) 

                                 =2 (-ā2. + 1) + 8(Ą 2 ÿ + 1); (-Ā2. + 2) f ÿ f Ą 

                     Ā(čÿ) = 2 (+ā2,) + 8ÿ 2 5; 1 f ÿ f +Ā2,                  

                                 = 2 (+ā2,) + 8(Ą 2 ÿ + 1) 2 1; (+Ā2, + 1) f ÿ f Ą 

                      Ā(čÿ′ ) = 2 (+ā2,) + 8ÿ 2 7; 1 f ÿ f +Ā2,     
                                  =2(+ā2,) + 8(Ą 2 ÿ + 1) 2 3; (+Ā2, + 1) f ÿ f Ą 

Case 2: ā = 3 

                          Ā(ċ0) = 6, Ā(č0) = 1, Ā(ċ1) = 4, Ā(ċ1′ ) = 2, Ā(Č2) = 3    

                          Ā(ċÿ) = 2 (-ā2.) + 8(ÿ 2 1); 2 f ÿ f (-Ā2. + 1) 

                                        = 2(-ā2. + 2) + 8(Ą 2 ÿ + 1); (-Ā2. + 2) f ÿ f Ą 

                              Ā(ċÿ′) = 2 (-ā2. 2 1) + 8(ÿ 2 1); 2 f ÿ f (-Ā2. + 1) 

                                         = 2(-ā2. + 1) + 8(Ą 2 ÿ + 1); (-Ā2. + 2) f ÿ f Ą 



26 

 

                               Ā(čÿ) = 2 (+ā2,) + 8ÿ 2 5; 1 f ÿ f +Ā2, 

                                          = 2 (+ā2,) + 8(Ą 2 ÿ + 1) 2 1; (+Ā2, + 1) f ÿ f Ą  

                                Ā(čÿ′) =2(+ā2,) + 8ÿ 2 7; 1 f ÿ f +Ā2, 
                                    = 2 (+ā2,) + 8(Ą 2 ÿ + 1) 2 3; (+Ā2, + 1) f ÿ f Ą  

Case 3:  ā g 4  

                           Ā(ċ1) = 4, Ā(č0) = 1, Ā(ċ1′ ) = 2, Ā (Č-�2.) = 6 

                                Ā(ċÿ) = 2 (-ā2.) + 8(ÿ 2 1); 2 f ÿ f (-Ā2. + 1) 

                                         = 2 (-ā2. + 2) + 8(Ą 2 ÿ + 1); (-Ā2. + 2) f ÿ f Ą 

                              Ā(ċÿ′) = 2 (-ā2. 2 1) + 8(ÿ 2 1); 2 f ÿ f (-Ā2. + 1) 

                                                                             =2 (-ā2. + 1) + 8(Ą 2 ÿ + 1); (-Ā2. + 2) f ÿ f Ą 

                                                                   Ā(ČĀ) = 2(Ā + 3); 1 f Ā f (-ā2. 2 1) 

                                                                              =2(Ā 2 -ā2.) + 1; (-ā2. + 1) f Ā f ā 2 1 

                                                                 Ā(čÿ) = 2 (+ā2,) + 8ÿ 2 5; 1 f ÿ f +Ā2, 

                                                                             =2 (+ā2,) + 8(Ą 2 ÿ + 1) 2 1; (+Ā2, + 1) f ÿ f Ą 

                                                                 Ā(čÿ′) = 2 (+ā2,) + 8ÿ 2 7; 1 f ÿ f +Ā2, 
                                                                             =2 (+ā2,) + 8(Ą 2 ÿ + 1) 2 3; (+Ā2, + 1) f ÿ f Ą 
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        One can observe that in each case the labeling defined above satisfies the 

conditions of prime cordial labeling and the graph under consideration is prime 

cordial graph. 

Example: 3.11 

             The graph � �10 and its prime cordial labeling is shown in Fig 3.3 

                             

                                                                      Fig 3.3  

Theorem: 3.12 

             þĀ is a prime cordial graph for Ą g 8. 
Proof:   

            Let Č0be the apex vertex of wheel þĀ and Č1, Č2, & , ČĀ be the rim vertices.  

To define Ā: ý(þĀ) → {1,2, & ,2Ą}, we consider the following these cases. 
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Case 1: Ą = 8,9,10 

              The graphs þ8,þ9�Ąþ þ10 are to be dealt separately and their prime 

cordial labeling is shown figure 3.4 

Case 2: Ą ÿĉ ÿČÿĄ, Ą g 12 

              Ā(Č0) = 2, 
                Ā(Č1) = 5, 
                Ā(Č2) = 10, 
                Ā(Č3) = 4. 
                  Ā(Č4) = 8, 
                 Ā(Č4+ÿ) = 12 + 2(ÿ 2 1);   1 f ÿ f Ā2 2 5 

                 Ā (Č�2) = 6, 
                 Ā (Č�2+1) = 3, 
                 Ā (Č�2+2) = 9, 
                  Ā(ČĀ21) = 1, 
                 Ā(ČĀ) = 7, 
                 Ā (Č�2+2+ÿ) = 11 + 2(ÿ 2 1);   1 f ÿ f Ā2 2 4 

In the view of the above defined labeling pattern we have ÿ�(0) = Ą = ÿ�(1). 
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Case 3: Ą ÿĉ ąþþ,   Ą g 11 

               Ā(Č0) = 2, 
                 Ā(Č1) = 10,        
                Ā(Č2) = 4, 
                 Ā(Č3) = 8,                                                                                                                                                       Ā(Č3+ÿ) = 12 + 2(ÿ 2 1);                  1 f ÿ f Ā212 2 4         
                Ā (Č�212 ) = 6, 
                Ā (Č�+12 ) = 3,                                 
                Ā (Č�+32 ) = 1,  
                Ā(ČĀ+12ÿ) = 5 + 2(ÿ 2 1);                 1 f ÿ f Ā232  

In the view of the above defined labeling pattern we have  ÿ�(0) = Ą = ÿ�(1). 

 

                                     

                                           

Figure 3.4 

                        Thus in all the cases we have |ÿ�(0) 2 ÿ�(1)| f 1. 
                          Hence þĀ   is a prime cordial graph forĄ g 8. 
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                                                                           CHAPTER 4 

           PRIME CORDIAL LABELING FOR SOME SPECIAL       

                                                                            GRAPHS 

Definition: 4.1     

         Let  ÿ = (ý, ý) be a graph. Let ÿ = ċČ be an edge of G and w is not vertex of 

G. The edge e is Sub divided when it is replaced by edges ÿ′ = ċč and ÿ" = čČ. Let ÿ = (ý, ý) be a graph. If every edge of graph G is sub divided, then the resulting 

graph is called barycentric subdivision of graph G.  

Definition: 4.2 

        Let G be the graph obtained by joining two copies of  ýĀ(ýĀ) by a path of length 

one and it denoted by �2ƟþĀ(þĀ). 
Definition: 4.3 

          Let graphs ÿ1, ÿ2, & , ÿĀ, Ą g 2 be all copies of a fixed graph G. Adding an 

edge between ÿÿ to ÿÿ+1 for ÿ = 1,2, & . , Ą 2 1 is called the path union of G.  

                              Definition: 4.4  

           The double star �1,Ā,Āis a tree obtained from the �1,Ā by adding a new pendent 

edge to each of the existing n pendent vertices.  

Definition: 4.5  

          �1,ÿƟ�1,Ā is a tree obtained by adding n pendent edges to each pendent 

vertices of �1,ÿ. It has totally ă(Ą + 1) + 1 vertices. 
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                              Definition: 4.6 

           A shell �Ā is the graph obtained by taking Ą 2 3 concurrent chords in a cycle þĀ on n vertices. The vertex at which all the chords are concurrent is called the apex 

vertex. The shell is also called fan þĀ21. i.e., �Ā = þĀ21 = �Ā21 + �1. Consider two 

shells �Ā(1)
and �Ā(2)

 then ÿ =< �Ā(1): �Ā(2) > Obtained by joining apex vertices of shells 

to a new vertexĎ. 

Definition: 4.7  

         For a graph G the split graph is obtained by adding to each vertex Č a new vertex Č′ such that Č′ is adjacent to every vertex that is adjacent to Č in G. The resultant graph 

is denoted as ĉĆĂ(ÿ). 
Definition: 4.8 

        For a simple connected graph G the square of graph G is denoted by ÿ2  and 

defined as the graph with the same vertex set as of G and two vertices are adjacent in ÿ2 if they are at a distance 1 or 2 apart in G. 

 Definition: 4.9 

         The middle graph ý(ÿ) of a graph G is the graph whose vertex set is ý(ÿ) ,ý(ÿ) and in two  vertices are adjacent if and only if either they are adjacent edges of G 

or one is a vertex of G and the other is an edge incident with it. 

Algorithm: 4.10 

                  Step 1: ý = {ċ1, ċ2, ċ3, & , ċĀ} , {ċ1′ , ċ2′ , ċ3′ , . . , ċĀ′ }  

                    Step 2: ý = {ċÿ′ċÿ ∶ 1 f ÿ f Ą} , {ċĀċĀ+1′ ∶ 1 f Ā f Ą 2 1} , {ċĀċ1′ } 
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                    Step 3: Ā(ċ1′ ) = 1, Ā(ċ1) = 2 

                   Step 4: ĀąĈ ÿ = 1 Ċą Ą, Ā(ċÿ) = 2ÿ 
                   Step 5: ĀąĈ Ā = 1 Ċą Ą, Ā(ċĀ′) = 2Ā 2 1 

                                             

    

                                      Figure 4.1: prime labeling for ý6(ý6) 

Theorem 4.11    

           The barycentric subdivision of cycle þĀ is prime. 

Proof: 

          Let {ċ1, ċ2, & , ċĀ} be the vertices of cycle þĀ and {ċ1′ , ċ2′ , ċ3′ , & . , ċĀ′ } be the 

newly inserted vertices to obtain barycentric subdivision of cycleþĀ. To define prime 

labeling Ā: ý(ÿ) → {1,2, & ,2Ą} is defined in algorithm 4.7 which gives us Ā(ċ1′ ) = 1 

and Ā(ċ1) = 2. For any edge ÿ = ċÿċÿ′: 1 f ÿ f Ą. gcd(Ā(ċÿ′), Ā(ċÿ)) = 1 SinceĀ(ċ1′ ) 

and Ā(ċÿ) and are labeled with consecutive positive integer which implies that they are 

relatively prime.  
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For any edge ÿ = ċĀċĀ+1′ : 1 f Ā f Ą 2 1, gcd (Ā(ċĀ), Ā(ċĀ+1′ ))=1. 

For any edge ÿ = ċ1′ ċĀ, gcd(Ā(ċ1′ ), Ā(ċĀ)) = 1, since (1, Ď) = 1 for any positive 

integer Ď. Hence the barycentric subdivision of the cycle þĀ is prime. 

                               Theorem: 4.12 

        The graph �1,ÿƟ �1,Ā for all ă, Ą g 1 is prime labeling. 

Proof:  

      Case (i): 

             Let �0 be the root of tree. Let �1, �2, . . , �ÿbe the children of the root .Each sub 

tree �ÿ, 1 f ÿ f ă will have n number of vertices which are considered as leaves of the 

graph namely �ÿ1, �ÿ2, & , �ÿĀ; 1 f ÿ f ă  leaves. Let �0 = 2. The intern al vertices �1, �2, �3, . . , �ÿ are labeled with Consecutive largest prime numbers less than or equal 

to ăĄ + ă + 1.  The vertices that acts as a leaves of the graph �1,ÿƟ �1,Ā are labeled 

with the remaining numbers other 2, �1, �2, & , �ÿ in the consecutive order. The greatest 

common divisor of �0 with �1, �2, �3, & , �ÿ is one because �1, �2, �3, & , �ÿ all are 

prime numbers. The greatest common divisor of �ÿ with �ÿ1, �ÿ2, & , �ÿĀ; 1 f ÿ f ă is 

one, since�ÿ’s are all consecutive largest prime numbers. Hence that the graph �1,ÿƟ�1,Ā for all ă, Ą g 1 is prime. 

 Case (ii):  

         In �1,ÿƟ �1,Ā when m is too large and n is two small then the construction in the 

Theorem 4.8 need not hold. For example the above theorem holds for certain 

restriction for m i.e., When Ą = 2, ă f 12;   Ą = 3, ă f 56;   Ą = 4, ă f 72;  Ą = 5,   ă f 189.   
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For further values of Ą, ă Can be calculated using program to list prime numbers and 

their count in þ programming

 

                                        Figure 4.2 

 

Theorem : 4.13 

         The graph �2ƟþĀ(þĀ) admits prime cordial labeling if Ą ≡ 0,2(ăąþ 3). 
Proof:   

         Let G be the graph �2ƟþĀ(þĀ) obtained by joining two copies of ýĀ(ýĀ) by a 

path of Length one.  Let  ċ1, ċ2, . . , ċĀ be the vertices of cycle ýĀ and ċ1′ , ċ2′ , . . , ċĀ′  be 

the corresponding vertices of the cycle which is obtained by joining newly inserted 

vertices of adjacent edges in cycleýĀ. Next denote the corresponding vertices in second 

copy of ýĀ(ýĀ) by Č1,  Č2, & , ČĀ and Č1′ , Č2′ , . . , ČĀ′  respectively. Let ċ1 and  

 Č1 be the vertices of path  Ć2. Let the vertex and the edges sets are defined as follows: ý = {{ċ1, ċ2, & , ċĀ}, {ċ1′ , ċ2′ , & , ċĀ′ }, {Č1, Č2, & , ČĀ}, {Č1′ , Č2′ , & , ČĀ′ }} 
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 ý = ý1 , ý2 , & , ý10  Where  

  ý1 = {ċÿċÿ′; 1 f ÿ f Ą 2 1} 

                                      ý2 = {ċĀ′ċĀ+1; 1 f Ā f Ą 2 1} 

  ý3 = {ċ1ċĀ′ } 

  ý4 = {ČÿČÿ′; 1 f ÿ f Ą 2 1} 

  ý5 = {ČĀ′ČĀ+1; 1 f Ā f Ą 2 1} 

 ý6 = {Č1ČĀ′ }  

 ý7 = {ċÿ′ċÿ+1′ ; 1 f ÿ f Ą} 

 ý8 = {ċ1′ ċĀ′ } 

 ý9 = {Čÿ′Čÿ+1′ ; 1 f ÿ f Ą 2 1} 

ý10 = {Č1′ ČĀ′ }  

Let Ā ∶ ý → {1,2,3, & , |Č|} be the bijective function defined as  

 Ā(ċÿ) = 4ÿ 2 2; 1 f ÿ f Ą 

 Ā(ċĀ′) = 4Ā; 1 f Ā f Ą 

 Ā(Čÿ) = 4ÿ 2 3; 1 f ÿ f Ą 

 Ā(ČĀ′) = 4Ā 2 1; 1 f ÿ f Ą 

 ā(ċÿċÿ′) = 0;  1 f ÿ f Ą 2 1 

 ā(ċĀ′ċĀ+1) = 0; 1 f Ā f Ą 2 1 

 ā(ČÿČÿ′) = 1; 1 f ÿ f Ą 2 1 
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 ā(ČĀ′ČĀ+1) = 1; 1 f Ā f Ą 2 1 

 ā(ċÿ′ċÿ+1′ ) = 0; 1 f ÿ f Ą 

 ā(ċ1′ ċĀ′ ) = 0 

 ā(Čÿ′ Čÿ+1′ ) = 1; 1 f ÿ f Ą 

 ā(Č1′ ČĀ′ ) = 1 

 ā(ċ1Č1) = 1 

 ā(ċ1ċĀ′ ) = 0 

 ā(Č1ČĀ′ ) = 1. 
     The total number of edges labeled with 1’s is given by �1 = 3Ą + 1 and the total 

number of edges labeled with 0’s is given by �2 = 3Ą. Therefore the total difference 

between 1’s and 0’s is given by |�1 2 �2| = |(3Ą + 1) 2 3Ą| and they differ by one. 

This proves that the graph �2ƟþĀ(þĀ) Prime cordial labeling. 

 

                                                      Figure 4.3: The graph �2Ɵþ6(þ6) 
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Theorem: 4.14 

            The graph < �1,Ā,Ā > for Ą g 3 admits prime cordial labeling. 

Proof:  

            Let the vertex set and edge set of < �1,Ā,Ā > be defined as  ý =[Č1, Č2, & , Č2Ā+1} and ý = {ý1 , ý2 , ý3}  Where  

ý1 = {Č1Č2, Č1Č2Ā+1, Č4Č5, Č6Č3}, ý2 = {Č2Č2ÿ+2; 1 f ÿ f Ą 2 1} and  

 ý3 = {Č2ÿ+6Č2ÿ+5; 1 f ÿ f Ą 2 3}. 
 Let Ā ∶ ý → {1,2,3, & , |ý|} be the bijective function defined as Ā(Čÿ) = ÿ; 1 f ÿ f2Ą + 1. We compute the edge labeling defined by  

  ā(ċ, Č) = 0     ÿĀ (Ā(ċ), Ā(Č)) > 1 

1 ÿĀ (Ā(ċ), Ā(Č)) = 1 

  ā(Č1Č2) = ā(Č1Č2Ā+1) = ā(Č4Č5) = 1 

  ā(Č6Č3) = 0       

 ā(Č2Č2ÿ+2) = 0; 1 f ÿ f Ą 2 1 

 ā(Č2ÿ+6Č2ÿ+5) = 1; 1 f ÿ f Ą 2 3            

 The total number of edges labeled with 1’s is given by �1 = Ą and the total numbers 

of edges Labeled with 0’s are given by�2 = Ą. Therefore the total difference between 

1’s and 0’s is given by  �1 2 �2 = Ą 2 Ą and they differ by zero. This proves that <�1,Ā,Ā > for Ą g 3 is a prime cordial labeling.  
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Theorem: 4.15 

             The graph �Ā(1): �Ā(2)
  for all Ą > 2 admits prime cordial labeling. 

Proof:  

            Let the vertex set and edge set of  �Ā(1): �Ā(2)
 be defined as ý ={Č1, Č2, Č3, & . , Č2Ā+1} and ý = {ý1 , ý2 , ý3 , ý4 , ý5} Where  

 ý1 = {Č1Č3, Č3Č6, Č2Č4, Č4Č8, Č6Č2, Č6Č4} 

 ý2 = {Č6Č2ÿ; 1 f ÿ f Ą} 

 ý3 = {Č2ÿ+6Č2ÿ+8; 1 f ÿ f Ą 2 4 

 ý4 = {Č1Č2ÿ+3; 1 f ÿ f Ą 2 1} 

 ý5 = {Č2ÿ+3Č2ÿ+5; 1 f ÿ f Ą 2 2}. 
Let Ā: ý → {1,2, & , |Č|} be the bijective function defined as   
 Ā(Čÿ) = ÿ; 1 f ÿ f 2 + 1. 
We compute the edge labeling defined by  

 ā(ċ, Č) = 0   ÿĀ  (Ā(ċ), Ā(Č)) > 1       �Ąþ 

                   1  ÿĀ  (Ā(ċ), Ā(Č)) = 1 

 ā(Č1Č3) = 1 

 ā(Č6Č3) = ā(Č2Č4) = ā(Č4Č8) = ā(Č6Č2) = ā(Č6Č4) = 0 

 ā(Č6Č2ÿ) = 0; 4 f ÿ f Ą 

 ā(Č2ÿ+6Č2ÿ+8) = 0; 1 f ÿ f Ą 2 4 



39 

 

 ā(Č1Č2ÿ+3) = 1; 1 f ÿ f Ą 2 1 

 ā(Č2ÿ+3Č2ÿ+5) = 1; 1 f ÿ f Ą 2 2 

       The total numbers of edges labeled with 1’s are given by �1 = 2Ą 2 2 and the 

total numbers of edges labeled with 0’s are given by �2 = 2Ą 2 2. Therefore the total 

difference between 1’s and 0’s is given by |�1 2 �2| = |(2Ą 2 2) 2 (2Ą 2 2)| and 

they differ by zero. This proves that the graph �Ā(1): �Ā(2)
 for Ą > 2 as a prime cordial 

labeling. 

Theorem: 4.16 

              The full binary tree admits prime cordial. 

Proof: 

         The root �0 is called the special vertex in tree. Let N denotes the number of 

levels in full binary tree. The root has edges to n other vertices called children. The 

children of root are said to be on level one. There are  2�+1 2 1 vertices and 2�+1 22 edges in full binary tree. 

Case (i):      

         Let  �1 and �2 be the children of�0. The vertices on the last level N have no 

children and are leaves. The vertices are not leaves are said to be internal vertices. Let �0 = 1, �1 = 2 �Ąþ �2 = 3 are fixed. The vertices �1 and �2 are divided into two sub 

trees. The left most subtree �1 are labeled with consecutive even numbers from top to 

bottom. The greatest common divisor of any two numbers on the leftmost subtree is 

greater than one and the edges are labeled with zero. In the second level the vertices on 

the right most subtree �3 are labeled with 7 and 5 and the remaining levels of the right 
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most subtree are labeled with consecutive odd numbers starting with the number 9. The 

right most vertices of  level 2 and level 3 are connected by an edge with label zero since  gcd (5,15) > 1 and all other edges on the rightmost subtree �3 are labeled with one. 

The root �0 with their children  �1�Ąþ �2 are connected by the edges labeled with one. 

                  The total number of edges labeled with 0 is given by ā1 = 2Ā 2 1 and the 

total number of edges labeled with 1 is given by ā2 = 2Ā 2 1.  Therefore the total 

difference between 1’s and 0’s is given by |�1 2 �2| = |(2Ā 2 1) 2 (2Ā 2 1)| and they 

differ by zero. This proves that the binary tree is prime cordial labeling. 

Case (ii):  

            The full binary tree with the second level is prime cordial when �0 = 2, �1 =4 �Ąþ �2 = 6.  In the second level the vertices are numbered as 1, 5, 3, and 7. The 

total number of edges labeled with 0 is given by ā1 = 3 and the total number of edges 

labeled with 1 is given byā2 = 3.  Therefore the total difference between 1’s and 0’s 

is given by |�1 2 �2| = |3 2 3| and they differ by zero. 

 Theorem: 4.17 

         ĉĆĂ(�1,Ā) is a prime cordial graph. 

Proof:  

         Let Č1,  Č2, & , ČĀ be the pendant vertices, v be the apex vertex of �1,Ā and ċ, ċ1, ċ2, . . , ċĀ are the vertices corresponding to Č, Č1,  Č2, & , ČĀ in ĉĆĂ(�1,Ā). 
Denoting  ĉĆĂ(�1,Ā) = ÿ then |ý(ÿ)| = 2Ą + 2 and |ý(ÿ)| = 3Ą. 
To define Ā: ý(ÿ) → {1,2, . . ,2Ą + 2}, we consider following two cases. 
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Case: 1 Ą = 2, 3  
     The graphs ĉĆĂ(�1,2) and ĉĆĂ(�1,3) are to be dealt separately and their prime 

cordial labeling is shown in Fig 4.4     

                                             

             Figure 4.4  ĉĆĂ(�1,2)  and   ĉĆĂ(�1,3) 

Case: 2    Ą g 4 

        Ā(Č) = 4, 
         Ā(ċ) = 2, 
         Ā(Č1) = 2ÿ + 4;   1 f ÿ f -Ā2. + 1 

        Ā (Č[�2]+1+ÿ) = 2ÿ 2 1;   1 f ÿ f +Ā222 , 
        Ā(ċÿ) = Ā(ČĀ) + 2ÿ;    1 f ÿ f Ą + 1 2 +Ā222 , 
        Ā(ċĀ+12ÿ) = 2(Ą + 2 2 ÿ);   1 f ÿ f +Ā242 , 
In the view of the labeling pattern defined above we have  
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 ÿ�(0) = 3Ā2 = ÿ�(1)  for n even and   

ÿ�(0) = -3Ā2 . = ÿ�(1) 2 1  for n odd. Thus we have |ÿ�(0) 2 ÿ�(1)| f 1. 
Hence G is prime cordial graph.  

Theorem: 4.18 

           ĉĆĂ (ýĀ,Ā) is prime cordial graph. 

Proof:  

        Consider ýĀ,Ā with vertex set {ċ, Č, ċÿ , Čÿ , 1 f ÿ f Ą} where ċÿ , Čÿ are pendant 

vertices. In order to obtain ĉĆĂ(ýĀ,Ā)  and  ċ′, Č′, ċÿ′, Čÿ′ vertices corresponding 

to ċ, Č, ċÿ , Čÿ where 1f ÿ f Ą. If ÿ = ĉĆĂ(ýĀ,Ā) then |ý(ÿ)| = 4(Ą + 1) and  

 |ý(ÿ)| = 6Ą + 3. we define vertex labeling  

Ā: ý(ÿ) → {1,2, . . ,4(Ą + 1)} as follows. 

                 Ā(ċ) = 6, 
                 Ā(Č) = 2, 
                Ā(ċ′) = 4,  
                Ā(Č′) = 1, 
                Ā(ċÿ) = 8 + 2(ÿ 2 1);   1 f ÿ f Ą 

                Ā(ċÿ′) = Ā(ċĀ) + 2ÿ;    1 f ÿ f Ą 2 1 

               Ā(ċĀ′ ) = 3, 
               Ā(Čÿ) = 5 + 2(ÿ 2 1);   1 f ÿ f Ą 
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                Ā(Čÿ′) = Ā(ČĀ) + 2ÿ;   1 f ÿ f Ą 

            In view of pattern defined above we have  

                    ÿ�(0) = 3Ą + 2 = ÿ�(1) + 1. 
              That is |ÿ�(0) 2 ÿ�(1)| f 1. 
              Hence G is a prime cordial graph. 

Prime cordial labeling of the graph ĉĆĂ(ý5,5) is shown in Figure 4.5   

                                                 

 

                                                                          Figure 4.6 

Theorem :4.19 

         ýĀ,Āÿ  is a prime cordial graph .  

Proof : 

       Consider ýĀ,Ā with vertex set {ċ, Č, ċÿ , Čÿ , 1 f ÿ f Ą} where ċÿ , Čÿ pendant 

vertices. Let G be a graph ýĀ,Āÿ  then|ý(ÿ)| = 2Ą + 2 and |ý(ÿ)| = 4Ą + 1. 
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To define Ā: ý(ÿ) → {1,2,3, & ,2Ą + 2}, we consider following two cases. 

Case 1: Ą = 2, 3 

The graphs ý2,22  and ý3,32  are to be dealt separately and their prime cordial labeling is 

shown in figure 4.7  

                                                 

 

Case :2 Ą g 4 

Choose a prime number p such that 3Ć f 2Ą + 2 < 5Ć, 
                           Ā(ċ) = 2, 
                            Ā(Č) = 1, 
 Ā(ċÿ) = ă, where ă is distinct even numbers between 4 and 2Ą + 2 except 2Ć  
with 2 f ÿ f Ą. 

 Ā(Č) = 2Ć, 
                                       Ā(Čÿ) = 3 + 2(ÿ 2 1) for 1 f ÿ f Ą. 
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In view of the above defined labeling pattern we have  

                              ÿ�(ą) 2 1 = 2Ą = ÿ�(1). 
Thus in both the cases we have |ÿ�(0) 2 ÿ�(1)| f 1. 
                   Hence G is a prime cordial graph. 
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CHAPTER 1 

PRELIMINARIES 

In this chapter I have given the basic definitions on graph theory which are 

needed for the subsequence chapters. 

Definition 1.1 : 

  A graph G consists of a finite nonempty set of points, denoted by V (G), 

called vertices, and a collection of pairs of elements, E(G), called edges. 

The elements of E(G) are pairs of vertices. 

Definition 1.2 : 

The degree (or vertex degree) of a vertex v, deg(v), is equivalent to the    

number of edges incident with that vertex. For a graph G the largest degree in the 

graph, that is the largest value of deg(v) for all v ∈ G, is denoted as ∆  

(it can also be referred to as ∆(G), especially if it is unclear which graph it  relates to).  

Definition 1.3 : 

A vertex with a degree equal to one is called an end point (or end vertex). 

Definition 1.4 : 

A walk in a graph consists of an alternating sequence of vertices and edges, 

beginning at a vertex called the initial vertex and ending at a final vertex known as 

the terminal vertex. 

Definition 1.5 : 

If the vertices in the walk are all distinct then it is called a path. 
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Definition 1.6 : 

If a walk has Ā1 = ĀĄ and all edges in the walk are distinct, then we get what is 

known as a cycle. 

Definition 1.7 :  

A subgraph H of a graph G is a graph whose vertices and edges lie within 

V(G) and E(G) respectively. 

Definition 1.8 :  

A graph G is connected if and only if there exists a path between every pair of 

vertices. 

Definition 1.9 : 

A path graph by �Ą, where n is the total number of vertices in the graph  

              and n − 1 is the number of edges, it is also connected. The vertices of �Ą can be 

written as Ā1, Ā2 , Ā3 , ..., ĀĄ where an edge connects  Āÿ to Āÿ+1 , for  

1 f i f n−1, in the case where i = n, ĀĄ  is adjacent to ĀĄ21 . Hence, all the vertices 

have a degree less than or equal to 2 (in fact only two vertices, the end points Ā1 and ĀĄ, will have a degree of value 1). 

Definition 1.10 : 

A star graph, ÿĄ, is a graph with n vertices and n−1 edges, such that one 

vertex, call this the central vertex, has the degree ∆ = n − 1 while all other 

vertices are end points with degree of value 1. 

 



3 

 

Definition 1.11 : 

The graph �Ą is a cycle graph with n vertices and n edges, this is such that 

every vertex has degree 2 and the graph is connected. 

Definition 1.12 :  

The complete graph ÿĄ is the graph with n vertices such that every pair of 

vertices in the graph is adjacent. This makes |E(ÿĄ)| = 
Ą(Ą21)2 . 

Definition 1.13 :  

A wheel graph, þĄ, has n vertices with n g 4. It consists of the cycle graph �Ą21 where every vertex is adjacent to another additional single vertex, called the 

central vertex, displayed in the middle of the cycle. Hence every vertex has a degree 

of value 3 except the central vertex which has a degree equal to n−1.The total number 

of edges in a wheel graph þĄ is 2(Ą 2 1). 

Definition 1.14 :  

A bipartite graph is also a graph whose vertices can be split into two sets, A 

and B, such that vertices in set A are only adjacent to a vertex in set B, and vice-versa, 

however unlike a complete bipartite graph, not all vertices in set A are adjacent to 

vertices in set B. 

Definition 1.15 : 

A complete bipartite graph, āÿ,Ā, is a graph whose vertices can be split into 

two sets, call these set A and set B, such that every vertex in set A is adjacent to every 

vertex in set B only (and vice-versa). The total number of vertices in set A is a and the 
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number of vertices in set B is b, hence the graph āÿ,Ā has a+b vertices in total and ab 

edges. 

Definition 1.16 : 

For a graph G if the vertices can be allocated one of k colours such that no 

adjacent vertices have the same colour, then G is called k-colourable and is described 

to have a proper vertex colouring.  

Definition 1.17 : 

The chromatic number of a graph G, denoted �(G), is k if G is k-          

colourable but not (k−1)-colourable. Therefore, if a graph has n vertices the chromatic 

number cannot be greater than n. 

Definition 1.18 : 

  A graph G is called k-edge-colourable if the edges of the graph can be 

coloured in k colours such that no adjacent edges are the same colour. G is said to 

have a k-edge-colouring and is described to have a proper edge colouring. If G is  

k-edge-colourable but is not (k −1) edge-colourable it is said that the chromatic 

index of G is k, denoted as χ'(G) = k. 

Definition 1.19 : 

The chromatic polynomial, ��(λ), of a graph G is the number of ways to 

colour the vertices of the graph with λ or fewer colours.  

Definition 1.20 : 

A graph G is called Eulerian if there exists a closed walk, that is a walk 
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that begins and ends at the same vertex, which contains every edge in the graph 

exactly once. This walk is then referred to as an Eulerian circuit for G. 

                                    Definition 1.21 : 

A tree is a connected graph with no cycles. If a graph is not connected but still 

contains no cycles then it is called a forest, which has components that are all trees. 

Definition 1.22 : 

Any vertices in a tree with a degree of one is called a leaf. 
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CHAPTER 2 

GRACEFUL GRAPHS 

Definition 2.1 : 

A graceful labelling of a graph G consists of: 

A) A labelling of the vertices in G from the open set of integers {0, . . . , m}, where m 

is the number of edges;  

B) A labelling of the edges of G, where the edge label corresponds to the absolute 

difference of the vertex labels of the vertices that the edge is adjacent to, such that the 

set of edge labels is the closed set {1,...,m}.  

G is then known as a graceful graph. 

Example 2.2 : 

 

 

 

  

 

 

 

 

The gracefully labelled Petersen graph 
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Theorem 2.3 : 

Let G be a graph with n vertices and m edges. If G is graceful then it is 

possible to partition the vertices into two sets, A and B, such that the number of edges 

connecting set A to set B is 
ă2  , if m is an even integer, or 

(ă+1)2  , if m is an odd 

integer.  

Proof : 

Let G be a graph with a graceful labelling.  

We can partition G’s vertices into two sets, one being the set of vertices with even 

vertex labels, A, and the other being the set with odd vertex labels, B.  

The m edges will be labelled from 1 to m, hence if m is even, 
ă2  of the edge labels will 

be odd integers or if m is odd, 
(ă+1)2  of the edge labels will be odd integers.  

Conclusively, any edge with an odd edge label must be incident with one even valued 

vertex label and one odd valued vertex label, since the edge labels are determined by 

the absolute difference of the vertices an edge is adjacent with.  

Therefore, in both cases, the edges labelled with odd integers represent the set of 

edges connecting vertices in A to B, so the theorem holds. 

Theorem 2.4 : 

All paths are graceful.  

Proof : 

  Let �Ą be a graph with n vertices and m edges.  

Label the first vertex in the path (so a vertex of degree 1) as 0.  
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From this point skip the next adjoining vertex in the path and label the vertex 

following this as 1.  

Continue to do this along the path, increasing the vertex label by one each time, so 

that alternating vertices along the path are labelled from 0 to 
ă2  , if m is even, or 0 to 

(ă21)2  , if m is odd.  

Then starting from the second vertex in the path (adjacent to vertex 0) label this as m.  

From here skip the next adjoining vertex, which would now be labelled as 1, and label 

the following vertex as m − 1.  

Continue to do this along the path, decreasing the vertex label by one each time.  

This newly labelled set of vertices should go from m down to 
(ă+2)2  , if m is even, or 

(ă+2)2  , if m is odd.  

Therefore �Ą has m + 1 vertices all with a distinct label from the set {0,...,m}. 

Consequently, all edges will have a distinct label from the set.  

As a result, by having the vertices of the path labelled this way the edge labels are 

calculated to be: m, m − 1, m − 2, ..., 2, 1, as you traverse along the path starting at 

vertex 0.  

This is a requirement for a graph to be graceful, hence �Ą has a graceful labelling,  

thus proving the theorem.  

Theorem 2.5 :  

All star graphs, ÿĄ, are graceful for all n.  
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Proof :  

  A star graph has n vertices and n − 1 edges. 

It consists of one central vertex of degree n − 1 and has the remaining vertices, all 

with degree 1, connected to it.  

Considering this let the central vertex be labelled with the vertex label 0;  

therefore every other vertex in the graph may be labelled with distinct vertex labels 

from 1 to n − 1. 

As a result the set of absolute differences along each edge,  

i.e. the edge labels, will be the complete set of integers from 1 to n − 1, 

hence the graph is graceful for all n in ÿĄ. 

 

 

 

 

 

Figure 2.6 

Theorem 2.7 : 

The complete bipartite graph āÿ,Ā, where a and b are positive integers, is 

graceful for all values of a and b.  
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Proof : 

This theorem will be proven by showing a graceful labelling for āÿ,Ā.  

Note that this graph has a + b vertices and ab edges.  

Consider the two sets of vertices, A and B, consisting of  a and b elements 

respectively. 

Let the vertices in set A be labelled with the integers: 0, 1, ..., a − 1,  

and the vertices in set B be labelled with the integers: a, 2a, . . . , ba.  

This type of labelling means that every number from 1 to ab can be calculated to be a 

distinct edge label for the edges of the graph; 

this is because every edge uniquely connects a vertex in B with a vertex in A such that 

every individual vertex in A is adjacent to every vertex in B, and vice-versa.  

Hence, āÿ,Ā  has a graceful labelling.  

Remark 2.8 : 

The star graph ÿĄ  is in fact a complete bipartite graph, ā1,Ą 

Theorem 2.9 : 

The graph þĄis graceful for all n g 4.  

Proof :  

For a wheel graph þĄ , n denotes the total number of vertices in the graph. 

In this proof we shall let k = n − 1, furthermore, the central vertex will always be 

called Ā0 and the outer vertices will be represented by the closed cycle  
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{Ā1,Ā2, . . . ,Āā}.  

We will separate the proof into two cases, one where k is even and one where k is 

odd. 

First we will examine the case where k is even.  

When k = 4 we can give the graph þ5 the graceful labelling in figure 2.10 

 

 

 

 

 

Figure 2.10 

The gracefully labelled graph þ5. 

For cases where k g 6 we get a graceful labelling of þĄ  using the following formula, Āă , which will allocate numbers to the vertices Āÿ, where 0 f i f k:  

                        2k – i − 1          if i = 2, 4, 6, . . . , k − 2   

 Āă(Āÿ) =         2                        if i = k − 1      

                       i                         if i = 1,3,5, . . . , k  − 3, also if i = 0 

                       2k                      if i = k 

From here the edge labels are calculated by taking the absolute difference of the 

vertices that edge is incident with.  
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When k = 8 we can derive the graceful labelling of the graph þ9 in figure 2.11 

 

 

 

 

 

 

Figure 2.11 

The graceful labelling of the graph þ9 

Now we will look at the case where k is odd.  

For k = 3 the wheel þ4 is also the complete graph ā4, a graceful labelling in figure 

2.12 

 

 

 

 

 

Figure 2.12 

The graceful labelling of the graph þ4 = ā4 
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When k g 5, a graceful labelling can be given to þĄ using the following formula, Ā0, 

which will allocate numbers to the vertices Āÿ , where 0 f i f k:  

                              2i                 if i = 0, 1 or k  

    Āă(Āÿ)  =            k + i            if i = 2, 4, 6, . . . , k−1  

                              k + 1− i        if i = 3, 5, 7, . . . , k−2  

Again, from here the edge labels are calculated accordingly.  

We have shown a way to gracefully label all wheel graphs þĄ. 

Theorem 2.13 : 

Any complete graph ÿĄ with n > 4 cannot be graceful.  

 Proof : 

When n > 4 the graph ÿĄ has its total number of edges m g 10.  

Assume ÿĄ can have a graceful labelling.  

Then the vertices of the graph can be labelled using a set of values from the open set 

{0,1,2,...,m} such that all the edges of the graph can be assigned distinct labels from 

the closed set {1,2,...,m}.  

For ÿĄ to have an edge labelled with m, both 0 and m must be vertex labels of 

vertices in that graph.  

(This would be the case for the graph ÿ2  with m = 1). 

Following this, for there to be an edge labelled with m − 1, either 1 or m − 1 must be a 

vertex label of a vertex in that graph.  
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The vertex label 1 may be selected since for a graceful graph G with m edges, every 

vertex label Āÿ can be replaced by m − Āÿ  and yet all the edge labels would still remain 

the same, so there is no loss of generality.  

Hence we will proceed with the case where the vertex label 1 was chosen knowing 

that if m − 1 had been chosen a similar overall outcome would have been reached. 

To get an edge labelled with m − 2 the vertex label m − 2 must be added to a vertex in 

that graph, given that we already have vertex labels 0, 1 and m included.  

If the vertex label m − 1 had be chosen instead, to get the edge label m−2 allocated to 

the edge connecting the vertices m − 1 and 1, there would then be two edges with the 

label 1, 

i.e. the edge incident with the vertices labelled 0 and 1 and the edge incident with the 

vertices labelled m − 1 and m, which is not allowed.  

Similarly, if the vertex label 2 was added to get the edge label m − 2 for the edge 

incident with m and 2, this would again result in two edges having the edge label 1, 

namely the edges incident with vertices 0 and 1 and vertices 1 and 2. 

Hence the vertex label m − 2 must be chosen.  

Now with the vertices labelled as 0, 1, m − 2 and m we get the set of edge labels 

{1,2,m − 3,m − 2,m − 1,m}.  

To get an edge labelled with m − 4 a vertex with label 4 must be added. 

Other choices of values for this vertex are dismissed using the same principles 

previously demonstrated. 
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We now have vertices with the labels 0, 1, 4, m − 2 and m giving us the set of edge 

labels {1,2,3,4,m − 6,m − 4,m − 3,m − 2,m − 1,m}.  

Following this, there is no way to add another labelled vertex to obtain an edge with 

the label m − 5.  

This is because all the ways to obtain the m − 5 edge label, as a difference of the two 

vertices it is incident with, creates duplicate edge labels in the rest of the graph, 

i.e. there are no vertex label options from the set  

{2,3,5,m − 5,m − 4,m − 3,m −  1} that can be selected.  

This contradicts the statement that ÿĄ is graceful for all cases where m − 5 > 4,  

i.e. when n g 5.  

Hence the theorem holds.  

Theorem 2.14 : 

�5 is not graceful.  

 Proof : 

  For �5 to be graceful the graph must be able to be labelled with a selection of 

five distinct vertex labels from the set {0,1,2,3,4,5}.  

Every edge must then have a distinct edge label from the closed set 

{1,2,3,4,5}, where the allocated edge label is the absolute difference of the vertex 

labels the edge incidents with.  

Assume �5 is graceful.  
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The only way an edge label of value 5 can feature on the graph is if the two vertices 

the edge incidents with have the vertex labels 0 and 5.  

Assign two adjacent vertices on the graph with these labels in figure 2.15 

Note that due to the symmetry of the graph it doesn’t matter which two vertices are 

selected. 

 

 

 

 

 

Figure 2.15 

The first step attempting to gracefully label �5. 

Next we can determine that there are only two ways for the edge label 4 to be added 

to the graph.  

This is by either allowing the vertex adjacent to vertex 0 to be allocated the vertex 

label 4 (call this Case A) or by the vertex adjacent to vertex 5 being given the vertex 

label 1 (call this Case B). 

Now let us first investigate Case A. 

Case A :  

Say we add a vertex label of value 4 to the vertex adjacent to vertex 0 to get an edge 

label of value 4.  

    0 

5 

5 
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We now need to add an edge label of value 3 to the graph. Here there are again only 

two possible options:  

either allocate the vertex adjacent to vertex 4 with the vertex label 1 

(call this Option 1) or allocate the vertex adjacent to vertex 5 with the vertex label 2 

(call this Option 2).  

Let us select Option 1 and add the vertex label 1 to the graph, we are now left with 

one remaining vertex without a label, call this vertex w in figure 2.16 

 

 

 

 

 

Figure 2.16  

The second step attempting to gracefully label �5. 

There are now only two vertex labels left that can be given to w, label 2 or 3. 

However, if w was given a label of value 2 the edge label 1 can be added to the graph 

on the edge incident with vertices 1 and 2.  

But then the graph will not feature an edge label of value 2 seeing as the remaining 

unlabelled edge would be incident with vertices 2 and 5, for which the absolute 

difference is 3.  
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On the other hand if w was given a vertex label of value 3, the vertices 1 and 5, that w 

is incident with, will both have the absolute difference of their vertex labels calculated 

to be 2.  

This not only means that no edge label of value 1 can be added to the graph but also 

that a duplication of an edge label value, in this case 2, would appear.  

Hence no graceful labelling can be found this way.  

We will now examine Option 2.  

So we still add a vertex label of value 4 to the graph in figure 2.15 , but this time we 

allocate the vertex adjacent to vertex 5 with the vertex label 2 to get an edge label of 3 

added to the graph. 

There again remains one unlabelled vertex, call this vertex x, in figure 2.17. 

Vertex x can now only be given a vertex label of value 1 or 3. 

However, similar to what occurred in Option 1, if the value 1 is selected to be this 

vertex label the edge label 1 can be added to the graph (between vertices 1 and 2) but 

not the edge label of value 2.  

Consequently if the vertex label 3 is given to x the edge label 1 can again be added to 

the graph (but this time on the edge incident with vertices 3 and 4).  

Nonetheless, the edge label of value 2 again cannot be added to the graph. Therefore 

the graph cannot be gracefully labelled this way. 

 Case B :  

We now look back at the graph in figure 2.15 and add the vertex label 1 to the 

unlabelled vertex adjacent to vertex 5 to get an edge label of value 4. 
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Figure 2.17  

The third step attempting to gracefully label �5. 

From here we want to add the edge label of value 3 to the graph.  

The only two options this time is to either add the vertex label 4 to the vertex adjacent 

to vertex 1 (call this Option 3) or allocate the vertex adjacent to vertex 0 with vertex 

label 3 (call this Option 4). 

Say we select Option 3 and add the vertex label 4 to the graph, we are left with one 

unlabelled vertex again call this y in figure 2.18. 
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Figure 2.18  

The fourth step attempting to gracefully label �5. 

From here we can see that vertex y can either be given a vertex label of value 2 or 3. 

Nevertheless, if the vertex label 2 was given to y the edge label 2 can be assigned to 

the graph on the edge between vertices 0 and 2 (and vertices 2 and 4)  

but the graph would not feature an edge label of 1. 

If the vertex label of value 3 was given to y instead, the edge incident with vertices 3 

and 4 could be allocated the edge label of value 1,  

however no edge label of value 2 could be added to the graph 

(there also would be a duplication of the edge label 3 between vertices 0 and 3). 

Therefore no graceful labelling can be given. 

Finally we will look at Option 4, this involves still adding a vertex label with value 1 

to Figure 2.15, as done in Option 3,  

but now instead we add the vertex label 3 to the vertex adjacent to vertex 0 to get an 

edge label of value 3. 
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 Here we are left with an unlabelled vertex, call this z in figure 2.19 

 

 

Figure 2.19  

The final step attempting to gracefully label �5. 

Vertex z can now either be labelled with value 2 or 4.  

If the vertex label 2 was given to z then the edge label 1 would need to be added to the 

graph for both the edge incident with vertices 1 and 2 and the edge incident with 

vertices 2 and 3, 

this is duplication which is not allowed in a graceful graph.  

On the other hand, if z was given the vertex label 4 the edge label of value 1 could be 

assigned to the edge connecting vertices 3 and 4 but no edge label of value 2 could be 

added to the graph. 

Therefore it cannot be gracefully labelled. 

As a result, every possible way of labelling an edge in the graph �5 with the edge 

label 4 has been exhausted and no graceful labelling of the graph has been found.  
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Hence, �5 is not a graceful graph. 

Remark 2.20 : 

C5 is actually one of three graphs containing 5 or fewer vertices that is not 

graceful, the other two graphs are shown. All other graphs consisting of 5 or fewer 

vertices can have a graceful labelling. 

  

                                                                       

Two of three graphs containing 5 or fewer vertices that are not graceful. 

Theorem 2.21 :  

If G is a graceful Eulerian graph with n vertices, then n ≡ 0 (mod 4) or  

n ≡ 3 (mod 4).  

Proof : 

Let C be an Eulerian circuit in the graph G which follows the walk: Ā0,Ā1,...,ĀĄ21,ĀĄ= Ā0.  

Let a graceful labelling of G be such that the integer ÿÿ, where 0 f ÿÿ  f n, is assigned 

to Āÿ , where 0 f i f n, with ÿÿ = ÿĀ if Āÿ = ĀĀ. 

Therefore the label given to the edge incident with vertices Āÿ21 and Āÿ is the absolute 

difference of ÿÿ  and ÿÿ21,  
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i.e. |ÿÿ 2 ÿÿ21|.  

Notice that, |ÿÿ 2 ÿÿ21  | ≡ (ÿÿ 2 ÿÿ21)(mod 2)  for 1 f i f n.  

This implies that the sum of the edge labels in G is,  

∑ |ÿÿ 2 ÿÿ21  |  ≡Ąÿ=1  ∑ (ÿÿ 2 ÿÿ21  )Ąÿ=1 ≡ 0 (mod 2),  

which means the sum of the edge labels in G is even.  

However the sum of the edge labels is 

∑ Ą(Ą + 1)2  ,Ą
ÿ=1  

so 
Ą(Ą+1)2  is even.  

As a result, 4|n(n+1), which suggests 4|n or 4|(n+1),  

leading to n ≡ 0 (mod 4) or n ≡ 3 (mod 4). 

Theorem 2.22 : 

The graph �Ą is graceful if and only if n ≡ 0 (mod 4) or n ≡ 3 (mod 4).  

Proof : 

  It is known that �Ą is an Eulerian graph for all n,  

Therefore by Theorem 2.13 if n ≡ 1 (mod 4) or n ≡ 2 (mod 4) then �Ą is not graceful.  

It will now be shown that if n ≡ 0 (mod 4) or n ≡ 3 (mod 4) then �Ą is graceful.  

Let �Ą be the cycle: {Ā1,Ā2,...,ĀĄ}. 

First let n ≡ 0 (mod 4), we therefore can assign the vertex Āÿ in �Ą the label ÿÿ where,  
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ÿ212                   if i is odd  

     ÿÿ =     Ą + 1 2 ÿ2        if i is even and i f  
Ą2 

                    Ą 2 ÿ2             if i is even and i > 
Ą2 

Implementing this formula will result in a graceful labelling.  

Next we look at the case where n ≡ 3 (mod 4), we assign a vertex Āÿ in �Ą with the 

label Āÿ where,  

                Ą + 1 2 ÿ2               if i is even 

    Āÿ =      ÿ212                        if i is odd and i < 
(Ą21)2  

                 ÿ+12                        if i is odd and i > 
(Ą21)2  

This also gives a graceful labelling.  
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CHAPTER 3 

COLOURING  OF GRACEFUL GRAPHS 

Definition 3.1 : 

A rainbow vertex colouring of a graph G with n vertices and m edges, 

involves assigning distinct colours from the set {0,...,m} to all the vertices of  

G - denote this as f(v), where v ∈ V (G). Colours are then allocated from the set 

{1,...,m} to the edges of G by applying the function f '(uv) = |f(u)−f(v)|, where uv is 

the edge incident with vertices u, v ∈ G.  

If all the edges have distinct colours then we can say that a rainbow vertex colouring 

has led to a rainbow edge colouring of G. We can then say G has a rainbow 

colouring. 

If f ' : E(G) → {1,2,...,m}, where every element is distinct and the set is closed, then 

this implies G has a graceful labelling.  

Example 3.2 : 

Below we have the cycle graph �4 which has been given a rainbow vertex 

colouring. Using the function defined previously this has induced a rainbow edge 

colouring hence depicting a graceful labelling of �4. Note that the colour 4 is red, the 

colour 3 is blue, the colour 2 is green and the colour 1 is violet. 
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A rainbow colouring on �4 

Theorem 3.3 : 

For any natural number n, there exists a graceful graph G such that  

χ(G) = n. 

Proof : 

When n = 1 the result is trivial, so assume n g 2. 

Let Ā1, ..., ĀĄ denote the vertices in the complete graph āĄ, for every i, such that  

1 f i f n.  

We will let 2ÿ be the label of Āÿ, note that we are purposefully exceeding the usual 

vertex label bounds at this stage but we will clarify this step later in the proof.  

First we prove that when these vertex labels are given and the absolute difference is 

calculated to provide edge labels for the graph, all the edges of āĄ have different 

labels.  

Suppose that ĀÿĀĀ and ĀāĀĂ , for some i , j, k , l, are two edges with the same labels.  

Assume that i > j and k > l, then we deduce that the edge labels of ĀÿĀĀ and ĀāĀĂ 
are 2ÿ − 2Ā and  2ā − 2Ă respectively. 

 4 

1 2 

3 
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Hence these must be distinct values, unless i = k and j = l which would mean the 

edges ĀÿĀĀ and ĀāĀĂ  are the same edge.  

Now we note that the largest vertex label in āĄ is 2Ą for vertex ĀĄ. 

It is obvious that for each natural number n we have 2Ą > 
Ą(Ą21)2  .  

Therefore we add  2Ą 2 
Ą(Ą21)2   new vertices to āĄ  by connecting them all to ĀĄ.  

Call this newly formed graph G.  

We will now show that G has a graceful labelling.  

For every x, x ∈ {1,..., 2Ą} that does not exist as a label of an edge in āĄ label one of 

the new vertices with  2Ą 2 x. 

It is clear that all the new edge labels that can then be calculated will have different 

values (call this Claim A) .  

Moreover, all the vertex labels will be from the set {1,..., 2Ą} and will be distinct.  

This is because if two vertices had the same label then two edges  

(both of which would be incident with ĀĄ) would have the same edge label,  

this contradicts Claim A.  

Hence a graceful graph exists for any arbitrary number n such that χ(G) = n.  
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Figure 3.4 

Definition 3.5 :  

A graceful k-colouring of a graph G is a vertex colouring  

c : V (G) → {1,2,...,k}, where k g 2 and each integer represents a different colour,  

that induces an edge colouring c' : E(G) →{1,...,k − 1} defined by c(uv) = |c(u) −c(v)|, 

where u and v are vertices in G and uv is the edge connecting them.  

Any vertex colouring c for a graph G that is a graceful k-colouring for some integer  

k is called a graceful colouring of G.  

The graceful chromatic number of G, denoted by χ�(G), is the minimum value of k 

that gives G a graceful k-colouring. 

Proposition 3.6 : 

If G is a graph with n vertices such that n g 3 and has a diameter of atmost 2, 

then χ�(G) g n.  

Proposition 3.7 : 

If the graph H is a subgraph of a graph G, then χ�(H) f χ�(G). 

 

ÿĄ 

ĀĄ 



29 

 

Proposition 3.8 : 

  If G is a graph with n vertices where n g 3, then we have that 

χ�(G) g max{χ(G),χ'(G)}+ 1. 

Theorem 3.9 : 

If G is a complete bipartite graph with n vertices such that n g 3, then  

χ�(G) = n.  

Proof : 

  Let G = āÿ,Ā be the complete graph where n = a + b such that the set A 

consists of a vertices with A = {ÿ1,ÿ2,...,ÿÿ} and the set B consisting of b vertices 

with B = {Ā1Ā2,..., ĀĀ}.  

Since the diameter of G is 2 we know by Proposition 3.5 that χ�(G) g n.  

Now consider the colouring c : V (G) →{1,2,...,n} where c(ÿÿ) = i, 

 for 1 f i f a, and c(ĀĀ) = a + j, for 1 f j f b.  

Therefore, c'(ÿÿāĀ) = |a + (Ā 2 1)|.  

Note that if i is fixed and 1 f Ā1 b  Ā2 f b, then |a + (Ā1 − i)| ≠ |a + (Ā2− i)|,  

Similarly, if j is fixed 1 f ÿ1 b  ÿ2 f a, then |a + (j − ÿ1)| ≠ |a + (j − ÿ2)|.  

Hence the edges of G have a distinct colouring such that no adjacent edges share the 

same colour and χ�(G) = n. 

Remark 3.10 :  

To examine the graceful chromatic number for cycle graphs we will need 
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to introduce some notation for this we let �Ą = ( Ā1,Ā2, . . . , ĀĄ, ĀĄ+1 = Ā1 ) , where 

n ≥ 3. For an edge in �Ą we let ÿÿ = ĀÿĀÿ+1 for ÿ = 1 , 2 , & , Ą. Then  for the 

colouring of the vertices, c, in �Ą we let �ā = (ā(Ā1), ā(Ā2), & , ā(ĀĄ)). 
And similarly for the colouring of the edges, ā2, of  �Ą we let  

�ā2 = (ā2(ÿ1), ā2(ÿ2), & , ā2(ÿĄ)). 

Theorem 3.11 : 

For n  g 4 we have, if n = 5,  χ�(�5) = 5 and if n b 5,  χ�(�5) = 4. 

Proof : 

Let �Ą be defined as notated above and first suppose n = 5.  

Since the diameter of  �5 is 2, we know by Proposition 3.5 that  χ�(�5)  g 5.  

Now define a colouring of the vertices, c, to be the following: �ā = (1, 5, 3, 4, 2). 

This then makes the resulting edge colouring ā2 to be defined as �ā2= (4, 2, 1, 2, 1). 

Therefore, this shows a graceful 5-colouring of  �Ą so  χ�(�5) = 5. 

Next we examine the case where n ≠ 5.  

To begin with we want to show that in this case  χ�(�Ą) g 4. 

Let’s assume that in fact a graceful 3-colouirng of �Ą exists and say c(Ā1) = 1. 

Since this is a graceful colouring we must have (c(Ā2),c(ĀĄ))  =  (2,3),  

So let’s suppose c(Ā2) = 2 and c(ĀĄ) = 3. 
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This would then mean c(Ā3) = 3, as if it was equal to 1 then Ā2 would have two edges 

adjacent to it with the same number hence resulting in two adjacent edges being given 

the same value, which isn’t allowed. 

However, this would then lead to c'(Ā1Ā2) = c'(Ā2Ā3) = 1 which would go against it 

resulting in a graceful 3-colouring since again two adjacent edges share the same 

colour.  

Hence  χ�(�Ą)  g 4. 

Now will define graceful 4-colourings of �Ą for different values of n. 

n ≡ 0 (mod 4). 

We use the following pattern to denote a graceful 4-colouring of �Ą:  

for n = 4, let �ā = (1, 2, 4, 3) such that �ā2= (1, 2, 1, 2).  

Then for n g 8, let �ā = (1, 2, 4, 3, ..., 1, 2, 4, 3) which implies that �ā2 = (1, 2, ..., 1, 2). 

n ≡ 1 (mod 4). 

We have, when n = 9 let �ā = (1, 2, 4, 1, 2, 4, 1, 2, 4)  

so that �ā2 = (1, 2, 3, 1, 2, 3, 1, 2, 3).  

For n  g 13, let �ā = (1, 2, 4, 3, ..., 1, 2, 4, 3, 1, 2, 4, 1, 2, 4, 1, 2, 4)  

which means �ā2 = (1, 2, 1, 2, ..., 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 3). 

n ≡ 2 (mod 4). 

If n = 6 then �ā = (1, 2, 4, 1, 2, 4) leading to �ā2 = (1, 2, 3, 1, 2, 3). 

Then for n g 10, let �ā  = ( 1, 2, 4, 3, ..., 1, 2, 4, 3, 1, 2, 4, 1, 2, 4)  
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so that �ā2 = (1, 2, 1, 2, ..., 1, 2, 1, 2, 3, 1, 2, 3). 

n ≡ 3 (mod 4).  

For all cases where n g 7 let �ā = (1, 2, 4, 3, ..., 1, 2, 4, 3, 1, 2, 4).  

Then �ā2 = (1, 2, 1, 2, ..., 1, 2, 1, 2, 3).  

Hence in all cases when n ≠ 5 there is a graceful 4-colouring and so χ�(�Ą) = 4.   

Theorem 3.12 : 

  For a path �Ą, where n g 5,  χ�(�Ą) = 4. 

Proof : 

Denote �Ą = (Ā1, Ā2, ..., ĀĄ).  

For n = 5 the graceful 4-colouring, call this c∗,  

is such that (c∗(Ā1),c∗(Ā2),c∗(Ā3),c∗(Ā4),c∗(Ā4)) = (1, 2, 4, 1, 2),  

it is easy to see that a graceful 3-colouring is not possible for �5 ,  

hence  χ�(�5) = 4.  

For n g 6 we observe that �Ą is a subgraph of �Ą,  

therefore by using Proposition 3.7 and theorem 3.11 we can determine that since the 

graceful chromatic number of �Ą when n g 6 is 4 we must have that χ�(�Ą) f 4. 

We will now show that �Ą does not have a graceful 3-colouring.  

Suppose  χ�(�Ą) = 3 for some vertex colouring c. 

We can see that c(Ā3) b 2 since the possible integers for c(Ā2) and c(Ā4) would result 

in the edges Ā2Ā3 and  Ā3Ā4 having the same value, which is not allowed.  
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Hence let c(Ā3) = 1.  

Therefore (c(Ā2),v(ā4)) = (2,3), so let c(Ā2) = 2 which therefore means we must have 

c(Ā1) = 3.  

However this results in c'(Ā1Ā2) = c'(Ā2Ā3) = 1, which again is not allowed.                               

Hence no graceful 3-colouring is possible and we can conclude that   χ�(�Ą) = 4.  

Theorem 3.13 : 

If þĄ is a wheel graph with n g 6, then  χ�(þĄ) = n. 

Proof : 

The graph þĄ  is the join of the graphs  �Ą21 and  ÿ1 ,  

So let  �Ą21 = (Ā1, Ā2, . . . , ĀĄ21, ĀĄ = Ā1 ) and denote the central vertex as Ā0 . 

By Proposition 3.6 we know that χ�(þĄ) g n,  

hence we will show that þĄ  has a graceful n-colouring. 

The graceful n-colouring of the graph  þĄ when n = 6, 7 and 8 means that the central 

vertex is coloured as 1 and the graceful n-colouring for  þ7 and þ8 was obtained 

using the graceful (n−1)-colouring of  þĄ21 for n = 6 and 7 respectively.  

This was achieved by inserting a new vertex into the cycle �Ą22 in  þĄ21 and 

connecting this to the central vertex, then giving this new vertex the colour n. 

Now we will prove that for n  g 7 there is a graceful (n − 1)-colouring of  þĄ21, with 

the central vertex, Ā0 , coloured as 1, where an edge xy 
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(the edge connecting some vertex x to some vertex y) in the cycle  �Ą22 in  þĄ21 can 

have a new vertex, call this v, inserted into it and joined to Ā0 to produce þĄ. 

Furthermore, v can be coloured as n to produce a graceful n-colouring for the 

resulting graph þĄ. 

So suppose there exists a graceful (n − 1)-colouring, c, of  þĄ21 for some n  g 7, with 

the central vertex coloured with 1. 

We want to show that there is an edge xy in �Ą22  where c(x) and c(y) satisfying the 

following two conditions: 

i) c(x) ≠ (n + 1)/2 and c(y) ≠ (n + 1)/2,  

ii) if (x’,x,y,y’) is a path in �Ą22, then c(x) ≠ c(x') + Ą2 and c(y) ≠ c(y’) + Ą2. 

To show this we let �Ą22 = (Ā1, Ā2, . . . , ĀĄ22, ĀĄ21 = Ā1 )  ; the diameter of  þĄ21   

is 2 so all the vertices in þĄ must be assigned different colours by the vertex 

colouring c. 

Therefore, if for some i, ā(Āÿ+1) =  
c(��+2)+n  2   then c(ĀĀ) ≠ c(��+2)+n  2   for all j ≠ i + 1. 

(Note, here the subscripts are denoted as integers modulo n − 2). 

We now consider the two cases where n is an odd integer and when n is an even 

integer. 

Case 1 

Let n be an odd integer.  

Suppose that for some i, ā(Āÿ+2) =  
c(��+2+n)  2  . 

This would mean the edge ĀÿĀÿ+1 makes the condition ii) invalid.  
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We know that n = 2c(Āÿ+1)c(Āÿ+2) is odd, hence we can deduce that c(Āÿ+2) is odd. 

There are 
Ą232  vertices in �Ą22 which will be assigned odd colours by c, since the 

central vertex is coloured with 1, therefore at most 
Ą232  edges in �Ą22 will fail 

condition ii).  

Conclusively this means there will be at least (n − 2) − Ą232  = 
Ą212  edges (which will 

have a value g 3) in �Ą22 that satisfy condition ii).  

Amongst these edges - those which satisfy condition ii) - at most two of them will fail 

condition i).  

Hence, there will be a least one edge xy in �Ą22 for which c(x) and c(y) satisfy both i) 

and ii). 

Case 2 

We will now assume n is even.  

Suppose that for some i, ā(Āÿ+2) =  
c(��+2+n)  2   .  

We can see that n = 2c(Āÿ+1)c(Āÿ+2) is even, therefore it follows that c(Āÿ+2) is even. 

There are then 
Ą222  vertices in �Ą22 which will be assigned even colours by c, since 

again the central vertex is coloured with 1, which means that at most 
Ą222  edges in �Ą22 will fail condition ii). 

Consequently there will be at least (n−2) − 
Ą222  = Ą222  edges 

(which will have a value g 4) in �Ą22 that satisfy condition ii).  
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Since the value of  Ą+12  is not an integer, all of these edges will satisfy condition i). 

Hence, there will be a least one edge xy in �Ą22 for which c(x) and c(y) satisfy both i) 

and ii). 
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CHAPTER 4 

GRACEFUL TREES 

Theorem 4.1 :  

All caterpillars are graceful 

Proof : 

  Let T be a caterpillar with n vertices. 

Call the path that is formed from T when all the leaves are removed H.  

Select an endpoint of H (a vertex with degree 1) and call this Ă0,  

then name the next adjacent vertex to Ă0 in H as Ă1, continue to do this along H;  

such that the vertices of H are given names from Ă0 to Ăā for some integer k. 

Denote X to be the set of vertices in T whose distance from Ă0 is even, this includes  Ă0 itself.  

Then let Y denote the set of vertices in T which are of odd distance from Ă0.  

Here we can note that every edge connects together two vertices, one of which is in X 

and one that is in Y. 

Now assign the label n − 1 to Ă0.  

Label the neighbours of Ă0 with 0, 1, 2, ..., where Ă1 is the neighbour that receives the 

greatest label.  

Next assign labels n − 2, n − 3, ..., to the neighbours of Ă1 - giving the largest label to Ă2. 
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From here we continue as follows:  

after Ă2ÿ (for some value i) receives its label assign its neighbours with increasing 

integer labels starting with the smallest available integer that has not yet been used as 

a label,  

do not include its neighbour Ă2ÿ21 as this will already have a label allocated, and give 

the largest label to Ă2ÿ+1.  

Then assign decreasing integer labels to the neighbours of Ă2ÿ+1, not including Ă2ÿ, 
starting with the largest unused integer that is smaller than n and giving the smallest 

value of these labels to Ă2ÿ+2.            

This will result in all members of the set X receiving the labels:  

n − 1,n − 2, ..., n − |X|, whereas all member of the set Y will receive the labels 

0, 1, 2, ..., |Y|.  

It can be easily observed that the graph has a graceful labelling.  

 Definition 4.2 : 

A spider tree is a tree graph which has exactly one vertex with degree larger 

than or equal to 3, such a vertex is called the branch point of the tree. The paths that 

lead from the branch point to a leaf in the tree are referred to as legs.  

Remark 4.3 :   

The length of a leg is of value m, this means that m edges were crossed from 

the branch point at the start of the path to reach the vertex at the end of the path.  
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Theorem 4.4 : 

Let T be a spider tree with Ă legs. If each leg has a length of either m or m + 1 

for some m g 1, then T is graceful. 

  Proof :  

Let us assume  Ă g 3, otherwise T would simply be a path which as we have 

shown previously is graceful. 

First we will look at the case where Ă is odd.  

Let Ă = Ă 0 + Ă 1, where Ă ÿ is the number of legs with length m + i for i ∈ {0,1}.  

We can then calculate the number of vertices, n, in T such that  Ą = Ăă + Ă 1+ 1  

(this is calculated by accounting that all Ă legs are of length of at least m, plus Ă 1 of 

them have an extra vertex at the end, whilst noting that all the legs originate from the 

same single vertex, the branch point).  

These vertices will be given labels from the set {0,1,...,k}, where k in this case is 

equivalent to the number of edges in T. 

Next we give names to the legs using Ā1, Ā2 , ..., ĀĂ , here Ā1 , Ā2 , ..., ĀĂ1are the legs of 

length m + 1 and Ā(Ă1)+1, Ā(Ă1)+2 , ..., ĀĂ  are the legs of length m.  

Let Ā∗ denote the branch point of T and Āÿ,Ā denote a vertex in Āÿ  of distance from Ā∗. 

                                    We now will define the following labelling function, Φ:  

i) let Φ(Ā∗) = 0,  

ii) if i and j are both odd, then Φ(Āÿ,Ā) = ā 2  ÿ212 2  (Ā21)Ă2 ; 
iii) if i and j are both even, then Φ(Āÿ,Ā) = ā 2  Ă212 2 ÿ2 2  (Ā22)Ă2 ; 
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iv) if i is even and j is odd, then Φ(Āÿ,Ā) =  ÿ2 + (Ā21)Ă2 ; 
v) if i is odd and j is even, then Φ(Āÿ,Ā) =  

Ă212 + ÿ+12 2  (Ā21)Ă2  . 

The Φ labelling puts a 0 label at the spider’s branch point and then, by traversing 

along the spider’s longer legs first, it give labels to the rest of the vertices. 

It does this by alternating between the highest and lowest remaining unused labels 

and spiralling away from the centre. 

An example of this is shown in Figure 4.5 where Ă 0= 2, Ă 1 = 3 and m = 4. 

 

 

 

 

 

 

 

 

Figure 4.5 

To compute the edge labels induced by the newly allocated vertex labels we recognise 

that the local maxima of Φ occurs at Āÿ,Ā when i and j have the same parity,  

So when both i and j are odd or when both i and j are even.  

For when this is the case for i and j we have, 
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Φ(Āÿ,Ā)  2 Φ(Āÿ,Ā+1) = ā 2  Ă212 2 ÿ + (1 2 Ā)Ă > 0,          (1) 

Φ(Āÿ,Ā)  2 Φ(Āÿ,Ā21) = ā 2  Ă212 2 ÿ + (2 2 Ā)Ă > 0.          (2) 

When looking for a contradiction suppose that two distinct edges share the same edge 

label.  

Consider the indices of the vertices these two edges incident with.  

It can be deemed that distinct pairs of indexes (ÿ, Ā) and (ÿ2, Ā′) can be chosen such 

that ÿ and Ā have the same parity, ÿ′ and Ā′ likewise have the same parity and an edge 

incident with Āÿ,Ā shares the same label as a different edge incident with Āÿ2 ,Ā2. 
Hence, this would imply one of the following three case could occur: 

Φ(Āÿ,Ā)  2 Φ(Āÿ,Ā+1) = Φ(Āÿ2,Ā2)  2 Φ(Āÿ2,Ā2+1),                       (3) 

Φ(Āÿ,Ā)  2 Φ(Āÿ,Ā+1) = Φ(Āÿ2,Ā2)  2 Φ(Āÿ2 ,Ā221),                       (4) 

Φ(Āÿ,Ā)  2 Φ(Āÿ,Ā21) = Φ(Āÿ2,Ā2)  2 Φ(Āÿ2 ,Ā221).                       (5) 

We will examine the case where (3) holds. 

By equation (1) we obtain that ÿ 2 ÿ′ + (Ā 2 Ā′)Ă = 0, however Ā b Ā′ otherwise ÿ = ÿ′ 
which contradicts the assumption that (ÿ, Ā) b (ÿ′, Ā′). 

Therefore we can write =  ÿ2ÿ2Ā22Ā . 
Hence, |ÿ 2 ÿ′| < Ă and  |Ā 2 Ā′| ≥ 1, and Ă = | ÿ2ÿ2Ā2Ā2 | <  Ă1 = Ă  , another contradiction. 

Similarly, when equations (4) and (5) hold they result in contradictions. 

Therefore two distinct edges cannot have the same edge labels and Φ gives a graceful 

labelling. 
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We will now look at the case where Ă is even. 

Without loss of generality, assume ĀĂ is a leg with length m. 

Removing this results in a tree, call this Ā0, with an odd number of legs, Ă 2 1. 

The previous construction yields the graceful labelling Φ0 of  Ā0 such that Φ0(Ā∗) = 0. 

Now we let |ý(Ā0)| = ā′ + 1 and define a new graceful labelling , Φ′0 , on Ā0 

where Φ0(Ā) = ā2 2 Φ0(Ā) for all Ā. 

Next we construct a new tree, Ā1 , by adding a new vertex, call this ā1, to Ā0’s branch 

point. 

Define Φ1 on V (Ā1) by Φ1(ā1) = 0 and Φ1(Ā) = Φ20(Ā) + 1 for all Ā ∈ ý(Ā0) 

Then also define Φ′1 on Ā1 by Φ′1(Ā) = ā′ + 1 2 Φ1(Ā) for all Ā, noting that 

Φ′1(ā1) = Ą′ + 1. 
Following this we add a new vertex ā2 to ā1 and construct the graceful labellings 

Φ2 from Φ′1 and Φ′2 from Φ2,and so on, until we have the full reconstruction of 

ĀĂ = ā1, ā2, . . . , āă which recovers our original graph T. 

This will then mean T will have a graceful labelling. 

                                    Lemma 4.5 :  

All trees with a diameter of at most 4 are graceful.  

                                    Proof : 

A tree with no diameter is just a single vertex so the result is trivial. 
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A tree with a diameter of 1 will simply be a tree with one edge (and two vertices) 

hence again is trivial.  

If a tree has a diameter of 2 it is either the path �2 or any star ÿĄ, where n is the total 

number of vertices, which we have previously proven to be graceful.  

A tree with a diameter of 3 will be a caterpillar, if all the leaves were removed from 

this graph we would be left with a path consisting of a single edge and two vertices, as 

we have shown in Theorem 4.1 this is graceful.  

Finally, all trees with a diameter of 4 have been proven to be graceful    

Remark  4.6 :  

If T is a caterpillar with a maximum degree ∆, where ∆ g 2, then  

∆ + 1 f χ� (T) f ∆ + 2.                    
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CHAPTER 5 

TOTAL COLOURING OF GRACEFUL GRAPHS 

Definition 5.1 : 

A total colouring of a graph G assigns colours to the vertices and edges of G, 

such that: no pair of adjacent edges or vertices share the same colour and no edge and 

vertex that are incident with each other are the same colour. If such a colouring for G 

can be achieved using k colours then G is said to be k-total-colourable and have 

received a k-total-colouring.  

The total chromatic number, χ''(G), for the graph G is the minimum number of 

colours needed to produce a total colouring of G. 

Example 5.2 : 

 

 

 

 

Total colouring of the wheel graph þ4  with the total chromatic number is 5. 

Conjecture 5.3 : 

For every graph G, χ''(G) f ∆ + 2, where ∆ is the largest vertex degree in the 

graph. 

Lemma 5.4 :  

For any graceful graph, G, where the degree of the vertex labelled 0 is 1, 
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χ''(G) f m + 1 where m is the total number of edges in G. 

Proof : 

We know that for a graceful graph, G, other than at vertex 0, no edge has the 

same label value as any vertices it is incident with.  

Additionally, all edges and vertices have distinct labels.  

Using these two facts we can begin to create a total colouring for G.  

Firstly, let any edge or vertex labelled i, for 1 f i f m−1, be coloured with the  

colour i. 

Next colour the vertex m with the colour m and the edge m with the colour  

m + 1.  

All edges of the graph should now be coloured and the only vertex not assigned a 

colour is vertex 0.  

From here it is easy to see that since vertex 0 has a degree of 1, the only edge  

adjacent to it is coloured with m + 1 whilst the only vertex adjacent to it is  

coloured with m.  

This means vertex 0 can be coloured with any colour i, where 1 f i f m−1.  

Hence, the graceful graph receives a (m + 1)-total-colouring. 

Lemma 5.5 : 

For any graceful graph, G, where the degree of the vertex labelled 0 is  

                                    greater than 1, χ''(G) f m + 1 where m is the total number of edges in G.  
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Proof : 

By analysing the vertex 0 and both the edges and vertices adjacent to it. 

Firstly we colour the vertex 0 with the colour m + 1.  

Let us then say vertex 0 has a degree of value d.  

This means that there are d vertices incident with vertex 0, call these ĀĀ for each  

1 f j f d. 

Now we can colour the vertices ĀĀ with the colour of their vertex labels i, where 

1 f i f m.  

We next want to colour the edges that adjoin the vertices ĀĀ to vertex 0.  

To do this we apply the following rule:  

For an edge ÿĀ , that is an edge connecting vertex ĀĀ  to vertex 0, colour this with  

the colour of vertex ĀĀ +1 for 1 f j f d − 1.  

In the case where j = d, let ÿĂ be coloured with the colour of Ā1 . (∗) 

We move onto colouring the reminder of the graph. 

Again, we note the fact that no edge has the same label value as any vertices it is 

incident with (except at vertex 0) and all vertex and edge labels are distinct.  

This means all the remaining vertices and edges labelled i can be coloured with 

colour i, where 1 f i f m − 1.  
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(Note that no values of i previously used in the step before will be repeated and we 

know that the vertex labelled m must be adjacent to vertex 0 hence will already be 

coloured). 

Following these steps will provide a valid (m + 1)-total-colouring for the graceful 

graph. 

Lemma 5.6 : 

For a path �Ą, χ''(�Ą) = 3.  

Proof :  

For a path �Ą where n and m are the total number of vertices and edges in the 

graph respectively, denote �Ą by the sequence consisting of its vertices Āÿ 
(where 1 f i f n) and edges ĀĀ (where 1 f j f m = n − 1) in the order they are 

traversed along the path from the initial vertex Ā1 to the terminal vertex ĀĄ .  
This is as follow: Ā1, ÿ1 , Ā2 , ÿ2, Ā3 , ÿ3 , Ā4, ÿ4  , ..., ÿĄ21 , ĀĄ.  

Now if we allocate colours to the elements of the sequence we can see by inspection 

that in order for no adjacent elements to share the same colour,  

as well as no Āÿ to share the same colour as Āÿ+1 and Āÿ21 (for 2 f i f n−1)  

and no ÿĀ to share the same colour as ÿĀ+1 and ÿĀ21  (for 2 f i f n−2),  

three colours are needed. 

Hence, Ā1 can be coloured with colour 1, ÿ1 can be coloured with colour 2, Ā2 

coloured with colour 3, then ÿ2 can be coloured with colour 1 again and so on. 

 



48 

 

Theorem 5.7 : 

A star graph ÿĄ has χ''(ÿĄ) = ∆ + 1 = n, where ∆ is the largest degree in the 

graph. 

Proof : 

First we note that the central vertex is adjacent to all the outer vertices in the graph, 

hence every edge must be coloured a different colour. 

(Here at least n colours are needed, that is, n − 1 colours for the edges and an 

additional colour for the central vertex). 

To achieve the total colouring of ÿĄ we colour the central vertex (labelled 0) with 

colour n. 

We next let all the outer vertices be coloured with colour i, such that i is the value of 

their vertex label and 1 f i f n−1.  

Then using the same process described by the rule (∗) in Lemma 4.5,  

here vertex 0 is now defined as the central vertex of ÿĄ, we assign colours to the  

edges of ÿĄ, these will all be colours from the set i.  

Hence, χ''(ÿĄ) = n. 

Theorem 5.8 : 

All wheel graphs,þĄ , with n vertices (n g 4) have χ''(þĄ) = ∆ + 1 = n, where 

∆ is the largest vertex degree in þĄ. 

 Proof : 

  We can recognise that a subgraph of þĄ is ÿĄ. 
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Therefore to begin this proof, apply the total colouring derived in Theorem 5.7 to the 

subgraph ÿĄ in þĄ , recalling also the procedure used in Lemma 5.5 (∗). 

This results in a colour being allocated to all the vertices and inner edges of  þĄ using 

∆ + 1 colours. 

Next we must assign colours to the outer edges of þĄ.  

To achieve this we colour the edge connecting vertex ĀĀ to ĀĀ+1 with the colour of 

vertex ĀĀ+2, for 1 f j f j − 2.  

In the case where j = j − 1 we colour the edge connecting ĀĀ21 to ĀĀ  with the colour of 

vertex Ā1. 

Then for the case where j = d (in this case d = ∆ = n − 1) we colour the edge 

connecting ĀĀ to Ā1 with the colour of vertex Ā2.  

The result will be a (∆+1)-total-colouring for þĄ. 

Theorem 5.9 : 

A complete bipartite graph, ÿÿ,Ā , has χ''(ÿÿ,Ā) = ∆ + 2, where ∆ is the largest 

degree in the graph. 

Proof : 

Given that the chromatic number of a bipartite graph is 2 

(as the vertices of the graph can be split into two sets, A and B, such that vertices in 

set A are only adjacent to vertices in set B), we begin by colouring all the vertices in 

set A with what we will for now refer to as colour A and all vertices in set B with the 

colour B.  
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Next we recognise that since every vertex in set A is adjacent to every vertex in set B 

no edges in the graph can be coloured with colour A or B.  

Furthermore we observe that ∆(ÿÿ,Ā) = max{a,b} = k, for some integer k,  

hence at least k colours are needed to colour the edges of the graph.  

Note that from this point on the colours 1 to k do not consist of the colours A or B. 

Considering this, for the set where the vertices have degree ∆ = k, label them as  

Ā1,1, Ā1,2 , ... , Ā1,� , where s is the integer a or b (note that s ≠ k unless a = b). 

For the case where a = b, hence every vertex in ÿÿ,Ā has degree k, either set A or B 

can be chosen to be labelled in this way.  

Following this, label the second set of vertices as Ā2,1, Ā2,2 ..., Ā2,ā .  

We will now begin to assign the edges colours starting with those incident withĀ1,1. 

Here, let Ā1,1Ā2,ý  denote the edge connecting vertex Ā1,1 with vertex Ā2,ý, where  

1 f x f k.  

Then for each value of x we assign the colour x to the edge Ā1,1Ā2,ý 

Next we look at the edges incident with Ā1,2, here we assign the colour x + 1 to the 

edge Ā1,2Ā2,ý, letting colour k + 1 = 1.  

From this we can formulate the following rule:  

For the edge Ā1,þĀ2,ý , where 1 f y f s and 1 f x f k, assign the colour x + (y − 1) to 

the edges, noting that whenever the colour is k + (y − 1) let this be equivalent to the 

colour y − 1. 
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Following this process will result in a proper edge colouring for āÿ,Ā using k colours. 

Therefore, by noting that two further colours (colours A and B) were used for the 

vertices of the graph to give a proper vertex colouring, when coloured in this way, 

both the proper edge and vertex colourings result in a proper total colouring. 

Hence χ''(ÿÿ,Ā) = ∆ + 2.   
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CHAPTER - 1 

PRELIMINARIES 

 Definition: 1.1 

A graph G consists of a pair (ý(ă), ÿ(ă)) where ý(ă) is a non-empty finite set 

whose elements are called points or vertices and ÿ(ă) is set of unordered pairs of 

distinct elements of ý(ă). The elements of ÿ(ă) are called lines or edges of the graph G. 

Definition: 1.2 

 If two vertices of a graph are joined by an edge then these vertices are called 

adjacent vertices. If two or more edges of a graph have a common vertex then these 

edges are called incident edges. 

Definition: 1.3 

A edge of a graph that joins a vertex to itself is called a loop. A loop is an edge þ = ĀÿĀÿ . If two vertices of a graph are joined by more than one edge then these edges are 

called multiple edges. A graph which has neither loops nor parallel edges is called a 

simple graph. 

Definition: 1.4 

 A graph in which any two distinct points are adjacent is called a complete graph. 

Definition: 1.5 

 A graph G is called a bigraph or bipartite graph if V can be partitioned into two 

disjoint subsets V1 and V2 such that every line of G joins a point of   V1 to a point V2.  

(V1,V2) is called a bipartition of G.  If further G contains every line joining the points of 

V1to the points of V2 then G is called a complete bigraph. 

 



 

 2       

 

 Definition: 1.6 

 Degree of a vertex v of any graph G is defined as the number of edges incident 

with v. It is denoted by deg (v) or d(v). 

Definition: 1.7 

 For any graph G, we define �(ă) = ÿÿĀ{deg Ā Ā �⁄ ý(ă)} and 

 ∆(ă) = ÿ�Ă{deg Ā Ā �⁄ ý(ă)}.If all the points of G have the same degree r then 

 �(ă) = ∆(ă) = Ą and this G is called a regular graph of degree r. 

Definition: 1.8 

 A graph Ą = (ý1, ÿ1) is called a subgraph of ă = (ý, ÿ) if ý1 ⊆ ý and ÿ1 ⊆ ÿ. 

If H is a subgraph of G we say that G is a supergraph of H. H is called a spanning 

subgraph of G if ý1 = ý. H is called a induced subgraph of G if H is the maximal 

subgraph of G with point set ý1. Thus, if H is an induced subgraph of G, two points are 

adjacent in H iff they are adjacent in G. 

Definition: 1.9 

 A walk of a graph G is an alternating sequence of points and lines Ā0, Ă1, Ā1, Ă2, Ā2, & , ĀĀ21, ĂĀ, ĀĀ beginning and ending with points such that each line Ăÿis 

incident with Āÿ21and Āÿ. A walk is called a trail if all its lines are distinct and is called a 

path if all points are distinct. A Ā0 2 ĀĀ walk is called closed if Ā0 = ĀĀ. A closed 

walk Ā0, Ā1, Ā2, & , ĀĀ = Ā0 in which Ā g 3 and Ā0, Ā1, Ā2, & , ĀĀ21 are distinct of length n 

is called a cycle.  A cycle with n vertices is denoted as ÿĀ.  

Definition: 1.10 

  Two points u and v of a graph G are said to be connected if there exist a ÿ 2 Ā 

path in G. 
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A graph G is said to be connected if every pair of its points are connected. 

Definition: 1.11 

 Denote,+Ā, – Largest integer greater than or equal to n. 

                         -Ā. – Smallest integer less than or equal to n. 

 Definition: 1.12 

 A graph that contains no cycles is called an acyclic graph. A connected acyclic 

graph is called a tree. 

Definition: 1.13 

 A complete bipartite graph ā1,Ā is called a star and it has n+1 vertices and n 

edges.  ā1,Ā is the graph obtained by the subdivision of the edge of the star ā1,Ā. 

 Definition: 1.14 

            Bistar  is a graph obtained from a path ÿ2 by joining the root of stars ÿÿ and ÿĀ at 

the terminal vertices of ÿ2.  It is denoted by þÿ,Ā. 
 Definition: 1.15  

 The wheel �Ā(Ā ∈ ℕ, Ā g 3) is a join of the graphs ÿĀ and �1.i.e. þĀ = ÿĀ +�1.The vertex corresponding to �1is called as apex vertex. The vertices corresponding to ÿĀ are called as rim vertices and ÿĀ is called rim of þĀ. 

Definition: 1.16  

 The fan ýĀ is the graph obtained by taking n concurrent chords in cycle ÿĀ+1.  

The vertex at which all the chords are concurrent is called the apex vertex.  It is also 

given by ĂĀ = ÿĀ + �1. 

Definition: 1.17 

 The double fan DFn is defined as Pn + 2K1.  
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 Definition: 1.18 

A gear graph þĀ(Ā g 3) is obtained from the wheel þĀ between adding a vertex 

every pair of adjacent vertices of rim of þĀ. 

Definition: 1.19 

A web graph is the graph obtained by joining the pendant of a helm to form a cycle 

and then adding a single pendant edge to each vertex of this outer cycle. 

Definition: 1.20 

 A helm ÿĀ(Ā g 3) is the graph obtained from the wheel þĀ by adding a pendant 

edge at each vertex on the rim of þĀ. 

Definition: 1.21 

A crown ÿĀ ⊙ �Ā(Ā ∈ ℕ, Ā g 3) is obtained by joining a pendant edge to each 

vertex of ÿĀ. 

Definition: 1.22 

 A chord of a cycle ÿĀ is an edge joining two non-adjacent vertices of cycle ÿĀ. 

 Definition: 1.23  

The corona of G with H, G ⊙ H is the graph obtained by taking one of G and p 

copies of H and joining the ith vertex of G with an edge to every vertex in the ith copy of 

H. 

Definition: 1.24 

The triangular snake �Ā is obtained from the path ÿĀby replacing each edge of 

the path by a triangle ÿ3. 
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Definition: 1.25 

The quadrilateral snake�Ā is obtained from the path ÿĀ by replacing each edge 

of the path by a cycle ÿ4. 

 Definition: 1.26 

 An alternate triangular snake �(�Ā) is obtained from a path ÿ1ÿ2 & ÿĀ by 

joining ÿÿ and ÿÿ+1(alternatively) to new vertex Āÿ .  That is every alternative edge of a 

path is replaced by C3. 

 Definition: 1.27 

 A double triangular snake Ā�Ā consists of two triangular snakes that have a 

common path.  That is a double triangular snake is obtained from a path ÿ1ÿ2 & ÿĀ by 

joining ÿÿ and ÿÿ+1 to a new vertex Āÿ (1 f i f n – 1) and to a new vertex āÿ(1 f i f n –). 

Definition: 1.28 

 A double quadrilateral snake Ā�Ā consists of two triangular snakes that have a 

common path. 

Definition: 1.29 

 A double alternate triangular snake Ā�(�Ā) consists of two alternate triangular 

snakes that have a common path.  That is, a double alternate triangular snake is obtained 

from a path ÿ1ÿ2 & ÿĀ  by joining ÿÿ  and ÿÿ+1 (alternatively) to two new vertices Āÿ  and āÿ.  
Definition: 1.30 

 A double alternate quadrilateral snake Ā�(�Ā) consists of two alternate 

quadrilateral snakes that have a common path.  That is, it is obtained from a path 
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ÿ1ÿ2 & ÿĀ by joining ÿÿ  and ÿÿ+1 (alternatively) to new vertices Āÿ, Ăÿ and āÿ, ăÿ 
respectively and adding the edges Āÿāÿ and Ăÿăÿ. 
Definition: 1.31 

Labeling or valuation or numbering of a simple graphs G is an assignment of 

integer to the vertices or edges or both subjects to certain condition. 

 Definition: 1.32 

A binary vertex labeling of a graph G is called a cordial labeling if |Ā�(0) 2 Ā�(1)| f 1 and |þ�(0) 2 þ�(1)| f 1.  A graph G is cordial if it admits cordial 

labeling.  

Definition: 1.33 

 Let G be a (Ă, ă) graph. Let f be a map from ý(ă) to {1,2, & , Ă}. For each 

edge ÿĀ, assign the label |ÿ(ÿ) 2 ÿ(Ā)|. ÿ is called difference cordial labeling if ÿ is 1 2 1 and |þ�(0) 2 þ�(1)| f 1 where þ�(1) and þ�(0) denote the number of edges 

labeled and labeled with 0 respectively. A graph with a difference cordial labeling is 

called a difference cordial graph. 

Definition: 1.34 

 Let G be a (Ă, ă) graph. Let ā be an integer with 2 f ā f Ă and ÿ: ý(ă) →{1,2, & , ā} be a map. For each edge ÿĀ, assign the label |ÿ(ÿ) 2 ÿ(Ā)|. The function ÿ is 

called a �-difference cordial labeling of G if |Ā�(0) 2 Ā�(1)| f 1 and |þ�(0) 2þ�(1)| f 1 where Ā�(Ă) denotes the number of vertices labeled with Ă(Ă ∈ {1,2, & , ā}), þ�(1) and þ�(0) respectively denote the number of edges labeled with 1 and labeled with 

0. A graph with a ā-difference cordial labeling is called a ā-difference cordial graph. 
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CHAPTER -2 

DIFFERENCE CORDIAL LABELING OF GRAPHS 

Definition: 2.1 

Let G be a (p,q) graph.  Let f  be a map from V(G) to {1,2,3,…,p}.  For each edge 

uv, assign the label |ÿ(ÿ) 2 ÿ(Ā)|.  f is called difference cordial labeling if f is 1 2 1 and |þ�(0) 2 þ�(1)| f 1 where þ�(1) and þ�(0) denote the number of edges labeled with 1 

and labeled with 0 respectively.  A graph with a difference cordial labeling is called a 

difference cordial graph. 

 The following is simple example of a difference cordial graph.  

 

 

  

 

Figure 2.1 

Theorem: 2.2 

 Every graph is a subgraph of a connected difference cordial graph. 

Proof: 

Let G be a given (p,q) graph. 

1   

  2   

4  

3   
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Let � = ý(ý21)2 2 2Ă + 2. 
Consider the complete graph KP and the cycle CN. 

Let ý(�ý) = {ÿ1, ÿ2, & , ÿý} and CN be the cycle Ā1Ā2 & Ā�Ā1. 
We construct the super graph ă∗of G as follows: 

Let ý(ă∗) = ý(�ý) ∪ ý(ÿ�) and  ā(ă∗) = ā(�ý) ∪ ā(ÿ�) ∪ {ÿýĀ1}. 

Clearly G is a subgraph of ă∗. 

Assign the label i to ÿÿ (1 f ÿ f Ă) and Ă + Ā to ĀĀ (1 f Ā f �). 

Therefore, þ�(0) = � + Ă and þ�(1) = � + Ă 2 1. 

Hence ă∗ is a difference cordial graph. 

Theorem: 2.3 

 If G is a (p,q) difference cordial graph, then ă f 2Ă 2 1. 
Proof: 

Let f be a difference cordial labeling of G. 

Obviously, þ�(1) f Ă 2 1. 

This implies þ�(0) g ă 2 Ă + 1     …(1) 

Case (i):   þ�(0) = þ�(1) + 1. 
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From (1),  ă f þ�(0) + Ă 2 1 

                       = þ�(1) + 1 + Ă 2 1  

                       f 2Ă 2 1  

Therefore,ă f 2Ă 2 1                  …(2) 

Case 2(i):  þ�(1) = þ�(0) + 1 

From (1),     ă f þ�(0) + Ă 2 1 

                      = þ�(0) + Ă 2 1 

                      f 2Ă 2 2 

Therefore,   ă f 2Ă 2 2                  …(3) 

Case 2(ii):  þ�(1) = þ�(0) + 1 

From (1),   ă f þ�(0) + Ă 2 1 

                        = þ�(1) 2 1 + Ă 2 1  

                        f 2Ă 2 3  

Therefore, ă f 2Ă 2 2                   …(4) 

From (2), (3) and (4),  ă f 2Ă 2 1. 
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Theorem: 2.4 

 If G is a r-regular graph with r g 4 then G is not difference cordial. 

Proof: 

Let G be a (p,q) graph. 

Suppose G is difference cordial. 

Then by theorem 2.3  ă f 2Ă 2 1. 

This implies ă f 4þÿ 2 1. 

Hence ă f ă 2 1. 

This is impossible. 

Theorem: 2.5 

 Any Path is difference cordial graph. 

Proof: 

Let ÿĀbe path ÿ1ÿ2 & ÿĀ. 

The following table 2.1 gives the difference cordial labeling ofÿĀ, Ā f 8. 
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e �Ā �ā �Ă �ă �Ą �ą �Ć �ć 

1 1        

2 1 2       

3 1 3 2      

4 1 2 4 3     

5 1 2 4 3 5    

6 1 2 3 5 4 6   

7 1 2 3 5 7 6 4  

8 1 2 3 4 6 8 7 5 

 

Table 2.1 

Assume Ā < 8. 
Define a map ÿ: ý(ÿĀ) → {1, 2, & , Ā} as follows: 

Case (i):  Ā ≡ 0(ÿāý 4). 

Define, 

ÿ(ÿÿ) = ÿ                                          1 f ÿ f Ā + 22  
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ÿ (ÿ�+22 +ÿ) = Ā + 22 + 2ÿ                   1 f ÿ f Ā4 2 1 

ÿ (ÿ3�4 +ÿ) = Ā + 22 + 2ÿ 2  1                1 f ÿ f Ā4 

Case (ii):  Ā ≡ 1(ÿāý 4). 

Define, 

ÿ(ÿÿ) = ÿ                                          1 f ÿ f Ā + 12  

ÿ (ÿ�+12 +ÿ) = Ā + 12 + 2ÿ                1 f ÿ f Ā 2 14  

ÿ (ÿ3�+14 +ÿ) = Ā + 12 + 2ÿ 2 1        1 f ÿ f Ā 2 14  

Case (iii):  Ā ≡ 2(ÿāý 4).  

Define, 

ÿ(ÿÿ) = ÿ                                          1 f ÿ f Ā + 22  

ÿ (ÿ�+22 +ÿ) = Ā + 22 + 2ÿ               1 f ÿ f Ā 2 24  

ÿ (ÿ3�+24 +ÿ) = Ā + 22 + 2ÿ 2 1       1 f ÿ f Ā 2 24  

Case (iv):  Ā ≡ 3(ÿāý 4). 
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Define, 

   ÿ(ÿÿ) = ÿ                                    1 f ÿ f Ā + 12  

ÿ (ÿ�+12 +ÿ) = Ā + 12 + 2ÿ                   1 f ÿ f Ā + 14 2 1 

ÿ (ÿ3�214 +ÿ) = Ā + 12 + 2ÿ 2 1              1 f ÿ f Ā + 14  

The following table 2.2 proves that f is a difference cordial labeling. 

Nature of n þÿ(ÿ) þÿ(Ā) 

Ā ≡ ÿ(ÿāý ā) Ā 2 āā  
Āā 

Ā ≡ Ā(ÿāý ā) Ā 2 Āā  
Ā 2 Āā  

Table 2.2 

 Corollary: 2.6 

 Any Cycle is a difference cordial graph. 

Proof: 

The function f in theorem 2.5 is also a difference cordial labeling of the cycle ÿ: ÿ1ÿ2 & ÿĀÿ1. 
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Theorem: 2.7 

 The Star �1,Ā is difference cordial iff Ā f 5. 

Proof: 

Let ý(�1,Ā) = {ÿ, ÿÿ: 1 f ÿ f Ā},  ā(�1,Ā) = {ÿÿÿ: 1 f ÿ f Ā}.   

Table 2.3 shows that the star �1,Ā, Ā f 5 is difference cordial. 

Ā � �Ā �ā �Ă �ă �Ą 

1 1 2     

2 1 2 3    

3 1 2 3 4   

4 2 1 3 4 5  

5 2 1 3 4 5 6 

 

Table 2.3 

Assume  Ā > 5. 

Suppose f is a difference cordial labeling of �1,Ā, Ā > 5. 

Without loss of generality assume that ÿ(ÿ) = Ă. 
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To get the edge label 1, the only possibility is that, ÿ(ÿÿ) = Ă 2 1, ÿ(ÿĀ) = Ă + 1  for 

some i,j. 

This implies þ�(0) 2 þ�(1) g Ā 2 2 2 2 > 1, a contradiction. 

Theorem: 2.8 

 �Ā is difference cordial iff Ā f 4. 

Proof: 

Suppose �Āis difference cordial. 

Then 
Ā(Ā21)2 f 2Ā 2 1. 

This implies Ā f 4. 

�1, �2 are difference cordial by theorem 2.5. 

By corollary 2.6, �3 is difference cordial. 

A difference cordial labeling of �4  is given in figure 2.2. 

 

  

         Figure 2.2 

 
    3     2 

   4   1   
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Now we look into the complete bipartite graph  �ÿ,Ā. 
Theorem: 2.9 

 If ÿ g 4 and Ā g 4, then �ÿ,Ā is not difference cordial. 

Proof:  

Suppose  �ÿ,Ā is difference cordial.   

By theorem 2.3, ÿĀ f 2(ÿ + Ā) 2 1. 

This implies ÿĀ 2 2ÿ 2 2Ā + 1 f 0, a contradiction to ÿ g 4 and Ā g 4. 

Theorem: 2.10 

   �2,Ā is difference cordial iff Ā f 4. 

Proof: 

Let ý( �2,Ā ) = ý1 ∪ ý2where ý1 = {ÿ1, ÿ2} and ý2 = {Āÿ: 1 f ÿ f Ā}. 
 �1,2 ,  �2,2  are difference cordial by theorem 2.5 and corollary 2.6 respectively. 

A difference cordial labeling of �2,3  and �2,4 are given in figure 2.3.  
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Figure 2.3 

Now, we assume Ā g 5. 

Suppose f is a difference cordial labeling. 

Let ÿ(ÿ1) = Ą1, ÿ(ÿ2) = Ą2. 
Then  �2,Ā  has at most 4 edges with label 1. 

The maximum value is attained if the vertices in the set ý2receive the labels Ą1 2 1, Ą1 +1, Ą2 2 1, Ą2 + 1. 
Therefore þ�(1) f 4, þ�(0) g 2Ā 2 4.  
Hence þ�(0) 2 þ�(1) g 2Ā 2 8 > 2, is contradiction. 

 

 

    3     1 

    2     4   5 
    3     5     6     1 

    2     4 
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Theorem: 2.11 

  �3,Ā  is difference cordial iff Ā f 4. 

Proof:  

 �3,1 ,  �3,2  are difference cordial graphs by theorem 2.7 and theorem 2.10. 

A difference    cordial labeling of �3,3 ,  �3,4 are given in figure 2.4.  

 

 

 

 

 

                                                           Figure 2.4 

For any injective map f on ý(�3,5 ), þ�(1) f 6.  

Therefore,�3,5  is not difference cordial. 

Assume Ā g 6. 
Suppose �3,Ā is difference cordial, then by theorem 2.3, 3Ā f 2(Ā + 3) 2 1, a 

contradiction. 

  

4      2 

     1      3      5 2 

1 3 5 

6 

7 

4 
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Theorem: 2.12 

 If  ÿ + Ā g 9 then þÿ,Ā  is not difference cordial. 

Proof: 

Let ý(þÿ,Ā ) = {ÿ, Ā, ÿÿ , ĀĀ: 1 f ÿ f ÿ, 1 f Ā f Ā} and  

                    ā(þÿ,Ā ) = {ÿÿÿ , ĀĀĀ , ÿĀ: 1 f ÿ f ÿ, 1 f Ā f Ā}. 

Assume ÿ(ÿ) = Ă and ÿ(Ā) = ă. 
Case (i):  ă b Ă 2 1 and  ă b Ă + 1. 

To get the edge label 1, ÿÿand ÿĀ must receive the labels Ă 2 1, Ă + 1 respectively for 

some i, j and Āÿ , ĀĀ  must receive the labels ă 2 1, ă + 1 respectively for some i, j. 

Hence þ�(1) f 4. 

Case (ii):  ă = Ă 2 1 or  Ă + 1. 

Obviously, in this case þ�(1) f 3. 

Thus, by case (i), (ii), þ�(1) f 4. 
Therefore, þ�(0) g ă 2 4 g ÿ + Ā 2 3. 

Then  þ�(0) 2 þ�(1) g ÿ + Ā 2 3 2 4 g 2, a contradiction. 
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 Theorem: 2.13 

 þ1,Ā  is difference cordial iff Ā f 5. 

 Proof:  

Let  ý(þ1,Ā ) = {ÿ, Ā, ÿ1, Āÿ: 1 f ÿ f ÿ} and ā(þ1,Ā ) = {ÿÿ1, ĀĀÿ , ÿĀ: 1 f Ā f Ā}. 
Case (i):  Ā f 5. 

þ1,1 is difference cordial by theorem 2.4. 

A difference cordial labeling of þ1,2 is in figure 2.5.  

 

 

 

 

Figure 2.5 

For 3 f Ā f 5,  Define, 

ÿ(ÿ) = 2, ÿ(Ā) = 4, ÿ(ÿ1) = 1, ÿ(Ā1) = 3, ÿ(Āÿ) = 3 + ÿ, 2 f ÿ f Ā. 
Clearly this f is a difference cordial labeling. 

Case (ii):  Ā > 5. 

     1 

     2 
    5   

55  

     3 

     4 
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When Ā g 8, the result follows from theorem 2.12. 

When Ā = 6 or 7, þ�(1) f 3. 

Therefore, þ�(1) f 3 

This is a contradiction. 

Theorem: 2.14 

 þ2,Ā is difference cordial iff Ā f 6. 
Proof: 

Let ý(þ2,Ā) = {ÿ, Ā, ÿ1, ÿ2, Āÿ: 1 f ÿ f Ā} and                                          
        ā(þ2,Ā) = {ÿÿ1, ÿÿ2ĀĀÿ, ÿĀ: 1 f ÿ f Ā}. 

Case (i):  Ā = 2,3. 

When Ā = 2,define ÿ(ÿ) = 4, ÿ(Ā) = 2, ÿ(ÿ1) = 6, ÿ(ÿ2) = 5, ÿ(Ā1) = 1, ÿ(Ā2) = 3. 
When Ā = 3, define ÿ(ÿ) = 5, ÿ(Ā) = 2, ÿ(ÿ1) = 6, ÿ(ÿ2) = 7, ÿ(Ā1) = 1, ÿ(Ā2) =3, ÿ(Ā3) = 4. 
Clearly, f is a difference cordial labeling. 

Case (ii):  Ā = 4,5,6. 

Define ÿ(Ā) = 2, ÿ(Ā1) = 1, ÿ(Āÿ) = 1 + ÿ,     2 f ÿ f Ā, ÿ(ÿ1) = Ā + 2,  ÿ(ÿ)  = Ā + 3, ÿ(ÿ2) = Ā + 4                                                                                 
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In this case, þ�(0) = Ā 2 1 and þ�(1) = 4. 

Therefore, f is a difference cordial labeling. 

Case (iii):  Ā g 7. 

Proof follows from theorem 2.12. 

Theorem: 2.15 

 þ3,Ā is difference cordial iff Ā f 5. 
Proof: 

Let and ý(þ3,Ā) = {ÿ, Ā, ÿÿ , ĀĀ: 1 f ÿ f 3,1 f Ā f Ā} and                 ā(þÿ,Ā) = {ÿÿÿ, ĀĀĀ , ÿĀ: 1 f ÿ f 3,1 f Ā f Ā}. þ3,1, þ3,2 are difference cordial graphs by theorems 2.13 and 2.14 respectively. 

For  3 f Ā f 5, define, ÿ(Ā) = 2, ÿ(Ā1) = 1, ÿ(Āÿ) = 1 + ÿ, 2 f ÿ f Ā, ÿ(ÿ1) = Ā +2, ÿ(ÿ) = Ā + 3, ÿ(ÿ2) = Ā + 4, ÿ(ÿ3) = Ā + 5. 
In this case, þ�(0) = Ā and þ�(1) = 4.  

Therefore, f is a difference cordial labeling. 

For Ā g 6, the result follows from the theorem 2.12. 

 Remark: 2.16 

 þ4,4 is difference cordial. 

 Theorem: 2.17 

 The wheel þĀ is difference cordial. 

Proof: 

Let  þĀ = ÿĀ + �1 where ÿĀ is the cycle ÿ1ÿ2 & ÿĀÿ1 and ý(�1) = {ÿ}. 

Define a map ÿ: ý(þĀ) → {1,2, & , Ā + 1} by ÿ(ÿ) = 1, ÿ(Āÿ) = ÿ + 1, 1 f ÿ f Ā. 
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Then þ�(0) = Ā and þ�(1) = Ā.  

Theorem: 2.18 

 The fan ĂĀ is difference cordial for all n. 

Proof: 

Let ĂĀ = ÿĀ + �1where ÿĀ is the path ÿ1ÿ2 & ÿĀ and ý(�1) = {ÿ}. 

The function f given in theorem 2.17 is also a difference cordial labeling. 

Since þ�(0) = Ā 2 1 and þ�(1) = Ā 
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CHAPTER - 3 

DIFFERENCE CORDIAL LABELING OF SUBDIVISION OF SNAKE 

GRAPHS 

 Theorem: 3.1 

 ÿ(ĀĀ) is difference cordial for all Ā > 2. 

Proof:  

Let ÿĀ be the path ÿ1ÿ2 & ÿĀ. 
Let ý(ĀĀ) = ý(ÿĀ) ∪ {Āÿ: f ÿ f Ā 2 1}. 

Let ý(ÿ(ĀĀ)) = {Ăÿ , ăÿ, āÿ: 1 f ÿ f Ā 2 1} ∪ V(Tn) and ā(ÿ(ĀĀ)) ={ÿÿĂÿ , ĂÿĀÿ , ăÿĀÿ , ăÿÿÿ+1, ÿÿāÿ, āÿÿÿ+1, : 1 f ÿ f Ā 2 1}. 

Define an injective mapÿ: ý(ÿ(ĀĀ)) → {1, 2, & . ,5Ā 2 4} by                                                                                          ÿ(ÿÿ)   =  2ÿ 2 1                             1 f ÿ f Ā          ÿ(āÿ)   =   2ÿ                            1 f ÿ f Ā 2 1      ÿ(Ăÿ)    = 2Ā + 2ÿ 2 2            1 f ÿ f Ā 2 1              ÿ(ăÿ)    = 4Ā 2 3 + ÿ             1 f ÿ f Ā 2 1                ÿ(Āÿ)   = 2Ā + 2ÿ 2 1            1 f ÿ f Ā 2 1 

Since þ�(0) = þ�(1) = 3Ā 2 3, f is a difference cordial labeling of  ÿ(ĀĀ). 
 Theorem: 3.2 

ÿ(ĀĀ) is difference cordial. 
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Proof:  

Let ÿĀbe the path ÿ1ÿ2 & ÿĀ. 
Let ý(ĀĀ) = ý(ÿĀ) ∪ {Āÿ , āÿ: f ÿ f Ā 2 1} ∪ ý(ÿĀ). 
Let ý(ÿ(ĀĀ)) =  {Ăÿ, ÿÿ′, Ąÿ, ăÿ: 1 f ÿ f Ā 2 1} ∪ V(ĀĀ) and                              ā(ÿ(ĀĀ)) =  {ÿÿÿÿ′, ÿÿ′ÿÿ+1, ăÿÿÿ+1: 1 f ÿ f Ā 2 1} ∪ {ÿÿĂÿ , ĂÿĀÿ , ĀÿĄÿ, , Ąÿāÿ, , āÿăÿ: 1 fÿ f Ā 2 1} 

Define a by map ÿ: ý(ÿ(ĀĀ)) → {1, 2, & . ,7Ā 2 6} by ÿ(ÿÿ) = 2ÿ 2 1                          1 f ÿ f Ā 

 ÿ(ÿÿ′) = 2ÿ                             1 f ÿ f Ā 2 1 

ÿ(Āÿ) = 2Ā + 3ÿ 2 3        1 f ÿ f Ā 2 1 

ÿ(Ąÿ) = 2Ā + 3ÿ 2 2        1 f ÿ f Ā 2 1 

ÿ(āÿ) = 2Ā + 3ÿ 2 1        1 f ÿ f Ā 2 1 

 ÿ(Ăÿ) = 5Ā 2 4 + ÿ            1 f ÿ f Ā 2 1 

ÿ(ăÿ) = 6Ā 2 5 + ÿ            1 f ÿ f Ā 2 1 

Since, þ�(0) = þ�(1) = 4Ā 2 4 f is a difference cordial labeling of ÿ(ĀĀ). 

 Theorem: 3.3 

 ÿ(ĀĀĀ) is difference cordial. 
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Proof: 

Let ý(ÿ(ĀĀĀ)) = {ÿÿ: 1 f ÿ f Ā} ∪ {Ăÿ, ăÿ , Āÿ , Ăÿ′, ăÿ′, āÿ, Ąÿ ∶  1 f ÿ f Ā 2 1} and ā(ÿ(ĀĀĀ)) = ÿÿĄÿ, Ąÿÿÿ+1, ÿÿĂÿ, ăÿÿÿ+1, ĂÿĀÿ , ÿÿĂÿ′: 1 f ÿ f Ā 2 1} ∪{Āÿăÿ, āÿăÿ′, Ăÿ′āÿ, ăÿ′ÿÿ+1: 1 f ÿ f Ā 2 1} 

Define a by map ÿ: ý(ÿ(ĀĀĀ)) → {1, 2, & . ,8Ā 2 7} by ÿ(ÿÿ) = 4ÿ 2 3                            1 f ÿ f Ā 

ÿ(Āÿ) = 7Ā 2 6 + ÿ              1 f ÿ f Ā 2 1 

ÿ(Ăÿ) = 4ÿ = 2                      1 f ÿ f Ā 2 1 

   ÿ(Āÿ) = 4ÿ 2 1                        1 f ÿ f Ā 2 1  
    ÿ(ăÿ) = 4ÿ                                 1 f ÿ f Ā 2 1 

      ÿ(Ăÿ′) = 4Ā + 2ÿ 2 4               1 f ÿ f Ā 2 1 

      ÿ(āÿ) = 4Ā + 2ÿ 2 3               1 f ÿ f Ā 2 1 

        ÿ(ăÿ′) = 6Ā 2 5 + ÿ                  1 f ÿ f Ā 2 1. 
Obviously the above vertex labeling is a difference cordial labeling of ÿ(ĀĀĀ). 

Theorem: 3.4 

 ÿ(ĀĀĀ) is difference cordial. 

Proof: 

Let ý(ÿ(ĀĀĀ)) = ý(ĀĀĀ) ∪ {ÿÿ′, Āÿ′, āÿ′, Ąÿ′, Ăÿ′, ăÿ′, Ąÿ ∶  1 f ÿ f Ā 2 1}  and   
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ā(ÿ(ĀĀĀ)={ÿÿÿÿ′, ÿÿĂÿ′, Āÿ′Āÿ , Ăÿ′Ăÿ , ĀÿĄÿ′, ĂÿĄÿ, Ąÿ′āÿ: 1 f ÿ f Ā 2 1} ∪{Ąÿăÿ, āÿāÿ′, ăÿăÿ′, āÿ′ÿÿ+1, ăÿ′ÿÿ+1: 1 f ÿ f Ā 2 1}. 
Define a by mapÿ: ý(ÿ(ĀĀĀ)) → {1, 2, & . ,12Ā 2 11} by         ÿ(ÿÿ) = 6ÿ 2 5                   1 f ÿ f Ā                 ÿ(ÿÿ′)  = 6ÿ 2 4                    1 f ÿ f Ā 2 1 

ÿ(Āÿ)  = 6ÿ 2 3                    1 f ÿ f Ā 2 1 

  ÿ(Ąÿ′)  = 6ÿ 2 2                      1 f ÿ f Ā 2 1 

 ÿ(āÿ)  = 6ÿ 2 1                     1 f ÿ f Ā 2 1 

    ÿ(āÿ′) = 6ÿ                              1 f ÿ f Ā 2 1  
    ÿ(Ăÿ′) = 6Ā + 2ÿ 2 6            1 f ÿ f Ā 2 1 

       ÿ(Ăÿ) = 6Ā + 2ÿ 2 5              1 f ÿ f Ā 2 1  
      ÿ(Ąÿ) = 8Ā + ÿ 2 7                1 f ÿ f Ā 2 1 

       ÿ(ăÿ) = 9Ā + ÿ 2 8               1 f ÿ f Ā 2 1 

        ÿ(ăÿ′) = 10Ā + ÿ 2 9            1 f  ÿ f Ā 2 1 

              ÿ(ÿÿ′) = 11Ā + ÿ 2 10            1 f ÿ f Ā 2 1. 
Since, þ�(0) = þ�(1) = 7Ā 2 7 f is a difference cordial labeling of ÿ(ĀĀĀ). 

 

Theorem: 3.5 

 ÿ(ý(ĀĀ)) is difference cordial. 
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Proof: 

Let the edges ÿÿÿÿ+1, ÿÿĀÿ and Āÿÿÿ+1 be subdivided by ÿÿ′, Ăÿ and ăÿ respectively. 

Case (i):  Let the triangle be start fromÿ1and ends with ÿĀ. 

In this case ÿ(ý(ĀĀ))  consists of 
7Ā222  vertices and 4n – 2 edges.  

Define a mapÿ: ý(ÿ(ý(ĀĀ))) → {1, 2, & , 7Ā222 } by     ÿ(ÿÿ) = 2ÿ 2 1                      1 f ÿ f Ā             ÿ(ÿÿ′)  = 2ÿ                              1 f ÿ f Ā 2 1 

         ÿ(Ăÿ) = 2Ā 2 1 + ÿ               1 f ÿ f Ā2          
       ÿ(ăÿ) = 5Ā 2 22 + ÿ              1 f ÿ f Ā2         

       ÿ (Ā�22ÿ+1) = 3Ā 2 1 + ÿ      1 f ÿ f Ā2           
Since, þ�(0) = þ�(1) = 2Ā 2 1, f is a difference cordial labeling of ÿ(ý(ĀĀ)). 
Case (ii):  Let the triangle be start from ÿ2and ends with ÿĀ21. 
In this case ÿ(ý(ĀĀ)) has 

7Ā282  vertices and 4n – 6 edges.  

Define a injective mapÿ: ý(ÿ(ý(ĀĀ))) → {1, 2, & . ,7Ā 2 8/2} by 

     ÿ(ÿÿ) = 2ÿ 2 2                        1 f ÿ f Ā             ÿ(ÿÿ′) = 2ÿ 2 1                        1 f ÿ f Ā 2 1 
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ÿ(Ăÿ) = 2Ā 2 2 + ÿ                  1 f ÿ f Ā 2 22  

ÿ(ăÿ) = 5Ā 2 62 + ÿ                   1 f ÿ f Ā 2 22  

ÿ(Āÿ) = 3Ā 2 3 + ÿ                    1 f ÿ f Ā 2 22  

ÿ(ÿ1) =  3Ā 2 3.                                                     
Obviously, f is a difference cordial labeling of ÿ(ý(ĀĀ)). 

Case (iii):  Let the triangle be start from ÿ1and ends with ÿĀ. 
In this case, the order and size of ÿ(ý(ĀĀ)) has 

7Ā252  vertices and 4n – 4 edges.  

The difference cordial labeling of ÿ(ý(Ā3)) is given in figure 3.1. 

                                                                  7 

              5                   6 

                   8               1               2           3                  4 

Figure 3.1 

For Ā > 3, Define a injective mapÿ: ý(ÿ(ý(ĀĀ)))  → {1, 2, & . ,7Ā 2 8/2} by    ÿ(ÿÿ) = 2ÿ 2 1                           1 f ÿ f Ā          ÿ(ÿÿ′) = 2ÿ                                 1 f ÿ f Ā 2 1 
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ÿ(Ăÿ) = 2Ā 2 1 + ÿ                  1 f ÿ f Ā 2 12  

ÿ(ăÿ) = 5Ā 2 32 + ÿ                   1 f ÿ f Ā 2 12  

ÿ(Āÿ) = 3Ā 2 2 + ÿ                    1 f ÿ f Ā 2 12  

           Since þ�(0) = þ�(1) = 2Ā 2 2, f is a difference cordial labeling of ÿ(ý(ĀĀ)). 

 Theorem: 3.6 

 ÿ(Āý(ĀĀ)) is difference cordial. 

Proof: 

Let the edges ÿÿÿÿ+1, ÿÿĀÿ , Āÿÿÿ+1, āÿ , āÿÿÿ+1, be subdivided by ÿÿ′, Ăÿ , ăÿ , Ăÿ′,ăÿ′respectively. 

Case (i):  Let the triangles be start from ÿ1and ends with ÿĀ. 

Here, the number of vertices and edges inÿ(Āý(ĀĀ))are 5n – 1 vertices and 6n – 2 edges 

respectively. 

Define a map  ÿ: ý(ÿ(Āý(ĀĀ)))  → {1, 2, & . ,5Ā 2 1} by ÿ(ÿÿ) = 2ÿ 2 1                           1 f ÿ f Ā ÿ(ÿÿ′) = 2ÿ                             1 f ÿ f Ā 2 1 

ÿ(Ăÿ) = 2Ā 2 2 + 2ÿ                   1 f ÿ f Ā2 
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ÿ(Āÿ) = 2Ā 2 1 + 2ÿ                    1 f ÿ f Ā2 

ÿ (ă�22ÿ+1) = 3Ā 2 1 + ÿ              1 f ÿ f Ā2 

ÿ(Ăÿ′) = 7Ā 2 22 + ÿ                         1 f ÿ f Ā2 

ÿ(ăÿ′) = 4Ā 2 1 + ÿ                         1 f ÿ f Ā2 

ÿ(āÿ) = 9Ā 2 22 + ÿ                         1 f ÿ f Ā2 

Since þ�(0) = þ�(1) = 3Ā 2 1, f is a difference cordial labeling of ÿ(Āý(ĀĀ)). 

Case (ii):  Let the two triangles be start from ÿ2and ends withÿĀ21. 

In this case, the order and size ofÿ(Āý(ĀĀ))are 5n – 7 an d 6n – 10respectively.  

Define a functionÿ: ý(ÿ(Āý(ĀĀ))) → {1, 2, & . ,5Ā 2 7} by ÿ(ÿ1) = 2Ā 2 1,  
 ÿ(ÿÿ) = 2ÿ 2 2                                  2 f ÿ f Ā ÿ(ÿÿ′) = 2ÿ 2 1                             1 f ÿ f Ā 2 1 

ÿ(Ăÿ) = 2Ā 2 2 + 2ÿ                    1 f ÿ f Ā 2 22  

ÿ(Āÿ) = 2Ā 2 1 + 2ÿ                    1 f ÿ f Ā 2 22  

ÿ(ăÿ) = 4Ā 2 5 + ÿ                        1 f ÿ f Ā 2 22  
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ÿ(Ăÿ′) = 3Ā + 2ÿ 2 4                     1 f ÿ f Ā 2 22  

ÿ(ăÿ′) = 9Ā 2 122 + ÿ                    1 f ÿ f Ā 2 22  

ÿ(āÿ) = 3Ā + 2ÿ 2 3                   1 f ÿ f Ā 2 22  

Since þ�(0) = þ�(1) = 3Ā 2 5, f is a difference cordial labeling of ÿ(Āý(ĀĀ)). 

Case (iii):  Let the triangles be start from ÿ2 and ends with ÿĀ. 

In this case, the order and size of ÿ(Āý(ĀĀ)) consist of 5n – 4 vertices and 6n – 6 edges 

respectively.  

Define a functionÿ: ý(ÿ(Āý(ĀĀ))) → {1, 2, & . ,5Ā 2 4} by ÿ(ÿÿ) = 2ÿ 2 1                                   1 f ÿ f Ā ÿ(ÿÿ′) = 2ÿ                                     1 f ÿ f Ā 2 1 

ÿ(Ăÿ) = 2Ā + 2ÿ 2 2                   1 f ÿ f Ā 2 12  

ÿ(Āÿ) = 2Ā + 2ÿ 2 1                    1 f ÿ f Ā 2 12  

ÿ(Ăÿ′) = 3Ā + 2ÿ 2 3                   1 f ÿ f Ā 2 12  

ÿ(āÿ) = 3Ā + 2ÿ 2 2                  1 f ÿ f Ā 2 12  

ÿ(ăÿ) = 4Ā 2 3 + ÿ                      1 f ÿ f Ā 2 12  
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ÿ(ăÿ′) = 9Ā 2 72 + ÿ                        1 f ÿ f Ā 2 12  

           Since þ�(0) = þ�(1) = 3Ā 2 3, f is a difference cordial labeling of ÿ(Āý(ĀĀ)). 

Theorem: 3.7 

 ÿ(ýĀĀ) is difference cordial. 

Proof: 

Let the edges ÿÿÿÿ+1, ÿÿĀÿ , Āÿāÿ, āÿÿÿ+1be subdivided by ÿÿ′, Āÿ′, Ąÿ, āÿ′respectively. 

Case (i):  Let the squares be starts from ÿ1and ends with ÿĀ. 
In this case the order and size of ÿ(ýĀĀ) are 9Ā222  and 5n – 2 respectively. 

Define a mapÿ: ý(ÿ(ýĀĀ)) → {1, 2, & , 9Ā222 } by ÿ(ÿÿ) = 2ÿ 2 1                             1 f ÿ f Ā ÿ(ÿÿ′) = 2ÿ                             1 f ÿ f Ā 2 1 

ÿ(Āÿ′) = 2Ā + 2ÿ 2 2                 1 f ÿ f Ā2 

ÿ(Āÿ) = 2Ā + 2ÿ 2 1                   1 f ÿ f Ā2 

ÿ(āÿ′) = 3Ā 2 1 + ÿ                    1 f ÿ f Ā2 

ÿ (ā�22ÿ+1) = 4Ā 2 1 + ÿ           1 f ÿ f Ā2 

Since þ�(0) = þ�(1) = 5Ā222 , f is a difference cordial labeling of ÿ(ýĀĀ). 
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Case (ii):  Let the squares be starts from ÿ2and ends with ÿĀ21. 

The difference cordial labeling of ÿ(ýĀ4) is given in figure 3.2. 

                                            10      12      11 

                                          8                        9 

                      7          1         2         3        4        5        6 

Figure 3.2 

For Ā > 4, Define a mapÿ: ý(ÿ(ýĀĀ)) → {1, 2, & , 9Ā2122 } by ÿ(ÿÿ) = 2ÿ 2 2                                2 f ÿ f Ā ÿ(ÿÿ′) = 2ÿ 2 1                          1 f ÿ f Ā 2 1 

ÿ(Āÿ′) = 2Ā + 2ÿ 2 3                1 f ÿ f Ā 2 22  

ÿ(Āÿ) = 2Ā + 2ÿ 2 2                 1 f ÿ f Ā 2 22  

ÿ(āÿ′) = 3Ā 2 4 + ÿ                   1 f ÿ f Ā 2 22  

ÿ(Ąÿ) = 7Ā 2 102 + ÿ                    1 f ÿ f Ā 2 22  

ÿ(āÿ) = 4Ā 2 6 + ÿ                      1 f ÿ f Ā 2 22  

                              and ÿ(ÿ1) = 9Ā2122  



 

 35       

 

Since þ�(0) = þ�(1) = 5Ā 2 8, f is a difference cordial labeling of ÿ(ýĀĀ). 

Case (iii):  Let the squares be start from ÿ2 and ends with ÿĀ. 

The difference cordial labeling of ÿ(ýĀĀ) is given in figure 3.3. 

    8      9      7 

 6 10 

                           1        2        3      4          5       

Figure 3.3 

For Ā > 3, Define a mapÿ: ý(ÿ(ýĀĀ)) → {1, 2, & , 9Ā272 } by ÿ(ÿÿ) = 2ÿ 2 1                               2 f ÿ f Ā ÿ(ÿÿ′) = 2ÿ                                 1 f ÿ f Ā 2 1 

ÿ(Āÿ′) = 2Ā + 2ÿ 2 2               1 f ÿ f Ā 2 12  

ÿ(Āÿ) = 2Ā + 2ÿ 2 1                 1 f ÿ f Ā 2 12  

ÿ(Ąÿ) = 3Ā 2 2 + ÿ                    1 f ÿ f Ā 2 12  

ÿ(āÿ) = 7Ā 2 52 + ÿ                    1 f ÿ f Ā 2 12  

ÿ(āÿ′) = 4Ā 2 3 + ÿ                    1 f ÿ f Ā 2 12  
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Since þ�(0) = þ�(1) = 5Ā252 , f is a difference cordial labeling of ÿ(ýĀĀ). 

 Illustration: 3.8 

The difference cordial labeling of Āý(Ā8) is given in figure 3.4. 

 

 17  28  35       19  29  34       21  30  33       23  31  32 

     16              24   18            25    20           26    22             27 

        1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 

Figure 3.4 

 

The difference cordial labeling of Āý(Ā8) is given in figure 3.5. 

 

 16  24  27       18  25  28       20  26  29 

               15              21  17             22  19             23 

     30   1     2    3    4    5    6   7    8    9   10  11  12   13   14  

 

Figure 3.5 

 

The difference cordial labeling of Āý(Ā7) is given in figure 3.6. 
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                         15  20  23       17  21  24       19  22  25 

                14              26  16             27  18             28 

        1    2     3    4    5    6    7   8    9   10  11  12  13 

Figure 3.6 

 Theorem: 3.9 

 ÿ(ĀýĀĀ) is difference cordial. 

Proof: 

Let the edges ÿÿÿÿ+1, ÿÿĀÿ , Āÿāÿ, āÿÿÿ+1, ÿÿĂÿ , Ăÿăÿ, ăÿÿÿ+1 be subdivided by ÿÿ′, Āÿ′, Ąÿ , āÿ′, Ăÿ′, Ąÿ′, ăÿ respectively. 

Case (i):  Let the squares be start from ÿ1and ends with ÿĀ. 

The order and size of ÿ(ĀýĀĀ) are 7n – 1 and 8n – 2 respectively. 

Define a mapÿ: ý(ÿ(ĀýĀĀ)) → {1, 2, & . ,7Ā 2 1} by 

ÿ(ÿÿ) = 2ÿ 2 1                      1 f ÿ f Ā ÿ(ÿÿ′) = 2ÿ                         1 f ÿ f Ā 2 1 

ÿ(Āÿ) = 2Ā + 3ÿ 2 3                1 f ÿ f Ā2 

ÿ(Ąÿ) = 2Ā + 3ÿ 2 2                1 f ÿ f Ā2 

ÿ(āÿ) = 2Ā + 3ÿ 2 1                1 f ÿ f Ā2 
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ÿ(Ăÿ) = 7Ā 2 62 + 3ÿ                  1 f ÿ f Ā2 

ÿ(Ąÿ′) = 7Ā 2 42 + 3ÿ                   1 f ÿ f Ā2 

ÿ(ăÿ) = 7Ā 2 22 + 3ÿ                  1 f ÿ f Ā2 

ÿ(Ăÿ′) = 11Ā 2 22 + ÿ                  1 f ÿ f Ā2 

ÿ(āÿ′) = 13Ā 2 22 + ÿ                  1 f ÿ f Ā2 

ÿ (ă�22ÿ+1′ ) = 5Ā 2 1 + ÿ            1 f ÿ f Ā2 

ÿ(Āÿ′) = 6Ā 2 1 + ÿ                      1 f ÿ f Ā2 

Since þ�(0) = þ�(1) = 4Ā 2 1, f is a difference cordial labeling of ÿ(ĀýĀĀ). 

Case (ii):  Let the squares be start from ÿ2and ends with ÿĀ21. 

The order and size of ÿ(ĀýĀĀ) are 7n – 11 and 8n – 14 respectively. 

Define a mapÿ: ý(ÿ(ĀýĀĀ)) → {1, 2, & . ,7Ā 2 11} by ÿ(ÿÿ) = 2ÿ 2 2                                  2 f ÿ f Ā ÿ(ÿÿ′) = 2ÿ 2 1                          1 f ÿ f Ā 2 1 

ÿ(Āÿ) = 2Ā + 3ÿ 2 4                1 f ÿ f Ā 2 22  

ÿ(Ąÿ) = 2Ā + 3ÿ 2 3                 1 f ÿ f Ā 2 22  
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ÿ(āÿ) = 2Ā + 3ÿ 2 2                 1 f ÿ f Ā 2 22  

ÿ(Ăÿ) = 7Ā 2 142 + 3ÿ                1 f ÿ f Ā 2 22  

ÿ(Ąÿ′) = 7Ā 2 122 + 3ÿ                1 f ÿ f Ā 2 22  

ÿ(ăÿ) = 7Ā 2 102 + 3ÿ                 1 f ÿ f Ā 2 22  

ÿ(āÿ′) = 11Ā 2 182 + ÿ                1 f ÿ f Ā 2 22  

ÿ(ăÿ′) = 13Ā 2 222 + ÿ                  1 f ÿ f Ā 2 22  

ÿ(Āÿ′) = 5Ā 2 8 + ÿ                        1 f ÿ f Ā 2 22  

ÿ(Ăÿ′) = 6Ā 2 10 + ÿ                       1 f ÿ f Ā 2 22  

                           and ÿ(ÿ1) = 7Ā 2 11. 

Since þ�(0) = þ�(1) = 4Ā 2 7, f is a difference cordial labeling of ÿ(ĀýĀĀ). 

Case (iii):  Let the squares be start from ÿ2and ends with ÿĀ. 

Assign the labels to the vertices ÿÿ (1 f ÿ f Ā),ÿÿ′ (1 f ÿ f Ā 2 1),Āÿ , Ąÿ , āÿ (1 f ÿ f
Ā212 ) as in case 1. 

ÿ(Ăÿ) = 7Ā 2 92 + 3ÿ                    1 f ÿ f Ā 2 12  

ÿ(Ąÿ′) = 7Ā 2 72 + 3ÿ                     1 f ÿ f Ā 2 12  
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ÿ(ăÿ) = 7Ā 2 52 + 3ÿ                      1 f ÿ f Ā 2 12  

ÿ(āÿ′) = 11Ā 2 92 + ÿ                     1 f ÿ f Ā 2 12  

ÿ(ăÿ′) = 13Ā 2 112 + ÿ                     1 f ÿ f Ā 2 12  

ÿ(Āÿ′) = 5Ā 2 4 + ÿ                           1 f ÿ f Ā 2 12  

ÿ(Ăÿ′) = 6Ā 2 5 + ÿ                            1 f ÿ f Ā 2 12  

Since þ�(0) = þ�(1) = 4Ā 2 4, f is a difference cordial labeling of ÿ(ĀýĀĀ). 
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CHAPTER -4 

4-DIFFERENCE CORDIAL LABELING OF CYCLE AND WHEEL 

RELATED GRAPHS 

Theorem: 4.1 

 Cycle ÿĀ is a 4 – difference cordial graph. 

Proof: 

Let ý(ÿĀ) = {Ā1, Ā2, & , ĀĀ}. 
We define labeling function ÿ: ý(ÿĀ) → {1,2,3,4} as follows. 

Case (i):   n is odd. 

ÿ(Ā4ÿ+1) = 1;               0 f ÿ f ⌊Ā 2 14 ⌋ 

ÿ(Ā4ÿ+2) = 2;                0 f ÿ f ⌊Ā 2 34 ⌋ 

             ÿ(Ā4ÿ)  = 3;                1 f ÿ f ⌊Ā 2 14 ⌋           
ÿ(Ā4ÿ+3) = 4;               0 f ÿ f ⌊Ā 2 34 ⌋. 

Case (ii): n is even. 

Subcase (i): Ā ≡ 0(ÿāý 4). ÿ(Ā4ÿ) = 1;                           1 f ÿ f Ā4 

ÿ(Ā4ÿ+3) = 2;                       0 f ÿ f Ā 2 44  

ÿ(Ā4ÿ+1) = 3;                      0 f ÿ f  Ā 2 44  

ÿ(Ā4ÿ+2) = 4;                       0 f ÿ f Ā 2 44  
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Subcase (ii):  Ā ≡ 2(ÿāý 4). ÿ(Ā1) = 2; ÿ(Ā2) = 1; 
ÿ(Ā4ÿ+1) = 1;                            1 f ÿ f Ā 2 24  

ÿ(Ā4ÿ+2) = 2;                             1 f ÿ f Ā 2 24  

          ÿ(Ā4ÿ) = 3;                              1 f ÿ f  Ā 2 24      
ÿ(Ā4ÿ+3) = 4;                              0 f ÿ f  Ā 2 64  

In each case cycle ÿĀ satisfies the conditions for 4 – difference cordial labeling. 

Hence, ÿĀ is a 4 – difference cordial graph. 

 Example: 4.2 

The 4 – difference cordial labeling of ÿ18 is shown in Figure 4.1 

 

 

Figure 4.1 
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Theorem: 4.3 

 þĀ is a 4 – difference cordial graph. 

Proof: 

Let Ā0 be the apex vertex and Ā1, Ā2, & , ĀĀ be the rim vertices of þĀ. 

We define labeling function ÿ: ý(þĀ) → {1,2,3,4} as follows. 

Case (i):  n is odd. 

ÿ(Ā4ÿ) = 1;             1 f ÿ f ⌊Ā 2 14 ⌋ 

ÿ(Ā4ÿ+1) = 2;                 0 f ÿ f ⌊Ā 2 14 ⌋ 

ÿ(Ā4ÿ+2) = 3;                0 f ÿ f ⌊Ā 2 34 ⌋ 

ÿ(Ā4ÿ+3) = 4;              0 f ÿ f ⌊Ā 2 34 ⌋. 
Case (ii):  n is even. ÿ(Ā1) = 2, ÿ(Ā2) = 3, ÿ(Ā3) = 4, 

 ÿ(Ā4ÿ+3) = 1;                   1 f ÿ f ⌊Ā 2 34 ⌋ 

ÿ(Ā4ÿ) = 2;                        1 f ÿ f +Ā4, 
ÿ(Ā4ÿ+1) = 3;                   1 f ÿ f  ⌊Ā 2 24 ⌋ 

ÿ(Ā4ÿ+2) = 4;                   1 f ÿ f  ⌊Ā 2 24 ⌋ 
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In each case wheel graph þĀ satisfies the conditions of 4 – difference cordial labeling. 

Hence, þĀis 4 – difference cordial graph. 

 Example: 4.4 

 4 – difference cordial labeling of þ11 is shown in Figure 4.2. 

 

Figure 4.2 

 Theorem: 4.5 

 Crown ÿĀ ⊙ �1 is a 4 – difference cordial graph. 

Proof: 

Let ý(ÿĀ ⊙ ý�1) = {Ā1, Ā2, & , ĀĀ, Ā1′ , Ā2′ , & , ĀĀ′ }, where Ā1, Ā2, & , ĀĀ are rim vertices 

and Ā1′ , Ā2′ , & , ĀĀ′  are pendant vertices. 

We define labeling function ÿ: ý(ÿĀ ⊙ �1) → {1,2,3,4} as follows. 

Case (i):  n is odd. 

ÿ(Ā2ÿ+1) = 1;                0 f ÿ f Ā 2 12  

ÿ(Ā2ÿ) = 2;                  1 f ÿ f  Ā 2 12  
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ÿ(Ā2ÿ+1′ ) = 3;                     0 f ÿ f Ā 2 12  

ÿ(Ā2ÿ′ ) = 4;                1 f ÿ f Ā 2 12 . 
Case (ii): n is even. 

 ÿ(Ā2ÿ+1) = 1;               0 f ÿ f Ā 2 22  

     ÿ(Ā2ÿ) = 2;                       1 f ÿ f Ā2 

     ÿ(Ā2ÿ+1′ ) = 3;                    0 f ÿ f Ā 2 22  

      ÿ(Ā2ÿ′ ) = 4;                       1 f ÿ f  Ā2 

In each case crown graph ÿĀ ⊙ �1 satisfies the conditions of 4 – difference cordial 

labeling. Hence, ÿĀ ⊙ �1is 4 – difference cordial graph. 

Example: 4.6 

 4 – difference cordial labeling of crown ÿ9 ⊙ �1 is shown in Figure 4.3. 

 

Figure 4.3 
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Theorem: 4.7 ĄĀ is a 4 – difference cordial graph. 

Proof: 

Let ý(ĄĀ) = {Ā0, Ā1, & , ĀĀ, Ā1′ , Ā2′ , & , ĀĀ′ }, wherev0 is apex vertex, {Ā1, Ā2, & , ĀĀ} 

are rim vertices and {Ā1′ , Ā2′ , & , ĀĀ′ } are pendant vertices. 

We define labeling function ÿ: ý(ĄĀ) → {1,2,3,4} as follows. 

Case (i): n is odd. 

ÿ(Ā4ÿ) = 1;             1 f ÿ f ⌊Ā 2 12 ⌋ 

ÿ(Ā4ÿ+1) = 2;          0 f ÿ f  ⌊Ā 2 12 ⌋ 

ÿ(Ā4ÿ+2) = 3;           0 f ÿ f  ⌊Ā 2 34 ⌋ 

ÿ(Ā4ÿ+3) = 4;           0 f ÿ f  ⌊Ā 2 34 ⌋ 

ÿ(Ā4ÿ+3′ ) = 1;            0 f ÿ f  ⌊Ā 2 34 ⌋ 

ÿ(Ā4ÿ+2′ ) = 2;            0 f ÿ f ⌊Ā 2 34 ⌋ 

ÿ(Ā4ÿ+1′ ) = 3;             0 f ÿ f  ⌊Ā 2 14 ⌋ 

       ÿ(Ā4ÿ′ ) = 4;                 1 f ÿ f ⌊Ā 2 14 ⌋ 

Case (ii):  n is even. 

ÿ(Ā2ÿ+1) = 2;                  0 f ÿ f Ā 2 22  

     ÿ(Ā2ÿ) = 4;                           1 f ÿ f Ā2 
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ÿ(Ā2ÿ+1′ ) = 1;                 0 f ÿ f  Ā 2 22  

      ÿ(Ā2ÿ′ ) = 3;                           1 f ÿ f  Ā2 

In each case helm graph ĄĀ satisfies the conditions of 4 – difference cordial labeling.  

Hence, ĄĀ 4 – difference cordial graph. 

 Example: 4.8 

 4 – difference cordial labeling of helm Ą9is shown in Figure 4.4. 

 

Figure 4.4 

Theorem: 4.9 

 Gear ăĀ is a 4 – difference cordial graph. 

Proof: 

Let ý(ăĀ) = {Ā0, Ā1, & , Ā2Ā}, wherev0 is apex vertex, {Ā1, Ā3, & , Ā2Ā21} are the 

vertices of degree 3 and{Ā2, Ā4, & , Ā2Ā} are the vertices of degree 2. 

We define labeling function ÿ: ý(ăĀ) → {1,2,3,4} as follows. 

Case (i): n is odd.  
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Ā0 = 3. 
ÿ(Ā4ÿ+1) = 1;          0 f ÿ f Ā 2 12  

ÿ(Ā4ÿ+2) = 2;            0 f ÿ f  Ā 2 12  

ÿ(Ā4ÿ+3) = 3;            0 f ÿ f Ā 2 32  

ÿ(Ā4ÿ+4) = 4;              0 f ÿ f  Ā 2 32  

Case (ii):  n is even. Ā0 = 1.  ÿ(Ā4ÿ+1) = 1;          0 f ÿ f Ā2 2 1 

ÿ(Ā4ÿ+2) = 2;            0 f ÿ f Ā2 2 1 

ÿ(Ā4ÿ+3) = 3;              0 f ÿ f Ā2 2 1 

ÿ(Ā4ÿ+4) = 4;               0 f ÿ f Ā2 2 1 

In each case the gear graph ăĀ satisfies the conditions of 4 – difference cordial labeling. 

Hence, ăĀ is 4 – difference cordial graph. 

 Example: 4.10 

4 – difference cordial labeling of ă5 is shown in Figure 4.5 

Figure 4.5 
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CHAPTER - 1 

PRELIMINARIES 

Definition: 1.1  

A graph G is an ordered triple (ý(ă), ā(ă), �(ă)) consisting of a non-empty 

set ý(ă) of vertices, a set ā(ă), disjoint from ý(ă) of edges and an incidence function �ÿ  that associates with each edge of ă and unordered pair of vertices of ă. i.e., If ă is 

an edge and Ă and ă are vertices, then �ÿ(ă) = Ăă, u and v are called the ends of e.  

Definition: 1.2 

A graph with no loops or multiple edges is called a simple graph we specify a 

simple graph by its set of vertices  and set of edges , treating the edge set as a set of 

unordered pairs of vertices and write ă = Ăă or ă =  ăĂ for an edge e with endpoints Ă 

and ă.  

Definition: 1.3  

A graph H is a subgraph of G if ý(Ą) ⊆ ý(ă) and E(H) ⊆ E(G) and �Ā  is the 

restriction of �ÿ  of  ā(Ą).  
Definition: 1.4  

 A walk consists of an alternating sequence of vertices and edges consecutive 

elements of which are incident that begins and ends with a vertex. 

 Definition: 1.5  

If all the  of edges of a walk are different then the walk is called a trail. If in 

addition all the vertices are difficult then the trail is called path.       
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Definition: 1.6  

A bipartite graph is one whose vertex set can be partition into two subsets x and 

y. So that each edge has one end in x and one end in y. Let X={v2, v4, v8};          Y={ v1, 

v3, v7}. Such a partition (X,Y) is called a bipartition of the graph. 

Definition: 1.7  

A complete bipartite graph is a bipartite graph in which each vertex in the first 

set is joined to each vertex in the second set by exactly one edge. 

Definition: 1.8  

If G is a connected graph, the spanning tree in G is a sub graph of G which 

includes every vertex of G and is also a tree.  

Definition: 1.9.  

A graph ă = (ý, ā) is directed if the edge set is composed of ordered vertex 

(node) pairs A graph is undirected if the edge set is composed of unordered vertex pair.  

Definition: 1.10 

A graph that is in one piece is said to be connected whereas one which splits in 

to several pieces is disconnected. 

Definition: 1.11  

A graph G is regular if each vertex has same degree. i.e., d (v) = k, for all v*V.  
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Definition: 1.12 

A simple graph in which each pair of distinct vertices is joined by and edge is 

called a complete graph. It is denoted by Kn, where n is the number of vertices.  

Definition: 1.13 

A cycle graph is a graph consisting of a single cycle .The cycle graph with n 

vertices is denoted by ÿĀ. 

Definition: 1.14 

A graph ă1 = (ý1, ā1) is said to be isomorphic to the graph ă2 = (ý2, ā2) if 
there is a one-to-one correspondence between the vertex sets ý1 and ý2 and a one-to-

one correspondence between the edge sets ā1 and ā2  in such a way that if ă1  is an edge 

with end vertices Ă1 and ă1 in ă1 then corresponding edge ă2 in ă2 has its end points 

the vertices u2 and v2 in G2 which correspond to Ă1 and ă1 respectively .Such a pair of 

correspondences is called a graph isomorphism. 

Definition: 1.15 

Let ă be a connected graph. For any two vertices u and v; the distance between Ă and ă denoted by Ăÿ(Ă, ă) or Ă(Ă, ă) is the length of a shortest (Ă, ă) path in ă. A 

distance-two labeling (or λ-labeling) with span ā is a function         ā: ý (ă) →{1,2, & , ā } having the maximum value ā such that the following relations are satisfied 

for any two distinct vertices Ă and v : 

|ā(Ă) 2 ā(ă)| g { 2, ÿĄ Ă(Ă, ă) = 11, ÿĄ Ă (Ă, ă) = 2. 
The �-number of G is the smallest k such that G admits a distance-two labeling with 

span k.  
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    CHAPTER-2 

RADIO LABELING 

Definition: 2.1 

A radio labeling or multi-level distance labeling with span ā for a graph ă is a 

function ā ∶  ý (ă) → {1, 2, & , ā} having the maximum value ā such that the following 

condition holds for any two distinct vertices Ă and ă: 

  Ă(Ă, ă)  + |ā(Ă) 2  ā(ă)| g  1 +  Ăÿÿă(ă) 
This condition is referred to as radio condition.  

We denote by �(ă, ā) the set of consecutive integers  {ă,ă +  1, & ,ā} 
,where ă =  ăÿĄ�*�(ÿ)ā(Ă) and ā =  ăÿą �*�(ÿ)ā(Ă) is the span of ā, denoted ĀĆÿĄ(ā). 
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                     �ă                                      �Ă                                        �ă 

Figure: 2.1 Radio labeling on different kinds of graphs. 
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Definition: 2.2 

The radio number of G, denoted by ÿĄ(ă), is the minimum span of a radio 

labeling for ă. A radio labeling ā of G with ĀĆÿĄ(ā)  =  ÿĄ(ă) will be called optimal 

radio labeling for ă. 

Note: 2.3 

If Ăÿÿă(ă)  =  2, then radio labeling and λ -labeling become identical. 

Definition: 2.4 

A graph ă with Ą vertices is called radio graceful if  ÿĄ(ă)  =  Ą.  

Proposition: 2.5 

`For a complete graph  ÿĄ(ÿĀ)  =  Ą. 

Proof.  

Let G be the complete graph ÿĀ. (Figure 2.2) for Ą * Ă.  

For any Ă, ă * ă the distance will be 1 and the diameter of ă is 1. 

 Hence the radio condition shows: |ā(Ă) 2 ā(ă)| g Ăÿÿă(ă) + 1 2 Ă(Ă, ă) 
|ā(Ă) 2 ā(ă)| g 1 + 1 2 1 

|ā(Ă) 2 ā(ă)| g 1. 
Hence the minimal radio labeling on ÿĀ will be n 

 ÿĄ(ÿĀ)  =  Ą. 
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Figure: 2.2 Complete graph 

Proposition: 2.6 

Let ă be the star graph �Ā (Figure 2.3), then ÿĄ(�Ā) = Ą + 2. 
Proof. 

 For any Ă, ă * ă the distance will be 1 for neighboring vertices and two for 

non-neighboring vertices. 

 The diameter of  ă is 2. 

 Hence the radio condition shows: 

For  neighboring vertices: 

|ā(Ă) 2 ā(ă)| g 2 + 1 2 1 
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                                                    |ā(Ă) 2 ā(ă)| g 2, 

Or For  non-neighboring vertices: 

|ā(Ă) 2 ā(ă)| g 2 + 1 2 2 

                                                    |ā(Ă) 2 ā(ă)| g 1. 
Let  Ą g 2,  
the star graph �Ā with the vertices �, Ă1, Ă2, & , ĂĀ where � is the center of the graph. 

Because Ăÿÿă(�Ā) = 2 and Ă(�, Ăÿ) = 1 for any 1 f ÿ f Ą the radio condition for 

the vertices � and Ăÿ becomes 

 |ā(�) 2 ā(Ăÿ)| g 2. 

So for any labeling ā of �Ā, 
 ā(�) + 1 cannot be the label of an edge, then ÿĄ(�Ā) = Ą + 2.  
Then we can construct a label Ą(�) = 1, Ą(Ăÿ) = 2 + ÿ for 1 f ÿ f Ą.  

Hence ÿĄ(�Ā) = Ą + 2. 
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8 

 

3

7

5

6

4

1

38

6 5

4 7

1

6

8

9

4 7

5

3

1

                     �5                                            �6                                             �7 

Figure: 2.3 Star graph 

Proposition: 2.7 

The  radio  number  of  a  wheel  graph (Figure 2.4)  with  Ą  vertices  (þĀ) is: 

                                  ÿĄ(þĀ)={4,         ÿĄ Ą = 37,         ÿĄ Ą = 4Ą + 2, ÿĄ Ą g 5 

Proof. 

 The Ăÿÿă(þĀ) = 2. If Ą = 3 the graph is isomorphic to ÿ4. 
 Hence ÿĄ((þĀ)) = 4. 
 For Ą g 4, 
 let � be the center of the graph and Ă1, Ă2, & , ĂĀ the other vertices of the cycle. 

 If Ą = 4, assume that ā(Ă1) < ā(Ă3), ā(Ă2) < ā(Ă4) and 

 ā(Ă1) = min {ā(��)1 g ÿ g 4}.  
Consider the following cases:  

                                               ā(Ă1) < ā(Ă2) < ā(Ă3) < ā(Ă4), 
ā(Ă1) < ā(Ă2) < ā(Ă4) < ā(Ă3), 
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ā(Ă1) < ā(Ă3) < ā(Ă2) < ā(Ă4) 
We get that ĀĆÿĄ(Ą) = 7 such that: (�) = 1, ā(Ă1) = 3, ā(Ă3) = 4, 

 ā(Ă2) = 6, ā(Ă4) = 7.  
Hence ÿĄ(þĀ) = 7. 
If Ą g 5,  as in the case of the �Ā graph, because 

 Ăÿÿă(þĀ) = 2 and (�, Ăÿ) = 1 for any 1 f ÿ f Ą,  
the radio condition for � and Ăÿ  is: 

 |ā(Ă) 2 ā(ă)| g 2 

Hence  if  ā  is  the  radio  labeling  of þĀ then ā(�) + 1 cannot  be the radio labeling 

of any vertex, 

 so ÿĄ(þĀ) = Ą + 2.  
More over, we can construct a radio labeling ā for þĀ with ĀĆÿĄ(ā) = Ą + 2 as 

follows: 

For Ą even, ā(�) = 1, 
ā(Ă2ÿ+1) = 3 + ÿ for 0 f ÿ f Ā2 2 1, 

 ā(Ă2ÿ) = 2 + Ā2 + ÿ for 1 f ÿ f Ā2 2 1, 

and For Ą odd, 

ā(�) = 1, 
ā(Ă2ÿ+1) = 3 + ÿ for 0 f ÿ f Ā212 2 1, 



10 

 

 ā(Ă2ÿ) = 3 + Ā212 + ÿ for 1 f ÿ f Ā212 . 

We can check that ā is for both cases the radio labeling for þĀ, because: 

|ā(ăÿ) 2 ā(ăÿ+1)| g {2 + Ą2 2 3,                ÿĄ Ą ÿĀ ăăĄ 3 + Ą 2 12 2 3, ÿĄ Ą ÿĀ ąĂĂ. 
More so, in both cases ĀĆÿĄ(ā) = Ą + 2, hence ÿĄ(þĀ) = Ą + 2.
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Figure: 2.4 Wheel graph 

 

Proposition: 2.8 

In a complete bipartite graph ÿÿ+Ā (Figure 2.5) the radio number ÿĄ(ÿÿ+Ā) is  

ă + Ą + 1. 
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Proof.  

Let ÿÿ+Ā be the complete bipartite graph with ă + Ą vertices, that means ă 

vertices on the left hand side and Ą in the right hand side or vice-versa. 

 So ý(ÿÿ+Ā) = {ÿ1, ÿ2, & , ÿÿ, Ā1, Ā2, & , ĀĀ}, and there exists an edge 

between any ÿÿ and ĀĀ . So, 

 |ā(ÿÿ) 2 ā(ĀĀ)| g Ăÿÿă 2 Ă(ÿÿ, ĀĀ) + 1 = 2 2 1 + 1 = 2. 

Let ý = {ā(ÿÿ)|ÿ * {1,ă}}, þ = {ā(ĀĀ) |ÿ * {1, Ą}}   
let ăÿ = max(ý),  ăĀ = max(þ).    
Suppose without loss of generality that ăÿ < ăĀ .  
Let Ă = min{ā(Āÿ)|ā(Āÿ) g ăÿ}. 
 Note that Ă > ăÿ.  
Suppose for the sake of contradiction that Ă 2 1 * þ.  
Then there exists Āāsuch that ā(Āā) = Ă 2 1 g ăÿ.   
So min{ā(Āÿ)|ā(Āÿ) g ăÿ} = Ă 2 1 + þ.  
Suppose for the sake of contradiction that Ă 2 1 * ý.  
Then there exists , ÿāĀā such that 

 ā(ÿā) = Ă 2 1 and ā(Āā) = Ă  but  |ā(ÿā) 2 ā(Āā)| = 1. 
 This means that Ă 2 1 + ý.  
Thus Ă 2 1 + ý , þ. 
So {1,2, & ,ă + Ą} ⊈ {ā(ÿ1),& , ā(ÿÿ), ā(Ā1),& , ā(ĀĀ)}, and then  
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{1,2, & ,ă + Ą} b {ā(ÿ1), & , ā(ÿÿ), ā(Ā1),& , ā(ĀĀ)}.  
Hence there exists Ă * ℕ, Ă g ă + Ą + 1 such that Ă * ý , þ.  

So ÿĄ(ÿÿ,Ā) g ă + Ą + 1. 
Note that the following is a valid radio labeling 

ā(Ā1) = ă + 2, ā(Ā2) = ă + 3, ā(ĀĀ) = ă + Ą + 1. 
Thus ÿĄ(ÿÿ,Ā) = ă + Ą + 1. 

4

5

6

1

2

1

2

3

4

5

7

8

Figure: 2.5 Bipartite graph 

 

 

 

 

 

 

 

 



13 

 

                                     CHAPTER- 3 

                     RADIO NUMBER FOR MONGOLIAN TENT GRAPH 

Definition: 3.1 

The  ladder  graph,  denoted   by   ĀĀ,   is   the  graph   with   vertex   set 

 ý (ĀĀ) = {Ăÿ, ăÿ ∶  1 f ÿ f Ą}  and edge set  

ā(ĀĀ) = {Ăÿăÿ+1;  ăÿăÿ+1: 1 f ÿ f Ą 2 1} , Ăÿăÿ ∶ 1 f ÿ f Ą. 

Definition: 3.2 

           Mongolian tent, denoted by āāĀ, is the graph obtained from the ladder graph ĀĀ by adding a new vertex � and joining each vertex ăÿ; 1 f ÿ f Ą with � . 
Example: 3.3 

                                

3

1 5

4 2  

 Figure 3.1:  Mþā 

The following remark will be useful in our proofs. 

Remark: 3.4 

Let ā be an optimum radio labeling of graph ă. 
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 We can associate to ā an ordering of the vertices of ă, increasing by their labels. 

Denote by ÿ1, & , ÿĀ the vertices of ă in this order:  

 ā(ÿ1) <  ā(ÿ2) < ⋯ <  ā(ÿĀ). 
 We have 

 ā(ÿ1)  =  1 

 ÿĄ(ă) = ĀĆÿĄ(ā) = 1 + ∑ (ā(ÿÿ+1) 2 ā(ÿÿ))Ā21ÿ=1  

 If ā(ÿÿ+1) 2 ā(ÿÿ) = 1, then we have Ă(ÿÿ, ÿÿ+1) = Ăÿÿă(ă). 
      In order to find a lower bound for ÿĄ(ă), for graphs with small diameter is 

sometimes useful to determine how many pairs ( ÿÿ, ÿÿ+1) with ā(ÿÿ+1) 2 ā(ÿÿ) = 1 

we can have.  

If there can be at most ą such pairs, then we have: 

ÿĄ(ă) g 1 +  ą +  2(Ą 2 1 2 ą). 
Next, we introduce the notion of forbidden values associated to a vertex ă for a radio 

labeling ā.  

Let ā be a radio labeling of graph ă.  

Since vertex ă has label ā(ă) then, by radio condition, some values from �(ă, ā) that 

are close to ā(ă) cannot be labels for other vertices. 

 We will call these values forbidden values associated to vertex ă. 

Theorem: 3.5 

a. Mongolian tent āā2 is radio graceful. 

b. The radio number of Mongolian tent āā3 is 11. 
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c. The radio number of Mongolian tent āā4is 12. 

Proof. 

 In order to prove that the values stated in the Theorem are lower bounds for the 

radio number, we will use the idea from Remark 3. .3. Consider ā an optimal radio 

labeling and denote by ÿ1, ÿ2, & , ÿÿ the vertices of the graph in increasing order of 

their labels 

.  We investigate the maximum number of pairs  (ÿÿ , ÿÿ+1)  with 

  ā(ÿÿ+1) 2 ā(ÿÿ) = 1 

 By radio condition, these pairs must have the property that 

 Ă(ÿÿ, ÿÿ+1) =  Ăÿÿă(ă). 
     For proving that the claimed values are upper bounds for the radio numbers of 

considered graphs,  

we will provide radio labeling having spans equal to these values. 

a) The Mongolian tent āā2, is a planar graph with 5 vertices, 6 edges and 

diameter 2. 

 We have ÿĄ(āā2) g |ý (āā2)| = 5. 
The radio labeling ā of āā2 represented in Fig. 3.1(a), shows that ÿĄ(āā2) f 5.  
It implies that ÿĄ(āā2)  =  5. 

Therefore āā2 is radio graceful 
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c) āā4 

Figure: 3.2  Radio labeling for Mongolian tent graphs 

b) āā3 has ă =  7 vertices and Ăÿÿă(āā3)  =  3.  

 There are only two pairs of vertices at distance 3 in āā3,  hence we have ÿĄ(āā3) g 1 +  2 ∙ 1 + (ă 2 1 2 2) ∙ 2 =  1 +  2 +  8 =  11. 
The radio labeling of M t3 illustrated in Fig. 1 (b) shows that 

      ÿĄ(āā3 ) = 11. 

We conclude that ÿĄ(āā3)  =  11. 
c)  Mongolian tent āā4 has ă =  9 vertices and Ăÿÿă(āā4) =  3.  
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There are 7 pairs of vertices at distance 3 in āā4.  

In order to easily observe these pairs, consider the distance-3 graph associated to āā4, 

that is the graph having the same vertices as āā4and the edge set consisting of the pairs 

of vertices that are at distance 3 in āā4, shown in Fig.3.2    
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v
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u
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u
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u
4

 

Figure: 3.3 Distance-Ă graph of �þă. 

        In order to obtain a more precise estimation of the maximum number of pairs  (ÿÿ, ÿÿ+1)with ā(ÿÿ+1) 2 ā(ÿÿ) = 1, 

 we study how many triplets (ÿÿ, ÿÿ+1, ÿÿ+2) may have consecutive labels:                
 ā(ÿÿ), ā(ÿÿ) + 1, ā(ÿÿ) + 2.  

By radio condition we must have Ă(ÿÿ, ÿÿ+2) g  2. 
 Such a triplet corresponds to a path of length 2 in the distance-3 graph associated to āā4 ,whose extremities are at distance at least 2 in āā4. 

 It is easy to see that there are only two such path: [ă2, Ă4, Ă1] and [Ă4, Ă1, ă3], which 

have 2 vertices in common. 

It follows that we can have at most 5 pairs (ÿÿ, ÿÿ+1) with consecutive labels (otherwise 

more triplets with consecutive labels will occur), 

  hence   
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               ÿĄ(āā4) g 1 + 5 ∙ 1 + (ă 2 1 2 5) ∙ 2 = 1 + 5 + 6 = 12 

The radio labeling of āā4  represented in Fig. 3.1 (c) shows that ÿĄ(āā4)  f 12, hence ÿĄ(āā4)  =  12. 
Theorem: 3.6 

For Ą g 5, ÿĄ(āāĀ) g 4Ą + 2.                                                                              
Proof. 

 Assume Ą g 5. Then Ăÿÿă(āāĀ) = 4, so any radio labeling ā of āāĀ must 

satisfy the radio condition Ă(Ă, ă) + |ā(Ă) 2 ā(ă)| g 5 for all distinct vertices Ă, ă *ý(āāĀ).   
Let c be an optimal radio labeling for āāĀ. 

 We count the number of values needed for labels and add the minimum number of 

forbidden values for ā. 

Thus, since Ă(�, ÿ) f 2 for all vertices ÿ b  �; the values  

                      {ā(�) 2 2;  ā(�) 2 1;  ā(�) + 1;  ā(�) + 2 } + �(āāĀ, ā)  
are forbidden.  

Similarly, as Ă(ăÿ, ÿ)  f 3 for all ăÿ  and for any ÿ b ăÿ; the values 

 {ā(ăÿ) 2 1, ā(ăÿ) + 1} + �(āāĀ, ā) 
 are forbidden, for every ÿ * {1,2, & , Ą}.  
However, as Ă(Ăÿ, ÿ) =  4  for some vertex ÿ; 

 it is possible to use consecutive labels on Ăÿand ÿ. (i.e. there are no forbidden values 

associated with the vertices {Ă1, Ă2, & , ĂĀ}. )  
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           Remark that the number of forbidden values associated to z is                  |ā(�) 22, ā(�) 2 1;  ā(�) +  1;  ā(�) +  2}  +  �(āāĀ, ā)| g 2, with equality 

only if ā(�)  * {1, ĀĆÿĄ(ā)}. 
 Also, |{ā(ăÿ) 2  1, ā(ăÿ) + 1} + �(āāĀ, ā)|  g 1, with equality only if ā(ăÿ) *{1, ĀĆÿĄ(ā)}. 
 Moreover, these forbidden values are distinct, since by radio condition we must have        |ā(�) 2 ā(ăÿ)| g 3 ÿĄĂ |ā(ăÿ) 2 ā(ăĀ)| g  2 for every ÿ b  Ā. 
 The minimum number of forbidden values for c is then obtained in two situations 

(when there exists ÿ such that {ā(ăÿ ), ā(�) } = {1;  ĀĆÿĄ(ā)} or there exists    ÿ b  Ā   
such that     {ā(ăÿ), ā(ăĀ)} = {1, ĀĆÿĄ(ā)})     and    this    number    is  

3 + 2Ą 2  2 = 2Ą +  1. 
 Adding in the 2Ą +  1 values needed to label the 2Ą +  1 vertices provides a total of 4Ą +  2  labels, hence  ÿĄ(āāĀ) g  4Ą +  2; for Ą g  5. 

Theorem: 3.7   

For Ą g 5;  ÿĄ(āāĀ) f 4Ą + 2. 

Proof.  

 We shall propose a radio labeling of āāĀ with span 4Ą +  2; which 

implies (āāĀ) f 4Ą + 2 . 

 Let Ą g 5.  
The radio labeling ā ∶  ý (āāĀ)  → ℤ+ is defined as follows:  

 ā(�)  =  4Ą + 2 



20 

 

ā(Ăÿ) = {4ÿ,     ÿĄ 1 f ÿ f Ą 2 1 3 ,     ÿĄ        ÿ = Ą           
 

Case A- Ą is odd: 

ā(ăÿ) = {  
  2Ą + 4ÿ,              ÿĄ 1 f ÿ f Ą + 12 2 1     1  ,                    ÿĄ ÿ = Ą + 12                   2(2ÿ 2 Ą),           ÿĄ Ą + 12 + 1 f ÿ f Ą  

Case B- Ą is even: 

ā(ăÿ) = { 
 2(Ą + 2ÿ + 1),           ÿĄ 1 f ÿ f Ā2 2 1     1  ,                             ÿĄ ÿ = Ā2                     2(2ÿ + 1 2 Ą),           ÿĄ Ā2 + 1 f ÿ f Ą   

In both cases the span of ā is equal to 4Ą + 2 and it is reached for ā(�). 
Claim: The labeling ā is a valid radio labeling.  

We must show that the radio condition d(Ă, ă)  + |ā(Ă) 2 ā(ă)| Ăÿÿă(āā4) + 1 =  5 

holds for all pairs of vertices (Ă, ă) (where Ă b  ă). 

1. Consider   the   pair   (�, ÿ)  (for   any    ÿ b �).   As   Ă(�, ÿ) g 1    and         ā(ÿ) f 4Ą 2 2,  

we have Ă(�, ÿ) + |ā(�) 2 ā(ÿ)| g 1 + |4Ą +  2 (4Ą 2)| g 5 for  any ÿ b �.  
 The radio condition is satisfied. 

2. Consider the pairs (ăÿ , ăĀ) (with b Ā ). Note that Ă(ăÿ  , ăĀ) g 1 for ÿ b Ā . |ā(ăÿ) 2 ā(ăĀ)| g  4 for all ăÿ b ăĀ: Hence, again, the radio condition is 

satisfied.  
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3. Consider the pairs (Ăÿ , ĂĀ) (with ÿ b Ā).  
We have Ă(Ă1 , ĂĀ)  =  4,and the labels diffence for this pair is 

    |ā(Ă1) 2 ā(ĂĀ)|  =  1;  

4. so the radio condition for (Ă1 , ĂĀ) is satisfied. 

 Note that Ă(Ăÿ  , ĂĀ) g 1 for ÿ b Ā  and the label difference for each pair is   |ā(Ăÿ) 2ā(ĂĀ) g 4, except the pair (Ă1 , ĂĀ).  
The radio condition is then satisfied for all distinct Ăÿ.  

5. Finally,     consider      the pairs    (Ă, ă)    where    Ă * {Ă1, Ă2, & , ĂĀ} and                     

     ă * {ă1, ă2, & , ăĀ}. 
 We have ā(Ă) * {3,4,8,12,& ,4(Ą 2 1)}      If Ă(Ă, ă) = 2 then   by the way ā was 

defined, 

       |ā(Ă) 2 &ā(ă)| g 2Ą 2 3 g 7 for Ą g 5. 

 If  Ă(Ă, ă) = 2, then |ā(Ă) 2 &ā(ă)| g 2Ą 2 7 g 3 for Ą g 5. 

When Ă(Ă, ă) = 3, 
   |ā(Ă) 2 &ā(ă)| g 2.  

It follows that the radio condition is satisfied for these   pairs.  

These four cases establish the claim that ā is a radio labeling of āāĀ. 

Thus ÿĄ(āāĀ) f ĀĆÿĄ(ā) f 4Ą + 2. 
Theorem: 3.8  

The radio number of Mongolian tent āāĀ is 4Ą +  2  when Ą g 5. 
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Proof. 

 Theorem 3.6  shows ÿĄ(āāĀ)  g 4Ą +  2 for Ą g 5;  

and Theorem 3.7  shows ÿĄ(āāĀ) f 4Ą +  2 for Ą g 5.  
Therefore, 

 ÿĄ(āāĀ) = 4Ą +  2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 

 

CHAPTER-4 

RADIO NUMBER FOR DIAMOND GRAPH 

Definition: 4.1 

Diamond graph, denoted by ĂĀ, is the graph obtained from the Mongolian tent 

graph āāĀ by adding a new vertex �1 and joining each vertex Ăÿ, 1 f ÿ f Ą with �1. 
Example: 4.2 

5

1 8

10
3

6  

           Figure:4.1   �� graph 

Theorem:4.3. 

 For diamond graphs the following relations hold: 

a) ÿĄ(Ă2)  =  10 

b) ÿĄ(Ă3)  =  12 

c) ÿĄ(Ă4)  =  14 

d) ÿĄ(Ă5)  =  15 

Proof.  

 In Fig. 4.2  are shown radio labelings having spans equal to the values stated 

in the Theorem, 

 hence these values are upper bounds for the radio numbers of considered graphs. 
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                                                                 e) Ă6 

Figure: 4.2 Radio labeling for Diamond graphs 
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In order to prove that they are also lower bounds, we will use the same arguments as 

in Theorem 3.4 , based on Remark 3.4. 

Consider ā an optimal radio labeling and denote by ÿ1, ÿ2, & , ÿÿ the vertices of the 

graph in increasing order of their labels.  

a) We have ă = |ý (Ă2)| = 6 and Ăÿÿă(Ă2) = 3. 

 There is only one pair of vertices at distance 3 in Ă2 (that is (�, �1)), 
 hence we have ÿĄ(Ă2) g 1 +  1 ∙ 1 + (ă 2 1 2 1) ∙ 2 =  1 +  1 +  8 =  10 

b) We have ă = |ý (Ă3)| =  8 and Ăÿÿă(Ă3)  =  3.  

There are three pairs of vertices at distance 3 in Ă2: (�, �1), (ă1, Ă3) and (ă3, Ă1), 
hence we have ÿĄ(Ă3) g 1 +  3 ∙ 1 + (ă 2 1 2 3) ∙  2 =  1 +  3 +  8 =  12 

c)  Ă4 has ă =  10 vertices and Ăÿÿă(Ă4)  =  3.  

Consider the distance-3 graph associated to  Ă4, shown in Fig.4.2 (a). 

 As in proof of Theorem 3.5, we observe that there is no path of length 2 in the distance-

3 graph associated to Ă4 whose extremities are at distance at least 2 in Ă4, hence there 

are no triplets (ÿÿ, ÿÿ+1, ÿÿ+2) having consecutive labels.  
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b)Figure 4.2   Distance-Ă graph for �ă and �Ą. 

It follows that we can have at most 
ÿ2 = 5 pairs of vertices (ÿÿ, ÿÿ+1)with consecutive 

labels, hence ÿĄ(Ă4) g 1 +  5 ∙  1 + (ă 2 1 2 5) ∙  2 =  1 + 5 + 8 = 14.   d)We have |ý (Ă5)|  =  12 and Ăÿÿă(Ă5) = 3.  

We consider again paths of length 2 in the distance-3 graph associated to  Ă5, shown in 

Fig. 4.2(b).  

There are 3 paths of length 2 in the distance 3 graph associated to Ă4 joining vertices 

at distance at least 2 in Ă4: [Ă5, ă1, Ă3], [Ă1, ă5, Ă3], [Ă5, ă3, Ă1].  
These paths contain 6 of the vertices of the graph, so there are no triplets of vertices 

with consecutive labels containing some of the other 6 vertices.It follows that there are 

atmost (6 2 1) + 62 = 8 pairs of vertices with consecutive labels, hence ÿĄ(Ă5)1 +  8 ∙ 1 + (ă 2 1 2 8) ∙ 2 =  1 +  8 +  6 =  15. 
Theorem: 4.4 

For Ą g 6, the radio number of diamond graph ĂĀ is 2Ą +  3. 

Proof.   

Recall the vertex set and edge set of diamond graph as follows: 

ý(ĂĀ) = {ăÿ , Ăÿ: 1 f ÿ f Ą} , {�, �1}  
ā(ĂĀ) = {Ăÿ, Ăÿ+1, ăÿ , ăÿ+1: 1 f ÿ f Ą 2 1} , {Ăÿ , ăÿ , �ăÿ , �1Ăÿ: 1 f ÿ f Ą}. 
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For Ą g  6; Ăÿÿă(ĂĀ)  =  3:  

The diamond graph contains 2Ą +  2 vertices and 5Ą 2 2 edges. 

First we will prove that ÿĄ(ĂĀ)  g 2Ą + 3.  

For that, let ā be a radio labeling forĂĀ.  

We will prove that ā has at least one forbidden value, associated to one of the vertices � and �1.  

By symmetry we can assume ā(�) < ā(�1). 
 Denote ÿ = ā(�). 

As �1 is the only vertex at distance 3 of �, ÿ 2 1 and ÿ + 1 can be used as label 

only for �1. 

Assume ā(�1)  = ÿ + 1 =  Ā.  

As Ă(�1, ÿ)  f 2 for all ÿ * {�, �1}, if Ā + 1 =  ÿ + 2 is assigned to any other 

vertices, then the condition (1) is not satisfed.  

It follows that if ā(�1)  =  ÿ + 1 then either ā(�) 2 1 is a forbidden value 

associated to � (if ā(�)  >  1), or ā(�)  +  2 (if ā(�)  = 1).If ā(�1) is not labeled with ÿ +  1 then, since ÿ = ā(�) < ā(�1) ĀĆÿĄ(ā), value ÿ +  1 is forbidden. 

Therefore ÿĄ(ĂĀ) must be greater or equal to |ý (ĂĀ)| +  1 = 2Ą +  3. To prove ÿĄ(ĂĀ)  f 2Ą + 3, we define a labeling ā ∶  ý (ĂĀ) → {1,2, & , 2Ą + 3} as follows such 

that radio condition is satisfied.For Ą = 6 such a labeling is shown in Fig. 4.1 (e).Let Ą g 7. 
Case A- Ą is even 
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ā(�) = 1, ā(�1) = 2 

ā(ăÿ) = { Ą + 6 2 ÿ,            ÿĄ ÿ c 0(ăąĂ 2)                           4 ,                      ÿĄ ÿ = 1                                        2Ą + 5 2 ÿ,           ÿĄ ÿ g 3 ÿĄĂ ÿ c 1(ăąĂ 2)      
ā(Ăÿ) = { Ą + 9 2 ÿ ,        ÿĄ  ÿ c 0(ăąĂ 2)                           8 2 ÿ ,               ÿĄ  ÿ = 1,3                                        2Ą + 8 2 ÿ,        ÿĄ  ÿ g 5 ÿĄĂ ÿ c 1(ăąĂ 2)      

Case B- Ą is odd 

We divide this case into two subcases. 

B.1: Ą c 3 (ăąĂ 4). Then we define ā(�) = 2Ą + 3, ā(�) = 2Ą + 2 

ā(Ăÿ) =
{  
  
  3Ą + ÿ + 1 2 ,               ÿĄ ÿ c 0(ăąĂ 4)ÿ + 22 ,                         ÿĄ ÿ c 1(ăąĂ 4)Ą + 1 + ÿ2 ,                 ÿĄ ÿ c 2(ăąĂ 4)     2Ą + 1 + ÿ2 ,               ÿĄ ÿ c 3(ăąĂ 4)      

 

ā(ăÿ) =
{  
  
  Ą + 1 + ÿ 2 ,                    ÿĄ ÿ c 0(ăąĂ 4)      2Ą + 1 + ÿ2 ,                 ÿĄ ÿ c 1(ăąĂ 4)      3Ą + ÿ + 12 ,                  ÿĄ ÿ c 2(ăąĂ 4)           ÿ + 12 ,                          ÿĄ ÿ c 3(ăąĂ 4)        

 

B.2: Ą c 1 (ăąĂ 4). Then we define ā(�) = 2Ą + 2, ā(�) = 2Ą + 3 
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ā(Ăÿ) =
{  
  
   
 Ą + 1 + ÿ2 ,                 ÿĄ ÿ c 0(ăąĂ 4)                  Ą + 2 + ÿ 2 ,               ÿĄ ÿ c 1(ăąĂ 4)                 2Ą,                            ÿĄ ÿ = 2                                 3Ą + ÿ 2 12 ,               ÿĄ ÿ > 2 ÿĄĂ ÿ c 2(ăąĂ 4) ÿ + 12 ,                        ÿĄ ÿ c 3(ăąĂ 4)                    

 

ā(ăÿ) =
{  
  
  3Ą + ÿ + 12 ,               ÿĄ ÿ c 0(ăąĂ 4)ÿ + 12 ,                         ÿĄ ÿ c 1(ăąĂ 4)2Ą + 2 + ÿ2 ,                 ÿĄ ÿ c 2(ăąĂ 4)    Ą + 1 + ÿ2 ,                   ÿĄ ÿ c 3(ăąĂ 4)   

        

Claim: The labeling ā is a valid radio labeling.  

We must show that the radio condition    

Ă(Ă, ă)  + |ā(Ă) ā(ă)| g  1 +  Ăÿÿă(ĂĀ)  =  4 

holds for all pairs of vertices (Ă, ă) (where Ă b  ă). 

Case A: Assume Ą is even.  

We consider all types of pairs of vertices. 

1: Consider the pairs (�, ÿ) for any vertex r+ {�, �1}. As 1f Ă(�, ÿ) f 2, r + {�, �1},ā(�) = 1, ā(ÿ) g 4, |ā(�) 2 ā(ÿ)| g 3, it follows that  Ă(�, ÿ) + |ā(�)ā(ÿ)| g 1 + 3 = 4. 
2: For pair (�, �1), as Ă(�, �1) = 3 and |ā(�) 2 ā(�1)| =  1, the radio condition is 

satisfied. 

3: Consider the pairs  (�1, ÿ) for any vertex  ÿ + {�, ă1}.  
As    1f Ă(�1, ÿ) f 2, r + {�, ă1},    ā(�1) = 2,   ā(ÿ) g 5,     |ā(�1) 2 ā(ÿ)| g 3,   and 
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Ă(�1, ă1) = 2, |ā(�1) 2 ā(ă1)| = 2,  the radio  condition  (2)  is  satisfied. 

4:  Consider the pairs (ăÿ , ăĀ) (with ÿ b Ā) If Ă(ăÿ, ăĀ)  =  1 we have Ă(ăÿ , ăĀ) + |ā(ăÿ) 2 ā(ăĀ)| g 1 + |Ą 2 2| g 6, otherwise |ā(ăÿ) 2 ā(ăĀ)| g 2. 

Therefore the radio condition is satisfied for such pairs. 

5:  Consider the pairs (Ăÿ , ĂĀ) (with ÿ b Ā) Similar as Case 3. 

6: Consider the pairs (Ăÿ , ăĀ).  
We examine the label difference for each pair, when distance between vertices is one, 

two, three. As 1 f Ă(Ăÿ, ăĀ) f 3, so 

- if Ă(Ăÿ, ăĀ) = 1 then ÿ = Ā and |ā(Ăÿ) 2 ā(ăĀ)| g 3 

- if Ă(Ăÿ, ăĀ) = 2 then ÿ = Ā ± 1 and |ā(Ăÿ) 2 ā(ăĀ)| g |Ą 2 5| g 2 for Ą g 7  
- if Ă(Ăÿ, ăĀ) = 3 then |ā(Ăÿ) 2 ā(ăĀ)| g 1. 

Hence the radio condition is satisfied. 

Case B: Ą is odd. 

B 1 If Ą c 3 (ăąĂ 4) we have the following cases 

1: Consider the pair (�, ÿ) for any vertex ÿ + {�, �1}.  
As  1 f Ă(�, ÿ) f 2, ÿ + {�, �1}, ā(�) = 2Ą + 3, ā(ÿ) f 2Ą, |ā(�) 2 ā(ÿ)| g 3.  
Hence Ă(�, ÿ) + |ā(�) 2 ā(ÿ)| g 1 + 3 = 4. 
2: As Ă(�, �1)  =  3 and |ā(�) 2 ā(�1)| = 1 the radio condition is satisfied. 

3: Consider the pairs (�1, ÿ) for any vertex ÿ + {�, �1}.  As 1 f Ă(�1, ÿ) f 2, ÿ +{�, �1}, when Ă(�1, ÿ) = 1 we have |ā(�1) 2 ā(ÿ)| g 3 and when Ă(�1, ÿ) = 2, then |ā(�1) 2 ā(ÿ)| g 2: It follows that the radio condition (2) is satisfied. 

4: Consider the pairs (ăÿ , ăĀ) (with ÿ b Ā). As Ă(ăÿ , ăĀ) f 2  for ÿ b Ā. 
- if Ă(ăÿ, ăĀ) = 1 then ÿ = Ā  1 and |ā(ăÿ) 2 ā(ăĀ)| g Ā+12 g 4 for Ą g 7 
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- if  Ă(ăÿ, ăĀ) = 2   then |ā(ăÿ) 2 ā(ăĀ)| g 2.  
5: Consider the pairs (Ăÿ, ĂĀ) (with ÿ b Ā). As Ă(Ăÿ, ĂĀ) f 2 for ÿ b Ā, 

- if Ă(Ăÿ, ĂĀ) = 1 then ÿ = Ā ± 1 and |ā(Ăÿ) 2 ā(ĂĀ)| g Ā+12 g 4 for Ą g 7 

- if Ă(Ăÿ, ĂĀ) = 2 then |ā(Ăÿ) 2 ā(ĂĀ)| g 2Ą g 7. 
Hence the radio condition is also satisfied for these pairs. 

6: Consider the pairs (Ăÿ , ăĀ). We examine the labels difference for each pair, when 

distance between vertices is one, two, three. As 1 f Ă(Ăÿ, ăĀ) f 3, so 

- if Ă(Ăÿ , ăĀ) = 1 then ÿ = Ā and |ā(Ăÿ) 2 ā(ăĀ)| g 3 

- if Ă(Ăÿ , ăĀ) = 2 then ÿ = Ā ± 1 and |ā(Ăÿ) 2 ā(ăĀ)| g |Ą 2 5| g 2  

- if Ă(Ăÿ , ăĀ) = 3 then |ā(Ăÿ) 2 ā(ăĀ)| g 1 

.Hence the radio condition (2) is satisfied. 

The situation when Ą c 1 (ăąĂ 4) is similar as Ą c 3 (ăąĂ 4). 
For all cases we establish the claim that ā is a radio labeling of ĂĀ. 
Thus ÿĄ(ĂĀ) f 2Ą + 3. Hence ÿĄ(ĂĀ) = 2Ą + 3. 
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                                                          CHAPTER-5 

RADIO LABELING OF SOME CYCLE RELATED GRAPHS 

Definition: 5.1 

A Chord of a cycle ÿ is an edge not in ÿ whose end vertices lie in ÿ. 

Definition: 5.2 

The    middle    graph    ā(ă) of    a    graph ă   is   the  graph   whose  vertex 

set is ý(ă) , ā(ă) in which two vertices are adjacent if and only if either they are 

adjacent edges of ă or one is a vertex of ă and the other is an edge incident with it. 

Definition: 5.3 

For a graph ă the split graph is obtained by adding to each vertex ă a new 

vertex ă′ such that ă′ is adjacent to every vertex that is adjacent to ă in ă. The 

new graph is denoted as ĀĆĂ(ă). 
Definition: 5.4 

A petal graph is a connected graph ă with ∆(ă)  =  3 and �(ă)  =  2 in 

which the set of vertices of degree three induces a 2-regular graph and the set of 

vertices of degree two induces an empty graph.  

In a petal graph ă if Ą is a vertex of G with degree two, having neighbours ă1, ă2 then the path ��  =  ă1Ąă2 is called petal of ă. We  name Ą the center of the 

petal and ă1, ă2 the basepoints.  

If  Ăă1, ă2 = ā, we say that the size of the petal is ā. If the size of each petal 

is ā then it is called a ā 2petal graph. 

 

Theorem: 5.5 
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Let ă be a cycle with chords. Then, 

ÿĄ(ă) =
{  
  
  (ā + 2)(2ā 2 1) + 1 +∑ (Ăÿ 2 Ăÿ′),   Ą c 0(ăąĂ 4)ÿ2ā(ā + 2) + 1 +∑ (Ăÿ 2 Ăÿ′),               Ą c 2(ăąĂ 4)ÿ2ā(ā + 1) +∑ (Ăÿ 2 Ăÿ′),                      Ą c 1(ăąĂ 4)ÿ(ā + 2)(2ā + 1) +∑ (Ăÿ 2 Ăÿ′),          Ą c 3(ăąĂ 4)ÿ

 

Proof. 

 Let ÿĀ denote the cycle on Ą vertices and ý(ÿĀ)  =  {ă0, ă1, & , ăĀ21} be such 

that ăÿ  is adjacent to ăÿ+1and ăĀ21is adjacent to  ă0. 

 We denote Ă =  Ăÿÿă(ÿĀ). 
The labels are assigned with the help of the following two sequences.  

 the distance gap sequence Ā =  (Ă0, Ă1, & , ĂĄ22) 
 the color gap sequence Ă = (Ą0, Ą1, & , ĄĀ22) 

The distance gap sequence in which each Ăÿ f Ă is a positive integer is used to generate 

an ordering of the vertices of ÿĀ.  

Let � ∶  {0, 1, . . . , Ą 2 1}  →  {0, 1, . . . , Ą 2 1} be defined as � (0)  =  0 and  � (ÿ + 1)  =  � (ÿ) + Ăÿ (ăąĂ Ą).  
 Here � is a corresponding permutation. 

 Let ąÿ = ă�(ÿ) for ÿ =  0, 1, 2, . . . , Ą 2  1. 

 Then {ą0, ą1, & , ąĀ21} is an ordering of the vertices of ÿĀ . 

 Let us denote Ă(ąÿ, ąÿ+1)  =  Ăÿ.  
The color  gap sequence  is  used  to assign  labels  to  the  vertices of ÿĀ.  

Let Ą  be  the  labeling defined by Ą(ą0)  =  0 and for ÿ g  1, Ą(ąÿ + 1)  = Ą(ąÿ)  + Ąÿ. By the definition of radio labeling, Ąÿ g  Ă 2 Ăÿ + 1 for all ÿ.  
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We  adopt the scheme for distance gap sequence and color gap sequence proceed as 

follows.  

Case 1: Ą =  4ā.  

In this case, Ăÿÿă(ă)  =  2ā. 

Using the sequences given below we can generate the radio labeling of cycle ÿĀ for Ą c  0(ăąĂ 4) with minimum span. 

The distance gap sequence is given by 

Ăÿ = {2ā,             ÿĄ ÿ ÿĀ ăăăĄ                 ā,              ÿĄ ÿ c 1(ăąĂ 4)       ā + 1        ÿĄ ÿ c 3(ăąĂ 4)          
And the color gap sequence is given by 

Ąÿ = { 1,               ÿĄ ÿ ÿĀ ăăăĄ      ā + 1,        ÿĄ ÿ ÿĀ ąĂĂ          
Then, for ÿ =  0, 1, 2, . . . ā 2 1 we  have the following permutation, �(4ÿ)           =  2ÿā +  ÿ(ăąĂ Ą) �(4ÿ + 1)   =  (2ÿ + 2)ā +  ÿ(ăąĂ Ą) 
 �(4ÿ + 2)   =  (2ÿ + 3) ā + ÿ(ăąĂ Ą) 
 �(4ÿ +  3)  =  (2ÿ + 1)ā +  ÿ(ăąĂ Ą) 
Now we add chords in cycle ÿĀsuch that diameter of the cycle remains unchanged. 

Label the vertices of this newly obtained graph using the above permutation. 

 Suppose the new distance between ąÿand ąÿ+1 is Ăÿ′(ąÿ, ąÿ+1 ), then due to chords in 

the cycle it is obvious that Ăÿ g Ăÿ′ 
We define the color gap sequence as Ąÿ′ = Ąÿ + (Ăÿ2Ăÿ′), 0 f ÿ f Ą 2 2. So that span Ą′ for cycle with chord is 

Ą0′ + Ą1′ +⋯+ ĄĀ22′ = Ą0 + Ą1 + Ą2 +⋯+ ĄĀ22 +∑(Ăÿ2Ăÿ′) 
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                                  = ÿĄ(ÿĀ) + ∑(Ăÿ2Ăÿ′) 
                                  = (ā + 2)(2ā 2 1) + 1 + ∑(Ăÿ2Ăÿ′) , 0 f ÿ f Ą 2 2 

Which is an upper bound for the radio number for the cycle with arbitrary number of 

chords when Ą = 4ā.  
Case 2: Ą =  4ā +  2.  

In this case Ăÿÿă(ă) = 2ā +  1. 

Using the sequences given below we can generate radio labeling of the cycle ÿĀ for Ą c 2(ăąĂ 4) with minimum span. 

The distance gap sequence is given by 

Ăÿ = {2ā + 1,       ÿĄ ÿ ÿĀ ăăăĄā + 1, ÿĄ ÿ ÿĀ ąĂĂ   
and the color gap sequence is given by 

Ąÿ = { 1                ÿĄ ÿ ÿĀ ăăăĄā + 1, ÿĄ ÿ ÿĀ ąĂĂ     
Hence for ÿ = 0, 1, . . . 2ā, we have the following permutation, �(2ÿ) =  ÿ(3ā + 2)(ăąĂ Ą) � (2ÿ +  1) =  ÿ(3ā + 2) + 2ā + 1(ăąĂ Ą)  
Now we add chords in the cycle ÿĀ such that the diameter of the cycle remains 

unchanged. 

 Label the vertices of this newly obtained graph by using the above permutation. 

 So, that span Ą′ for cycle with chord is  

Ą0′ + Ą1′ +⋯+ ĄĀ22′ = Ą0 + Ą1 + Ą2 +⋯+ ĄĀ22 +∑(Ăÿ2Ăÿ′) 
                                  = ÿĄ(ÿĀ) + ∑(Ăÿ2Ăÿ′) 
                                  = 2ā(ā + 2) + 1 + ∑(Ăÿ2Ăÿ′) , 0 f ÿ f Ą 2 2 

which is an upper bound for the radio number for cycle with arbitrary number of chords 
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when Ą = 4ā + 2. 

Case 3: Ą = 4ā + 1. 
 In this case Ăÿÿă(ă)  =  2ā. 

Using the sequences given below we can generate radio labeling of cycle ÿĀ for Ą c1(ăąĂ 4) with minimum span. 

The distance gap sequence is given by 

 Ă4ÿ = Ă4ÿ+2 = 2ā 2 ÿ Ă4ÿ+1 = Ă4ÿ+3 = ā + 1 + ÿ 
and the color gap sequence is given by Ąÿ = 2ā 2 Ăÿ + 1 

Then we have, � (2ÿ) = ÿ(3ā +  1) (ăąĂ Ą), 0 f  ÿ f  2ā � (4ÿ +  1) =  2(ÿ +  1)ā (ăąĂ Ą), 0 f  ÿ f  ā 3  1 � (4ÿ +  3) =  2(ÿ +  1)ā (ăąĂ Ą), 0 f  ÿ f  ā 3  1 

Label the vertices of this newly obtained graph by using the above permutation. 

 So, that span of  Ą′ for cycle with chords is  

Ą0′ + Ą1′ +⋯+ ĄĀ22′ = Ą0 + Ą1 + Ą2 +⋯+ ĄĀ22 +∑(Ăÿ2Ăÿ′) 
                                  = ÿĄ(ÿĀ) + ∑(Ăÿ2Ăÿ′) 
                                  = 2ā(ā + 2) + ∑(Ăÿ2Ăÿ′) , 0 f ÿ f Ą 2 2 

which is an upper bound for the radio number for cycle with arbitrary number of chords 

when  Ą = 4ā + 1. 

Case 4: Ą =  4ā +  3.  

In this case Ăÿÿă(ă)  =  2ā +  1. 

Using   the  sequences   below   we  can   give  radio  labelling  of  the  cycle  ÿĀ  for   
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Ą c 3(ăąĂ4) with minimum span. 

The distance gap sequence is given by Ă4ÿ = Ă4ÿ+2 = 2ā + 1 2 ÿ Ă4ÿ+1 = ā + 1 + ÿ Ă4ÿ+3 = ā + 2 + ÿ 
And the color gap sequence is given by 

Ąÿ = {2ā 2 Ăÿ + 2, ÿĄ ÿ d 3(ăąĂ 4)2ā 2 Ăÿ + 3,          ąā/ăÿĄÿĀă            
Then we have the following permutation, �(4ÿ) = 2ÿ(ā + 1)(ăąĂ Ą) , 0 f ÿ f ā �(4ÿ + 1) = (ÿ + 1)(2ā + 1)(ăąĂ Ą), 0 f ÿ f ā �(4ÿ + 2) = (2ÿ 2 1)(ā + 1)(ăąĂ Ą), 0 f ÿ f ā �(4ÿ + 3) = ÿ(2ā + 1) + ā(ăąĂ Ą), 0 f ÿ f ā 2 1, 1 f ÿ f Ą 2 2 

Label the vertices of this newly obtained graph by using the above permutation. So, that 

span of  Ą′ for cycle with chords is  

Ą0′ + Ą1′ +⋯+ ĄĀ22′ = Ą0 + Ą1 + Ą2 +⋯+ ĄĀ22 +∑(Ăÿ2Ăÿ′) 
                                  = ÿĄ(ÿĀ) + ∑(Ăÿ2Ăÿ′) 
                                  = (ā + 2)(2ā + 1) + ∑(Ăÿ2Ăÿ′) 
which is an upper bound for the radio number for cycle with arbitrary number of chords 

for the cycle with chords. 

Thus, in all possibilities we have the upper boundsof the radio numbers. 

 

Illustartion: 5.6 

Consider the graph ÿ12with 5 chords. The radio labeling is shown in Figure 5.1 



38 

 

x
3

x
8

x
7

x
2

x
9

x
4

x
1

x
11

x
6

x
5

x
10

x
0

021

42

2 17

38

6

27

32

10

25

43

 

Ordinary labelling for cycle with chords           Radio labelling for cycle with chords for �Āā  

Figure: 5.1 Ordinary and Radio labeling for cycle with chords for �Āā 

Theorem: 5.7 

Let ă be an Ą/2-petal graph constructed from an even cycle ÿĀ. Then 

ÿĄ(ă) f {3Ć2 + Ą +Ą4, 2 +Ą8, + 2Ą 2 2(Ć 2 1) + Ą +Ą4, 2 +Ą8, + 2Ą 

Proof. 

 Let ă be an Ą/2- petal graph with vertices ă0, ă1, & , ăĀ21 of degree and ă1′ , ă2′ , & , ă�′ of degree 2. Here ăÿ is adjacent to ăÿ+1 and ăĀ21 is adjacent to ă0. 
Case 1: Ą c 0(ăąĂ 4) and Ăÿÿă(ă) = +Ā4, + 2. 
First we label the vertices of degree 2. 
 Let ă1′ , ă2′ , & , ă�′  be the vertices on the petals satisfying the order defined by the 

following distance sequence. 

Ăÿ′ = {+Ą4, + 2, ÿĄ ÿ ÿĀ ăăăĄ+Ą4, + 1, ÿĄ ÿ ÿĀ ąĂĂ  



39 

 

The color gap sequence for vertices on the petal is defined as 

Ąÿ′ = {1, ÿĄ ÿ ÿĀ ăăăĄ2, ÿĄ ÿ ÿĀ ąĂĂ    
Let ă1 be the vertex on the cycle ÿĀ such that Ă(ă�′ , ă1) = +Ā8, + 1 = Ă(ă�21′ , ă1) 
Label ă1 as Ą(ă1) = Ą(ă�′) = Ăÿÿă(ă) 2 +Ā8,. 
For the remaining vertices of degree 3, we use the permutation defined for the cycle ÿĀin case 1 of Theorem 4.5. 

The color gap sequence for the same vertices is defined as 

 Ąÿ = +Ā4, + 2, 0 f ÿ f Ą 2 2. 
The span of Ą = 3�2 + Ą +Ā4, 2 +Ā8, + 2Ą 2 2 which is an upper bound for the radio 

number of the 
Ā2- petal graph when Ą c 0(ăąĂ 4). 

Case 2: Ą c 2(ăąĂ 4) and Ăÿÿă(ă) = +Ā4, + 2. 
First we  label the vertices of degree 2. Let ă1′ , ă2′ , & , ă�′  be the vertices on the petals 

satisfying the order defined by the following distance sequence. 

Ă(ăÿ′, ăÿ+1′ ) = +Ą4, + 2. 
The color gap sequence for the same vertices is defined as  

Ąÿ′ = 1, 1 f ÿ f Ć. 
Let ă1 be the vertex on the cycle ÿĀ such that Ă(ă�′ , ă1) = +Ā8, + 1 = Ă(ă�21′ , ă1). 
Label ă1 as Ą(ă1) = Ą(ă�′) + Ăÿÿă(ă) 2 +Ā8,. 
For the remaining vertices of degree 3, we use the permutation defined for the cycle 
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ÿĀ in case 2 of Theorem 5.5 

The color gap sequence for the same vertices is defined as 

Ąÿ = +Ą4, + 2, 0 f ÿ f Ą 2 2. 
The span of Ą = Ć 2 1 + Ą +Ā4, 2 +Ā8, + 2Ą 

Which is an upper bound for the radio number of the 
Ā2- petal graph when Ą c2(ăąĂ 4) 

Illustration: 5.8 

Consider  the  Ą/2- petal  graph  of  ÿ8.  
 The  radio  labelling  is  shown  in  the Figure 5.2 

 

 

 

 

 

  

Ordianry labelling for Ą/2- petal graph of ÿ8               Radio labelling for Ą/2- petal graph of ÿ8 

Figure: 5.2 Ordinary and radio labelling for �/ā- petal graph of �ć. 

 

 

Theorem: 5.9 

For any cycle ÿĀ, 
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ÿĄ(ĀĆĂ(ÿĀ)) = { 
 2[(ā + 2)(2ā 2 1) + 1] + ā + 1,   Ą c 0(ăąĂ 4)2[2ā(ā + 2) + 1] + ā + 1,              Ą c 2(ăąĂ 4)2[2ā(ā + 1)] + ā,                             Ą c 1(ăąĂ 4)2[(ā + 2)(2ā + 1)] + ā + 1,          Ą c 3(ăąĂ 4)  

Proof. 

 Let ă be the split graph of ÿĀ Let ă1′ , ă2′ , & , ăĀ′  be the duplicated vertices 

corresponding    to  ă1, ă2, & , ăĀ.   

We   initiate   the  labelling  by   assingning  the labels to   vertices   of  cycle   

and   then   to   their   duplicated  vertices  because Ă(ăÿ , ăĀ) = Ă(ăÿ, ăĀ′).  
Inorder to obtain the labelling with minimum span we employ twice the distance gap 

sequence, the color gap sequence and the permutation scheme used by Liu and Zhu. 

This labeling procedure will generate exact radio number as optimality of the 

permutation is established . 

Case 1: Ą c 4ā(Ą > 4).  
Then, Ăÿÿă(ă) = 2ā. 
We first label the vertices ă1, ă2, & , ăĀ as in Case 1 of Theorem 5.5 and then we 

label the vertices ă1′, ă2′, & , ăĀ′ as follows: 

Define Ą(ăĀ′) = Ą(ăā) + ā + 1 where ăā is the last labelled vertex in the cycle and ăĀ′ is the vertex such that Ă(ăā, ăĀ′) = ā. 
Now   using   the   permutation   used  in  Case 1  of Theorem 4.5  for  cycle  ÿĀ  with Ą c 0(ăąĂ 4), label the duplicated vertices starting from ăĀ′. 
Then ÿĄ(ĀĆĂ(ÿĀ)) = Ą0 + Ą1 + Ą2 +⋯+ ĄĀ22 + 2ā + 1 + Ą0′ + Ą1′ +⋯ĄĀ22′ 
As Ąÿ = Ąÿ ′ for ÿ = 0,1,2,& , Ą 2 2, we have  ÿĄ(ĀĆĂ(ÿĀ)) = 2Ą0 + 2Ą1 + 2Ą2 +⋯2ĄĀ22 + ā + 1 
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                                                = 2[(ā + 2)(2ā 2 1) + 1] + ā + 1. 
Case 2: Ą c 4ā + 2(Ą > 6).  
Then Ăÿÿă(ă) = 2ā + 1. 
We first label the vertices ă1, ă2, & , ăĀ as in Case 2 of Theorem 4.5 and then we 

label the vertices ă1′, ă2′, & , ăĀ′ as follows: 

Define Ą(ăĀ′) = Ą(ăā) + ā + 1 where ăā is the last labelled vertex in the cycle and ăĀ′ is the vertex such that Ă(ăā, ăĀ′) = ā + 1 

Using   the   permutation   for   cycle   ÿĀ   with   Ą c 2(ăąĂ 4)   in   Case  2   of  

Theorem 4.5, label the duplicated vertices starting from ăĀ′.  
Then 

 ÿĄ(ĀĆĂ(ÿĀ)) = Ą0 + Ą1 + Ą2 +⋯+ ĄĀ22 + 2ā + 1 2 ā 2 1 + 1 + Ą0′ + Ą1′ +⋯ĄĀ22′ 
As Ąÿ = Ąÿ ′ for ÿ = 0,1,2,& , Ą 2 2, we have  ÿĄ(ĀĆĂ(ÿĀ)) = 2Ą0 + 2Ą1 + 2Ą2 +⋯2ĄĀ22 + ā + 1 

                                                = 2[2ā(ā + 2) + 1] + ā + 1. 
Case 3: Ą c 4ā + 1(Ą > 5).  
Then Ăÿÿă(ă) = 2ā. 
We first label the vertices ă1, ă2, & , ăĀ as in Case 3 of Theorem 5.5 and then we 

label the vertices ă1′, ă2′, & , ăĀ′ as follows: 

Define Ą(ăĀ′) = Ą(ăā) + ā where ăā is the last labelled vertex in the cycle and ăĀ′ 
is the vertex such that Ă(ăā, ăĀ′) = ā + 1 

Using the permutation for cycle ÿĀ with Ą c 1(ăąĂ 4) in Case 3 of Theorem 

5.5, label the duplicated vertices starting from ăĀ′.Then 
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 ÿĄ(ĀĆĂ(ÿĀ)) = Ą0 + Ą1 + Ą2 +⋯+ ĄĀ22 + 2ā 2 ā 2 1 + 1 + Ą0′ + Ą1′ +⋯ĄĀ22′ 
As Ąÿ = Ąÿ ′ for ÿ = 0,1,2,& , Ą 2 2, we have  ÿĄ(ĀĆĂ(ÿĀ)) = 2Ą0 + 2Ą1 + 2Ą2 +⋯2ĄĀ22 + ā 

                                                    = 2[2ā(ā + 1)] + ā. 
Case 4: Ą c 4ā + 3(Ą > 3).  
Then Ăÿÿă(ă) = 2ā + 1. 
We first label the vertices ă1, ă2, & , ăĀ as in Case 4 of Theorem 5.5 and then we 

label the vertices ă1′, ă2′, & , ăĀ′ as follows: 

Let ăĀ′ be the vertex such that Ă(ăā, ăĀ′) = ā + 1 

Define Ą(ăĀ′) = Ą(ăĀ21) + ā + 1  where ăā is the last labelled vertex in the cycle 

and ăĀ′ is the vertex such that Ă(ăā, ăĀ′) = ā + 1. 

Using   the   permutation   for   cycle   ÿĀ   with  Ą c 3(ăąĂ 4)   in   Case   4   of  

Theorem 4.5, label the duplicated vertices starting from ăĀ′.Then 

 ÿĄ(ĀĆĂ(ÿĀ)) = Ą0 + Ą1 + Ą2 +⋯+ ĄĀ22 + 2ā + 1 2 ā 2 1 + 1 + Ą0′ + Ą1′ +⋯ĄĀ22′ 
As Ąÿ = Ąÿ ′ for ÿ = 0,1,2,& , Ą 2 2, we have  ÿĄ(ĀĆĂ(ÿĀ)) = 2Ą0 + 2Ą1 + 2Ą2 +⋯2ĄĀ22 + ā + 1 

                                                    = 2[(ā + 1)(2ā + 1)] + ā + 1. 
Thus in all the four cases we have determined the radio number of ă. 

Illustartion: 5.10 

Consider the graph ĀĆĂ(ÿ10). The radio labeling is shown in figure 5.3 
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          Ordinary labeling for ĀĆĂ(ÿ10)                    Radio labeling for ĀĆĂ(ÿ10) 
Figure 5.3: Ordinary and Radio labeling for ý��(�Āÿ) 

Application: 5.11 

Above  result can be applied for the purpose of expansion of existing circular 

network of  radio transmitters. By applying the concept of duplication of vertex the 

number of radio transmitters are doubled and separation of the channels assigned to 

the stations is such that interference can be avoided. Thus our result can play a vital 

role for the expansion of radio transmitter network without disturbing the existing one. 

In the expanded network the distance between any two transmitters is large enough to 

avoid the interference. 

Theorem: 5.12 

For any cycle ÿĀ, 

ÿĄ(ā(ÿĀ)) = { 
 2(ā + 2)(2ā 2 1) + Ą + 3                 Ą c 0(ăąĂ 4)4ā(ā + 2) + ā + Ą + 3,                       Ą c 2(ăąĂ 4)4ā((ā + 1)) + ā + Ą,                           Ą c 1(ăąĂ 4)2(ā + 2)(2ā + 1) + ā + Ą + 1,          Ą c 3(ăąĂ 4) 

Proof. 

 Let Ă1, Ă2, & , ĂĀ be the vertices of the cycle ÿĀand Ă1′ , Ă2′ , & , ĂĀ′  be the 

newly insertedvertices corresponding to the edges of ÿĀ to obtain ā(ÿĀ). In 
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ā(ÿĀ) the diameter is increased by 1. Here Ă(Ăÿ, ĂĀ) g Ă(Ăÿ, ĂĀ′) for  

Ą c 0,2(ăąĂ 4) and Ă(Ăÿ, ĂĀ) = Ă(Ăÿ, ĂĀ′) for Ą c 1,3(ăąĂ 4). 
Throughout the discussion, first we label the vertices Ă1, Ă2, & , ĂĀ and then the 

newly inserted vertices Ă1′ , Ă2′ , & , ĂĀ′ . 
 For this purpose we will employ twice the permutation scheme for respective 

cycles as in Theorem 5.5. 

Case 1: Ą c 4ā.  
In this case Ăÿÿă(ā(ÿĀ)) = 2ā + 1. 

Since Ąÿ+Ąÿ+1 f Ąÿ′ + Ąÿ+1′ for all ÿ, the diatance gap sequence to order the 

vertices of the original cycle ÿĀ is defined as follows: 

Ăÿ = {2ā + 1, ÿĄ ÿ ÿĀ ăăăĄ           ā + 1,         ÿĄ ÿ c 1(ăąĂ 4)ā + 2,         ÿĄ ÿ c 3(ăąĂ 4)  

The color gap sequence is defined as follows: 

Ąÿ = { 1,                   ÿĄ ÿ ÿĀ ăăăĄā + 1,            ÿĄ ÿ ÿĀ ąĂĂ    
Let Ă1′  be the vertex on the inscribed cycle such that Ă(Ăā, Ă1′ ) = ā + 1 and Ą = ā +1, where Ăā is the last labelled vertex in the cycle. 

The distance gap sequence to order the vertices of the inscribed cycle ÿĀ is defined as 

follows: 

Ăÿ = { 2ā,              ÿĄ ÿ ÿĀ ăăăĄ         ā,                ÿĄ ÿ c 1(ăąĂ 4)ā + 1,         ÿĄ ÿ c 3(ăąĂ 4)   
The color gap sequence is defined as follows: 
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Ąÿ′ = { 2,              ÿĄ ÿ ÿĀ ăăăĄ       ā + 2,         ÿĄ ÿ c 1(ăąĂ 4)  ā + 1,        ÿĄ ÿ c 3(ăąĂ 4)   
Then ÿĄ(ā(ÿĀ)) = 2(ā + 2)(2ā 2 1) + Ą + 3. 
Case 2:  Ą c 4ā + 2. 
 In this case Ăÿÿă(ā(ÿĀ)) = 2ā + 2. 

Since Ąÿ+Ąÿ+1 f Ąÿ′ + Ąÿ+1′ for all ÿ, the diatance gap sequence to order the 

vertices of the original cycle ÿĀ is defined as follows: 

Ăÿ = { 2ā + 2,        ÿĄ ÿ ÿĀ ăăăĄ ā + 3,           ÿĄ ÿ ÿĀ ąĂĂ     
The color gap sequence is defined as follows: 

Ąÿ = {1,                   ÿĄ ÿ ÿĀ ăăăĄā + 1,           ÿĄ ÿ ÿĀ ąĂĂ    
Let  Ă1′   be  the  vertex  on  the  inscribed  cycle  such  that   Ă(Ăā, Ă1′ ) = ā + 1   and  Ą = ā + 2, where  Ăā  is  the  last  labelled  vertex  in  the  cycle. 

The distance gap sequence to order the vertices of the inscribed cycle ÿĀ is defined as 

follows: 

Ăÿ = {2ā + 1,        ÿĄ ÿ ÿĀ ăăăĄ         ā + 1,        ÿĄ ÿ ÿĀ ąĂĂ          

The color gap sequence is defined as follows: 

Ąÿ′ = {2,                  ÿĄ ÿ ÿĀ ăăăĄ         ā + 2,         ÿĄ ÿ ÿĀ ąĂĂ           
Then ÿĄ(ā(ÿĀ)) = 4ā(ā + 2) + ā + Ą + 3. 
Case 3:  Ą c 4ā + 1.  
In this case Ăÿÿă(ā(ÿĀ)) = 2ā + 1. 
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Since Ąÿ+Ąÿ+1 f Ąÿ′ + Ąÿ+1′ for all ÿ, the diatance gap sequence to order the 

vertices of the original cycle ÿĀ is defined as follows: Ă4ÿ = Ă4ÿ+2 = 2ā + 1 2 ÿ Ă4ÿ+1 = Ă4ÿ+3 = ā + 2 + ÿ 
And the color gap sequence is given by Ąÿ = (2ā + 1) 2 Ăÿ + 1 

Let  Ă1′    be  the  vertex  on  the   inscribed   cycle  such  that  Ă(Ăā, Ă1′ ) = ā + 1  and Ą = ā + 1, where Ăā is the last labelled vertex in the cycle. 

The distance gap sequence to order the vertices of the inscribed cycle ÿĀ is defined as 

follows: Ă4ÿ = Ă4ÿ+2 = 2ā 2 ÿ Ă4ÿ+1 = Ă4ÿ+3 = ā + 1 + ÿ 
And the color gap sequence is given by Ąÿ′ = 2ā 2 Ăÿ + 2 

Then ÿĄ(ā(ÿĀ)) = 4ā(ā + 1) + ā + Ą. 
Case 4:  Ą c 4ā + 3. 
 In this case Ăÿÿă(ā(ÿĀ)) = 2ā + 2. 
Since Ąÿ+Ąÿ+1 f Ąÿ′ + Ąÿ+1′ for all ÿ, the diatance gap sequence to order the 

vertices of the original cycle ÿĀ is defined as follows: Ă4ÿ = Ă4ÿ+2 = 2ā + 2 2 ÿ Ă4ÿ+1 = Ă4ÿ+3 = ā + 2 + ÿ 
And the color gap sequence is given by 
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Ąÿ = 2ā 2 Ăÿ + 3 

Let   Ă1  ′  be  the  vertex   on  the  inscribed  cycle  such  that  Ă(Ăā, Ă1′ ) = ā + 1  and  Ą = ā + 1, where Ăā is the last labelled vertex in the cycle. 

The distance gap sequence to order the vertices of the inscribed cycle ÿĀ is defined as 

follows: Ă4ÿ = Ă4ÿ+2 = 2ā + 1 2 ÿ Ă4ÿ+1 = Ă4ÿ+3 = ā + 1 + ÿ Ă4ÿ+3 = ā + 2 + ÿ 
and the color gap sequence is given by Ąÿ′ = 2ā 2 Ăÿ + 3 

Then ÿĄ(ā(ÿĀ)) = 2(ā + 2)(2ā + 1) + Ą. 
Thus the radio number is completely determined for the graph ā(ÿĀ). 
Illustration: 5.13 

Consider the graph ā(ÿ8). The radio labeling is shown in Figure 5.4 
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Figure: 5.4 Ordinary and radio labeling of �(�ć). 



49 

 

Application: 5.14 

Above result is useful for the expansion of an existing radio transmitters 

network. In the expanded network two newly installed nearby transmitters are 

connected and interference is also avoided between them. Thus the radio labeling 

described in Theorem 5.13 is rigorously applicable to accomplish the task of channel 

assignment for the feasible network. 

    The comparison between radio number of ÿĀ, ĀĆĂ(ÿĀ),ā(ÿĀ) is tabulated in 

the following Table 1. � Radio number of              �� 

Radio  number  of      ý��(��) 
Radio  number of    �(��) 0(ăąĂ 4) (ā + 2)(2ā 2 1) + 1 2[(ā + 2)(2ā 2 1) + 1] + ā + 1        2(k + 2)(2k 2 1)  + n + 3 

2(ăąĂ 4) 2ā(ā + 2) + 1 2[2ā(ā + 2) + 1] + ā + 1 4ā(ā + 2) + ā + Ą + 3 

1(ăąĂ 4) 2ā(ā + 1) 2[2ā(ā + 1)] + ā 4ā(ā + 1) + ā + Ą 

3(ăąĂ 4) (ā + 2)(2ā + 1) 2[(ā + 2)(2ā + 1)] + ā + 1 2(ā + 2)(2ā + 1) + Ą 

Table: 1 Comparisonof radio numbers of ��, ý��(��),�(��). 
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1. PRELIMINARIES 

Definition: 1.1 

 Let ý and þ be non-empty sets, then any subset ā of  the Cartesian product ý × þ  

is called a binary relation from ý to þ, binary relation is simply called a relation.  

We shall write ÿ ā Ā for (ÿ, Ā) ∈ ā.  

Definition: 1.2 

  A binary relation ā on a non-empty set ÿ is called a partial order if for all 

ÿ, Ā, ā ∈ ÿ, ā is reflexive ( ÿ ā ÿ), anti-symmetric ( ÿ ā Ā, Ā ā ÿ ⇒ ÿ = Ā) and 

 transitive ( ÿ ā Ā, Ā ā ā ⇒ ÿ ā ā). 

Definition: 1.3 

 A non-empty set ÿ together with a partial order ā on it is called a partially ordered 

set or a poset. ā is usually denoted by <≤ = , we denote the poset by (ÿ,≤). 

Definition: 1.4 

 Let (ÿ, ≤) be a partially ordered set. If for every a, b ∈ ÿ, we have ÿ ≤ Ā or  Ā ≤ ÿ then 

<≤ = is called a simple ordering on ÿ, and the poset (ÿ,≤) is called a totally ordered set or a 

chain. 
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.Definition: 1.5 

 Let (ÿ,≤) be a partially ordered set. An element ÿ ∈ ÿ is called a maximal element 

if for � ∈  ÿ, ÿ ≤ � ⇒ ÿ = �. 

Definition: 1.6 

Let (ÿ,≤) be a partially ordered set. An element Ā ∈ ÿ is called a minimal element 

if for � ∈ ÿ, � ≤ Ā ⇒ Ā = �. 

Proposition: 1.7 

 Let ÿ be a finite non-empty poset with partial order <≤ =. Then ÿ  has at least one 

maximal element. Similarly ÿ has the least one minimal element. 

Definition: 1.8 

 Let (ÿ, ≤) be a partially ordered set and let Ā ⊆ ÿ. An element þ ∈ ÿ is called an upper 

bound for Ā if for all � ∈ Ā, � ≤ þ. An element ℓ ∈ ÿ is called a lower bound for Ā if for all 

 � ∈ Ā, ℓ ≤ �.  

Definition: 1.9 

 Let (ÿ, ≤) be a partially ordered set and let Ā ⊆ ÿ. An element þ ∈ ÿ is called a least  

upper bound for Ā if »þ¼ is an upper bound of Ā and þ ≤ þ' , whenever þ' is an upper bound 
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of Ā. In this case we write ý. �. Ā Ā = þ = sup Ā = Ç Ā. In particular , for þ, ÿ ∈ ÿ, we denote 

by ý. �. Ā {þ, ÿ} by  þÇ ÿ. An element ℓ ∈ ÿis called a greatest lower bound for Ā if »ℓ¼ is a 

lower bound of Ā and ℓ' ≤ ℓ whenever ℓ' is a lower bound of Ā.  

We write it as Ā. ý. Ā Ā = ℓ = inf Ā = Æ Ā. For m,n ∈ P, g.l.b {m, n} is denoted by þ Æ ÿ. 

Definition: 1.10 

 Let (Ă, ≤) be a partially ordered set. Ă is said to be a join semi-lattice if every non-

empty finite subset of Ă has a least upper bound in Ă. 

Definition: 1.11 

Let (Ă, ≤) be a partially ordered set. Ă is said to be a meet semi-lattice if every non-

empty finite subset of Ă has a greatest lower bound in Ă. 

Note: 1.12 

  If Ă is a join semi-lattice then the binary operation Ç is commutative, associative and  

idempotent, similarly if Ă is a meet semi-lattice then the binary operation Æ is commutative, 

associative and idempotent. Further þ ≤ ÿ �ÿÿ þ Ç ÿ = ÿ �ÿÿ þ Æ ÿ = þ. 

Definition: 1.13 

 Let (�, ≤) be a partially ordered set. � is said to be a lattice if � is both join  and meet  

semi-lattice. A lattice is a partiallay ordered set (�, ≤) in which every pair of elements has a least  
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upper bound and a greatest lower bound. 

Definition: 1.14 

 A lattice (�, ≤)  is called a distributive lattice if it satisfies any one of the following 

equivalent conditions: 

(1) ÿ Æ   Ā Ç ā  =    ÿ Æ Ā  Ç   ÿ Æ ā   ÿĀ� ÿýý ÿ, Ā, ā ∈ �. 

(2) ÿ Ç   Ā Æ ā  =    ÿ Ç Ā  Æ   ÿ Ç ā   ÿĀ� ÿýý ÿ, Ā, ā ∈ �. 

Definition: 1.15  

  Complemented distributive lattices are called Boolean algebras. 

Definition: 1.16 

  Relatively complemented distributive lattices bounded below are called Generalized 

Boolean Algebras. 

Definition: 1.17 

 A non-empty set � is said to be a near-ring, if in � there are defined two operations, 

denoted by + and ∙ respectively such that for all ÿ, ÿ1, ÿ2, ÿ3 in N: 

(1) ÿ1  +  ÿ2 is in N 

(2) ( ÿ1  +  ÿ2  )  +  ÿ3  =  ÿ1  + ( ÿ2  +  ÿ3 ) 

(3) There is an element 0 in � such that ÿ + 0 = 0 + ÿ = ÿ 

  (4) There exists an element − ÿ in � such that ÿ +   −ÿ  =  0 =    −ÿ +  ÿ  
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   (5) ÿ1 . ÿ2 is in �. 

   (6)   ÿ1  ·  ÿ2   ·  ÿ3  =  ÿ1 ·  (ÿ2  ·  ÿ3) 

   (7)   ÿ1  +  ÿ2   ·  ÿ3  =  ÿ1 ·  ÿ3  +  ÿ2  ·  ÿ3 (right distributive law) 

Definition:1.18   

An element � of [ÿ, Ā]  is  called a relative complement of � in  ÿ, Ā  if � Æ � = ÿ and � Ç � = Ā. A lattice L is said to  be relatively complemented if for any triplet of its elements ÿ, Ā, � (ÿ ≤ � ≤ Ā), there can be found at least one complemented of � in [ÿ, Ā]; in other 

words if every interval of � is a complemented sub lattice. 
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2. BOOLEAN LIKE RINGS 

Definition: 2.1 

                    Let � be a commutative ring with unit element. Let ⊗ be the binary operation 

defined by ÿ ⊗ Ā = ÿ + Ā − ÿĀ for all ÿ, Ā ∈ �, this binary operation ⊗ is called the dual 

ring product of �. For any, ÿ, Ā ∈ �,ÿ ⊗ Ā is also denoted by ÿ ∆ Ā. The ring product is also 

called as the logical product in �. The dual ring product is also called as the logical sum in �. 

Definition: 2.2  

                  Let � be a commutative ring with unit element. An unary operation ∗  defined on � 

by ÿ∗  = 1 – ÿ for all ÿ ∈ � is called the ring complement of �. 

Remark: 2.3  

          In a commutative ring � with unit element, the following notations are  

followed: 

a) For any ÿ, Ā ∈ �, ÿ + Ā  is called as the ring sum of ÿ and Ā. 

b) For any ÿ, Ā ∈ �, ÿ ⊕ Ā = ÿ + Ā –  1 is called the dual ring sum 

of  ÿ and Ā. 

c) For any ÿ, Ā ∈ � , ÿ − Ā is called the ring subtraction of ÿ and Ā. 

d) For any ÿ, Ā ∈ � , ÿ �Ā = ÿ + Ā –  1  is called the dual ring subtraction of ÿ and Ā. 
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Theorem: 2.4 

          If  � = � (0, 1, ×, ∆, ∗, + ,⊕ , −, �) is any true preposition of the ring �, then its dual  

  preposition �′ = �( 1, 0, ∆, ×, ∗, ⊕, +,Θ, −) obtained by replacing each operation in � 

 by its dual operation is also a true preposition. 

Example: 2.5 

          If �  is the preposition in a ring � given by ÿ   Ā + ā  = ÿĀ + ÿā, then its dual  

 preposition is given by ÿ ∆   Ā ⊕ ā  = ÿ ∆ Ā ⊕ ÿ ∆ ā. 

Example: 2.6 

          In a commutative ring � with unit element, the dual of the preposition  

ÿ ∆ Ā = ÿ + Ā – ÿĀ  is given by ÿ × Ā =    ÿ ⊕ Ā   � ( ÿ ∆ Ā ) for any ÿ, Ā ∈ �. 

Definition: 2.7 

           Let (�, +, ×) be a commutative ring with unit element. Then the operations 

 ×, ∆, ∗, 0 and 1 are called the basic logical concepts of �. 

Definition: 2.8  

 Let ×, ∆, ∗, 0 and 1 be the basic logical concepts of a ring �. Then the system                    
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(R, ×, ∆, ∗, 0, 1) is called the logical algebra of the ring �. 

Remark: 2.9 

          Let (�, ×, ∆, ∗, 0, 1) be the logical algebra of the ring (�,+, ×) then the following are true. 

a) (�, ×) is a closed, commutative, associative system in which the null element 0 and the 

universe element 1 of the ring satisfy, 0 ∙ ÿ = ÿ ∙  0; 1 ∙ ÿ = ÿ ∙ 1 = ÿ for all ÿ ∈ �. 

b)  ( �, ∆) is a closed commutative, associative system in which the null  

element 0 and the universe element 1 of the ring satisfy, 0 ∆ ÿ = ÿ ∆ 0; 

 1 ∆ ÿ = ÿ ∆ 1 = 1 for all ÿ ∈ � 

c) ( ÿ∗)∗  = ÿ, 1∗  = 0  and ÿ∗ =  Ā∗ implies ÿ = Ā for all ÿ, Ā ∈ �. 

d) (ÿĀ)∗  =  ÿ∗ ∆ Ā∗  for all ÿ, Ā ∈ �. 

e) ( a ∆ Ā )∗  =  ÿ∗Ā∗ for all ÿ, Ā ∈ �. 

f)  ÿ   Ā ∆ ā  = ÿĀ ∆ ÿā if and only if ÿÿ∗ Āā = 0 for all ÿ, Ā ∈ �. 

g) ÿ ∆ Āā =    ÿ ∆ Ā    ÿ ∆ ā  if and only if ÿ ∆ ÿ∗ ∆ Ā ∆ ā = 1 if and only if ÿÿ∗Ā∗ā∗  =  0  

for all ÿ, Ā, ā ∈ �. 

Theorem: 2.10 

          In any commutative ring R with unit element, for any ÿ, Ā ∈ � ÿĀ   ÿ ∆ Ā = ÿĀ if 

and only if ÿÿ∗ĀĀ∗  =  0.  
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Proof: 

      Let � be a commutative ring with unit element. Let ÿ, Ā ∈ �. 

       Assume that    ÿĀ   ÿ ∆ Ā   = ÿĀ 

        ⇒          ÿĀ   ÿ + Ā – ÿĀ  = ÿĀ 

        ⇒     ÿĀÿ + ÿĀĀ + ÿĀÿĀ = ÿĀ 

        ⇒  ÿĀÿ + ÿĀĀ – ÿĀÿĀ – ÿĀ =  0 

Now we have    ÿÿ∗ĀĀ∗  = ÿ   1 – ÿ   Ā ( 1 –Ā )  

                                              =    ÿ – ÿÿ  (Ā − ĀĀ ) 

                                              = ÿĀ – ÿĀĀ – ÿÿĀ + ÿÿĀĀ 

                                               =  0. 

Conversely,                 suppose that    ÿÿ∗ĀĀ∗  =  0 

                ⇒                         ÿ   1 – ÿ   Ā   1 – Ā  =  0 

                       ⇒                 ÿĀ – ÿĀĀ – ÿÿĀ + ÿÿĀĀ =  0 

                ⇒                           ÿĀĀ + ÿÿĀ – ÿÿĀĀ = ÿĀ 
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Now we have that 

ÿĀ   ÿ ∆ Ā  = ÿĀ ( ÿ + Ā – ÿĀ )  

                       = ÿĀÿ + ÿĀĀ – ÿÿĀ 

                       = ÿĀ.  

Hence the theorem. 

Definition: 2.11 

          Let (�, +, ∗, −, 0, 1) be a Boolean ring with unit element 1. Let (�, ×, ∆, ∗, 0, 1) be the 

logical algebra of the Boolean ring. Now the complete ring (�, +, ⊕, ×, ∆, ∗) can be defined in 

terms of the logical operations as follows: 

 ÿ + Ā = ÿĀ∗ ∆ ÿ∗Ā for all ÿ, Ā ∈ �. 

  ÿ ⊕ Ā =    ÿ ∆ Ā∗    ÿ∗ ∆ Ā   for all ÿ, Ā ∈ �. 

Definition: 2.12: 

          A commutative ring with unit element is called Boolean like ring if the complete ring 

 is logically definable in which the addition + is defined by ÿ + Ā = ÿĀ∗ ∆ ÿ∗Ā for all ÿ, Ā ∈ �. 

Remark: 2.13  

   We know that a commutative ring with unit element in which every element is idempotent,  
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 is ÿ2  = ÿ  for all ÿ ∈ � is Boolean ring and vice-versa. But in the case of Boolean like ring it is 

not so. 

Definition: 2.14 

          A commutative ring with unit element is said to be a Boolean like ring if for all elements ÿ, Ā ∈ �, ÿÿ∗ĀĀ∗ = 0 and ÿ + ÿ =  0 i.e., ÿ = −ÿ. 

Theorem: 2.15 

If � and �' are both Boolean like rings then the direct product � × �′ is also a Boolean like ring. 

Proof: 

          Let (�, +, ×) and (�', +, ×) be two Boolean like rings. Since � and �' are commutative  

rings with identity, it follows that � × �' is also a commutative ring with identity with usual 

addition and multiplication. 

Now we show that � × �' is a Boolean ring. 

Let (ÿ, ÿ′ ), (Ā, Ā′ ) ∈ � × �'. 

Since ÿ, Ā ∈ � we have ÿ + Ā = ÿĀ∗ ∆ ÿ∗Ā 

Since ÿ′ , Ā′  ∈ �′  we have ÿ′  +  Ā′  = ÿ′  (Ā′ )∗ ∆(ÿ′)∗ Ā′   
Now (ÿ, ÿ′ ) (Ā, Ā′ )∗ ∆ (ÿ, ÿ′ )∗ (Ā, Ā′ ) 
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(ÿ, ÿ′ ) (Ā, Ā′ )∗ ∆ (ÿ, ÿ′ )∗ (Ā, Ā′ ) =   ÿ, ÿ′   1, 1 −    Ā, Ā′   ∆[ 1, 1 −   ÿ, ÿ′ ]  Ā, Ā′    

                                                    =   ÿ, ÿ′  1 – Ā, 1 − Ā′  ∆ ( 1 – ÿ, 1 −  ÿ)′  Ā, Ā′   

                                                    =  (ÿ   1 – Ā  , ÿ′  ( 1 − Ā′ ) ) ∆ (  1 − ÿ Ā, ( 1 −  ÿ′)Ā′  
                                                    =  (ÿĀ∗, ÿ′ Ā′ )∗  ∆ ( ÿ∗, (ÿ′ )∗ (Ā, Ā′ ) 

                                                    =    ÿĀ∗, ÿ′ Ā ∗ + (ÿ∗Ā, (ÿ′ )∗Ā′ − (ÿĀ∗, ÿ′ (Ā′ )∗(ÿ∗Ā,  ÿ′)∗Ā′ ) 

                                                    =  (ÿĀ∗∆ ÿ∗Ā, ÿ′ (Ā′ )∆(ÿ′)∗Ā′ ) 

                                                    =  (ÿ + Ā, ÿ′ + Ā′ ) 

                                                    =  ÿ, ÿ′ +  Ā, Ā′ . 

Therefore it follows that � × �′ is a Boolean ring. 

Definition: 2.16 

          An element »ÿ¼ of a Boolean like ring is said to be an idempotent if ÿ2 = ÿ. 

Definition: 2.17  

  An element »ÿ¼ of a Boolean like ring is said to be a nilpotent element if  ÿÿ = 0 

 for some ÿ g 1. 
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Definition: 2.18 

 An element »ÿ¼ of a Boolean like ring is said to be an unipotent element if ÿ[ÿ ] = ÿ∆ÿ∆ÿ∆ & . ∆ÿ ÿ − ÿÿāāĀÿĀ = 1 for some n g 1. 

Remark: 2.19: 

           For any element ÿ ∈ �, ÿÿ = 0 for some ÿ iff ÿ[ÿ ] = 1.  

Theorem: 2.20 

          An element »ÿ¼ of a Boolean like ring  � is 

1) nilpotent only if ÿ2 = 0. 

2) Unipotent only if ÿ2 = 1. 

3) Idempotent only if ÿ2 = ÿ. 

Proof: 

 (1) Suppose »ÿ¼ is nilpotent. 

Let ÿ be the least positive integer such that ÿÿ = 0.  

Since ÿÿ+4ÿÿ+2 , it follows that this ÿ must be either 1 or 2 or 3. 

If ÿ = 0 then clearly ÿÿ = 0 

Suppose ÿ ≠ 0 
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 If ÿ = 2 clearly ÿ2 = 0 

 If ÿ = 3  ⇒  ÿ3 = 0 

                ⇒ ÿ4 = ÿ3ÿ = 0ÿ = 0 

                ⇒ ÿ2 = ÿ4 = 0 

Thus in any case ÿ2 = 0. 

(2) Suppose »ÿ¼ is unipotent 

           ⇒ ÿ∗ is nilpotent. 

           ⇒ (ÿ∗)2  = 0  

           ⇒ ÿ∗ÿ∗ = 0 

           ⇒(ÿ ∆ ÿ)∗  = 0 

           ⇒ ( ÿ ∆ ÿ)∗ =  0∗ = 1 

          ⇒ ÿ ∆ ÿ = 1 

          ⇒ ÿ2  = 1 

(3) If »ÿ¼ is idempotent then clearly ÿ2  = ÿ  
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Theorem: 2.21 

  In any Boolean like ring �, for any nilpotent elements ÿ, ÿ', we have that ÿÿ′ = 0 if and only if  

ÿ ∆ ÿ′ = ÿ + ÿ′ . 
Proof: 

           Let ÿ, ÿ' be any nilpotent elements of �. 

Suppose that ÿÿ′  = 0 

Now ÿ ∆ ÿ′ = ÿ +  ÿ′  + ÿÿ′  = ÿ + ÿ′    
Conversely suppose that ÿ ∆ ÿ′  = ÿ +  ÿ′  
Now ÿ +  ÿ′  = ÿ(ÿ′ )∗ ∆ ÿ∗ÿ′                                    (since ÿ + Ā = ÿĀ∗ ∆ ÿ∗Ā for all ÿ, Ā ∈ �) 

           = ÿ  1 −  ÿ′  ∆  1 – ÿ ÿ′                                                    (since ÿ∗ = 1 – ÿ)                                   

           = ÿ  1 −  ÿ′ +  1 – ÿ ÿ′  − ÿÿ′  (1 − ÿ)(1 −  ÿ′ )         (∵ ÿ ∆ Ā = ÿ + Ā – ÿĀ) 

           = ÿ − ÿÿ′  + ÿ′  − ÿÿ′  − ÿÿ′  (1 –  ÿ −  ÿ′ +  ÿÿ′ ) 

           = ÿ +  ÿ′  − ÿÿ′  (1 – ÿ −  ÿ′  + ÿÿ′ )                                   

           = ÿ +  ÿ′  − ÿÿ′                                                                      
            ⇒ ÿÿ′  = 0 

Thus we have ÿÿ′  = 0 if and only if ÿ ∆ ÿ′  = ÿ + ÿ′   
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ODERING ON BOOLEAN LIKE-RINGS 

Definition: 2.21 

 Let � be a Boolean like-ring. Define a relation < f = on � by ÿ f Ā if ÿ = ÿĀ. 

Proposition: 2.22  

          Let � be a Boolean like-ring. If ÿ ∆ ÿ = ÿ  for every ÿ ∈ �, then (�, f) is a partially 

 ordered set. 

Proof: 

 For any ÿ ∈ � we have ÿ ∆ ÿ = ÿ 

            ⇒  ÿ + ÿ – ÿÿ = ÿ                 

            ⇒         ÿ –  ÿ2  = 0 

            ⇒                   ÿ = ÿ2                 

           ⇒                     ÿ = ÿÿ 

            ⇒ ÿ f ÿ 

Thus < f = is reflexive. 
Suppose ÿ f Ā and Ā f ÿ then ÿ = ÿĀ and Ā = Āÿ 

Now   ÿ = ÿĀ 

                 = Āÿ 

                 = Ā. 

Therefore  ÿ = Ā. 

 Thus < f= is anti-symmetric.  

Suppose ÿ f Ā and Ā f ā then ÿ = ÿĀ and Ā = Āā. 

Now   ÿ = ÿĀ 
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             ÿ = ÿĀā 

                 = ÿā 

       ⇒ ÿ f ā. Thus < f = is transitive. 
Therefore (�, f) is a partially ordered set. 

Theorem: 2.23  

 Let R be a Boolean like-ring and ÿ ∆ ÿ = ÿ for every ÿ ∈ �. Then the poset � is a 

lattice in which ÿ Æ Ā = ÿĀ and ÿ Ç Ā = ÿ ∆ Ā + 2ÿĀ. 

Proof: 

     Now we show that � is a lattice. 

Claim: (i) Ā. �. Ā  ÿ, Ā = ÿ Æ Ā = ÿĀ. 

Let ā = ÿĀ 

 Consider  ÿā = ÿ(ÿĀ) 

                        = ÿÿĀ 

                        = ÿĀ 

                        = ā 

 ⇒    ā f ÿ 

Similarly,   Consider  Āā = Ā(ÿĀ) 

                                          = ÿĀĀ 

                                          = ÿĀ 

                                          = ā ⇒     ā f Ā 
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Suppose Ă f ÿ and Ă f Ā 

   Ă f ÿ ⇒ Ă = Ăÿ 

   Ă f Ā ⇒ Ă = ĂĀ  

Now     ĂĂ = ĂÿĂĀ 

 ⇒        Ă2  = ÿĂĂĀ 

 ⇒          Ă = ÿĂĀ 

 ⇒          Ă = ĂÿĀ    

 ⇒          Ă = Ăā 

 ⇒          Ă f ā. 

Thus Ā. �. Ā  ÿ, Ā = ā.  

Claim: (ii) �. Ă. Ā ÿ, Ā = ÿ Ç Ā = ÿ ∆ Ā + 2ÿĀ 

Let ā = ÿ ∆ Ā + 2ÿĀ 

  Now   ÿā = ÿ(ÿ ∆ Ā + 2ÿĀ) 

                     = ÿ ÿ + Ā – ÿĀ +  ÿ2ÿĀ 

                     = ÿÿ + ÿĀ – ÿÿĀ + 2ÿÿĀ 

                     = ÿ + ÿĀ + ÿĀÿ 

                     = ÿ + ÿĀ + ÿĀ 

                     = ÿ. 

   ⇒       ÿ f ā. 

Similarly,       Consider Āā = Ā(ÿ ∆ Ā + 2ÿĀ) 

                                                   = Ā ÿ ∆ Ā +  Ā2ÿĀ 

                                                   = Ā ÿ + Ā – ÿĀ +  2ĀÿĀ 
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                                              Āā = Āÿ + ĀĀ – ĀÿĀ + 2ÿ 

                                             = Āÿ + ĀĀ – ÿĀĀ + 2ÿĀĀ    

                                             = Āÿ + Ā – ÿĀ + 2ÿĀ 

                                             = Āÿ + Ā + ÿĀ 

                                             = Ā. 

    ⇒ Ā f ā. 

Suppose ÿ f Ă and Ā f Ă 

        ÿ f Ă ⇒ ÿ = ÿĂ 

         Ā f Ă ⇒ Ā = ĀĂ 

Now  ÿĀ = ÿĂĀĂ 

Consider  āĂ =   ÿ ∆ Ā + 2ÿĀ Ă 

                      =    ÿ ∆ Ā Ă +   2ÿĀ Ă 

                      =   ÿ + Ā – ÿĀ Ă + 2ÿĀĂ 

                      = ÿĂ + ĀĂ – ÿĀĂ + 2ÿĀĂ 

                      = ÿĂ + ĀĂ + ÿĀĂ 

                      = ÿ + Ā + ÿĀ 

                      = ÿ ∆ Ā + 2ÿĀ 

                      = ā. 

      ⇒         ā f Ă. 

Thus �. Ă. Ā ÿ, Ā = ā. 

Hence � is a lattice in which ÿ Æ Ā = ÿĀ and ÿ Ç Ā = ÿ ∆ Ā + 2ÿĀ. 
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Theorem: 2.24 

 Let � be a Boolean like-ring. Then the lattice � is distributive. 

Proof:  

Now we show that the lattice � is a distributive lattice. 

Claim: ÿ Æ  Ā Ç ā =   ÿ Æ Ā Ç (ÿ Æ ā) 

Consider   ÿ Æ  Ā Ç ā = ÿ (Ā ∆ ā + 2Āā) 

                                     = ÿ  Ā ∆ ā + 2ÿĀā 

                                     = ÿ  Ā + ā – Āā + 2ÿĀā 

                                     = ÿĀ + ÿā – ÿĀā + 2ÿĀā 

                                     = ÿĀ + ÿā + ÿĀā 

         ÿ Æ Ā Ç  ÿ Æ ā =   ÿ Æ Ā ∆  ÿ Æ ā  + 2  ÿ Æ Ā  

                                     =   ÿĀ ∆ ÿā  + 2 ÿĀ (ÿā) 

                                     = ÿĀ + ÿā + ÿĀÿā 

                                     = ÿĀ + ÿā + ÿĀā. 

  Therefore  ÿ Æ  Ā Ç ā =   ÿ Æ Ā Ç  ÿ Æ ā . 

Thus � is a distributive lattice. 

Theorem: 2.25 

 Let � be a Boolean like-ring with identity 1 and ÿ ∆ ÿ = ÿ for every ÿ ∈ �. Then � is a 

Distributive lattice in which ÿ Æ Ā = ÿĀ and ÿ Ç Ā = ÿ ∆ Ā + 2ÿĀ. This distributive lattice � is 

ring complemented, where the ring complement of ÿ ∈ � is the element ÿ∗  = 1 – ÿ. In 

otherwords � is a Boolean algebra. 
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Proof: 

 � is a distributive lattice in which ÿ Æ Ā = ÿĀ and ÿ Ç Ā = ÿ ∆ Ā + 2ÿĀ. In order to show that 

this distributive lattice � is ring complemented, it is enough to check that the ring complement of  

every element ÿ in � is the element ÿ∗  = 1 – ÿ.  

Claim: (i) ÿ Æ ÿ∗  = 0 

 Consider   ÿ Æ ÿ∗  = ÿ(1 − ÿ)  

                               = ÿ – ÿÿ 

                               = ÿ – ÿ 

                               = 0. 

Therefore  ÿ Æ ÿ∗  = 0. 

Claim: (ii) ÿ Ç ÿ∗  = 1 

Consider   ÿ Ç ÿ∗ = ÿ∆ÿ∗ + 2ÿÿ∗ 

                              = ÿ + ÿ∗ − ÿÿ∗ + 2ÿÿ∗ 

                              = ÿ + ÿ∗ + ÿÿ∗ 

                              = ÿ + (1 − ÿ) + ÿ(1 − ÿ) 

                              = ÿ + 1 − ÿ + ÿ − ÿÿ                                    (since ÿ · ÿ = ÿ) 

                              = 1. 

                  ÿ Ç ÿ∗ = 1. 

Therefore  ÿ∗ is a ring complement of   ÿ. 

Here � is a complemented distributive lattice. i.e.� is a Boolean algebra. 

Theorem: 2.26 

Let � be any Boolean like-ring (with or without identity) and define in � a meet and a 
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join operations by the formulae ÿ Æ Ā = ÿĀ and ÿ Ç Ā = ÿ + Ā + ÿĀ, then a generalized 

Boolean algebra is obtained. 

Proof: 

 Let � be any Boolean likr-ring and ÿ ∆ ÿ = ÿ for every ÿ ∈ �. By theorems 2.23,2.24 

and 2.25, if ÿ f Ā ⇒ ÿ = Āÿ then (�, f) is a distributive lattice in which ÿ Æ Ā = ÿĀ and ÿ Ç Ā = ÿ ∆ Ā + 2ÿĀ.  

In order to show that this distributive lattice (�, f) is a generalized Boolean algebra, it is enough 

to check that for any triplet of its elements ÿ, Ā, Ă (ÿ f Ă f Ā), Ă Ç � = Ā for some element � in 

[ÿ, Ā]. 

If there were an element � ∈ [ÿ, Ā] such that Ă Æ � = ÿ and Ă Ç � = Ā, then Ă Æ � = ÿ 

          ⇒         Ă� = ÿ                                                                                        (1) 

Simiarly     Ă Ç � = Ā 

           ⇒       (Ă ∆ � + 2Ă�)        = Ā 

           ⇒           Ă ∆ � + 2ÿ         = Ā                                                        from (1) 

           ⇒      Ă + � –  Ă� + 2ÿ   = Ā 

           ⇒          Ă + � – ÿ + 2ÿ  = Ā 

           ⇒  � = Ă + ÿ + Ā. 

Claim(i) Ă Æ � = ÿ, where � = Ă + ÿ + Ā. 

Now  Ă Æ � = Ă� 

                     = Ă ( Ă + ÿ + Ā) 

                     =  Ă2  + Ăÿ + ĂĀ 
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          Ă Æ �  = Ă + ÿ + Ă                             (since ÿ f Ă f Ā) 

                            = ÿ. 

Therefore Ă Æ � = ÿ. 

Claim:(ii)   Ă Ç � = Ā, where � = Ă + ÿ + Ā. 

Now  Ă Ç � =   Ă ∆ �  +  2Ă� 

                     =    Ă ∆  Ă + ÿ + Ā  +  2Ă  Ă + ÿ + Ā  

                     = Ă + Ă + ÿ + Ā –  ĂĂ –Ăÿ –ĂĀ + 2ĂĂ + 2Ăÿ + 2ĂĀ  

                     = ÿ + Ā + Ă(Ă + ÿ + Ā) 

                     = ÿ + Ā + Ă�                                  (since � = Ă + ÿ + Ā) 

                     = ÿ + Ā + ÿ 

                     = Ā. 

Therefore Ă Ç � = Ā 

Therefore � is a relatively complemented distributive lattice. Clearly � is a relatively bounded 

below (since 0 is the least element). Hence � is a relatively complemented distributive lattice 

bounded below. 

Therefore � is a generalized Boolean algebra. 

Theorem: 2.27 

 Every complemented distributive lattice is relatively complemented. 

Proof: 

 Let � be a complemented distributive lattice and Ă∗ be the complemented of  Ă in � 

i.e. Ă Æ Ă∗ = 0 and Ă Ç Ă∗ = 1. 

Claim: For any triplet of its elements ÿ, Ā, Ă ÿ f Ă f Ā , Ă Æ Ă′  = ÿ and Ă Ç Ă′  = Ā for some  
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element Ă′  in [ÿ, Ā]. 

Put Ă′  =  ÿ Ç Ă∗  Æ Ā = ÿ Ç (Ă∗ Æ Ā)                           (by modular law) 

Consider Ă Æ Ă′  
                Ă Æ Ă′  = Ă Æ (( ÿ Ç Ă∗)Æ Ā) 

                            = Ă Æ ( ÿ Ç Ă∗)                                (since Ă f Ā) 

                             =    Ă Æ ÿ   Ç ( Ă Æ Ă∗) 

                            =    Ă Æ ÿ = ÿ.                               (since ÿ f Ă) 

Also consider Ă Ç Ă′  
 Ă Ç Ă′  = Ă Æ (ÿ Ç (Ă∗ Æ Ā)) 

                        = Ă Ç (Ă∗ Æ Ā) 

                        =   Ă Ç Ă∗  Æ (Ă Ç Ā) 

                        =  ( 1 Æ Ā) 

                        = Ā. 

Hence � is relatively complemented. 
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3. BOOLEAN LIKE NEAR- RINGS 

Definition: 3.1 

          A non-empty set � together with two binary operations < + = (called addition) and < ∙ = 

(called multiplication) is said to be a Near-ring if 

(i) ( �, + ) is a group (not necessarily abelian) 

(ii) ( �,∙ ) is a semi group 

(iii) ( ÿ + Ā)  ∙ ā = ÿ ∙ ā + Ā ∙ ā ĄĀ� ÿ�� ÿ, Ā, ā ∈ �. (right distributive law) 

The Near-ring is denoted by simply �. 

Note: 3.2 

(i) The additive identity  0 in � is called the zero element of �. 

(ii) For ÿ, Ā ∈ � , the product ÿ ∙ Ā is denoted by ÿĀ. 

(iii) Clearly 0ÿ =  0  for all ÿ ∈ �. 

(iv) The additive inverse of ÿ ∈ � is denoted by –  ÿ. 

(v) If there exists an element 1 ∈ � such that ÿ ∙ 1 =  1 ∙ ÿ  for all ÿ ∈ �. 

then we say that � is a near-ring with unit element. 

Definition: 3.3 

        An element Ă ∈ � is called a distributive element if for ÿ, ÿ′ ∈ �, Ă  ÿ + ÿ′ =  Ăÿ + Ăÿ′. 
Definition: 3.4 

          A Near-ring � is said to be a Zero-Symmetric if ÿ0 =  0 for all ÿ ∈ �. 

 

 

25 



Definition: 3.5 

  A Near-ring � is said to be a Weak Commutative if for ÿ�� ý, þ, ÿ ∈  �, ýþÿ =  ýÿþ. 

Definition: 3.6 

          A Near-ring � with unit element is called a Boolean like near-ring provided  

for all elements ÿĀ ∈ � , ÿÿ ∗ ĀĀ ∗ = 0 and ÿ ∆ ÿ = ÿ. 

Lemma: 3.7 

         If  � is a Boolean like near-ring then ÿĀ = ÿĀÿ. For ÿ, Ā ∈ �. 

Proof:  

Let � be a Boolean like near-ring and . ÿ, Ā ∈ � 

Now  ( ÿĀ – ÿĀÿ ) ÿ = ÿĀÿ − ÿĀÿ2  

                                   = ÿĀÿ − ÿĀÿ 

                                   =  0. 

Therefore ( ÿĀ – ÿĀÿ)ÿ =  0.                                          (1) 

Also  ÿ  ÿĀ – ÿĀÿ  =  ( ÿ ( ÿĀ − ÿĀÿ))2 

                                 = ÿ   ÿĀ – ÿĀÿ   ÿ ( ÿĀ − ÿĀÿ) 

                                 = ÿ0.                                                          [from (1)] 

and ( ÿĀ – ÿĀÿ ) ÿĀÿ = ÿĀÿĀÿ −  (ÿĀÿ)2 

                                    =  ( ÿĀ)2 ÿ −  (ÿĀÿ)2 

                                    = ÿĀÿ − ÿĀÿ 

                                    =  0. 

As above, it follows that ÿĀÿ   ÿĀ – ÿĀÿ = ÿĀÿ0                                    (2) 
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Similarly ÿĀ   ÿĀ – ÿĀÿ  = ÿĀ0 

 Now ( ÿĀ – ÿĀÿ )2  =    ÿĀ – ÿĀÿ   ( ÿĀ – ÿĀÿ ) 

                                 = ÿĀ   ÿĀ – ÿĀÿ    –  ÿĀÿ ( ÿĀ – ÿĀÿ )  

                                 = ÿĀ0 − ÿĀÿ0 

                                 =    ÿĀ – ÿĀÿ  0 

                                 =    ÿĀ – ÿĀÿ  ÿ 

                                 =  0.                                              [ from (1)] 

Therefore ÿĀ – ÿĀÿ =  0. 

Hence ÿĀ = ÿĀÿ for all ÿ, Ā ∈ �. 

Theorem: 3.8 

          If � is a Boolean like near-ring then ÿĀā = ÿāĀ for ÿ, Ā, ā ∈ �   

i.e. � is weak commutative. 

Proof: 

     Let � be a Boolean like near-ring and ÿ, Ā, ā ∈ �. 

Consider  ÿĀā – ÿāĀ = ÿĀā − ÿāĀā                                      

                                   =    ÿ – ÿā   Āā 

                                   =    ÿ – ÿā  Ā   ÿ – ÿā  ā                     

                                   =   ÿ – ÿā   Ā0 

                                   = ÿĀ0 − ÿāĀ0                                              (1) 

Replacing Ā by Āā in (1) and by lemma 3.7 

             ÿĀā – ÿāĀ = ÿĀā0 − ÿāĀ0                                                (2) 
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From (1) and (2),  ÿĀ0 = ÿĀā0 for all ÿ, Ā, ā ∈ �.                       (3) 

Substituting Ā = ÿ in (3), we have  

  ÿÿ0 = ÿÿā0  ⇒ ÿ0 = ÿā0 for all ÿ, ā ∈ �                                (4) 

By (1) and (4) we get 

          ÿĀā – ÿāĀ = ÿĀ0 − ÿāĀ0 

                            = ÿ0 − ÿ0 

                            = 0. 

Therefore    ÿĀā = ÿāĀ. 

Hence � is Weak Commutative. 

ORDERING ON BOOLEAN LIKE NEAR-RINGS 

Definition: 3.9 

           Let N be a Boolean like near-ring. Define a relation < ≤ = on N by ÿ ≤  Ā �Ą ÿ =  Āÿ.  

Proposition: 3.10 

           If � is a Boolean like near-ring then (�, ≤) is a partially ordered set. 

Proposition: 3.11 

          Let � be a Boolean like near-ring and , Ā ∈ �. If ÿ ≤ Ā then ÿ = ÿĀ = Āÿ. 

Proof: 

          Let � be a Boolean like near-ring and ÿ, Ā ∈ � We know by 3.10 ÿ ≤ Ā ⇒ ÿ = Āÿ  

Now   ÿĀ = ĀÿĀ                                              (since ÿ = Āÿ) 

                 = ĀĀÿ                                             ( since ÿĀā = ÿāĀ) 
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           ÿĀ  = Āÿ.                                                   

  Therefore ÿĀ = Āÿ. 

Theorem: 3.12 

         Let  � be a Boolean like near-ring. If � has the least element, then the Boolean like near-

ring � is zero-symmetric. 

Proof: 

         We claim that every Boolean like ner-ring � with least element is Zero-symmetric. 

Suppose � has the least element ℓthen ℓ ≤ a for all ÿ ∈ � ⇒ ℓ = ÿℓ 

In particular ℓ ≤ 0, where 0 is the zero element of � 

Therefore ℓ = 0ℓ 

     ⇒  ℓ = 0 

Thus 0 is the least element of �. 

i.e. 0 ≤ ÿ for all ÿ ∈ �.. 

Therefore ÿ0 =  0ÿ =  0.                                                            (since ÿ = ÿĀ = Āÿ) 

Therefore � is a zero-symmetric Boolean like near-ring. 

Theorem: 3.13 

Let � be a Boolean like near-ring. If � is a meet semi lattice then we have the following. 

1. � is zero-symmetric. 

2. ÿĀ = ÿ ˄ Ā iff  Āÿ = ÿ ˄ Ā  iff  ÿĀ = Āÿ for all ÿ, Ā ∈ �.. 

3. ÿ ˄ Ā = ÿĀ ˄ Āÿ. 

4. (ÿ ˄ Ā) ˄  ÿĀ – Āÿ =  0. 
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Proof: 

Suppose � is a meet semi lattice  

1. Clearly 0ÿ = 0 for all ÿ ∈ � 

For any ÿ ∈  �, ą. �. Ā {0, ÿ}  exists and let it be »ă¼ 

therefore ă ≤  0, ă ≤ ÿ 

     ⇒  ă =  0ă          and          ă = ÿă 

      ⇒ ă =  0               and          0 = ÿ0 

       ⇒ ÿ0 =  0. 

Therefore � is zero-symmetric. 

2. ÿĀ = ÿ ˄ Ā iff  Āÿ = ÿ ˄ Ā  iff  ÿĀ = Āÿ for all ÿ, Ā ∈ �.. 

 Suppose ÿĀ = ÿ ˄ Ā 

Then ÿĀ ≤ ÿ                    and          ÿĀ ≤ Ā 

 ⇒    ÿĀ = ÿÿĀ           and          ÿĀ = ĀÿĀ 

 ⇒   ÿĀ = ĀÿĀ = ĀĀÿ = Āÿ. 

Conversely, suppose that ÿĀ = Āÿ 

Now  ÿÿĀ = ÿĀ                and       hence   ÿĀ ≤ ÿ 

 and   ĀÿĀ = Āÿ = ÿĀ      and       hence   ÿĀ ≤ Ā 

Therefore ÿĀ  is a lower bound of {ÿ, Ā}. 

Suppose ā ≤ ÿ  and ā ≤ Ā then ā = ÿā, ā = Āā 

now  ā = ÿā = ÿĀā 

 ⇒ ā ≤ ÿĀ 

Therefore    ą. �. Ā  ÿ, Ā = ÿ ˄ Ā = ÿĀ. 
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Similarly we can prove that Āÿ = ÿ ˄ Ā iff ÿĀ = Āÿ 

Therefore  ą. �. Ā  ÿ, Ā = ÿ ˄ Ā = Āÿ. 

3. ÿ ˄ Ā = ÿĀ ˄ Āÿ 

Let ā = ÿ ˄ Ā                           and            Ă = ÿĀ ˄ Āÿ 

then ā ≤ ÿ                                and           ā ≤ Ā 

     ⇒ ā = ÿā                             and           ā = Āā 

     ⇒ ā = ÿā = ÿĀā                and           ā = Āā = Āÿā 

      ⇒ ā ≤ ÿĀ                            and           ā ≤ Āÿ 

Since   Ă = ÿĀ ˄ Āÿ    we have     ā ≤ Ă 

Also Ă ≤ ÿĀ                             and           Ă ≤ Āÿ 

since    ÿĀ ≤ ÿ                         and           Āÿ ≤ Ā 

we have Ă ≤ ÿĀ ≤ ÿ               and          Ă ≤ Āÿ ≤ Ā 

      ⇒     Ă ≤ ÿ                          and             Ă ≤ Ā 

Since    ā = ÿ ˄ Ā               we have          Ă ≤ ā 

Therefore   ā = Ă. 

4. ( ÿ ˄ Ā ) ˄   ÿĀ – Āÿ  = 0 

 Let     ý =    ÿ ˄ Ā  ˄ ( ÿĀ – Āÿ )                   

then   ý ≤ ÿ, ý ≤ Ā, ý ≤  ( ÿĀ − Āÿ) ⇒    ý = ÿý, ý = Āý, ý =    ÿĀ – Āÿ ý 

So, ý =    ÿĀ – Āÿ ý 

          = ÿĀý − Āÿý 

    = ÿý − Āý 
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 ý  = ý − ý 

    =  0. 

Therefore   ÿ ˄ Ā ˄   ÿĀ − Āÿ  =  0. 

Definition: 3.14 

  Suppose (�, ≤) is partially ordered set. For any subset ý of �. 

Let � ý =  { ý ∈ �/ ý ≤ ÿ, ∀ ÿ ∈ ý} and � ý =  { ý ∈ � / ÿ ≤ ý, ∀ ÿ ∈ ý}. 

 For convenience we write �(ý) for �( ý ) and �(ý) for �( ý ) 

  Write � �   = {(�(ý) / ý is a non-empty finite subset of �} and 

      �(�) = {�(�) / ý is a non-empty finite subset of �}. 

Proposition: 3.15  

       Let � be a poset. Then �(�) is a meet semi-lattice under set inclusion. 

Proof: 

   Let �(ý), �(þ) ∈ �(�) 

Then �( ý ∪ þ ) ⊆  �(� ) 

Clearly �( ý ∪ þ ) ⊆  �(ý ) and � ( ý ∪ þ ) ⊆  �(þ ) 

Let �(ÿ) be a lower bound of  �(ý) and �(þ) 

    i.e �(ÿ)  ⊆  �(ý)    and     �(ÿ)    ⊆  �(ý)   

Let ý ∈ �(ÿ) that implies  ý ∈ �(ý)    and    ý ∈ �(þ)        ⇒  ý ∈  �( ý ∪ þ )  

Therefore � ÿ ⊆ � ý ∪ þ = inf  {� ý , � þ }. 

Hence �(�) is a meet semi-lattice. 
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Proposition: 3.16 

  Let � be a poset. Then �(�) is a meet semi-lattice under set inclusion. 

Proof: 

       Let �(ý), �(þ) ∈  �(�) 

Then � ý ∪ þ  ⊆ �(ý) and � ý ∪ þ  ⊆ �(þ) 

Let �(ÿ) be a lower bound of �(ý) and �(þ) 

i.e �(ÿ) ⊆ �(ý) and �(ÿ) ⊆ �(þ) 

Let ý ∈ �(ÿ)  that implies  ý ∈ �(ý)    and  ý ∈ �(þ)     ⇒ ý ∈ �(ý ∪ þ)     

Therefore �(ý ∪ þ)    = inf    � ý , � þ  . 

Hence �(�) is a meet semi-lattice. 

Definition: 3.17 

   A poset � is called distributive if both the meet semi-lattices �(�) and � �  are 

distributive. 

Theorem: 3.18 

   Let � be a Boolean like near-ring. If � is  a distributive poset then the 

Boolean like near-ring � is Boolean like ring. 

 Proof: 

      Let � be a distributive poset.  

Claim: � is a Boolean ring.  

Since � is a distributive poset, � � and �(�)are meet distributive semi-lattices. 
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For any � ý , � þ , �(ÿ) ∈ �(�) such that  � ý  ˄ � þ  ⊆ �(ÿ)  there exists � ÿ  , � Ā   in �(�) such that � ý  ⊆ � ÿ , � þ   ⊆ � Ā    
and � ÿ  ˄ � Ā   = �(ÿ). 

Similarly for any � ý , � þ , �(ÿ) ∈ �(�) such that � ý  ⊆ � ÿ , � þ   ⊆ � Ā  and  

 � ÿ  ˄ � Ā   = �(ÿ). 

Let ÿ, Ā ∈ �, Clearly � ÿ  ˄ � Ā  ⊆ � Ā . Therefore there exists � ÿ  ⊆ � ÿ , � Ā  ⊆ � Ā  and � ÿ  ˄ � Ā   = �(Ā). 

therefore Ā ∈ � ÿ   and Ā ∈ � Ā  
Choose ý ∈ ÿ. Then Ā ≤ ý  and  ÿ ≤ ý ⇒  ÿ = ýÿ    and     Ā = ýĀ 

Now ÿĀ = ýÿĀ 

                = ýĀÿ 

                = Āÿ.                   (since Ā ≤ ý) ⇒      ÿĀ = Āÿ. 

Therefore the Boolean like near-ring � is commutative. 

Hence � is a Boolean like ring. 
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4.BOOLEAN LIKE GAMMA NEAR-RINGS 

Definition: 4.1 

 A Γ-near-ring ��  is a system consisting of  

(i) a group (�� , +) (not  necessarily Abelian) 

(ii) a non-empty set Γ 

(iii) a mapping  ÿ,ÿ, Ā → ÿÿĀ of ��  ×  � ×  ��  →  ��  satisfying the following 

conditions: 

(a)  ÿ + Ā ÿā = ÿÿā + Āÿā ∀ ÿ, Ā, ā ∈  ��  and ÿ ∈  �. 

(b)  ÿÿĀ Āā = ÿÿ ĀĀā  ∀ ÿ,Ā, ā ∈  ��  and ÿ,Ā ∈  �. 

Note: 4.2 

(i) The identify 0 in (�� , +) is called the zero element of �� . 

(ii) Clearly 0āĀ = 0 ∀ ā ∈  �, Ā ∈  �� . 

(iii) The inverse of a ÿ ∈  ��  is denoted by – ÿ. 

(iv)  −ÿ āĀ =  −ÿāĀ.  

Definition:4.3 

 An element Ă ∈  �� is called a distributive element if for all, �,�′ ∈  �� , ā ∈  �, Ăā � +  �′ = Ăā� +  Ăā�′ . 
Definition: 4.4 

 A �- Near ring ��  is said to be a Zero-Symmetric if �ā0 = 0 for all � ∈  �� , ā ∈  �. 
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Definition: 4.5 

A Γ-Near ring ��  is said to be Weak Commutative if for all ý,þ, ÿ ∈  �� , ā ∈  �, ýāþāÿ = ýāÿāþ.  

Definition: 4.6 

 A Γ Near-ring ��  with unit element is called a Boolean like �-near-ring provided ÿāÿ∗āĀāĀ∗ = 0, ÿāÿ = ÿ and ÿ ∆ ÿ = ÿ for all ÿ, Ā ∈ Г� , ā ∈ Г. 

Lemma: 4.7 

 If Г�  is Boolean like �-near-ring then ÿāĀ = ÿāĀāÿ for all ÿ,Ā ∈  Г� ,ā ∈ Г. 

Proof: 

 Let ��  is a Boolean like �-near-ring and ÿ, Ā ∈  Г� ,ā ∈ Г. 

Now   ÿāĀ − ÿāĀāÿ  āÿ = ÿāĀāÿ − ÿāĀāÿāÿ  

                                          = ÿāĀāÿ – ÿāĀāÿ 

 = 0. 

Therefore  (ÿāĀ – ÿāĀāÿ) āÿ = 0.                                                                      (1) 

and ÿā ÿāĀ – ÿāĀāÿ  =  ÿā ÿāĀ − ÿāĀāÿ   ā(ÿāĀ − ÿāĀāÿ)) 

                                      = ÿā    ÿāĀ − ÿāĀāÿ āÿ ā ÿāĀ − ÿāĀāÿ   

                                      = ÿā0ā ÿāĀ − ÿāĀāÿ                                                  from (1) 

                                     = ÿā0.                                                                              (2) 

Also  ÿāĀ − ÿāĀāÿ  āÿāĀāÿ  =  ÿāĀāÿāĀāÿ − ÿāĀāÿāÿāĀ  

                                                  = ÿāĀāÿ – ÿāĀāÿ 

                                                  = 0. 
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As above it follows that ÿāĀāÿā  ÿāĀ – ÿāĀāÿ = ÿāĀāÿā0                                                                          (3) 

Similarly  ÿāĀā ÿāĀ – ÿāĀāÿ = ÿāĀā0 

Now (ÿāĀ − ÿāĀāÿ)  =  (ÿāĀ − ÿāĀāÿ)ā(ÿāĀ − ÿāĀāÿ) 

                                     = ÿāĀā ÿāĀ – ÿāĀāÿ −  ÿāĀāÿā(ÿāĀ − ÿāĀāÿ) 

                                     = ÿāĀā0 – ÿāĀāÿā0                                                         from(2) 

                                     =   ÿāĀ − ÿāĀāÿ ā0 

                                     =   ÿāĀ – ÿāĀāÿ ā (ÿāĀ − ÿāĀāÿ)āÿ                            from(1) 

                                     =   ÿāĀ – ÿāĀāÿ āÿ 

                                     = 0.                                                                                    from(1) 

Therefore  ÿāĀ – ÿāĀāÿ = 0. 

Hence ÿāĀ – ÿāĀāÿ for all ÿ, Ā ∈  Г� ,ā ∈ Г. 

Theorem: 4.8 

 If  ��  is a Boolean like Γ-near-ring then ÿāĀāā = ÿāāāĀ for ÿ,Ā, ā ∈  Г� , ā ∈  � i.e. ��  

is weak commutative. 

Proof: 

  Let ��  be a Boolean like �-near-ring and ÿ,Ā, ā ∈ �� , γ ∈  � 

Consider  ÿāĀāā – ÿāāāĀ  

              ÿāĀāā – ÿāāāĀ  = ÿāĀāā – ÿāāāĀāā                        (since  = ÿāĀāÿ )                         

                                         =   ÿ – ÿāā  āĀāā                 

                                         =  ÿ – ÿāā āĀā  ÿ – ÿāā āā                                  
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              ÿāĀāā – ÿāāāĀ =   ÿ – ÿāā āĀā0                                                                                       

                                        = ÿāĀā0 – ÿāāāĀā0.                                                   (1)                                                   

Replacing Ā by Āāā in (1) and theorem 4.8 ÿāĀāā – ÿāāāĀ = ÿāĀāāā0 – ÿāāāĀā0.                                                            (2) 

From (1) and (2), ÿāĀā0 = ÿāĀāāā0 for all ÿ, Ā, ā ∈ Г� , ā ∈ Г.                                                   (3) 

Substituting Ā = ÿ in (3) we have 

 ÿāÿā0 = ÿāÿāāā0 ⇒  ÿā0 = ÿāāā0 for ÿ, ā ∈  �� , ā ∈  �                                                              (4)      

By (1) and (4) we get ÿāĀāā – ÿāāāĀ = ÿāĀ0 – ÿāāāĀā0           

                           = ÿā0 – ÿā0               

                           = 0.           

Therefore ÿāĀāā = ÿāāāĀ. 

Hence ��  is Weak Commutative. 

Lemma: 4.9 

         Let ��  be a Boolean like Γ-near-ring. If Ă is a distributive element in �� , then Ă + Ă = 0 

and hence Ă =  −Ă. 

Proof: 

         Let ��  be a Boolean like like Γ-near-ring and Ă is a distributive element. 

Consider Ă + Ă 

                           Ă + Ă =   Ă + Ă  ā (Ă + Ă) 
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                           Ă + Ă = Ăā  Ă + Ă +  Ăā (Ă + Ă) 

                                       = ĂāĂ + ĂāĂ + ĂāĂ + ĂāĂ   

                                       = Ă + Ă + Ă + Ă.                                     (Since ÿāÿ = ÿ) 

Therefore Ă + Ă = 0 

                    ⇒ Ă =  −Ă. 

Definition: 4.10 

 A Г-near-ring Г�  is called a distributive Г-near-ring every element of Г�  is a 

distributive element. 

Definition: 4.11 

 An element ă ∈  Г�  is called a left identity if  ăāÿ = ÿ,∀ ÿ ∈ Г� . 

ORDERING ON BOOLEAN LIKE Γ-NEAR-RINGS 

Definition: 4.12 

 Let  Г�  be a Boolean like Г-near-ring.  Define a relation <≤= on Г�  by a  ÿ ≤ Ā if ÿ = Āāÿ for all ā ∈ Г. 

Proposition: 4.13 

        Let Г� a Boolean like Г-near-ring and ÿ,Ā ∈  Г� .  If ÿ ≤ Ā then ÿ = Āāÿ = ÿāĀ. 

Proof: 

       Let Г� a Boolean like Г-near-ring and ÿ, Ā ∈  Г�.  

We know by 4.12 ÿ ≤ Ā ⇒ ÿ = Āāÿ 
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Now  ÿāĀ = ĀāÿāĀ                                                           (since ÿ = Āāÿ) 

                  = ĀāĀāÿ                                                          (since ÿāĀāā = ÿāāāĀ) 

                  = Āāÿ.                                                             (since ÿāÿ = ÿ) 

Therefore ÿāĀ = Āāÿ. 

Lemma: 4.14 

             Let ��  Boolean like Γ-near-ring. If ��  is �-directed then ��  is a commutative Boolean 

like Γ-near-ring. 

Proof: 

Let ��  is �-directed. 

Let ÿ, Ā ∈  ��   

Since ��  is �-directed, ∃ ā ∈  ��  such that ā = ÿ Ç Ā 

Now  ÿ ≤ ā                   and              Ā ≤ ā 

⇒       ÿ = āāÿ              and               Ā = āāĀ         ∀ ā ∈  �. 

Now  ÿāĀ = āāÿāĀ 

                  = āāĀāÿ                                                (since ÿāÿ = ÿ) 

                  = Āāÿ 
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Therefore  ÿāĀ =  Āāÿ    for all ÿ, Ā ∈  �� . 

Thus ��  is a commutative Boolean like Γ-near-ring. 

Theorem: 4.15 

            Let ��  be a Boolean like Γ-near-ring. If ��  is a Γ-meet semi lattice then we have the 

following. 

1. Г�  is a zero-symmetric. 

2. Let ÿ,Ā ∈ Г� , ÿāĀ = ÿ ˄ Ā ∀ ā ∈ Г iff ÿāĀ = Āāÿ ∀ ā ∈ Г. 

3. ÿ ˄ Ā = ÿāĀ ˄ Āāÿ for all ÿ,Ā ∈ Г�  and ∀ ā ∈ Г. 

4.  ÿ˄Ā  ˄  ÿāĀ − Āāÿ = 0 for all ÿ,Ā ∈ Г�  and ∀ ā ∈ Г. 

Proof:   

Suppose Г�  is a Г-meet semi lattice 

 For any ÿ ∈ Г� , g.l.b  0, ÿ  exist and let it be ʻă 

Therefore ă ≤ 0, ă ≤ ÿ 

               ⇒     ă = 0āă       and      ă = ÿāă          ∀ ā ∈ Γ 

              ⇒      ă = 0           and     0 = ÿā0 

              ⇒      ÿā0 = 0. 

Therefore Г�  is zero-symmetric.  

 2. ÿāĀ = ÿ Æ Ā iff Āāÿ = ÿ Æ Ā iff ÿāĀ = Āāÿ for all ÿ, Ā ∈ Г�. 
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Suppose ÿāĀ = ÿÆĀ 

then     ÿāĀ ≤ ÿ               and       ÿāĀ ≤ Ā 

⇒ ÿāĀ = ÿāÿāĀ              and       ÿāĀ = ĀāÿāĀ  

 ⇒ ÿāĀ = ĀāÿāĀ = ĀāĀāÿ = Āāÿ 

Conversely, suppose that ÿāĀ = Āāÿ. 

Now  ÿāÿāĀ = ÿāĀ,  hence ÿāĀ ≤ ÿ  

and  ĀāÿāĀ = Āāÿ = ÿāĀ,  hence ÿāĀ ≤ ÿ 

Therefore ÿāĀ is a lower bound of  ÿ, Ā . 
Suppose ā ≤ ÿ and ā ≤ Ā then ā = ÿāā, ā = Āāā. 

Now  ā = ÿāā = ÿāĀ 

    ⇒  ā ≤ ÿāĀ 

Therefore �. �. Ā  ÿ,Ā = ÿÆĀ = ÿāĀ. 

Similarly we can prove that Āāÿ = ÿ Æ Ā iff ÿāāĀ = Āāÿ. 

Therefore �. �. Ā  ÿ,Ā   = ÿ Æ Ā = Āāÿ. 

3. For all ā ∈ Г 

 ÿ ˄ Ā = ÿāĀ ˄ Āāÿ  
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Let ā = ÿ ˄ Ā & Ă = ÿāĀ ˄ Āāÿ 

  ⇒  ā ≤ ÿ                                and       ā ≤ Ā 

  ⇒   ā = ÿāā                           and       ā = Āāā 

  ⇒   ā = ÿāā = ÿāĀāā           and       ā = Āāā = Āāÿāā 

 ⇒   ā ≤ ÿāĀ                           and        ā = Āāÿ. 

  Since         Ă = ÿāĀ Æ Āāÿ    we have          ā ≤ Ă. 

 Also          Ă ≤ ÿāĀ               and                Ă ≤ Āāÿ. 

 Now     ÿāĀ ≤ ÿ                    and                Āāÿ ≤ Ā 

 ⇒     Ă ≤ ÿāĀ ≤ ÿ                 and                Ă ≤ Āāÿ ≤ Ā Since    ā = ÿ ˄ Ā,    we have    Ă ≤ ā. 

Therefore    ā = Ă. 

4.  ÿÆĀ  Æ  ÿāĀ − Āāÿ = 0 

 Let     ý =  ÿÆĀ  Æ  ÿāĀ − Āāÿ  
  then    ý ≤  ÿ˄Ā                     and                ý ≤  ÿāĀ − Āāÿ  
  ⇒        ý ≤ ÿ, ý ≤ Ā,               and                ý ≤  (ÿāĀ − Āāÿ) 

 ⇒        ý = ÿāý ,ý = Āāý,        and               ý =  (ÿāĀ − Āāÿ)āý  

  ⇒       ÿāý = Āāý,                    and                ý = ÿāĀāý − Āāÿāý 
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                                                       ý  = ÿāÿāý − ĀāĀāý 

                                                           = ÿāý − Āāý 

                                                           = ý − ý 

                                                           = 0.  

Therefore  ÿ˄Ā  ˄  ÿāĀ − Āāÿ = 0 for all ā ∈ Г. 
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INTRODUCTION 

G. Boole in 1824 introduced an important class of lattices, which were named as Boolean 

algebras. In 1944, Alfred L Foster and Bernstein introduced the concept of Boolean ring, which 

is a generalization of the Boolean algebra in which the abstract algebraic structure of a ring and 

logical properties are preserved. Later in 1945, A L Foster introduced the concept of Boolean 

like ring, which is generalization of the concept of Boolean ring. From the collection of Gunter 

Pliz the theory of Near-rings is a generalization of the theory or rings. Now in this project <Study 
on Boolean Like Gamma Near-Rings= a generalization of the theories of Boolean like rings, 
near-rings and gamma near rings, I have introduced BOOLEAN LIKE GAMMA NEAR-RINGS. 

The project divided into 4 chapters. 

 In chapter 1 <Preliminaries=, I have collected literature from <Introduction to Lattice 
Theory = by Gabor Szasz [8], <Near-rings= by Gunter Pliz [13], <Boolean Algebra= by Roman 
Sikorski [14], which are used in later chapters. 

 In chapter 2 <Boolean Like Rings=, it is proved that the direct product of Boolean like 
rings is also a Boolean like ring. Further an ordering on a Boolean like ring is defined and some 

interesting result are proved. 

 In chapter 3 <Boolean Like Near-Rings=, some standard definitions relating to Boolean 

like near-rings and some important results like, the weak commutativity and every Boolean like 

near-ring with least element is zero-symmetric and is the Boolean like near-ring is a distributive 

poset then the Boolean like near-ring is Boolean like ring; are proved. 

 In chapter 4 <Boolean Like Gamma Near-Ring=, it is proved that gamma near ring be a 
Boolean like gamma near-ring. If gamma near-ring is u-directed then gamma near ring is a 

commutative Boolean like gamma near-ring and some standard definitions relating to Boolean 

like gamma near-rings and some important results also are proved.  

 

 

 

 

 

 

 

 



CONCLUSION 

It was a wonderful learning experience for me while working on this project. This project 

took me through the various phases of Boolean algebras. Here I have discussed the <Study on 

Boolean Like Gamma Near-Rings= a generalization of  the theories of Boolean like rings, near-

rings and gamma near-rings.  
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CHAPTER - 1 

PRELIMINARIES 

Definition: 1.1 

Let � be any non-empty set. A fuzzy subset Ā of � is a function Ā∶� → [0,1]. 

Definition: 1.2 

Let þ be a group. A fuzzy subset Ā of þ is called a fuzzy subgroup if for all 

 Ċ, ċ∈þ,  

(�)  (Ċċ)     g  min{Ā(Ċ), Ā(ċ)} 

(��) Ā(Ċ−1) = Ā(Ċ) 

Definition: 1.3 

Let þ be a group. A fuzzy subgroup Ā of þ is said to be normal if for all Ċ, ċ∈þ, Ā(ĊċĊ−1) = Ā(ċ) āĄ Ā(Ċċ) = Ā(ċĊ). 

Definition: 1.4 

Let Ā be a fuzzy subgroup of a group þ. For any Ć∈ [0,1], we define the level 

subset of Ā is the set, Ā� = {Ċ∈þ/ Ā(Ċ) g Ć}. 

Definition: 1.5 

A mapping Ā∶ý×ā → [0,1], where ý and ā are arbitrary non empty sets is called �-fuzzy set of ý and is denoted by ý� = {[(Ċ, ă), Ā(Ċ, ă)]/Ċ∈ý, ă∈ā} 

Definition: 1.6 

A ā-fuzzy set Ā is called a �-fuzzy subgroup of a group þ, if for Ċ, ċ∈þ, ă∈ā,  

(� )   Ā (Ċċ, ă)  g min {Ā (Ċ, ă), Ā (ċ, ă)} 

(��) Ā (Ċ−1, ă) = Ā (Ċ, ă) 
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Definition: 1.7 

Let � be a non-empty set. A Fuzzy Multiset ý drawn from � is characterized by a 

function 8Count Membership9 of ý denoted by ÿýý such that ÿýý∶� → ā where ā is 

the set of all crisp finite set drawn from the unit interval [0,1]. Then for any Ċ∈�,  

the value of ÿýý(Ċ) is a crisp multiset drawn from [0,1]. For each Ċ∈�, the membership 

sequence is defined as the decreasingly ordered sequence of elements in ýý(Ċ). 

 It is denoted by, (Āý1
 (Ċ), Āý2

 (Ċ), …..., Āýý(Ċ)). 

Example: 1.8 

Let � = {Ċ, ċ, Č, ĉ} be a universal non empty set. For each Ċ∈�, we can write a 

Fuzzy Multiset as follows. ý = {[Ċ, (0.8,0.7,0.7,0.6)], [ċ, (0.8,0.5,0.2)], [Č, (1,0.5,0.5)]} where ýý(Ċ) = (0.8,0.7,0.7,0.6) with 0.8 g 0.7 g 0.7 g 0.6. 

Definition: 1.9 

Let � be a non-empty set. An intuitionistic fuzzy setý on � is an object having 

the form ý = {[Ċ, Āý(Ċ), āý(Ċ)]/Ċ∈�} where Āý∶� → [0,1] and āý∶� → [0,1] are the 

degree of membership and non-membership functions respectively with 

0 f Āý(Ċ) + āý(Ċ) f 1. 

Definition: 1.10 

Let � and ā are arbitrary non empty sets. An intuitionistic �-fuzzy setý is an 

object having the form ý = {[(Ċ, ă), Āý (Ċ, ă), āý (Ċ, ă)]: Ċ∈�, ă∈ā} where the 

functions Āý∶� × ā → [0,1] and āý∶� × ā → [0,1] denote the degree of membership and 

non-membership of each element (Ċ, ă) ∈� × ā to the set ý respectively and for all Ċ∈� ÿĀý ă∈ā,  0 f Āý (Ċ, ă) + āý (Ċ, ă) f 1. 
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Definition: 1.11 

Let Ā be an anti-fuzzy subgroup of a group þ. For any Ć∈ [0,1], we define the 

level subset of Ā is the set Ā� = {Ċ∈þ/Ā(Ċ) f Ć}. 

Definition: 1.12 

A fuzzy set Ā of a group þ is called an anti-fuzzy subgroup of G, if for all  Ċ, ċ∈þ, 

(�) (Ċċ f  max {Ā(Ċ), Ā(ċ)} 

(��) Ā(Ċ−1) = Ā(Ċ) 

Definition: 1.13 

An anti-fuzzy subgroup Ā of a group þ is called an anti-fuzzy normal subgroup 

of þ if for all Ċ, ċ∈þ, (ĊċĊ−1)) = (ċ) āĄ (Ċċ) = (ċĊ). 

Definition: 1.14 

Let � be a field and ý be a fuzzy set in � with membership function Ā� . Suppose 

the following 

(�) Ā�((Ċ + ċ), ă   g ÿ�Ā {Ā�(Ċ, ă), Ā�(ċ, ă)} 

(��)  Ā�(-Ċ, ă)       g Ā�(Ċ, ă) 

(���)  Ā�((Ċċ), ă)   g ÿ�Ā{Ā�(Ċ, ă), Ā�(ċ, ă)} 

(�Ĉ)  Ā�  (Ċ−1, ă)   g Ā�(Ċ, ă), Ċ ≠ 0 �Ā� ý is a fuzzy field in � and denote it by (ý, �). Also (ý, �) is called a fuzzy field of �. 

Definition: 1.15 

Let (þ, ·) be a group and ā be a non-empty set. A ā-fuzzy subgroup ý of þ is said 

to be a �-fuzzy characteristic subgroup (QFCSG) of þ if ý (Ċ, ă) = ý (ÿ (Ċ, ă)), for all Ċ in þ and f in ā − ýćĆþ and ă in Q. 
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Definition: 1.16 

A ā-fuzzy subset ý of a set � is said to be normalized if there exist Ċ in � such 

that (Ċ, ă) = 1. 

Definition: 1.17 

Let ý be a ā-fuzzy subgroup of a group (G , ·  ). For any ÿ in þ, ÿý defined by 

(ÿý)(Ċ, ă) =  (ÿ−1Ċ, ă ) for every Ċ in þ and ă in ā, is called a �-fuzzy coset of þ. 

Definition: 1.18 

Let ý be a ā-fuzzy subgroup of a group ( G, ·  ) and ÿ  =  { Ċ∈þ / ý(Ċ, ă)  = ý(þ, ă) },  

then ÿ(ý) , order of ý is defined as �(�) =  �(�). 
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CHAPTER - 2 �- Fuzzy Normal Subgroups 

Definition: 2.1 

Let þ be a group. A ā- fuzzy subgroup µ of þ is said to be normal if for all  Ċ, ċ∈þ and ă∈ā, 

                                 µ (ĊċĊ−1, ă) = µ (ċ, ă) āĄ µ (Ċċ, ă) g µ (ċĊ, ă). 

Definition: 2.2 

Let µ be a ā-fuzzy subgroup of a group þ. For any Ć∈ [0,1], we define the level 

subset of µ is the set,  Ā� = {Ċ∈þ, ă∈ā / µ (Ċ,ă) g Ć}. 

Theorem: 2.3 

Let þ be a group and µ be a ā-fuzzy subset ofþ. Then µ is a ā – fuzzy subgroup 

of þ iff the level subsets,Ā�,∈ [0,1], are subgroup of þ. 

Proof: 

Let µ be a ā-fuzzy subgroup of þ and the level subset  Ā� = {Ċ∈þ, ă∈ā / µ (Ċ,q) g Ć, Ć∈ [0,1]}.  

Let Ċ, ∈ Ā�. Then Ā (Ċ, q) gĆ & Ā (ċ, q) g Ć.  

Now     Ā (Ċċ−1, ă)   g {Ā (Ċ, q), (ċ−1,)} 

                                      = ÿ�Ā { Ā (Ċ , ă) , Ā (ċ , ă) } 

                g ÿ�Ā { Ć , Ć }  

Therefore, Ā (Ċċ−1, ă)  gĆ 

This implies Ċ ċ−1∈Ā� . 

Thus ,Ā� is a subgroup of þ. 
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Conversely, let us assume that Ā� be a subgroup of þ.  

Let Ċ,∈Ā�. Then Ā (Ċ, q) g   Āý Ā (ċ, q)g Ć.  

Also, Ā (Ċ ċ−1, ă)   g Ć,       since Ċ ċ−1∈Ā� 

        = ÿ�Ā {Ć , Ć} 

        = ÿ�Ā{Ā (Ċ,ă),Ā (ċ,ă)} 

 (i.e.),   (Ċ ċ−1, ă)   g ÿ�Ā {Ā (Ċ,), (ċ,)}. 

 Hence, Ā is a ā-fuzzy subgroup of þ. 

Definition: 2.4 

Let þ be a group and Ā be a ā-fuzzy subgroup of þ. 

Let (Ā) = {ÿ∈þ / (ÿĊÿ−1, ă) = Ā (Ċ, ă), for all Ċ∈þ, ă∈ā}. Then (Ā) is called the �-fuzzy Normalizer of �. 

Theorem: 2.5 

Let þ be a group and Ā be a ā-fuzzy subset of þ. Then Ā is a ā − fuzzy normal 

subgroup of þ iff the level subsets Ā�, Ć∈ [0,1], are normal subgroup of þ. 

Proof: 

Let Ā be a Q- fuzzy normal subgroup of þ and the level subsets Ā�, Ć∈ [0,1], is a subgroup of þ. Let Ċ∈þ ÿĀý ÿ∈Ā�, ĆhþĀ Ā (ÿ, ă) g Ć. 

Now, Ā (ĊÿĊ−1, ă) = (ÿ, ă) gĆ,  

since Ā is a ā-fuzzy normal subgroup of þ.  

That is, Ā (ĊÿĊ−1, ă) g Ć. 

Therefore, ĊÿĊ−1∈Ā� 

Hence, Ā� is a normal subgroup of þ. 
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Theorem: 2.6 

Let Ā be a ā-fuzzy subgroup of a group þ. 

Then (�) (Ā) is a subgroup of þ. 

(��) Ā is a ā-fuzzy nor mal ⇔(Ā) =  þ. 

 (���) Ā is a ā-fuzzy normal subgroup of the group (Ā). 

Proof: 

(i)  Let ÿ,∈þ(Ā) then Ā(ÿĊÿ−1, ă) = Ā (Ċ, ă), for all Ċ∈þ and Ā (ĀĊĀ−1, ă) = Ā (Ċ, ă), for all Ċ∈þ. 

Now        Ā (ÿĀĊ(ÿĀ)−1, ă)  = (ÿĀĊ Ā−1ÿ−1, ă) 

                                                = Ā (ĀĊĀ−1,ă) 

                                                = Ā (Ċ, ă) 

Thus we get, (ÿĀĊ(ÿĀ)−1,) = Ā (Ċ,). 

  ⇒ÿĀ∈þ(Ā) 

Therefore, (Ā) is a subgroup of þ. 

(ii)  Clearly N (Ā) ⊆ , is a ā-fuzzy normal subgroup of þ. 

Let ÿ∈þ, then Ā (ÿĊÿ−1, ă) = Ā (Ċ, ă). 

Then ÿ∈(Ā) ⟹ þ⊆þ(Ā).  

Hence (Ā) = þ. 

Conversely, let(Ā) = þ. 

Clearly, Ā (ÿĊÿ−1, ă) = Ā (Ċ,), for all Ċ∈þ ÿĀý ÿ∈þ. 

Hence, Ā is a ā – fuzzy normal subgroup of þ. 

(iii)  From (ii), Ā is a ā −fuzzy normal subgroup of a group (Ā). 
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Definition: 2.7 

Let Ā be a ā-fuzzy subset   of   þ. 

Let Ċÿ: þ×ā → þ×ā [ÿ�∶þ×ā → þ×ā] be a function defined by 

Ċÿ(ÿ , ă) = (Ċÿ , ă)[ÿ�(ÿ , ă) = (ÿĊ , ă)]. A �-fuzzy left (right) coset 

ĊĀ (Ā�) is defined to be (Ā) (ÿ�(Ā)).  It is easily seen that 

(ĊĀ) (ċ, ă) = Ā (Ċ−1ċ, ă) ÿĀý (Ā�) (ċ, ă) = Ā (ċĊ−1, ă), for every (ċ, ă) in þ × ā. 

Theorem: 2.8 

Let Ā be a ā-fuzzy subset of þ. Then the following conditions are equivalent for 

each Ċ, ċ in þ. 

(�) Ā (ĊċĊ−1, ă)   g Ā (ċ, ă)  

(��) Ā (ĊċĊ−1, ă)  = Ā (ċ, ă) 

(���)Ā (Ċċ , ă)      = Ā (ċĊ , ă)  

(�Ĉ)  ĊĀ        =  ĀĊ 

(Ĉ)   ĊĀĊ-1       = Ā 

Proof: 

Straight forward 

Theorem: 2.9 

If Ā is a ā-fuzzy subgroup of þ, then ĀĀĀ−1 is also a ā-fuzzy subgroup of þ 

for all Ā∈þ and ă∈ā. 

Proof: 

Let Ā be a ā-fuzzy subgroup of þ. Then  

 

(i)  (ĀĀĀ−1) (Ċċ, ă)              = Ā (Ā−1(Ċċ), ă) 
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                                                = Ā(Ā−1(ĊĀĀ−1ċ)Ā, ă) 

                                                = Ā ((Ā−1ĊĀ)(Ā−1ċĀ), ă) 

                                                g ÿ�Ā{Ā (Ā−1ĊĀ, ă), Ā (Ā−1ċĀ, ă)} 

                                                g ÿ�Ā{ĀĀĀ−1 (Ċ, ă), ĀĀĀ−1 (ċ, ă)}, ÿāĄ ÿþþ Ċ , ċ �Ā þ ÿĀý ă∈ā. 

(��) ĀĀĀ−1(Ċ, ă)  = Ā(Ā−1ĊĀ, ă) 

                                                = Ā ((Ā−1ĊĀ)−1, ă)  

                                                = Ā (Ā−1Ċ−1Ā, ă) 

                                                = ĀĀĀ−1(Ċ−1, ă), ÿāĄ ÿþþ Ċ,ċ �Ā þ ÿĀý ă∈ā. 

Hence, ĀĀĀ−1 is a ā-fuzzy subgroup of þ. 

Theorem: 2.10 

If Ā is a ā-fuzzy normal subgroup of þ, then ĀĀĀ−1 is also a ā-fuzzy normal 

subgroup of þ, for all Ā∈þ ÿĀý ă∈ā. 

Proof: 

Let Ā be a ā-fuzzy normal subgroup of þ. then ĀĀĀ−1 is a subgroup of þ. 

Now,    ĀĀĀ−1 (ĊċĊ−1, ă)  = (Ā−1(ĊċĊ−1), ă) 

= Ā(ĊċĊ−1, ă) 

= Ā( ċ, ă) 

= Ā(ĀċĀ−1, ă) 

= ĀĀĀ−1 (ċ, ă). 

Theorem: 2.11 

Let Ā and ÿ be two ā-fuzzy subgroups of þ. Then ÿ ∩ Ā is a ā-fuzzy subgroup  

of þ. 
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Proof: 

Let ÿ and Ā be two ā-fuzzy subgroups of þ 

(i)   (ÿ ∩ Ā) (Ċċ−1, ă)    = ÿ�Ā (ÿ (Ċċ−1, ă), Ā (Ċċ−1, ă)) 

   g ÿ�Ā { ÿ�Ā{ÿ(Ċ , ă) , ÿ(ċ , ă)}, ÿ�Ā{Ā(Ċ , ă) , Ā (ċ , ă)}} 

   g ÿ�Ā{ ÿ�Ā{ÿ(Ċ , ă) , Ā(Ċ , ă)}, ÿ�Ā{ÿ(ċ, ă), Ā(ċ , ă)}} 

   = min{(ÿ ∩ Ā)(Ċ, ă), (ÿ ∩ Ā)(ċ, ă)} 

Thus, (ÿ ∩ Ā) (Ċċ−1, ă) g {(ÿ ∩ Ā)(Ċ, ă), (ÿ ∩ Ā)(ċ, ă)} 

(ii)       (ÿ ∩ Ā) (Ċ,) = {ÿ (Ċ, ă), Ā (Ċ, ă)} 

                         = {ÿ (Ċ−1, ă),Ā (Ċ−1 , ă)} 

   = {(ÿ ∩ Ā) (Ċ−1, ă)}. 

Hence, ÿ ∩ Ā is a ā-fuzzy subgroup of þ. 

Remark: 2.12 

If Ā�, �∈ ∆ is a ā-fuzzy subgroup of þ, then ∩�∈∆ Ā� is a ā-fuzzy subgroup of þ. 

Theorem: 2.13   

The intersection of any two ā-fuzzy normal subgroups of þ is also a ā-fuzzy 

normal subgroup of þ. 

Proof: 

Let ÿ and Ā be two ā-fuzzy normal subgroups of þ.  

According to theorem 2.11, ÿ ∩ Ā is a ā-fuzzy subgroup of þ.Now for all Ċ, ċ in þ,  

we have, 

(ÿ ∩ Ā) (ĊċĊ−1,ă)  = ÿ�Ā(ÿ (ĊċĊ−1Ċ,ă),Ā (ĊċĊ−1,ă)) 

= ÿ�Ā (ÿ (ċ , ă) , Ā(ċ , ă) ) 

= (ÿ ∩ Ā) (y, q) 

Hence, (ÿ ∩ Ā) is a ā-fuzzy normal subgroup of þ. 
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Remark: 2.14 

If Ā�, �∈ ∆ is a ā-fuzzy normal subgroup of þ, then∩�∈∆ Ā� is a ā-fuzzy normal 

subgroup of þ. 

Definition: 2.15 

The mappingÿ: þ×ā → ÿ×ā is said to be a group �-homomorphism if 

(i) ÿ: þ → ÿ is a group homomorphism 

(ii) ÿ (Ċċ,) = ((Ċ)(ċ),ă), for all Ċ,ċ∈þ and ă∈ā. 

Theorem: 2.16 

Let ÿ: þ×ā → ÿ×ā is a group ā- homomorphism. 

(i) If Ā is a ā −fuzzy normal subgroup of  , then ÿ−1(Ā) is a ā-fuzzy normal                                       

subgroup of þ.                 

(ii) If ÿ is an epimorphism and Ā is a ā-fuzzy normal subgroup of þ, then (Ā) is a ā-fuzzy normal subgroup of ÿ. 

Proof: 

(i)Let ÿ: þ × ā → ÿ × ā is a group ā-homomorphism and let Ā be a ā-fuzzy 

Normal subgroup of ÿ. 

Now for all Ċ, ċ ∈þ, we have ÿ−1(Ā) (ĊċĊ−1, ă)  = Ā (ÿ (ĊċĊ−1,ă)) 

= Ā (ÿ (Ċ) ÿ (ċ)ÿ (Ċ)−1,ă) 

= Ā ( ÿ(ċ) , ă) 

= ÿ−1(Ā) (ċ,ă) 

Hence, ÿ−1(Ā) is a ā-fuzzy normal subgroup of þ. 

(ii) Let Ā be a ā-fuzzy normal subgroup of þ. 
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Then (Ā) is a ā- fuzzy subgroup of ÿ. 

Now, for all ć, Ĉ in ÿ, we have  ÿ (Ā) (ćĈć−1, ă) = sup Ā (ċ,) 

     = ąćĂ Ā (ĊċĊ−1, ă) 

       ÿ(ċ)              =  ćĈć−1 ÿ(Ċ) = ć;    ÿ(ċ) = Ĉ 

                = sup Ā (ċ,) 

                = ÿ(Ā)(Ĉ , ă) ÿ (ċ) = Ĉ (since ÿ is an epimorphism)  

Hence, ÿ (Ā) is a ā-fuzzy normal subgroup of ÿ. 

Definition: 2.17 

Let ÿ and Ā be two ā-fuzzy subsets of þ. The product of ÿ and Ā is defined to be 

the �-fuzzy subset ÿ Ā of þ is given by ÿĀ(Ċ , ă) = ąćĂ ÿ�Ā ( ÿ(ċ , ă) , Ā(Č , ă) ) , Ċ∈þ. 

           ċČ = Ċ 

Theorem: 2.18 

If ÿ & Ā are ā-fuzzy normal subgroups of G, then ÿ Ā is a ā-fuzzy normal 

subgroup of  . 

Proof: 

Let ÿ & Ā be two ā-fuzzy normal subgroups of G. 

(i)  ÿĀ (Ċċ, ă) = sup min {ÿ (Ċ1ċ1,), Ā (Ċ2ċ2,ă)} 

By substituting, Ċ1ċ1  = Ċ,  Ċ2ċ2 = ċ 

                              g sup min {min {ÿ (Ċ1, ă), ÿ (ċ1, ă)},min {Ā (Ċ2, ă), Ā (ċ2, ă)}} 

By substituting, Ċ1ċ1 = Ċ, Ċ2ċ2 = ċ 
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                               g min {sup min {ÿ (Ċ1, ă), ÿ (ċ1,ă)}, sup min {Ā (Ċ2,ă),Ā (ċ2,ă)}} 

By substituting,  Ċ1ċ1= Ċ, Ċ2ċ2= ċ 

 ÿĀ(Ċċ , ă)        g ÿ�Ā { ÿĀ (Ċ , ă) , ÿĀ (ċ , ă) } 

(ii)   ÿĀ (Ċ−1, ă) = sup min{Ā(Č−1, ă), ÿ(ċ−1, ă)} 

  (ċČ)−1   =  Ċ−1 

    = sup min {(Č, ă), ÿ(ċ, ă)},     Ċ= ċČ 

    = sup min {(ċ, ă), Ā(Č, ă)},     Ċ= ċČ 

    = ÿĀ(Ċ , ă). 

Hence, ÿĀ is a normal ā-fuzzy subgroup of þ. 
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CHAPTER - 3 

Intuitionistic �-Fuzzy Normal Subgroups 

Definition: 3.1 

Let ý = {[(Ċ, ă), Āý(Ċ, ă), āý(Ċ, ă)]:Ċ∈�, ă∈ā} be an Intuitionistic ā-fuzzy set on �. Then for ÿ, Ā∈ [0,1], the set  ý[ÿĀ]= {Ċ∈�, ă∈ā/ Āý(Ċ, ă) g ÿ ÿĀý Āý(Ċ, ă) f Ā} is 

called the (α, β)- level subsets of �. 

Theorem: 3.2 

Let þ be a group and ý be an Intuitionistic ā- Fuzzy subset of G. Then A is a 

Intuitionistic ā- Fuzzy subgroup of a group þ if the Intuitionistic (ÿ, Ā)- level subsets ý[ÿĀ]ÿ, Ā∈ [0,1] are subgroups of þ. 

Proof: 

Let ý be an Intuitionistic ā- Fuzzy subgroup of þ and the (ÿ, Ā)- level subset ý[ÿĀ]= {Ċ∈�, ă∈ā/ Āý(Ċ, ă) g ÿ ÿĀý āý(Ċ, ă) f Ā}. 

 Let Ċ, ċ∈ ý[ÿĀ]. Then Āý(Ċ, ă) gÿ ÿĀý āý(Ċ, ă) f Ā 

Now Āý(Ċċ−1, ă)  g min {Āý(Ċ, ă), Āý(ċ−1, ă)} 

                                    = min {Āý(Ċ, ă), Āý(ċ, ă)} 

   = min {ÿ, ÿ} = ÿ 

Hence, Āý (Ċċ−1, ă)  g ÿ. 

Similarly, (Ċċ−1, ă)   f max {(Ċ, ă), āý(ċ−1, ă)} 

                                   = max {āý (Ċ, ă), āý(ċ, ă)} 

                                   = ÿÿĊ {Ā, Ā} = Ā 

Hence, āý (Ċāý, ă)     f Ā. 

This impliesĊċ−1∈ ý[ÿĀ]. 
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Thus,  ý[ÿĀ] is a subgroup of þ. 

Conversely, let us assume that ý[ÿĀ] is a subgroup of þ.  

Let Ċ, ċ∈ ý[ÿĀ]. Then, Āý(Ċ, ă) g ÿ and āý(Ċ, ă) f Ā 

Also, Āý(Ċċ−1, ă) gÿ= ÿ�Ā {ÿ, ÿ} 

             = min {((Ċ, ă), Āý(ċ, ă)}             Āý(Ċċ−1, ă)     g min {Āý(Ċ, ă), Āý(ċ, ă)} 

Also, (Ċċ−1ă)  f Ā     = ÿÿĊ {Ā, Ā} 

                        = max {āý(Ċ, ă),āý (ċ, ă)} 

              (Ċċ−1, ă)       f max {āý(Ċ, ă),āý (ċ, ă)} 

Hence, ý is an Intuitionistic ā-Fuzzy subgroup of þ.  

Definition: 3.3 

Let þ be a group and ý be a Intuitionistic ā-Fuzzy subgroup of a group þ. Let þ(ý) = {ÿ∈þ /Āý(ÿĊÿ−1, ă) =Āý(Ċ, ă), āý(ÿĊÿ−1, ă) = āý(Ċ, ă) ∀Ċ∈þ, ă∈ā}.  

Then, (ý) is called the Intuitionistic �-fuzzy normalizer of �. 

Theorem: 3.4 

Let þ be a group and ý be an Intuitionistic ā-fuzzy subset of þ. Then ý is an 

Intuitionistic ā-fuzzy normal subgroup of þif the level subsets ý[ÿĀ]ÿ, Ā∈ [0,1] is a 

subgroup of þ. 

Proof: 

Let A be an Intuitionistic ā-fuzzy normal subgroup of þ and the level subsets  ý[ÿĀ], ÿ, Ā∈ [0,1] is a subgroup of þ. 

 Let Ċ∈þ ÿĀý ÿ∈ ý[ÿĀ] ĆhþĀ Āý(ÿ, ă) g ÿ. 

Now Āý(ĊÿĊ−1, ă) = Āý(ÿ, ă) g ÿ. 
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Since ý is an Intuitionistic ā-fuzzy normal subgroup of þ, 

That is, Āý (ĊÿĊ−1, ă) g ÿ ⇒ĊÿĊ−1∈  ý[ÿĀ] 
Similarly, āý(ĊÿĊ−1, ă) = āý(ÿ, ă) fĀ 

Since, ý is an Intuitionistic ā-fuzzy normal subgroup of þ, 

That is, āý(ĊÿĊ−1, ă) f Ā ⇒ĊÿĊ−1∈  ý[ÿĀ] 
Hence,   ý[ÿĀ]  is a normal subgroup of þ. 

Theorem: 3.5 

Let ý be a Intuitionistic ā-fuzzy normal subgroup of a group þ. Then 

(i) (ý) is a subgroup of a group þ. 

(ii) ý is an Intuitionistic ā-fuzzy normal subgroup of a group þ iff (ý) = þ. 

(iii) ý is an Intuitionistic ā-fuzzy normal subgroup of a group (ý). 

Proof: 

(i)       Let ÿ, Ā∈ N(ý) ⇒ Āý (ĊÿĊ−1, ă) g ÿ,  Āý (ĊĀĊ−1, ă) g ÿ  ÿāĄ ÿþþ Ċ∈þ, ă∈ā. 

Now,  Āý (ÿĀĊ(ÿĀ)−1, ă)  = Āý(ÿĀĊĀ−1ÿ−1, ă)  

= Āý(ĀĊĀ−1, ă) = Āý(Ċ, ă). 

Thus, Āý(ÿĀĊ(ÿĀ)−1, ă)  = Āý(Ċ, ă). 

Let ÿ, Ā∈ N(ý) ⇒ āý(ĊÿĊ−1, ă) f Ā, āý(ĊĀĊ−1, ă) f Ā ÿāĄ ÿþþ Ċ∈þ, ă∈ā. 

Now,  āý(ÿĀĊ(ÿĀ)−1, ă)  = āý(ÿĀĊĀ−1ÿ−1, ă)  

                          = āý(ĀĊĀ−1, ă)  

                                               = āý(Ċ, ă). 

Thus,   āý (ÿĀĊ(ÿĀ)−1, ă)      = āý(Ċ, ă) 

This implies ÿĀ∈N(ÿ).  
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That is, N (ý) is a subgroup of a group þ. 

(ii)      From (i), N(ý) ⊆þ, ý is an Intuitionistic ā-fuzzy normal subgroup of a  

group þ. 

Let ÿ∈þ ⇒ Āý(ÿĊÿ−1, ă) =  Āý (Ċ, ă) ⇒ ÿ∈þ(ý).                       āý(ÿĊÿ−1, ă) =  āý(Ċ, ă)  ⇒ ÿ∈þ(ý). 

Hence, (ý) = þ. 

Conversely, let (ý) = þ, 

Clearly, Āý(ÿĊÿ−1, ă) = Āý(Ċ, ă) and  āý(ÿĊÿ−1, ă) =   āý(Ċ, ă) ∀ ÿ, Ċ∈þ, ă∈ā.  

Hence, ý is an Intuitionistic ā-fuzzy normal subgroup of a group þ. 

(iii) From (ii), ý is an Intuitionistic ā-fuzzy normal subgroup of a group (ý). 

Theorem: 3.6 

If ý is an Intuitionistic ā-fuzzy subgroup of a group þ. Then ĀĀýĀ−1&Ā āýĀ−1 

are also an Intuitionistic ā-fuzzy subgroups of a group þ for all Ā∈þ ÿĀý ă∈ā. 

Proof: 

Let ý is an Intuitionistic ā-fuzzy subgroup of a group þ. 

Then (i)  (ĀĀýĀ−1)(Ċċ, ă)  = Āý(Ā−1(Ċċ)Ā, ă) 

                                            = Āý(Ā−1(ĊĀĀ−1ċ)Ā, ă) 

                                            = Āý(Ā−1ĊĀ)(Ā−1ċĀ), ă) 

                                            g ÿ�Ā {Āý(Ā−1ĊĀ, ă), Āý(Ā−1ċĀ, ă)}  

for all Ċ, ċ∈þ ÿĀý  ă∈ā 

Similarly, (Ā  āýĀ−1)(Ċċ, ă) =   āý(Ā−1(Ċċ)Ā, ă) 

                                              =   āý(Ā−1(ĊĀĀ−1ċ)Ā, ă) 

                                              =   āý(Ā−1ĊĀ)(Ā−1ċĀ), ă) 

                                              f max {  āý(Ā−1ĊĀ, ă),   āý(Ā−1ċĀ, ă)} 
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 for all Ċ, ċ∈þ ÿĀý ă∈ā. 

(ii) (ĀĀýĀ−1)(Ċ, ă) = Āý(Ā−1ĊĀ, ă) 

= Āý((Ā−1ĊĀ) −1, ă) 

= Āý(Ā−1Ċ−1Ā, ă) 

=  ĀĀýĀ−1(Ċ−1, ă) 

Similarly, (Ā  āýĀ−1)(Ċ, ă)  =  āý (Ā−1ĊĀ, ă) 

=   āý((Ā−1ĊĀ) −1, ă) 

=   āý(Ā−1Ċ−1Ā, ă) 

=  āýĀ−1(Ċ−1, ă) for all Ċ, ċ∈þ ÿĀý ă∈ā. 

Hence, ĀĀýĀ−1&Ā āýĀ−1 are also an Intuitionistic ā-fuzzy subgroups of a group þ. 

Theorem: 3.7 

Let ý ÿĀý þ be two Intuitionistic ā-fuzzy subgroups of a group þ. Then ý ∩ þ 

is also an Intuitionistic ā-fuzzy subgroup of a group þ. 

Proof: 

Let ý ÿĀý þ be two Intuitionistic ā-fuzzy subgroups of a group þ. 

(i) (ý ∩ þ)(Ċċ−1, ă) = min{Āý(Ċċ−1, ă), Āþ(Ċċ−1, ă)} 

g min {min {Āý(Ċ, ă), Āý(ċ, ă)}, min{Āþ(Ċ, ă), Āþ(ċ, ă)}} 

g min {ÿ�Ā {{Āý(Ċ, ă), Āþ(Ċ, ă)}, min{Āý(ċ, ă), Āþ(ċ, ă)}} 

= min {(ý ∩ þ)(Ċ, ă), (ý ∩ þ)(ċ, ă)} 

Thus,        (ý ∩ þ)(Ċċ−1, ă) g min{(ý ∩ þ)(Ċ, ă), (ý ∩ þ)(ċ, ă)} 

Similarly,(ý ∩ þ) (Ċċ−1, ă) = max {  āý(Ċċ−1, ă), āþ(Ċċ−1, ă)} 

          f max {max {  āý(Ċ, ă),   āý(ċ, ă), max{āþ(Ċ, ă), āþ(ċ, ă)}} 

          f max {max{  āý(Ċ, ă), āþ(Ċ, ă)}, max{  āý(ċ, ă), āþ(ċ, ă)}} 

          = max{(ý ∩ þ)(Ċ, ă), (ý ∩ þ)(ċ, ă)} 
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Thus        (ý ∩ þ)(Ċċ−1, ă) f ÿÿĊ{(ý ∩ þ)(Ċ, ă), (ý ∩ þ)(ċ, ă)} 

(ii)  (ý ∩ þ)(Ċ, ă)  = min{Āý(Ċ, ă), Āþ(Ċ, ă)} 

 = min {Āý(Ċ-1, ă), Āþ(Ċ-1, ă) 

 = min {(ý ∩ þ) (Ċ-1, ă)} 

(ý ∩ þ)(Ċ, ă)   = max{  āý(Ċ, ă), āþ(Ċ, ă)} 

 = max {  āý(Ċ-1, ă), āþ(Ċ-1, ă) 

 = max {(ý ∩ þ)(Ċ-1, ă)} 

Hence, ý ∩ þ is also an Intuitionistic ā-fuzzy subgroup of a group þ. 

 Theorem: 3.8 

The intersection of any two Intuitionistic ā-fuzzy normal subgroup of a group þ 

is also an Intuitionistic ā-fuzzy normal subgroup of a group þ. 

Proof: 

Let ý ÿĀý þ be two Intuitionistic ā-fuzzy normal subgroup of a group þ. 

According to previous theorem, ý ∩ þ is also an Intuitionistic ā-fuzzy subgroup of a  

Group þ. 

Now we have to prove that ý ∩ þ is a normal subgroup. 

 Now ∀ Ċ, ċ∈þ ÿĀý ă∈ā. we have, 

 

(ý ∩ þ)(ĊċĊ-1, ă)      = min{Āý(ĊċĊ-1, ă), Āþ(ĊċĊ-1, ă)} 

                                  = min { Āý(ċ, ă),  Āþ (ċ, ă)} 

                                  = (ý ∩ þ)(ċ, ă) 

Similarly, ∀Ċ, ċ∈þ ÿĀý ă∈ā. we have, 

(ý ∩ þ)(ĊċĊ-1, ă)      = max{ āý(ĊċĊ-1, ă),  āþ(ĊċĊ-1, ă)} 

                                  = max {āý(ċ, ă),  āþ(ċ, ă)} 
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                                  = (ý ∩ þ)(ċ, ă) 

Hence, ý ∩ þ is a Intuitionistic ā- fuzzy normal subgroup of a group G. 

Definition: 3.9 

The mapping ÿ: þ×ā → ÿ×ā is said to be a group Intuitionistic �-fuzzy 

homomorphism if 

(�) ÿ∶þ → ÿ is a group homomorphism 

(��) ÿ(Ċċ, ă) = (ÿ(Ċ)ÿ(ċ), ă) ∀ Ċ,ċ∈þ, ă∈ā. 

Theorem: 3.10 

Let ÿ: þ×ā → ÿ×ā be intuitionistic ā-fuzzy group homomorphism 

(i)       If ý is a intuitionistic ā-fuzzy normal subgroup of a group ÿ, then ÿ′(ý) is a 

intuitionisticā-fuzzy normal subgroup of a group þ. 

Proof: 

Let ÿ: þ×ā → ÿ×ā be a group intuitionistic ā-fuzzy homomorphism and 

 let ý be an intuitionistic ā-fuzzy normal subgroup of a group H. 

Now for all Ċ, ċ∈þ, ă∈ā  

we have,   ÿ′(Āý)(ĊċĊ-1, ă)  = Āý (ÿ(ĊċĊ-1, ă)) 

               = Āý  (ÿ (Ċ) ÿ (ċ)(ÿ(Ċ))-1, ă) 

                                               = Āý(ÿ(ċ), ă) 

                                               = ÿ′(Āý)(ċ, ă) 

Similarly, ÿ′(āý)(ĊċĊ−1, ă)   = āý(ÿ(ĊċĊ−1, ă))  

                                               = āý(ÿ (Ċ) ÿ (ċ)(ÿ(Ċ))-1, ă) 

                                               = āý(ÿ(ċ), ă) 

                                               = ÿ′(āý)(ċ, ă) 

Hence, ÿ′(ý) is a intuitionistic ā-fuzzy normal subgroup of a group þ. 
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CHAPTER - 4 

Properties of Anti- �-Fuzzy Normal Subgroups 

Definition: 4.1 

A ā-fuzzy set Ā of a group þ is called an Anti- �-fuzzy subgroup of þ, 

 if for all Ċ, ċ∈þ, ă∈ā, 

(�)  Ā (Ċċ, ă) f max {Ā (Ċ, ă), Ā (ċ, ă)}  

(��) Ā (Ċ-1, ă) = Ā (Ċ, ă) 

Definition: 4.2 

An anti- ā- fuzzy subgroup Ā of a group þ is called an anti-�- fuzzy normal 

subgroup of þ if for all Ċ, ċ∈þ ÿĀý ă∈ā,  

(ĊċĊ-1, ă) = Ā(ċ, ă) āĄ  Ā(Ċċ,ă) = Ā (ċĊ,ă). 

Definition: 4.3 

Let Ā be an anti-ā-fuzzy subgroup of a group þ. For any Ć∈ [0, 1],  

we define the level subset of �  as, Ā�= {Ċ∈þ, ă∈ā / Ā(Ċ, ă) f Ć }. 

Theorem: 4.4 

Let Ā be a ā-fuzzy subset of a group þ. Then Ā is an anti-ā-fuzzy subgroup of þ 

iff the level subsets Ā�, Ć ∈ [0, 1] are subgroups of þ. 

Proof: 

Let Ā be an anti-ā-fuzzy subgroup of þ and the level subset. Ā� = {Ċ∈þ / Ā (Ċ, ă) fĆ, Ć∈ [0, 1]} 

Let Ċ, ∈ Ā�.Then Ā (Ċ, ă) f   & Ā (ċ, ă) fĆ 

Now ,     Ā (Ċċ-1, ă)  f ÿÿĊ {Ā (Ċ, ă), Ā (ċ-1, ă)} 

                                    = max {Ā (Ċ, ă), Ā (ċ, ă)} 
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                                    f ÿÿĊ {Ć, Ć} 

Therefore, Ā (Ċċ-1, ă)  f Ć,  hence Ċċ-1∈ Ā� . 

Thus, Ā� is a subgroup of þ. 

Conversely, let us assume that Ā� be a subgroup of þ. 

Let Ċ, ∈ Ā� . Then   Ā (Ċ, ă) f   and Ā (ċ, ă) f Ć. 

Also,               (Ċċ-1, ă)       f Ć,     since Ċċ-1∈ Ā� 

                                             = ÿÿĊ {Ć , Ć} 

                                             = ÿÿĊ { Ā (Ċ , ă) , Ā (ċ , ă) } 

That is,            (Ċċ-1, ă)       f ÿÿĊ {Ā (Ċ, ă), Ā (ċ, ă)}. 

Hence, Ā is an anti-ā-fuzzy subgroup of þ. 

Definition: 4.5 

Let Ā be an anti- ā-fuzzy subgroup of a group þ. Then  

N(Ā) = {ÿ∈þ / Ā (ÿĊÿ-1, ă) = Ā(Ċ , ă) , for all Ċ∈þ , ă∈ā }, is called an anti-� −fuzzy 

Normaliser of �.  

Theorem: 4.6 

Let Ā be a ā −fuzzy subset of þ. Then Ā is an anti- ā- fuzzy normal subgroup of þ 

if the level subsets Ā�, Ć∈ [0,1] are normal subgroups of þ. 

Proof: 

Let Ā be an anti-ā- fuzzy normal subgroup of þ and the level subsetsĀ� , Ć∈ [0,1], 

is a subgroup of þ.  

Let Ċ∈þ and ÿ ∈ Ā�, then Ā (ÿ, ă) f Ć. 

Now, (ĊÿĊ-1, ă)= Ā ( ÿ, ă) f Ć, 

Since Ā is an anti-ā-fuzzy normal subgroup of þ, Ā (ĊÿĊ-1, ă) f Ć. 

Therefore, ĊÿĊ-1 ∈ Ā�. 



23 

 

 Hence, Ā� is a normal subgroup of þ. 

Theorem: 4.7 

Let Ā be an anti- ā-fuzzy subgroup of a group þ. Then 

(i) (Ā) is a subgroup of þ. 

(ii) Ā is an anti- ā-fuzzy normal ⇔(Ā) = þ. 

(iii) Ā is an anti ā-fuzzy normal subgroup of the group (Ā). 

Proof: 

(i) Let ÿ, ∈ N(Ā)  then, 

 Ā (ÿĊÿ-1, ă) = Ā (Ċ, ă), ÿāĄ ÿþþ Ċ∈þ. Ā (ĀĊĀ-1, ă)   = Ā (Ċ, ă), ÿāĄ ÿþþ Ċ∈þ. 

Now,  (ÿĀĊ(ÿĀ)-1, ă)= Ā (ÿĀĊĀÿ-1,ă) 

                                 =Ā (ĀĊĀ-1, ă) 

                                 = Ā (Ċ, ă) 

Thus, we get, Ā ((ÿĀ)-1, ă) = Ā (Ċ,)⟹ ÿĀ ∈ þ(Ā) 

Therefore,N(Ā) is a subgroup of þ. 

(ii)  Clearly N(Ā) ⊆þ, is an anti- ā-fuzzy normal subgroup of þ.  

Let ÿ∈þ, then Ā (ÿĊÿ-1, ă)  = Ā (Ċ, ă). 

Then ÿ∈(Ā) ⟹ þ⊆þ(Ā).  

Hence, (Ā) = þ. 

Conversely, let (Ā) =þ. 

Clearly, Ā (ÿĊÿ-1, ă) =Ā (Ċ, ă), for all Ċ∈þ ÿĀý ÿ∈þ.  

Hence Ā is an anti- ā – fuzzy normal subgroup of þ. 

(iii) From (ii), Ā is an anti- ā-fuzzy normal subgroup of a group (Ā). 
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Definition: 4.8 

Let Ā be a ā-fuzzy subset   of   þ. 

Let   : þ × ā → þ× ā [ÿ�∶ þ × ā → þ × ā] be a function defined by, 

 Ċÿ (ÿ , ă) = (Ċÿ , ă)[ÿ�(ÿ , ă) = (ÿĊ , ă)].  

A �-fuzzy left (right) coset ĊĀ (Ā�) is defined to be   (Ā) (ÿ�(Ā)).  

It is easily seen that(ĊĀ)(ċ , ă) = Ā(Ċ-1ċ , ă) ÿĀý  

(Ā�)(ċ, ă) = Ā (ċĊ−1, ă) , for every (ċ , ă) in þ×ā. 

Theorem: 4.9 

Let Ā be a ā-fuzzy subset of þ. Then the following conditions are equivalent for 

each Ċ,  in þ. 

(�) (ĊċĊ-1, ă)   gĀ (ċ, ă)  

(��)Ā (ĊċĊ-1, ă)   =Ā (ċ, ă)  

(���) Ā (Ċċ , ă)    = Ā (ċĊ , ă)  

(�Ĉ)    ĊĀ            =  Ā� 

(Ĉ)     ĊĀĊ-1    = Ā 

Proof: 

Straight forward 

Theorem: 4.10 

If Ā is an anti- ā-fuzzy subgroup of þ, then ĀĀĀ-1  is also an anti- ā-fuzzy 

subgroup of þ for all Ā∈þ and ă∈ā. 

Proof: 

Let Ā be an anti- ā-fuzzy subgroup of þ.Then   

(i)  (ĀĀĀ-1) (Ċċ, ă)  =Ā (Ā-1(Ċċ) Ā,ă) 
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                                       = Ā (Ā-1(ĊĀĀ-1ċ) Ā, ă) 

                                       = Ā ((Ā-1ĊĀ) (Ā-1ċĀ), ă) 

                                       f ÿÿĊ {Ā (Ā-1ĊĀ, ă), Ā (Ā-1ċĀ, ă)} 

                                       f ÿÿĊ {ĀĀĀ-1 (Ċ, ă), ĀĀĀ-1 (ċ, ă)}, ÿāĄÿþþ Ċ , ċ �Ā þ ÿĀý ă∈ā. 

(��) ĀĀĀ-1 (Ċ, ă)  = Ā (Ā-1ĊĀ, ă) 

                                 = Ā ((Ā-1 ĊĀ)-1 , ă) 

                                 = Ā (Ā-1Ċ-1Ā, ă) 

                                 = ĀĀĀ-1(Ċ-1, ă), ÿāĄÿþþ Ċ, �Ā þ ÿĀý ă∈ā. 

Hence, ĀĀĀ-1 is an anti- ā-fuzzy subgroup of þ. 

Theorem: 4.11 

If Ā is an anti- ā-fuzzy normal subgroup of þ, then ĀĀĀ-1  is also an anti- ā-fuzzy 

normal subgroup of þ, for all Ā∈þ and ă∈ā. 

Proof: 

Let Ā be an anti- ā-fuzzy normal subgroup of þ. then ĀĀĀ-1 is a subgroup of þ. 

  Now ĀĀĀ-1 (ĊċĊ-1, ă) = Ā (Ā-1(ĊċĊ-1) Ā, ă) 

= Ā (ĊċĊ-1, ă) 

= Ā( ċ, ă) 

= Ā (ĀċĀ-1, ă) 

= ĀĀĀ-1 (ċ, ă). 

Thus, ĀĀĀ-1 is also an anti- ā-fuzzy normal subgroup of þ. 

Theorem: 4.12 

The intersection of any two anti –ā-fuzzy subgroups of þ is also an anti –ā-fuzzy 

subgroup of þ. 
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Proof: 

Let ÿ and Ā be two anti- ā-fuzzy subgroups of þ. 

 (ÿ ∩ Ā) (Ċċ-1,)  =ÿ�Ā (ÿ (Ċċ-1, ă), (Ċċ-1, ă)) 

f ÿ�Ā { ÿÿĊ {ÿ(Ċ , ă) , ÿ(ċ , ă)}, ÿÿĊ {Ā(Ċ , ă) , Ā (ċ , ă)}} 

f ÿÿĊ { ÿ�Ā{ÿ(Ċ , ă) , Ā(Ċ , ă)}, ÿ�Ā{ÿ(ċ, ă), Ā(ċ , ă)}} 

= max {(ÿ ∩ Ā) (Ċ,), (ÿ ∩ Ā) (ċ,)} 

Thus,(ÿ ∩ Ā) (Ċċ-1,ă)  f ÿÿĊ {(ÿ ∩ Ā) (Ċ, ă), (ÿ ∩ Ā) (ċ, ă)} 

Therefore, (ÿ ∩ Ā) is an anti ā −fuzzy subgroup of þ. 

Remark: 4.13 

If Ā�, �∈ ∆ is an anti- ā-fuzzy subgroup of þ, then ∩�∈∆ Ā�   is an anti- ā-fuzzy 

subgroup of G. 

Theorem: 4.14 

The intersection of any two anti- ā-fuzzy normal subgroups of þ is also an anti- ā- fuzzy normal subgroup of þ. 

Proof: 

Let ÿ and Ā be two anti- ā-fuzzy normal subgroups of þ. 

According to theorem 4.12, ÿ ∩ Ā is an anti- ā-fuzzy subgroup of þ. 

Now for all Ċ, ċ �Ā þ, we have 

(ÿ ∩ Ā) (ĊċĊ−1, ă)  = ÿÿĊ ((ĊċĊ−1, ă), (ĊċĊ−1, ă)) 

= ÿÿĊ (ÿ (ċ , ă) , Ā(ċ , ă) ) 

= (ÿ ∩ Ā)(y, q) 

Hence, (ÿ ∩ Ā) is an anti- ā-fuzzy normal subgroup of þ. 
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Remark: 4.15 

If Ā�, �∈ ∆ are anti- ā-fuzzy normal subgroup of þ, then ∩�∈∆  Ā�  is an anti- ā-

fuzzy normal subgroup of þ. 

Definition: 4.16 

The mapping ÿ: þ×ā → ÿ×ā is said to be a group �-homomorphism if 

(i)ÿ: þ → ÿ is a group homomorphism 

(ii) ÿ (Ċċ, ă) = (ÿ (Ċ) ÿ (ċ), ă), for all Ċ, ċ∈þ and ă∈ā. 

Definition: 4.17 

The mapping ÿ: þ×ā → ÿ×ā is said to be a group anti- �-homomorphism 

    if,  (i) ÿ: þ → ÿ is a group homomorphism 

(ii) ÿ (Ċċ, ă) = (ÿ (ċ)(Ċ), ă), for all Ċ, ċ ∈ þ and ă∈ā. 

Theorem: 4.18 

Let ÿ: þ ×ā → ÿ × ā be a group anti- ā- homomorphism. 

(i) If Ā is an anti- ā −fuzzy normal subgroup of ÿ, then ÿ−1(Ā) is an anti- ā-fuzzy 

normal subgroup of þ. 

(ii) If ÿ is an epimorphism and Ā is an anti ā-fuzzy normal subgroup of þ, then 

(Ā) is an anti-ā-fuzzy normal subgroup of ÿ. 

Proof: 

(i) Let ÿ: þ × ā → ÿ × ā is a group anti- ā-homomorphism and  

let Ā be an anti- ā-fuzzy Normal subgroup of ÿ. 

Now, for all Ċ, ċ ∈þ, we have  ÿ−1(Ā)(ĊċĊ-1, ă) = Ā (ÿ (ĊċĊ-1, ă) 

= Ā ((Ċ)-1(ċ)ÿ(Ċ), ă) 
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= Ā ( ÿ(ċ) , ă) 

= ÿ-1(Ā) (ċ, ă) 

Hence, ÿ-1(Ā) is an anti- ā-fuzzy normal subgroup of þ. 

(ii) Let Ā be an anti- ā-fuzzy normal subgroup of þ. 

Then ÿ (Ā) is an anti- ā- fuzzy subgroup of ÿ. 

Now, for all ć, �Ā ÿ, we have (Ā)(ćĈć-1, ă) = inf Ā (ċ, ă) 

                                                                          = inf Ā (ĊċĊ-1, ă) 

                                                                      ÿ (ċ)  =ćĈć-1 

                                                                    ÿ(Ċ)  = ć ; ÿ(ċ) = Ĉ 

                                                                        = inf Ā (ċ, ă) 

                                                                        = ÿ(Ā)(Ĉ , ă) ÿ (ċ)  = Ĉ (since ÿ is an epimorphism) 

Hence, (Ā) is an anti- ā-fuzzy normal subgroup of ÿ. 

Definition: 4.19 

Let ÿ and Ā be two ā-fuzzy subsets of þ. The product of ÿ and Ā is defined to be 

the �-fuzzy subset �� of þ is given by, ÿ Ā(Ċ , ă) = �Āÿ ÿÿĊ ( ÿ(ċ , ă) , Ā(Č , ă) ) , Ċ∈þ. 

                                        ċČ = Ċ 

Theorem: 4.20 

If ÿ&Ā are anti- ā-fuzzy normal subgroups of þ, then ÿĀ is an anti- ā-fuzzy 

normal subgroup of þ. 

Proof: 

Let ÿ & Ā be two anti- ā-fuzzy normal subgroups of G. 

(i) ÿĀ (Ċċ, ă) = �Āÿ ÿÿĊ {ÿ (Ċ1ċ1, ă), Ā (Ċ2ċ2, ă)} 
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By substituting, Ċ1ċ1= Ċ,  Ċ2ċ2= ċ 

                      f inf max {max {ÿ (Ċ1, ă), ÿ (ċ1, ă)},max {Ā (Ċ2, ă), Ā (ċ2, ă)}} 

By substituting, Ċ1ċ1= Ċ,   Ċ2ċ2= ċ 

           f ÿÿĊ {�ĀÿÿÿĊ {ÿ (Ċ1, ă), ÿ (ċ1,ă)}, �ĀÿÿÿĊ {Ā (Ċ2,ă),Ā (ċ2,ă)}} 

By substituting, Ċ1ċ1= Ċ, Ċ2ċ2= ċ ÿ Ā (Ċċ , ă)    f ÿÿĊ { ÿĀ (Ċ , ă) , ÿĀ (ċ , ă) } 

(ii) ÿĀ (Ċ-1, ă)  = inf max {Ā (Č-1, ă), ÿ (ċ-1, ă)} 

By substituting, (ċČ)-1= Ċ-1 

                         = inf max {Ā (Č,), ÿ (ċ, ă)} 

By substituting, Ċ= ċČ 

                       = inf max {ÿ (ċ,), Ā (Č,)} 

By substituting, Ċ =ċČ 

                       = ÿĀ(Ċ , ă). 

Hence, ÿ Ā is an anti- ā-fuzzy normal subgroup of þ. 

 

Cartesian Product of Anti -�-Fuzzy Normal Subgroups 

Theorem: 4.21 

If Ā & Ă are two anti-ā-fuzzy subgroups of a group þ, then Ā × Ă is also an anti-ā- fuzzy subgroup of the group þ × þ. 

Proof: 

Let Ā & Ă be two anti-ā-fuzzy subgroups of a group þ. 

Let (Ċ1, ċ1),(Ċ2, ċ2)∈ þ × þ ÿĀý ă∈ā.  

Then, (Ā×Ă){((Ċ1, ċ1), (Ċ2, ċ2)-1, ă)} = (Ā×Ă){((Ċ1, ċ1), (Ċ2−1, ċ2−1), ă)} 
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 = (Ā×Ă){((Ċ1Ċ2−1,   ċ1ċ2−1), ă)} 

 = max{Ā(Ċ1Ċ2−1, ă), Ă(  ċ1ċ2−1, ă)} 

 = max{Ā(Ċ1, ă), Ā(Ċ2−1, ă), Ă( ċ1, ă), Ă(ċ2−1, ă)} 

 = max {  (Ċ1, ă), Ā (Ċ2, ă), Ă ( ċ1, ă), Ă( ċ2, ă)} 

 = max {(Ā × Ă)((Ċ1,  ċ1), ă), (Ā × Ă)((Ċ2,ċ2 ),ă)} 

Therefore, (Ā×Ă) is an anti-ā-fuzzy subgroup of þ × þ. 

Theorem: 4.22 

If Ā & Ă are two anti-ā-fuzzy normal subgroups of a group þ, then Ā × Ă is also 

an anti-ā-fuzzy normal subgroup of the group þ × þ. 

Proof: 

Straight forward. 
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CHAPTER - 5 

A Review on �-Fuzzy Subgroups in Algebra 

Theorem: 5.1 

If Ā is a ā-fuzzy subgroup of a group þ if and only if (Ā�)� is a ā- fuzzy 

subgroup of a group þ. 

Proof: 

Suppose Ā is a ā-fuzzy subgroup of a group þ then for all Ċ, ċ∈ þ and ă∈ā, Ā (Ċċ, ă) g  min {Ā (Ċ, ă), Ā (ċ, ă)} 

Now, 1 − Ā�  (Ċċ, ă) g min {1 − Ā�(Ċ, ă), 1 − Ā�(ċ, ă)} ⇔Ā�(Ċċ, ă)  f 1 − min {Ā�  (Ċ, ă), Ā�  (ċ, ă)}    Ā�(Ċċ, ă)  f max {Ā�  (Ċ, ă), Ā�  (ċ, ă)}  

 [Ā�  (Ċy, q)] � ≤ [max {Ā�(Ċ, q), Ā�(y, q)}]� 

1 − Ā�  (Ċċ, ă)  gmin {1 − Ā�(Ċ, ă), 1 −Ā�(ċ, ă)} Ā (Ċċ, ă)  g min {Ā (Ċ, ă), Ā (ċ, ă)} 

We have, Ā (Ċ, ă)  =Ā (Ċ−1, ă) for all Ċ∈þ ÿĀý ă∈ā. ⇔1 − Ā�(Ċ, ă)      = 1 − Ā�  (Ċ−1, ă) Ā�(Ċ, ă)        = Ā�  (Ċ−1, ă) [ Ā� (Ċ, q)]�            =  [Ā� (Ċ−1, q)]� 

1 − Ā�  (Ċ, ă)        = 1 − Ā�  (Ċ−1, ă) Ā (Ċ, ă)        = Ā (Ċ−1, ă) 

Hence, (Ā�)�  is a ā- fuzzy subgroup of a group þ. 
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Theorem: 5.2 

If ý is a ā- fuzzy subgroup of a groupþ if and only if ý (Ċċ−1, ă) g min {ý (Ċ, ă), ý (ċ, ă)} for all Ċ, ċ∈þ ÿĀý ă∈ā. 

Proof: 

Let ý be a ā- fuzzy subgroup of a group þ.  

Then for all Ċ, ċ∈þ ÿĀý ă∈ā ý (Ċċ, ă)     g min {ý (Ċ, ă), ý (ċ, ă)} ÿĀ   (Ċ-1, ă) = ý (Ċ, ă) 

Now, ý (Ċċ-1, ă) g min {ý (Ċ, ă), ý (ċ-1, ă)} ý (Ċċ-1, ă)     g min {ý (Ċ, ă), ý (ċ, ă)} by given condition. 

Therefore, ⇔ý (Ċċ-1, ă)  g min {ý (Ċ, ă), ý (ċ, ă)} 

Theorem: 5.3 

If ý is an anti-ā-fuzzy subgroup of group þ then ĀýĀ-1 is also an anti-ā-fuzzy 

subgroup of group G for all Ā∈þ ÿĀý ă∈ā. 

Proof: 

Let ý be an anti-ā-fuzzy subgroup of group þ. 

Then for all Ā∈þ ÿĀý ă∈ā 

(i) ĀýĀ-1(Ċċ, ă)    = (Ā-1(Ċċ), ă) 

                              = ý (Ā-1(ĊĀĀ-1ċ) Ā, ă) 

                              = ý ((Ā-1ĊĀ)(Ā-1ċĀ) , ă) 

                              f max{ý((Ā-1ĊĀ), ă), ý((Ā-1ċĀ), ă)}  ÿāĄ ÿþþ Ċ, ċ∈þ ÿĀý ă∈ā. 

 

(ii) ĀýĀ-1(Ċ, ă)      = ý (Ā-1ĊĀ, ă) 

                               = ý ((Ā-1ĊĀ)-1), ă)    

                             = ý (Ā-1Ċ-1Ā, ă) 
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                             = ĀýĀ-1(Ċ-1, ă)     ÿāĄ ÿþþ Ċ, ċ∈þ ÿĀý ă∈ā. 

Hence, ĀýĀ-1 is also an anti-ā-fuzzy subgroup of group þ for all Ā∈þ and ă∈ā. 

Theorem: 5.4 

Let þ be a group. Let Ā be a ā-fuzzy normal subgroup of a group þ if and only if Ā�  is an anti-ā-fuzzy normal subgroup of group þ. 

Proof: 

Let þ be a group. Let Ā be a ā-fuzzy normal subgroup of a group þ. 

That is Ā (ĊċĊ-1,) = Ā (ċ, ă) 

Now we have to show that Ā�  is an anti-ā-fuzzy subgroup of a group þ. Ā (Ċċ, ă)  gmin {Ā (Ċ, ă), Ā (ċ, ă)} 

1 − Ā�(Ċċ, ă)  g min {1 − Ā�  (Ċ, ă), 1 − Ā�(ċ, ă)} Ā�  (Ċċ, ă)  f 1 − min {1 − Ā�(Ċ, ă), 1 − Ā�(ċ, ă)} Ā�(Ċċ, ă) f max {Ā�(Ċ, ă), Ā�(ċ, ă)} 

Hence, Ā�  is an anti-ā-fuzzy subgroup of a group þ.  

Given Ā is a ā-fuzzy normal subgroup of a group þ.  

That is Ā (ĊċĊ-1,)   =Ā (ċ, ă) 

1 − Ā�  (ĊċĊ-1,)      = 1 − Ā�(ċ, ă) Ā�  (ĊċĊ-1,)            = Ā�(ċ, ă) 

Therefore, Ā� is an anti-ā-fuzzy normal subgroup of a group þ. 

Theorem: 5.5 

Let ý be a -ā-fuzzy normal subgroup of a group þ with identity þ.  

Thený (Ċċ, ă) = ý (ċĊ, ă) for all Ċ, ċ∈þ ÿĀý ă∈ā. 
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Proof: 

Given ý is a ā-fuzzy normal subgroup of a group þ.  

That is ý (Ċċ-1Ċ, ă) = ý (ċ, ă) 

Now   (Ċċ, ă)  = ý (Ċċ (ĊĊ-1), ă) 

   = ý ((ĊċĊ) Ċ-1, ă) 

   = ý (Ċ (ċĊ) Ċ-1, ă)  

   =  ý(ċĊ, ă)   

Therefore ý (Ċċ, ă)  = ý (ċĊ, ă)  

Definition: 5.6 

Let � be a field. Let ý ÿĀý ā be any two fuzzy sets in �. A mapping Ā�∶ � × ā → [0,1] is called �-fuzzy set in �. 

Definition: 5.7 

Let Ā�  be a ā-fuzzy set in a field � is said to be ā-fuzzy field in � if for Ċ,ċ ∈ Ā� ÿĀý ă∈ā.  

               (i) Ā�((Ċ + ċ), ă)  g min {Ā�(Ċ, ă), Ā�(ċ, ă)} 

               (ii)    Ā�  (−Ċ, ă)   g Ā� (Ċ, ă) 

                (iii)  Ā�((Ċċ), ă)  g min {Ā�  (Ċ, ă), Ā�  (ċ, ă)} 

               (iv)    Ā�  (Ċ-1, ă   g Ā� (Ċ, ă), Ċ ≠ 0 �Ā �. 

Theorem: 5.8 

If Ā�  be a ā-fuzzy field in � and λ�  be a subset of Ā� . Then λ�is a ā-fuzzy 

subfield of Ā�  in �. 

Proof: 

Given Ā�  is a ā-fuzzy field in �. 
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Let Ċ, ċ∈ λ� and ă∈ā. 

From the definition, 

       (i) Ā�  ((Ċ + ċ), ă) g min {Ā�  (Ċ, ă), Ā�  (ċ, ă)} 

       (ii)   Ā�  (−Ċ, ă)    g  Ā� (Ċ, ă) 

       (iii)  Ā�((Ċċ), ă)  g min {Ā�  (Ċ, ă), Ā�  (ċ, ă)} 

       (iv)   Ā�  (Ċ-1, ă)   g Ā�  (Ċ, ă), Ċ ≠ 0 �Ā � ÿāĄ ÿþþ Ċ, ∈ λ� ÿĀý ă∈ā. 

Hence, λ�  is a fuzzy field in �. 

Therefore, λ� is a ā-fuzzy subfield of Ā�  in �. 
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CHAPTER - 6 

A study on Q-fuzzy normal subgroups and cosets 

Definition: 6.1 

Let ý be a ā-fuzzy subgroup of a group (þ, ·). Then for any ÿ ÿĀý Ā in þ, a �- 

fuzzy middle coset ÿýĀ of þ is defined by (ÿýĀ)(Ċ, ă) = ý(ÿ−1ĊĀ−1ă), for every Ċ in þ 

and ă in ā. 

Definition: 6.2 

Let ý be a ā-fuzzy subgroup of a group ( , ·  ) and ÿ in þ. Then the pseudo �- 

fuzzy coset (ÿý) is defined Āċ((ÿý) �) (Ċ,  )= Ă(ÿ) ý(Ċ, ă), for every Ċ in þ and for 

some Ă in Ā and ă in ā. 

Definition: 6.3 

A ā-fuzzy subgroup ý of a group þ is called a generalized characteristic �- 

fuzzy subgroup (GCQFSG) if for all Ċ and ċ in þ, (Ċ) = (ċ) implies  ý (Ċ, ă) =(ċ, ă), ă in ā. 

Some Properties of �-fuzzy normal subgroups 

Theorem: 6.4 

Let ( , ·  ) be a group and ā be a non-empty set. If ý and þ are two ā-fuzzy normal 

subgroups of þ, then their intersection ý ∩ þ is a ā-fuzzy normal subgroup of þ. 

Proof: 

Let Ċ ÿĀý ċ in þ and ă in ā and ý ={ [ ( Ċ, ă), A( Ċ, ă)] /  Ċ in G and q in Q }and  þ = { [( Ċ, ă), þ(Ċ, ă)] / Ċ �Ā þ ÿĀý ă �Ā ā } be a ā-fuzzy normal subgroups of þ. 

Let ÿ = ý ∩ þ ÿĀý ÿ = {[( , ă), ÿ(Ċ, ă)] / Ċ �Ā þ ÿĀý ă �Ā ā},  

Where (Ċ, ă) =  Ā{ý(Ċ, ă), þ(Ċ, ă)}.Then,  
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Clearly, ÿ is a ā-fuzzy subgroup of þ, since ý and þ are two ā-fuzzy subgroups of þ. 

And, ÿ(Ċċ, ă) =  ÿ�Ā {ý(Ċċ, ă), þ(Ċċ, ă) }, =  ÿ�Ā{ ý(ċĊ, ă), þ(ċĊ, ă) }  =  ÿ(ċĊ, ă). 

Therefore, (Ċċ, ă) =  (ċĊ, ă) , for all Ċ and ċ in þ and ă in ā. 

Hence, ý ∩ þ is a ā-fuzzy normal subgroup of a group þ. 

Theorem : 6.5 

Let (þ, ·  ) be a group and ā be a non-empty set. The intersection of a family of ā-fuzzy normal subgroups of þ is a ā-fuzzy normal subgroup of þ. 

Proof: 

Let { ý�}∈Ā  be a family of ā-fuzzy normal subgroups of þ  and ý = ⋂�∈Āý�. Then 

for Ċ and ċ in þ and ă in ā, clearly the intersection of a family of ā-fuzzy subgroups of a 

group þ is a ā-fuzzy subgroup of a group þ. 

Now,   ( , ă )   =  inf ý�(Ċċ, ă) 

                                              �∈Ā 
=  inf ý�(ċĊ, ă) 

                                              �∈Ā 
= ý(ċĊ, ă) 

Therefore,  ( Ċċ, ă )  = ý(ċĊ, ă) for all Ċ, ċ �Ā þ and ă �Ā ā. 

Hence, the intersection of a family of ā-fuzzy normal subgroups of þ is a ā-fuzzy normal 

subgroup of þ. 

Theorem  :6.6 

If ý is a ā-fuzzy characteristic subgroup of a group þ, then ý is a ā-fuzzy normal 

subgroup of a group þ. 
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Proof: 

Let ý be a ā-fuzzy characteristic subgroup of a group þ, Ċ ÿĀý ċ in þ and ă in ā. 

Consider the map ÿ∶þ × ā → þ ×  ā defined by (Ċ, ă) = ( ċ−1, ă). 

Clearly, ÿ in ā − ýćĆþ.  

Now,     (Ċċ, ă)  = ( (Ċċ, ă)) 

= ((Ċċ)−1, ă ) 

= ý(ċĊ, ă). 

Therefore, (Ċċ, ă)  =  (ċĊ, ă) , for all Ċ ÿĀý ċ �Ā þ ÿĀý ă �Ā ā. 

Hence, ý is a ā-fuzzy normal subgroup of a group þ. 

Theorem: 6.7 

A ā-fuzzy subgroup ý of a group þ is a ā-fuzzy normal subgroup of þ if and only 

if ý is constant on the conjugate classes of þ. 

Proof 

Suppose that ý is a ā −fuzzy normal subgroup of a group þ.  

Let Ċ ÿĀý ċ �Ā þ ÿĀý ă �Ā ā. 

Now, ý (ċ−1Ċċ,   )   =  ( Ċċċ−1, ă)   

                                                =  ý(Ċ, ă). 

Therefore, (ċ−1Ċċ, ă)  = (Ċ, ă) , for all Ċ ÿĀý ċ �Ā þ ÿĀý ă �Ā ā.  

Hence, (Ċ) = {ċ−1Ċċ/ ċ∈þ}. 

Hence,    is  constant  on the   conjugate  classes  of  þ. 

Conversely, suppose that ý is constant on the conjugate classes of þ.  

Then, ý (Ċċ, ă)       = (ĊċĊĊ−1,  )  

                                = ( (ċĊ)Ċ−1, ă )  

                                = ý(ċĊ, ă).  
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Therefore, (Ċċ, ă) = (ċĊ, ă) , for all Ċ ÿĀý ċ �Ā þ ÿĀý ă �Ā ā.  

Hence, ý is a ā-fuzzy normal subgroup of a group þ. 

Theorem: 6.8 

Let ý be a ā-fuzzy normal subgroup of a group þ. Then for any ċ in þ and ă in ā, we have (ċĊċ−1, ă) = (ċ−1Ċċ,  ), for every Ċ �Ā þ. 

Proof: 

Let ý be a ā-fuzzy normal subgroup of a group þ.  

For any ċ �Ā þ ÿĀý ă �Ā ā, we have, ý ( ċ−1, ă)                  = ý(Ċ, ă)  

                                       = (Ċċċ−1,  )  

                                       = (ċ−1 , ă ).  

Therefore, ý ( ċ−1, ă) = ý(ċ−1Ċċ, ă ) , for all Ċ and ċ in þ and ă in ā.  

Theorem: 6.9 

A ā-fuzzy subgroup ý of a group þ is normalized if and only if (þ, ă) = 1, where þ is the identity element of the group þ and ă in ā. 

 

Proof: 

If ý is normalized, then there exists Ċ in þ such that ý (Ċ, ă) =  1 , but by 

properties of a ā-fuzzy subgroup ý of þ,  

(Ċ, ă) f (þ, ă), for every Ċ in þ and ă in ā.  

Since, (Ċ, ă) = 1 and  

 ý(Ċ, ă) f ý(þ, ă), 

 1 f ý (þ, ă),  
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But 1 g ý (þ, ă).  

Hence ý (þ, ă) = 1. 

Conversely, if ý (þ, ă) = 1 , then by the definition of normalized ā-fuzzy subset, ý is 

normalized. 

Theorem: 6.10 

Let ý and þ be ā-fuzzy subgroups of the groups þ and ÿ, respectively. If ý andþ 

are ā-fuzzy normal subgroups, then ý × þ is a ā-fuzzy normal subgroup of þ × ÿ. 

Proof: 

Let ý and þ be ā-fuzzy normal subgroups of the groups þ and ÿ respectively. 

Clearly, ý × þ is a ā-fuzzy subgroup of þ × ÿ.  

Since, ý and þ are ā-fuzzy subgroups of þ and ÿ. 

Let Ċ1 and Ċ2 be in þ, ċ1 and ċ2  be in ÿ and ă in ā.  

Then (Ċ1, ċ1) and (Ċ2 , ċ2) are in þ × ÿ. 

Now , A × þ[(Ċ1, ċ1)( Ċ2, ċ2), ă]   = ý × þ((Ċ1 Ċ2 , ċ1ċ2), ă) 

 = min {(Ċ1Ċ2 , ă), (ċ1ċ2, ă)} 

 = min{ý(Ċ2 Ċ1, ă), þ(ċ2 ċ1, ă)} 

  = ý × þ((Ċ2 Ċ1, ċ2 ċ1), ă) 

  = ý × þ [(Ċ2 ,2)( Ċ1, ċ1), ă]  

Therefore, ý ×þ [(Ċ1, ċ1)( Ċ2 , ċ2), ă] = ý ×  þ[(Ċ2 , ċ2)( Ċ1, ċ1), ă]  

Hence, ý × þ is a ā-fuzzy normal subgroup of þ × ÿ. 

Theorem: 6.11 

Let a ā-fuzzy normal subgroup ý of a group þ be conjugate to a ā-fuzzy normal 

subgroup ý of þ and a ā-fuzzy normal subgroup þ of a group ÿ be conjugate to a ā- 



41 

 

fuzzy normal subgroup þ of ÿ. Then a ā-fuzzy normal subgroup ý × þ of a groupþ× ÿ 

is conjugate to a ā-fuzzy normal subgroup ý × þ of þ × ÿ. 

Proof: 

  It is trivial. 

Theorem: 6.12 

Let ý be a ā-fuzzy subgroup of a finite group þ, then (ý) / (þ). 

Proof: 

Let ý be a ā-fuzzy subgroup of a finite group þ with þ as its identity element. 

Clearly, ÿ = {  ∈þ / ý(Ċ, ă) = ý(þ, ă)} is a subgroup of þ for ÿ is a ÿ −level subset of þ 

where  ÿ = ý(þ, ă). 

By Lagrange’s theorem (ÿ) / (þ). 

Hence, by the definition of the order of the ā-fuzzy subgroup of þ, we have (ý) /(þ). 

Theorem: 6.13 

Let ý and þ be two ā-fuzzy subsets of an abelian group þ. Then ý and þ are 

conjugate ā-fuzzy subsets of the abelian group þ if and only if ý = þ. 

Proof: 

Let ý and þ be conjugate ā-fuzzy subsets of abelian group þ, then for some  ċ in þ,  

we have, ý(Ċ, ă)   = þ(ċ−1Ċċ, ă ), for every Ċ in þ and ă in ā  
                              = þ (ċċ−1Ċ,  ) ,since þ is an abelian group, 

                              = þ( þĊ, ă ) 

                              = þ(Ċ, ă) 

Therefore, ý (Ċ, ă) = (Ċ, ă) , for every Ċ in þ and ă in ā.  
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Hence,   ý = þ. 

Conversely, if ý =   , then for the identity element þ of þ,  

we have,    ý(Ċ, ă) = þ(þ−1Ċþ, ă ), for every Ċ in þ and ă in ā.  

Hence, ý and þ are conjugate ā-fuzzy subsets of þ. 

Theorem: 6.14 

If ý and þ are conjugate ā-fuzzy subgroups of the normal group þ, then ÿ(ý) =  ÿ(þ). 

Proof 

Let ý and þ be conjugate ā-fuzzy subgroups of þ.  

Now, (ý)   = order of { ∈þ / ý(Ċ, ă) = ý(þ, ă) } 

                     = order of {  ∈þ / þ(ċ−1Ċċ, ă) =  þ(ċ−1þċ, ă) } 

                     = order of {  ∈þ / þ(Ċ, ă) =  þ(þ, ă)} 

                     = ÿ(þ) 

 Hence, (ý) = (þ).  

Theorem: 6.15 

Let ý be a ā-fuzzy subgroup of a group þ, then the pseudo ā-fuzzy coset (ÿý) is 

a ā-fuzzy subgroup of a group þ, for every ÿ in þ. 

Proof: 

Let ý be a ā-fuzzy subgroup of a group þ. For every Ċ and ċ in þ and ă in ā,  

we have,((ÿý)Ă )(Ċċ−1, ă)  =  Ă(ÿ)ý(Ċċ−1, ă) 

g Ă(ÿ) ÿ�Ā{ý(Ċ, ă) , ý(ċ, ă)} 

= ÿ�Ā { Ă(ÿ)ý(Ċ, ă), Ă(ÿ)ý(ċ, ă)  } 

= ÿ�Ā { ( (ÿý)Ă)(Ċ, ă), ( (ÿý)Ă)(ċ, ă) }. 
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Therefore,   ((ÿý)Ă)(Ċċ−1, ă ) g  ÿ�Ā { ( (ÿý)Ă )(Ċ, ă), ((ÿý)Ă )(ċ, ă) }, for Ċ and ċ in þ 

and ă inā. 

Hence, (ÿý) is a ā-fuzzy subgroup of a group þ. 

Theorem: 6.16 

If ý is a ā-fuzzy subgroup of a group þ, then for any ÿ in þ the ā-fuzzy middle 

coset ÿýÿ−1 of þ is also a ā-fuzzy subgroup of þ. 

Proof: 

Let ý be a ā-fuzzy subgroup of þ and ÿ in þ.  

To prove ÿýÿ−1 is a ā-fuzzy subgroup of þ.  

Let Ċ and ċ in þ and ă in ā. 

Then (ÿ ýÿ−1)(Ċċ−1, ă)       =  ý(ÿ−1Ċċ−1ÿ, ă), 

                                             =   (ÿ−1Ċÿÿ−1ċ−1ÿ, ă) 

                                             = ý ((ÿ−1Ċÿ)(ÿ−1ċÿ) −1, ă) 

                                             g ÿ�Ā { (ÿ−1Ċÿ , ă), ý( (ÿ−1ċÿ)−1 , ă) } 

                                             g ÿ�Ā { (ÿ−1Ċÿ, ă), ý(ÿ−1ċÿ, ă),  since ý is a QFSG of þ 

                                             = ÿ�n {(ÿýÿ−1)(Ċ, ă), (ÿýÿ−1)(ċ, ă)}. 

Therefore, (ÿýÿ−1)(Ċċ−1, ă) g ÿ�Ā{(ÿýÿ−1) (Ċ, ă), (ÿýÿ−1)(ċ, ă) }.  

Hence, ÿýÿ−1 is a ā-fuzzy subgroup of a group þ. 

Theorem: 6.17 

Let ý be a ā-fuzzy subgroup of a group þ and ÿýÿ−1 be a ā-fuzzy middle coset of þ, then (ÿýÿ−1) = (ý), for any ÿ in þ. 
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Proof: 

Let ý be a ā-fuzzy subgroup of þ and ÿ in þ. By Theorem  6.16, the ā-fuzzy 

middle coset ÿýÿ−1 is a ā −fuzzy subgroup of G.  

Further by the definition of a ā-fuzzy middle coset of þ,  

we have,(ÿýÿ−1)(Ċ, ă) = ý(ÿ−1Ċÿ, ă) for every Ċ �Ā þ and ă �Ā ā. 

Hence for any ÿ �Ā þ, ý ÿĀý ÿýÿ−1 are conjugate ā-fuzzy subgroups of a group þ  

as there exists ÿ �Ā þ such that (ÿýÿ−1)(Ċ, ă) = ý(ÿ−1Ċÿ, ă) for every Ċ �Ā þ ÿĀý ă �Ā ā. 

By Theorem 6.14, (ÿýÿ−1) = (ý) for any ÿ �Ā þ. 

Theorem: 6.18 

Let ý be a ā-fuzzy subgroup of a group þ and   be a ā-fuzzy subset of a group þ. 

If ý and þ are conjugate ā- fuzzy subsets of the group þ, then þ is a ā-fuzzy subgroup of 

a group þ. 

Proof: 

Let ý be a ā-fuzzy subgroup of a group þ and þ be a ā- fuzzy subset of þ. And, 

let ý and þ be conjugate ā-fuzzy subsets of þ. 

To prove þ is a ā-fuzzy subgroup of þ. Let Ċ and ċ in þ and ă in ā.Then Ċċ−1 in þ. 

Now, (Ċċ−1, ă)            =  (Ā−1Ċċ−1Ā, ă ), for some Ā in þ 

                                    = ý (Ā−1ĊĀĀ−1ċ−1Ā, ă) 

                                    = ý ((Ā−1ĊĀ) (Ā−1ċĀ)−1, ă) 

g ÿ{ ý(Ā−1ĊĀ, ă ), ý((Ā−1ċĀ )−1 , ă) } 

g ÿ{ ý(Ā−1ĊĀ, ă), ý(Ā−1ċĀ, ă), since ý is a QFSG of þ 

=  ÿ�Ā { þ(Ċ, ă), þ(ċ, ă) }. 

Therefore, (Ċċ−1, ă)     g ÿ�Ā { (Ċ, ă ), þ(ċ, ă ) }, for Ċ and ċ in þ and ă in ā.  

Hence, þ is a ā-fuzzy subgroup of the group þ. 
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Theorem: 6.19 

Let ý be a ā-fuzzy subgroup of a group þ. Then  (Ċ, ă) ý =  (ċ, ă)ý, for Ċ, ċ in þ 

if and only if ý(Ċ−1ċ, ă) =  ý(ċ−1Ċ, ă)  =  ý(þ, ă). 

Proof: 

Let ý be a ā-fuzzy subgroup of a group þ. 

Let  (Ċ,  ă)ý = (ċ, ă)ý , for Ċ and ċ in þ and ă in ā. 

Then, (Ċ, ă)(Ċ, ă) =  (ċ, ă)ý(Ċ, ă) and  

(Ċ, ă)ý(ċ,  ă)  =  (ċ,  ă)ý(ċ,  ă), ⇒ ý (Ċ−1Ċ,  )  = ý(ċ−1Ċ, ă) and   

 (Ċ−1ċ, ă)  =  (ċ−1ċ, ă). 

Hence,   (þ, ă)  =  ý(ċ−1Ċ, ă) and ý(Ċ−1ċ, ă)  =  ý(þ, ă). 

Therefore,        (Ċ−1ċ, ă)  =  ý(ċ−1Ċ, ă) 

                                         = ý (þ, ă),  for Ċ and ċ in þ and ă in ā. 

Conversely, let (Ċ−1 ċ, ă) =  (ċ−1Ċ, ă) 

                                         = ý (þ, ă), for Ċ and ċ in þ and ă in ā. 

For every Ā in þ and  

we have, (Ċ, ă)ý(Ā, ă)         =  ý(Ċ−1Ā, ă) 

                                             = (Ċ−1ċċ−1Ā,  ) 

                                             g ÿ�Ā { (Ċ−1ċ, ă ), ý(ċ−1Ā, ă ) } 

                                             = ÿ�Ā { (þ, ă), ý(ċ−1Ā, ă ) } 

                                            = ý (ċ−1Ā,  )   

                                            =  (ċ, ă)ý(Ā, ă). 

Therefore, (Ċ, ă)(Ā, ă)      g  (ċ, ă)ý(Ā, ă)       ------------ (1) 

And , (ċ, ă)ý(Ā, ă)          =  ý(ċ−1Ā, ă ) 
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                                            = ý (ċ−1ĊĊ−1Ā,  ) 

                                            g ÿ�Ā { (ċ−1Ċ, ă ), ý(Ċ−1Ā , ă) } 

                                            = ÿ�Ā { (þ, ă) , ý(Ċ−1Ā, ă ) } 

                                            = ý (Ċ−1Ā,  )   

                                            =  (Ċ, ă)ý(Ā, ă). 

Therefore, (ċ, ă) ý (Ā, ă)    g  (Ċ, ă)ý(Ā, ă)      -------------  (2) 

From (1) and (2) we get, 

(Ċ, ă) ý (Ā, ă)  =  (ċ, ă)ý(Ā, ă)-----(3) 

We get,         (Ċ, ă) ý =  (ċ, ă)ý , for all Ċ and ċ in þ and ă in. 

 

 

 



CONCLUSION 

 In this project I have concentrated on anti-Q-fuzzy normal subgroups, anti-Q-fuzzy 

normaliser and anti-Q-fuzzy normal subgroups under anti-Q- homomorphism. The anti-

group Q- homomorphism and cartesian product of anti-Q-fuzzy normal subgroups and 

some properties of Q-fuzzy normal subgroups have been explained. Some results on 

various Q-fuzzy groups have been discussed. I have taken through Intuitionistic Q-fuzzy 

normal subgroups, n-generated Q-fuzzy Normalizer and Intuitionistic Q-fuzzy subgroups 

under homomorphism. I have also examined generalized characteristic Q-fuzzy subgroups 

and pseudo-Q-fuzzy coset and Q-fuzzy middle coset. Interestingly, it has been observed 

that Q-fuzzy concept adds another dimension to the defined fuzzy normal subgroups. This 

concept can further be extended for new results. 
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1. PRELIMINARIES

1.1 Γ- near rings

Definition: 1.1.1

A non-empty set N with two binary operations + (addition) and

∙ (multiplication) is called a near - ring if it satisfies the following

axioms,

(i) (N, +) is a group(not necessarily abelian).

(ii) (N, ∙ ) is a semigroup.

(iii)(a+b)c = ac + bc for all a,b,c ∈ N.

Precisely speaking, it is a right near - ring. Moreover, a near -

ring N

is said to be zero-symmetric near - ring if n0 = 0 for all n ∈ N where 0

is the

additive identity in N.

Definition: 1.1.2

A Γ- near ring is a triple (N, +, Γ), where

(i) (N,+) is a (not necessarily abelian) group.

(ii) Γ is a non-empty set of binary operations on N such that

for each γ ∈ Γ, (N,+,γ) is a right near –ring.

(iii) (xγy)μz = xγ(yμz) for all x,y,z ∈ N and γ,μ ∈ Γ.

Definition: 1.1.3

Let N be a Γ- near ring, then a normal subgroup I of (N, +) is

said

to be
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(i) A left ideal if aα(b+i) - aαb ∈ I for all a,b ∈ N, α ∈ Γ and

i ∈ I.

(ii) A right ideal if iαa ∈ I for all a ∈ N, α ∈ Γ and i ∈ I.

(iii) An ideal, if it is both left and right ideal.

Definition: 1.1.4

Let N be a Γ- near ring. An element e ∈ N is said to be left unity

(respectively right unity) in N if eαm = m (respectively mαe = m)

∀m ∈ N and α ∈ Γ.

Definition: 1.1.5

Let N be a near -ring. A subgroup I of N said to be N - subgroup

if NI ⊆ I.

Definition: 1.1.6

A Γ- near ring N is said to be zero- symmetric if aα0 = 0 ∀a ∈ N

and α ∈ Γ where 0 is the additive identity in N.

Definition: 1.1.7

A Γ- near ring N is said to be simple if NΓN ≠ 0 and N has no

nontrivial ideals.

Definition: 1.1.8

A Γ- near ring N is said to be integral if aαb = 0 where a,b ∈ N

and

α ∈ Γ implies that either a = 0 or b = 0.

Definition: 1.1.9

A Γ- near ring N is said to be regular if for all a ∈ N, there exists

x ∈ N such that a = aγ1xγ
2
a for all γ1 and γ

2
∈ Γ.

Definition: 1.1.10
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A Γ- near ring N is said to be left strongly regular if for all a ∈ N,

there exists x ∈ Nsuch that a = xαaβa for all α,β ∈ Γ.

Lemma: 1.1.11

If N is a left strongly regular Γ- near ring, then a = aγ1xγ
2
a and

aγx = xγa for all γ1,γ2
,γ ∈ Γ.

Definition: 1.1.12

A Γ- near ring N is said to fulfill the insertion of factors property

(IFP) provided that for any a,b,r ∈ N,γ ∈ Γ, aγb = 0 implies aαrβb = 0 for

all α,β ∈ Γ.

Definition: 1.1.13

A Γ- near ring N is said to be 3-prime if a,b ∈ N,aΓNΓb = 0

implies a = 0 or b = 0.

Definition: 1.1.14

An ideal I of a Γ- near ring N is called completely prime

(Completely semiprime) if a,b ∈ N, γ ∈ Γ, aγb ∈ I implies a ∈ I or b ∈ I

(aγa ∈ I implies a ∈ I).

An ideal I of N is said to be prime if for any two ideals A, B of N,

AΓB ⊆ I implies A ⊆ I or B ⊆ I.

An ideal I of N is called semiprime if for any ideal A of N,

AΓA ⊆ I

implies A ⊆ I.

Definition: 1.1.15

An element 0 ≠ a ∈ N is called nilpotent if there exists a

positive integer n ≥ 1 such that (aγ)na = 0 for each γ ∈ Γ. N is said to be

reduced if it has no nonzero nilpotent elements.
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Proposition: 1.1.16

Let N be a Γ- near ring with a strong left unity. If Q is a prime

ideal of L, then Q+ is a prime ideal of N.

Theorem: 1.1.17

Suppose that a Γ- near ring N has a right unity and a strong left

unity. Then the mapping A→A+'

defines an isomorphism between the

lattices

of two sided ideals of N and L.

1.2 Γ- rings

Definition: 1.2.1

Let M and Γ be additive abelian groups. If for all a,b,c ∈ M and

α,β ∈ Γ, the following conditions are satisfied

(i) aαb ∈ M,

(ii) (a+b)αc = aαc + bαc a(α+β)c

= aαc + aβc aα(b+c) = aαb + aαc,

(iii) (aαb)βc = aα(bβc),

then M is called a Γ- ring. If these conditions are strengthened to

(i') aαb ∈ M, αaβ ∈ Γ,

(ii') same as (ii),

(iii') (aαb)βc = a(αbβ)c = aα(bβc),

(iv') aγb = 0 for all a,b ∈ M implies γ = 0,

then M is called a Γ- ring in the sense of Nobusawa.

Definition: 1.2.2

A right (left) ideal of a Γ- ring M is additive subgroup of a Γ-ring

M such that IΓM ⊆ I (MΓI ⊆ I). If I is both a right and a left ideal, then
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we say

that I is an ideal of M.

An ideal I of a Γ- ring M is said to be prime if for any ideals

U,V ⊆ M, UΓV ⊆ I implies U ⊆ I or V ⊆ I.

Definition: 1.2.3

An ideal Q in a Γ- ring M is said to be semiprime ideal if for any

ideal U of M, UΓU ⊆ Q implies U ⊆ Q.

Definition: 1.2.4

Let S and T be arbitrary associative rings with unity.

By Mod-T (T-Mod) we denote the category of all right (left) T-modules.

Then a module M is said to be a generator (in Mod-T) if for every T-

module K there is a set I such that the sequence MI→K→0 is exact. M

is said to be progenerator if it is finitely generated, projective and is a

generator. The rings S and T are said to be Morita equivalent if S-Mod

(Mod-S) and T-Mod

(Mod-T) are equivalent categories. Equivalently S and T are Mortia

equivalent if there exists a progenerator M
T

with S ≅ End
T
(M).

Theorem: 1.2.5

Let M be a weakly semiprime Γ- ring, L and R be its operator

rings. Then L and R are Morita Equivalent.

Lemma: 1.2.6

Let P, Q and S be a prime ideal of a Γ- ring M, a prime ideal of

the

right operator ring R and a primal ideal of the left operator ring L
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respectively.

Then P*'

is a prime ideal of R, P+'

is a prime ideal of L, Q* and S+ are

prime

ideals of M.

Theorem: 1.2.7

If Q is an ideal in a Γ- ring M, all the following conditions are

equivalent,

(i) Q is a semiprime ideal,

(ii) If a ∈ Q such that aΓMΓa ⊆ Q, then a ∈ Q,

(iii) If 〈 a 〉 is a principal ideal in M such that 〈 a 〉Γ〈 a 〉 ⊆ Q,

then

a ∈ Q,

(iv) If U is a right ideal in M such that UΓU ⊆ Q, then U ⊆ Q,

(v) If V is a left ideal in M such that VΓV ⊆ Q, then V ⊆ Q.

Theorem: 1.2.8

If M is Γ- ring, the following conditions are equivalent

(i) M is prime Γ- ring.

(ii) If a,b ∈ M and aΓMΓb = (0), then a = 0 or b = 0,

(iii) If 〈 a 〉 and 〈 b 〉 are principal ideals in M such that

〈 a 〉Γ〈 b 〉 = (0), then a = 0 or b = 0,

(iv) If A and B are right ideals in M such that AΓΒ = (0), then

A = (0) or B = (0),

(v) If A and B are left ideals in M such that AΓΒ = (0), then

A = (0) or B = (0).



7



7

2. STRONGLY REGULAR GAMMA – NEAR RINGS

2.1 Weakly Regular Γ –Near Rings

Definition: 2.1.1

A Γ- near ring N is said to be left (respectively right) weakly

regular if a ∈ < a > Γa (respectively a ∈ Γa < a >) for all a ∈ N. N is

said

to be weakly regular if it is both left and right weakly regular.

Definition: 2.1.2

A Γ- near ring N is said to be left (respectively right) pseudo

π -regular if for every ∈ N, γ ∈ Γ , there exists a natural number

n = n(x)

such that xn = xγxγx. . .γx ∈< x > Γxn( respectively xn = xγxγx. . .γx ∈

Γxn < x >).

Proposition: 2.1.3

Let N be a Γ- near ring, then

(i) ak ∈< a > Γak+1 for some k if and only if the descending

chain < a > Γa ⊇ < a > Γa2 ⊇ … stabilizes after a finite

number of steps,

(ii) If N has descending chain condition on left Γ subgroups,

then N is left pseudo π – regular,

(iii) If N is finite, then N is left and right pseudo π – regular.
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Proof:

(i) Suppose that ak ∈< a > Γak+1. Now

< a > Γak ⊆ < a > Γ( < a > Γak+1)

= (<a>Γ<a>)Γak+1

⊆ < a > Γak+1

= < a > Γ(aΓak)

= (<a>Γa)Γak

⊆< a > Γak.

Hence < a > Γak = < a > Γak+1. Therefore the descending chain

< a > Γa ⊇ < a > Γa2 ⊇ … stabilizes after a finite number of steps.

Conversely, assume that < a > Γam = < a > Γam+1, then for each

α ∈ Γ, am+1 = aαam ∈< a > Γam implies that am+1 ∈< a > Γam+1 by

assumption. Now

am+1 ∈< a > Γam+1

= ( < a > Γam)Γ < a >

=( < a > Γam+1) Γ < a >

=< a > Γam+2.
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Thus, am+1 ∈< a > Γam+2. Take k = m+1. Hence ak ∈< a > Γak+1.

(ii) Clearly < a > Γai, ∀i = 1,2,⋯ are left Γ – subgroup and by

hypothesis < a > Γa ⊇ < a > Γa2 ⊇ … stabilizes after a finite number of

steps.

Hence from (i) for every a ∈ N,

ak ∈< a > Γak+1

=< a > Γ(aΓak)

= (<a>Γa)Γak

⊆< a > Γak

i.e., ak ∈< a > Γak+1.

Hence N is left pseudo π – regular.

(iii) If N is finite, then < a > Γa ⊇ < a > Γa2 ⊇ … stabilizes

after a finite number of steps.

Therefore by (i) there exists a positive integer k such that

ak ∈< a > Γak+1.

Since < a > Γak+1 ⊆< a > Γak, ak ∈< a > Γak+1.

Thus N is left pseudo π – regular.

Similarly N is right pseudo π – regular.

Definition: 2.1.4

A Γ- near ring N is said to be left quasi duo if every maximal
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left

ideal is a two sided ideal and strict left quasi duo if every maximal left

ideal is

closed under right multiplication.

Proposition: 2.1.5

If N is a left quasi duo Γ – near rings with left unity e, and k, n

are natural numbers, then an ∈< ak > Γan if and only if

N =< ak > +(0:an) ∀a ∈ N.

Proof:

Let an ∈< ak > Γan for a ∈ N. Then

NΓan ⊆ NΓ < ak > Γan

⊆< ak > Γan

⊆ NΓan.

Consequently,

NΓan =< ak > Γan.

We claim N =< ak > +(0:an) ∀a ∈ N.

If not, there exists a maximal left ideal M such that < ak > +(0:an) ⊆ M.

Since N is left quasi duo, M is also two sided ideal. Since < ak > ⊆ M.

We have < ak > Γan ⊆ MΓan ⊆ NΓan =< ak > Γan.
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∴ MΓan =< ak > Γan.

Hence, there exists x ∈ M such that an = eΓan = xΓan. From this,

We have (e-x)Γan = 0, and therefore (e-x) ∈ (0:an) ⊆ M.

Hence e = (e-x) + x ∈ M. This is not possible.

Hence N =< ak > +(0:an).

Conversely, suppose that N =< ak > +(0:an) ∀a ∈ N.

We shall prove that there exists natural numbers k and n such that

an ∈< ak > Γan.

Since e ∈ N, there exists t ∈ < ak > and l ∈ (0:an) such that e = t + l.

Hence for each α ∈ Γ,

an = eαan = (t+l)αan = tαan + lαan = tαan ∈< ak > Γan.

Definition: 2.1.6

A Γ- near ring N is said to be left (respectively right) weakly

π – regular if for every x ∈ N, γ ∈ Γ , there positive a natural number n

such

that xn = xαxαx. . .αx ∈< xn > Γxn.

Corollary: 2.1.7

If N is a left quasi duo Γ- near ring with left unity then

(i) N is left weakly π – regular, if and only if

N =< ak > +(0:ak) ∀a ∈ N and some natural number k.
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(ii) N is left weakly regular if and only if =< a > +(0:a )

∀a ∈ N.

Proof:

This is an easy consequence of proposition 2.1.5.

Definition: 2.1.8

A Γ- near ring N is said to be strict left weakly regular if

a ∈ (NΓa)Γ(NΓa) ∀a ∈ N.

Definition: 2.1.9

A Γ- near ring N is said to be strict left weakly π- regular if

an ∈ (NΓan)Γ(NΓan) ∀a ∈ N.

Proposition: 2.1.10

If N is a zero – symmetric and strict left quasi duo Γ- near ring

with

left unity e, then

(i) N is strict left weakly regular if and only if

N = NΓa + (0:a )

∀a ∈ N.

(ii) N is strict left weakly π- regular if and only if

N = NΓa + (0:an ) ∀a ∈ N and some natural number n.
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Proof:

(i) Suppose N is strict left weakly regular and let a ∈ N.

We have to prove that N = NΓa + (0:a ).

If not, there is a maximal left Γ- subgroup M of N such that

NΓa + (0:a ) ⊆ M.

Since N is strict left weakly regular a ∈ (NΓa)Γ(NΓa).

Hence a = xΓa for some x ∈ NΓaΓN. Since M is closed under

multiplication from the right, NΓa ΓN ⊆ M and consequently x ∈ M.

Since a = eΓa, it follows that (e-x) ∈ (0:an).

Hence e = (e-x) + x ∈ M. This is not possible.

Hence N = NΓa + (0:a ).

Consequently, suppose that N = NΓa + (0:a ) for every a ∈ N.

We shall prove that a ∈ (NΓa)Γ(NΓa). Now,

N = NΓN = (NΓa)ΓN + (0:a)ΓN

N = NΓaΓN.

Then (NΓa)Γ(NΓa) = NΓa. Since N has left unity e, a = eαa ∈ NΓa,

∀a ∈ Γ.

Hence a ∈ (NΓa)Γ(NΓa).

(ii) Suppose N is strict left weakly π- regular and ∀a ∈ N.



14

We shall prove that N = NΓa + (0:an ) where n is natural number.

If not, If not, there is a maximal Γ- subgroup M of N such that

NΓa + (0:an ) ⊆ M.

By similar argument as in (i), we can show that e ∈ M and

consequently

N = NΓa + (0:an ).

Conversely, suppose that N = NΓa + (0:an ) for every a ∈ N and

some

natural number n.

We have NΓan = NΓan+1 ∀ a ∈ N.

Let b ∈ N and bn = xΓbn+1 for some x ∈ N.

Now bn = xαbnαb = xα(xαbn+1)αb = x2αbnαb2 = ⋯ =

xn+1αbnαbn+1 ∈ NΓbnΓbn,α ∈ Γ,

i.e., bn ∈ NΓbnΓNΓbn ∀b ∈ N and consequently N is strict left weakly

π- regular.

2.2 Strongly Regular Γ- Near Rings

In this section we shall prove that the characterisation of

strongly

regular Γ- near ring. Throughout this section N stands for zero

symmetric
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Γ- near ring.

Proposition: 2.2.1

N is left strongly regular if and only if it is regular and has the IFP.

Proof:

From the definition of left strongly regular it follows that N is

regular.

First we have to prove that N is reduced. Let aγa = 0, for all γ ∈ Γ.

Since N is left strongly regular, there exists x ∈ Γ such that

a = xγa2 = xγ0 = 0 ∀γ ∈ Γ.

Now to prove that IFP holds, let a,b ∈ N such that aγb = 0.

Our claim is that aγmγb = 0 ∀m ∈ N.

Now,

(aγmγb)2 = (aγmγb)γ(aγmγb)

= aγmγ(bγa)γmγb

= aγmγ0γmγb = 0

Since N is reduced, aγmγb = 0. Hence IFP holds.

Conversely, suppose that N is regular and has the IFP. For any

idempotent f of N and any a ∈ N, γ ∈ Γ, we have

(a - aγf)γf = aγf - (aγf)γf

=aγf - aγ(fγf)
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= aγf - aγf = 0

Since N has the IFP, for any m ∈ Γ, we have (a - aγf)γmγf = 0. Then

aγmγf = (aγf)γ(mγf) ..…… (*)

Since xγa,aγx are idempotent, we have

xγa = (xγa)γxγa

= [xγ(xγa)]γ[aγ(xγa)]

= [(xγx)γa]γa

= (xγx)γ(aγa) = a2γx2 ……..(**)

Since N is regular, there exists, x ∈ N such that a = aγ1xγ
2
a for

every

pair of non zero elements γ1 and γ
2

in Γ. It follows from (**) that

a = aγ1xγ
2
a = aγ1x

2γ
2
a2 = yγ

2
a2, Where y = aγ1x

2

And aγ1yγ
2
a = aγ1aγ1x

2γ
2
a = aγ1xγ

2
a = a

Thus N is left strongly regular.

Corollary: 2.2.2

N is left strongly regular if and only if it is regular and reduced.

Proof:

This is clear, since any reduced Γ- near ring has the IFP.

Definition: 2.2.3
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A Γ- near ring is called a weakly left duo if for every a ∈ N there

is a

positive integer n = n(a) such that NΓan is an ideal of N.

Proposition: 2.2.4

Let N be a weakly left duo and strict left weakly π- regular. Then

N is

left strongly π- regular.

Proof:

Let a ∈ N. Then there exists positive integer m and n such that

NΓan = NΓanΓN and NΓam = NΓamΓNΓam. Observe that

NΓa2n = NΓanΓan = NΓanΓNΓan = NΓanΓNΓanΓN

= NΓanΓanNΓ = NΓa2nΓN.

An induction argument yields NΓakn = NΓaknΓN for any positive integer k.

Also NΓa2m = (NΓam)Γam = (NΓamΓNΓam)Γam = NΓamΓa2m.

Again an induction arguments yields NΓakm = NΓamΓNΓakm for any

positive integer k.

Now using the above observation, we have that

NΓamnΓNΓamn = NΓamnΓamn = NΓa2m.

Also we have that

NΓamnΓNΓamn = NΓamnΓ(NΓamΓNΓamn)
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= NΓamnΓamΓNΓamn

= NΓamn+mΓNΓamn

= NΓamn+mΓ(NΓamΓNΓamn)

= ⋯

= NΓamn+2mΓNΓamn

= ⋯

= NΓamn+mnΓNΓamn

= (NΓamnΓNΓamn)ΓNΓamn

= (NΓamnΓNΓamnΓNΓamn)ΓNΓamn

= (NΓamnΓNΓamn)Γ(NΓamnΓNΓamn)

= NΓa2mnΓNΓa2mn

= NΓa4mn ⊆ NΓa2mn+1 ⊆ NΓa2mn.

Hence NΓa2mn = NΓa2mn+1.

Therefore N is left strongly π- regular Γ- near ring.

Since left strongly regular Γ- near ring are strict left weakly π-

regular.

We have the following corollary.

Corollary: 2.2.5

Let N be weakly left duo Γ- near ring. Then the following

statements
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are equivalent.

(i) N is strict left weakly π- regular.

(ii) N is left strongly π- regular.
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3. STRONGLY PRIME GAMMA – NEAR RINGS

3.1 Strongly prime Γ- near rings

Definition: 3.1.1

Let N be a Γ- near ring, then the right α- annihilator of subset A

of N is rα(A) = {x∈N Aax=0}.

Definition: 3.1.2

A Γ- near ring N is said to be strongly prime if for each

a ≠ 0 ∈ N,

there exists a finite subset F of N such that rα(αΓN) = 0 ∀α ∈ Γ. F is

called an

insulator for a in N.

Lemma: 3.1.3

If a Γ- near ring N is strongly prime, then N is prime.

Proof:

Let 0 ≠ A, B is ideal of N. We shall show that AΓB ≠ 0.

Since A ≠ 0 there exists a finite subset F of A such that rα(F) = 0, for

each α ∈ Γ.

Hence for each 0 ≠ b ∈ B we have FΓB ≠ 0.

Therefore AΓB ≠ 0.

Definition: 3.1.4
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A Γ- near ring N is said to be left (right) weakly semiprime if

[x,Γ] ≠ 0([Γ,x]≠0) ∀x ≠ 0 ∈ N.

N is said to be weakly semi prime if it is both left and right

semiprime.

Proposition: 3.1.5

If N is strongly prime Γ- near ring, then N is weakly semiprime

Γ- near ring.

Proof:

Suppose that N is a strongly prime Γ- near ring.

We shall prove that N is weakly semiprime Γ- near ring. Let x ≠ 0 ∈ N.

It is enough to prove that [x,Γ] ≠ 0 and [Γ,x] ≠ 0.

Suppose that [x,Γ] = 0. Since N is strongly prime Γ- near ring, for every

β ∈ Γ there exists a finite Sβ(x) such that for b ∈ N,

{xβcαb∕c∈Sβ(x)} = 0, ∀α ∈ Γ implies that b = 0.

Now xβcαx = [x,β]cαx = 0cαx = 0, ∀ β,α ∈ Γ,c ∈ Sβ(x).

Hence x = 0, a contradiction.

Thus N is a weakly semiprime Γ- near ring.

Proposition: 3.1.6

If a Γ- near ring N is strongly prime then, the left operator near

ring L
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is left strongly prime.

Proof:

Let ∑i[xi
,α

i] ≠ 0 ∈ L, then there exists x ∈ N such that ∑i[xi
,α

i]x≠0,

i.e., ∑ixi
α

i
x≠0.

Since N is strongly prime, there exists a finite subset F = {a1,a
2
⋯,an}

(say) such that for any b ∈ N,

∑ixi
α

i
xΓFΓb=0 implies b = 0. ……… (1)

Fix α,β ∈ Γ. Consider G = {[xαa1,β],⋯[xαa
2
,β]}.

Our claim is that G is an insulator for ∑i[xi
,α

i].

Let ∑j[yj,βj]∈L such that ∑i[xi
,α

i]G∑j[yj,βj]=0.

We shall prove that ∑j[yj,βj]=0.

Now,

∑
i

[xi
,α

i]G∑
j

[yj,βj]=0

Implies ∑i[xi
,α

i][xαa
k
,β]∑j[yj,βj]=0 ∀k = 1,2,⋯n.

Hence (∑i[xi
,α

i][xαa
k
,β]∑j[yj,βj])z = 0 ∀z ∈ N;k = 1,2,⋯n.

This implies that ∑i[xi
,α

i][xαa
k
,β]∑j[yj,βj]z=0 ∀z ∈ N;k = 1,2,⋯n.

Hence ∑ixi
α

i
xαa

k
β∑jyjβjz=0 ∀z ∈ N;k = 1,2,⋯n.

By (1) ∑jyjβjz=0 ∀z ∈ N. Therefore ∑j[yj,βj]=0.
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Thus L is strongly prime.

Theorem: 3.1.7

Let N be a left weakly semiprime Γ- near ring having no zero

divisor,

Then N is strongly prime if and only if L is strongly prime.

Proof:

Suppose that L is strongly prime.

To prove N is strongly prime, let x ≠ 0 ∈ N.

Since N is left weakly semiprime, [x,L] ≠ 0 and since L is strongly prime,

there exists a finite subset F = {∑n
j=1[yj

k
,βj

k] k=1,2,⋯m}(say) such that for

any ∑l[zl
,δ

l]∈[x,Γ]F∑l[zl
,δ

l]=0 implies ∑l[zl
,δ

l]=0 ……. (1)

consider F' = {yj
k
βj

k
x j=1,2,⋯n;k=1,2⋯m }.

Our claim is that F' is an insulator for x. let y ∈ N such that xΓF'Γy = 0.

We shall prove that y = 0.

Now xΓF'Γy = 0 implies xαyj
k
βj

k
xβy = 0 ∀j = 1,2,⋯n;k = 1,2⋯m,

for all α,β ∈ Γ. Therefore

[xαyj
k
βj

k
xβy,Γ] = 0 ∀j = 1,2,⋯n;k = 1,2⋯m.

Hence [x,α][yj
k
,βj

k][xβy,Γ] = 0 ∀k = 1,2,⋯m.

By (1) [xβy,Γ] = 0. Therefore xβy = 0.



23

Since N is weakly semiprime and N has no zero divisor, y = 0 and

Consequently F' is an insulator for x. Therefore N is strongly prime.

Converse part follows from proposition 3.1.6.

Rules: 3.1.8

We recall that for X⊆ N,〈X〉 is connected by the following

recursive

Rules.

(i) a ∈ 〈X〉 ∀a ∈ X

(ii) If b,c ∈ 〈X〉, then b + c ∈ 〈X〉
(iii) If b ∈ 〈X〉 and x,y ∈ N, α ∈ Γ, then xα(b+y) - xαy ∈ 〈X〉
(iv) If b ∈ 〈X〉 and x ∈ N, α ∈ Γ, then bαx ∈ 〈X〉
(v) If b ∈ 〈X〉 and x ∈ N, then x - b ∈ 〈X〉
(vi) Nothing else is in 〈X〉.

Definition: 3.1.9

Suppose X ⊆ N and d ∈ 〈X〉. We call a sequence s1,s
2
,⋯sn of

element of N, a generating sequence of length m for d with respect to X.

If

s1 ∈ X,sm = d, α ∈ Γ and for each i = 2,3⋯m, one of the following

applies

(i) s
i
∈ X
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(ii) s
i
= sj + s

l
, 1 ≤ j,l < i

(iii) s
i
= sjαx,1 ≤ j < i and x ∈ N

(iv) s
i
= xα(sj + y) - xαy,1 ≤ j < i and x,y ∈ N

(v) s
i
= x+sj - x,1 ≤ j < i and x ∈ N

The complexity of d with respect to X denoted by C
X
(d), is the length of

a generating sequence of least length for d with respect to X.

Lemma: 3.1.10

Let N be a Γ- near ring. If X ≠ 0 and XΓN = 0, then 〈X〉ΓN = 0.

Proof:

Let XΓN = 0 and suppose x ∈ 〈X〉 arbitrary.

We use induction on C
X
(x) = 1, then x ∈ X and from our assumption

we have XΓN = 0.

Suppose yΓN = 0 ∀y ∈ 〈X〉 such that C
X
(y) < n and let C

X
(x) = n.

We have the following possibilities

(i) x = a + b where a,b ∈ 〈X〉 and C
X
(a),C

X
(b) < n. Hence

xΓN = (a + b)ΓN

= aΓN + bΓN

= 0
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(ii) x = aαn where ∈ 〈X〉, n ∈ N, α ∈ Γ and C
X
(a) < n. Hence

xΓN = (aαn)ΓN

⊆ aΓN

= 0

(iii) x = aα(d+b) - aαb where d ∈ 〈X〉 and a,b ∈ N, α,β ∈ Γ with

C
X
(d) < n. If m is arbitrary element of N, then

xβm = (aα(d+b) - aαb)βm

= aα(dβm+bβm) - (aαb)βm

= aαbβm - aαbβm = 0

Hence xΓN = 0.

(iv) If x = a + b - a where b ∈ 〈X〉,a ∈ N,α ∈ Γ and C
X
(b) < n.

Let m ∈ N, then

xαm = (a+b-a)αm

= aαm + bαm - aαm

= 0

This completes the proof.

Corollary: 3.1.11

If every non zero ideal of a Γ- near ring N contains a subset F

with
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rα(F) = 0, ∀α ∈ Γ, then for each a ∈ N,a ≠ 0,β ∈ Γ, there is a y ∈ N with

αβy ≠ 0.

Proof:

Let a ≠ 0 ∈ N and suppose F is a subset of 〈a〉 such that

rα(F) = 0

∀α ∈ Γ. For every n ≠ 0 ∈ N, we have FΓn ≠ 0 and therefore 〈a〉ΓN ≠ 0.

From lemma 3.1.10 there exists y ≠ 0 ∈ N such that aβy ≠ 0, for all

β ∈ Γ.

Theorem: 3.1.12

Let N be a Γ- near ring, then N is strongly prime if and only if

every

non zero ideal of N contains a finite subset F with rα(F) = 0, ∀α ∈ Γ.

Proof:

Let I ≠ 0 be an ideal in N and a ≠ 0 ∈ I.

Since N is strongly prime, there exists a finite subset F ⊆ N such

that

rα(a ΓF) = 0, ∀α ∈ Γ. Put F1 = aΓF.

Hence F1 is a finite subset of I with rα(F1) = 0, ∀α ∈ Γ.

Conversely, let a ≠ 0 ∈ N, then 〈a〉 ≠ 0.

From our assumption, there exists a finite subset F of 〈a〉 such that
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rα(F ) = 0, ∀α ∈ Γ.

It follows from the corollary 3.1.11, that there exists y ∈ N with αβy ≠ 0

for

all β ∈ Γ.

Again we use our assumption, we can find a finite subset

G1 = {g1,g
2
,⋯gn} ⊆ 〈aβy〉 with rα(G ) = 0, ∀α,β ∈ Γ.

For each i, let si1
,si

2
,⋯sim

i

be the corresponding generating sequence of g
i
.

Each of these sequence involve a finite number of terms of the form

aβy or

(aβy)γt
k
,t

k
∈ N, ∀α,β,γ ∈ Γ.

Let G1 = {aβy,(aβy)γt
k

these occur in the generating sequence of

an

element of G}.

Clearly G1 is finite and rα(G1 ) ⊆ rα(G ) = 0, ∀α ∈ Γ.

Take H = {x aβx∈G1, ∀β∈Γ}.

Our claim is that H is an insulator for a.

Now rα(G1 ) = 0 implies that for any n ∈ N, G1αn = 0,∀α ∈ Γ implies

n = 0

Since aΓH ⊆ G1, we have H is an insulator for a and consequently N is

strongly prime.
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Proposition: 3.1.13

Let N be zero symmetry Γ- near ring then the following are

equivalent.

(i) N is strongly prime Γ- near ring.

(ii) Every non zero right Γ- subgroup of N contains a finite

subset F such that rα(F ) = 0, ∀α ∈ Γ.

(iii) Every non zero right ideal of N contains a finite subset F

such that rα(F ) = 0, ∀α ∈ Γ.

(iv) Every non zero ideal of N contains a finite subset F such

that

rα(F) = 0, ∀α ∈ Γ.

Proof:

(i) ⇒(ii):

Let I ≠ 0 be a right Γ- subgroup of N and let a ≠ 0 ∈ I.

Since N is strongly prime, a has an insulator F such that

rα(aΓF) = 0,∀α ∈ Γ.

Let G = aΓF. Then G ⊆ I and rα(G) = 0, ∀α ∈ Γ.

(ii)⇒(iii)⇒(iv) is obivious.

(iv)⇒(i) follows from theorem 3.1.12.

Proposition: 3.1.14
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Let N be a zero symmetric Γ- near ring with descending chain

condition on right annihilators, then N is 3-prime if and only if N is

strongly prime.

Proof:

Suppose N is strongly prime.

To prove N is 3-prime, let a,b ∈ N such that a ≠ 0 and b ≠ 0.

Since N is strongly prime, there exists a finite subset F of N such

that

aΓFΓb ≠ 0. Hence aΓNΓb ≠ 0.

Conversely, let I ≠ 0 be an ideal in N and for each α ∈ Γ, consider

the

collection of right α- annihilators {rα(F)} where F runs over all finite

subset

of I.

From our hypothesis, there exists a minimal element M = rα(F0).

If M ≠ 0, let m ≠ 0 ∈ M and a ≠ 0 ∈ I.

Since N is 3-prime, there exists n ≠ 0 ∈ N such that aβnγm ≠ 0 for

all

β,γ ∈ Γ. Hence aγn ≠ 0.

Let Sα = rα(F0 ∪ {aγn}) ∀α ∈ F.
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Now m ∈ M but M ∉ Sα implies that Sα is smaller than M, a

contradiction.

This force that M = (0).

Hence for every non zero ideal I of N, there exists a finite subset F

such

that rα(F) = 0 ∀α ∈ Γ and consequently N is strongly prime.

3.2 Radicals of strongly prime Γ- near rings.

In this section we shall prove that the strongly prime radical

Ps(N)

of N coincides with Ps(L)+ where Ps(L) is the strongly prime radical of

the

left operator near - ring L of N.

Definition: 3.2.1

An ideal I of a Γ- near ring N is said to be strongly prime if for

each

a ∉ I, there exists a finite subset F such that for any b ∈ N, aΓFΓb ⊆ I

implies

that b ∈ I. F is called an insulator for a.

Proposition: 3.2.2

Let N be a Γ- near ring. If P is a strongly prime ideal of N, then



31

P+' = {l ∈ L lx ∈ P ∀x ∈ N} is a strongly prime ideal of L.

Proof:

Suppose that P is a strongly prime ideal of N.

We shall prove that P+' is a strongly prime ideal of L.

Let ∑i[xi
,α

i
]∉ P+', then there exists x ∈ N such that ∑i[xi

,α
i]x∉ P, that is

∑ixi
α

i
x∉ P. Since P is strongly prime in N, there exists a finite subset

F = {f1,f
2
⋯,fn} of N such that for any b ∈ N,

∑ixi
α

i
xΓFΓb⊆P implies b ∈ P. ………(1)

Fix α,β ∈ Γ.

Consider the collection F' = {[xαf1,β],⋯,[xαfn,β]}.

Our claim is that F' is an insulator for ∑i[xi
,α

i].

Let ∑j[yj,βj]∈L such that ∑i[xi
,α

i]F'∑j[yj,βj] ⊆P+'.

To prove ∑j[yj,βj]∈P+'. Now

∑
i

[xi
,α

i]F'∑
j

[yj,βj] ⊆P+'

Implies ∑i[xi
,α

i][xαf
k
,β]∑j[yj,βj]∈P+' ∀k = 1,2,⋯,n.

i.e., (∑i[xi
,α

i][xαf
k
,β]∑j[yj,βj] )z ∈ P ∀z ∈ N;k = 1,2,⋯n.

Hence ∑ixi
α

i
xΓFΓ∑jyjβjz⊆P ∀z ∈ N.

By (1) ∑jyjβjz ∈ P ∀z ∈ N. i.e., ∑j[yj,βj]z ∈ P ∀z ∈ N.
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Hence ∑j[yj,βj]z ∈ P+' and therefore F' is an insulator for ∑i[xi
,α

i
] and

consequently P+' is a strongly prime ideal of ideal of L.

Proposition: 3.2.3

Let N be a distributive strongly 2-primal Γ- near ring with strong

left unity. If Q is a strongly prime ideal of L, then

Q+ = {x ∈ N [x,α] ∈ Q∀α ∈ Γ} is a strongly prime ideal of N.

Proof:

Suppose Q is a strongly prime ideal of L.

We shall prove that Q+ is a strongly prime ideal of N.

Let x ∉ Q+, then there exists α ∈ Γ such that [x,α] ∉ Q.

Since Q is a strongly prime ideal of L, then there exists a finite subset

F = {∑n
j [yj

k
,βj

k] k=1,2,⋯,m} (say) such that for any ∑l[zl
,δ

l
] ∈ L,

[x,α]F∑l[zl
,δ

l
] ⊆ Q implies that ∑l[zl

,δ
l
] ∈ Q. .…… (1)

Consider F' = {yj
k
βj

k
x j=1,2,⋯,n;k=1,2,⋯,m}.

Our claim is that F' is an insulator for x. Let a ∈ N such that xΓF'Γa ⊆ Q+.

To prove a ∈ Q+. Now xΓF'Γa ⊆ Q+ implies

[xΓF'Γa,Γ] ⊆ Q,

i.e., [xαyj
k
βj

k
xβa,γ] ∈ Q,

∀j = 1,2,⋯,n;k = 1,2,⋯,m and ∀α,β,γ ∈ Γ. This implies that
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[x,α]F[xβa,γ] ⊆ Q. ……… (2)

By (1) [xβa,γ] ∈ Q. Now since Q is strongly prime in L, Q is prime in L.

By Proposition 1.1.16, Q+ is prime ideal of N. Since N is strongly 2-

primal,

Q+ is completely prime in N. Hence xγa ∈ Q+ and x ∉ Q+ implies a ∈ Q+.

Thus Q+ is strongly prime in N.

Proposition: 3.2.4

Let N be a distributive strongly 2-primal Γ- near ring with strong

left unity and L, a left operator near- ring of N. Then Ps(N) = Ps(L)+.

Proof:

Let P be a strongly prime ideal of L. Then by proposition 3.2.3,

P+ is a strongly prime ideal of N. Moreover (P+)+' = P by Theorem 1.1.17.

Suppose Q is a strongly prime ideal in N, then by Proposition

3.2.2,

Q+' is a strongly prime in L and (Q+')+ = Q by Theorem 1.1.17 Thus the

mapping P→P+defines a 1-1 correspondence between the set of

strongly

prime ideals of L and N.



34



33

4. STRONGLY PRIME GAMMA RINGS

4.1 Prime and Semiprime ideals of Γ - Rings

In this section, we shall give the basic connection between

prime ideals and semiprime ideals of Γ- ring.

Definition: 4.1.1

A subset N of a Γ- ring M is said to be an n-system if N = ϕ or

if

a ∈ N implies 〈 a 〉 Γ 〈 a 〉 ∩ N ≠ ϕ.

Lemma: 4.1.2

Let M be a Γ- ring. An ideal Q in M is semiprime if and only if

QC

is an n-system.

Proof:

Suppose that Q is a semiprime ideal and let a ∈ QC, then

a ∉ Q.

Since Q is semiprime, it follows from Theorem 1.2.7 that 〈 a 〉 Γ

〈 a 〉⊄Q.

This implies that 〈 a 〉Γ〈 a 〉 ∩ QC ≠ ϕ, so that QC is an n-system.

Conversely, suppose QC is an n-system and let a ∉ Q.

We shall prove that 〈 a 〉 Γ 〈 a 〉⊄Q.
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Since QC is an n-system, 〈 a 〉 Γ 〈 a 〉 ∩ QC ≠ ϕ. Take z ∈ 〈 a 〉 Γ

〈 a 〉 ∩ QC

so that z ∈ 〈 a 〉 Γ 〈 a 〉 and z ∉ Q.

Hence 〈 a 〉 Γ 〈 a 〉⊄Q. Thus Q is a semiprime ideal.

Definition: 4.1.3

For any ideal U of a Γ- ring M, we define n(U) to be set of all

element x of M such that every n-system containing x contains an

element

of U.

Lemma: 4.1.1

Let M be a Γ- ring in the sense of Nobusawa and let N ⊆ M

be an

n-system and P be an ideal maximal with respect to the property that P

is

disjoint from N. then P is semiprime ideal.

Proof:

Suppose that 〈 a 〉 Γ 〈 a 〉 ⊂ P and a ∉ P.

By the maximal property of P, there exists x ∈ N such that x ∈ P + 〈 a 〉.

Since N is an n-system 〈 x 〉 Γ 〈 x 〉 ∩ N ≠ ϕ. Let z ∈ 〈 x 〉 Γ 〈 x 〉 ∩ N.

Then z is the finite sum of element of the form
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(nx + cαx + xβd + eγxδf)ρ(mx + gμx + xνh + jξxηk)

Where m and n are integers, c,d,e,f,g,h,j,x and k are in M and

α,β,δ,ρ,μ,γ,ξ,η,ν in Γ. But every element in such a product is in P by

condition (i'),(iii') of definition 1.2.1 and the assumption that 〈 a 〉 Γ

〈 a 〉 ⊂ P.

For example,

(cαx)ρ(gμx) = cα(xρ(gμx))

= cα(xρ(gμx))

= cα(x(ρgμ)x)

∈ cα(xΓMΓx)

⊆ cα[(P + 〈 a 〉ΓMΓ(P+〈 a 〉)]

⊆ cα[(P + 〈 a 〉ΓMΓ〈 a 〉]

⊆ P.

Hence z ∈ P, which is contradiction.

Thus P must be a semiprime ideal.

Lemma: 4.1.5

Let M be a Γ- ring in the sense of Nobusawa. If U is any ideal

in M,

then n(U) equals the intersection of all semiprime ideal containing U. In

particular n(U) is an ideal in M.
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Proof:

We first prove that the inclusion ʻ⊆ʼ.

Let x ∈ n(U) and P be any semiprime ideal containing U.

Since P is semiprime ideal, PC is an n-system . This n-system can not

contain

x, for otherwise it meets U and hence also P.

Therefore, we have x ∈ P.

Conversely, suppose that x belongs to the intersection of all

semiprime

ideals containing U. We show that x ∈ n(U).

If x ∉ n(U), then by definition there exists an n-system N

containing x which is disjoint from U.

By Zorn’s lemma, there exists an ideal P containing U which is maximal

with

respect to being disjoint from N.

By lemma 4.1.4, P is a semiprime ideal and we have x ∉ P, which is

contradiction and hence x ∈ n(U).

Next we need the following lemma relating m-system and n-

systems.

Lemma: 4.1.6

Let S be an m-system in a Γ-ring M and let a ∈ S. Then there
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exists

an n-system N ⊆ S such that a ∈ N.

Proof:

We define N = {a1,a
2
,⋯} inductively as follows, a1 = a,

Since S is an m-system, let a
2
∈ 〈 a1〉 Γ 〈 a1 〉 ∩ S, then a

2
is the finite

sums of

the form

(n1a1 + c1α1a1 + a1β1d1 + e1γ1a1δ1f1)

ρ(m1a1 + g1μ1a1 + a1ν1h1 + j1ξ1a1η1k1)

Where a1,c1,d1,e1,f1,g1,h1,j1,k1 are element in M and m1,n1 are integers,

α1,β1,γ1,δ1,μ1,ν1,ξ1,η1 are element in Γ. Again use S is an m-system, take

a3 ∈ 〈 a
2〉 Γ 〈 a

2 〉 ∩ S.

We continue the similar fashion we can have the element a3,a
4
,⋯ of N.

Now for any i, 〈 a
i〉 Γ 〈 a

i 〉 contains a
i+1

, an element of N.

Hence 〈 a
i〉 Γ 〈 a

i 〉 ∩ N ≠ ϕ and N ⊆ S such that a ∈ N.

Definition: 4.1.7

An ideal Q in a Γ- ring M is said to be right primary if for any

ideal

U and V, UΓV ⊆ Q implies U ⊆ m(Q) or V ⊆ Q.
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Theorem: 4.1.8

Let M be a Γ- ring in the sense of Nobusawa. For any right

primary

ideal Q in M, the following are equivalent.

(i) Q is a prime ideal;

(ii) Q = n(Q);

(iii) Q is a semiprime ideal;

Proof:

(i)⇒(ii): Let Q be a prime ideal, then Q ⊆ n(Q) is obvious.

On other hand, let x ∈ n(Q) and suppose that x ∉ Q. Since Q is prime,

QC is

an m-system and x ∈ QC.

By lemma 4.1.6, there exists an n-system N ⊆ QC such that x ∈ N. But

N is

disjoint from Q, therefore x ∉ n(Q), which is contradiction.

Hence x ∈ Q, so that n(Q) ⊆ Q.

(ii)⇒(iii) is obvious.

(iii)⇒(i): Suppose that Q is a semiprime ideal.

We have to prove that Q is a prime ideal.

Let U and V be any ideal in M with UΓV ⊆ Q.
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Since Q is primary, UΓV ⊆ Q implies that U ⊆ m(Q) or V ⊆ Q.

Thus Q is a prime ideal in M.

Theorem: 4.1.9

For any ideal Q in M, Q is prime if and only if Q is primary and

semiprime.

Proof:

Suppose that Q is a prime ideal.

We have to prove that Q is primary.

Let U and V be any ideal in M such that UΓV ⊆ Q. Since Q is a prime

ideal,

U ⊆ n(Q) or V ⊆ Q by theorem 4.1.8

Now our claim is that n(Q) ⊆ m(Q).

Let x ∈ n(Q) and S be any m-system containing x. Since any m-system

is an

n-system, S is an n-system containing x. Since x ∈ n(Q), S meet Q.

Hence x ∈ m(Q) and therefore U ⊆ n(Q) or V ⊆ Q implies that U ⊆ m(Q)

or

V ⊆ Q.

Hence Q is primary ideal. Since every prime ideal is a semiprime ideal,

Q is
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Semiprime.

Thus Q is semiprime and hence primary ideal.

Conversely, suppose that Q is primary and semiprime ideal.

By theorem 4.1.8, Q is prime ideal.

4.2 Semiprime Γ- rings

In this section we shall relate semiprime Γ- rings to

semisimple

Γ- rings.

Definition: 4.2.1

Let M be a Γ- ring. M is said to be semiprime if (0) is a

semiprime

ideal. M is said to be prime if (0) is a prime ideal.

Definition: 4.2.2

Let M be a Γ- ring. If for any non zero element a of M there

exists

an element γ(depending on a) in Γ such that aγa ≠ 0, we say that M is

semisimple. If for any non zero element a and b of M, there exists γ

(depending on a and b) in Γ such that aγb ≠ 0, we say that M is simple.

Theorem: 4.2.3

Let M be a Γ- ring in the sense of Nobusawa. Then M is
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semisimple if and only if M is semiprime.

Proof:

Suppose that 〈 a 〉 Γ 〈 a 〉 = 0 for any a ∈ M.

Since aΓa ⊆ 〈 a 〉 Γ 〈 a 〉, aΓa = 0. Since M is semisimple, aΓa = 0 implies

that a = 0.

Hence 〈 a 〉 = 0, so that M is semiprime by theorem 1.2.7.

Conversely, suppose aΓa = 0 for any a ∈ M.

Since aΓMΓa ⊆ aΓa, aΓMΓa = 0. Since M is semiprime, it follows from

Theorem 1.2.7, That a = 0.

Hence M is semisimple.

Corollary: 4.2.4

M is semiprime if and only if for any ideal U,V in M, UΓV = 0

implies that U ∩ V = 0.

Proof:

Suppose M is semiprime.

Let U,V be ideals in M such that UΓV = 0 and let x ∈ U ∩ V.

Since xΓx ⊆ UΓV, xΓx = 0.

Since M is semiprime, M is semisimple by theorem 4.2.3.

Hence xΓx = 0 implies that x = 0 and consequently U ∩ V = 0.
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Conversely, suppose UΓV = 0 implies U ∩ U = 0 by hypothesis.

Hence U = 0, so that M is semiprime.

4.3 Strongly prime Γ- rings

In this section we shall prove that left (right) operator ring of

a right (left) strongly prime Γ- ring is right (left) strongly prime and also

we shall

prove that if M is strongly prime Γ- rings then their left and right

operator rings are Morita equivalent.

Definition: 4.3.1

Let M be a Γ- ring. If A is a subset of M, we define a right (left)

α- annihilator of A to be a right (left) ideal rα(A) = {m∈M Aαm=0}

(lα(A) = {m∈M mαA=0}).

We adopt the symbol M* to denote the non zero element of M.

Definition: 4.3.2

A right (left) β – insulator for a ∈ M* is a finite subset of M,

Sβ(a), such that rα({aβc c∈Sβ(a)}) = (0) (lα({cβa c∈Sβ(a)})=(0)),

∀α ∈ Γ.

Definition: 4.3.3

A Γ- ring M is said to be right (left) strongly prime if for every

β ∈ Γ, each non zero element of M has a right (left) β- insulator, that is
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for

every β ∈ Γ and a ∈ M*, there is a finite subset Sβ(a) such that b ∈ M,

{aβcαb∕c∈Sβ(a)} = 0 ({bαcβa c∈Sβ(a)}=0), ∀α ∈ Γ implies b = 0.

A Γ- ring M is said to be strongly prime if it is both left and

right

strongly prime.

Theorem: 4.3.4

Let M be a Γ- ring with descending chain condition on

annihilators

then M is prime if and only if M is strongly prime.

Proof:

Suppose that M is right strongly prime.

To prove M is prime, let a,b ∈ M such that a ≠ 0 and b ≠ 0.

Since M is right strongly prime, for every β ∈ Γ, there exists a right

β- insulator Sβ(a). Then rα({aβc∕c∈Sβ(a)}), ∀α,β ∈ Γ.

Since b ≠ 0, b ∉ rα({aβc c∈Sβ(a)}), ∀α,β ∈ Γ, there exists α,β ∈ Γ, such

that aβcαb ≠ 0 where c ∈ Sβ(a).

Hence M is prime.

Conversely, suppose that M is prime.

We have to prove that M is right strongly prime.
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Let m ∈ M* and consider the collection of right α- annihilator ideals of

the

form rα({mβn n∈I}), ∀α,β ∈ Γ where I runs over all finite subset of M

containing the identity.

Since M satisfies the descending chain condition on right annihilator,

choose a

minimal element K. If K ≠ {0}, we can find an element a ∈ K such that

a ≠ 0.

Since M is a prime Γ- ring, it follows from Theorem 1.2.8, That there

exists

b ∈ M, such that mγbδa ≠ 0 for γ,δ ∈ Γ.

Let I' be a finite subset of M containing the identity and b.

Since mγbδa ≠ 0, r
δ
({mβn n∈I'}), a contradiction.

This forces that K = {0}. Thus m has a right β- insulator ∀β ∈ Γ.

Since m ∈ M* is arbitrary, every element of M* has a right β- insulator

for

all β ∈ Γ.

Similarly every element of M* has a left β- insulator for all β ∈ Γ.

Hence M is a strongly prime Γ- ring.

Theorem: 4.3.5
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If M is a right (left) strongly prime Γ- ring, then the left (right)

operator ring L(R) is right (left) strongly prime ring.

Proof:

Suppose M is a right strongly prime Γ- ring.

To prove L is right strongly prime ring, it is enough to prove that every

non

zero element in L has a right insulator.

Let ∑i[xi
,α

i]x≠0∈L. Then there exists x ∈ M such that ∑i[xi
,α

i]x≠0,

that is ∑ixi
α

i
x≠0.

Since M is right strongly prime, for every β ∈ Γ, there exists an

β- insulator

for ∑ixi
α

i
x, say it Sβ = {a1,a

2
,⋯an}.

rα({∑
i

x
i
α

i
xβc c∈Sβ}) = {0}, ∀α,β ∈ Γ.

Hence for any m ∈ M,

(∑
i

x
i
α

i
x)βa

k
αm = 0, ∀α,β ∈ Γ, a

k
∈ Sβ⇒m = 0. (1)

Now fix α,β ∈ Γ, consider the collection

Sβ' = {[xβa1,α],[xβa
2
,α]⋯[xβan,α]}

We shall prove that Sβ' is an insulator for ∑i[xi
,α

i].

It is enough to prove that Ann({∑i[xi
,α

i]c'∕c'∈Sβ'}) = {0}.
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Let ∑j[yj,βj] ∈ Ann({∑i[xi
,α

i]c' c'∈Sβ'}).

Then ∑i[xi
,α

i][xβa
k
,α]∑j[yj,βj] = 0, ∀k.

We claim that ∑j[yj,βj] = 0. Now

∑
i

[xi
,α

i][xβa
k
,α]∑

j
[yj,βj] = 0, ∀k

Implies that

(∑
i

[xi
,α

i][xβa
k
,α]∑

j
[yj,βj])m = 0, ∀m ∈ M.

∴ ∑
i

[xi
,α

i][xβa
k
,α]∑

j
[yj,βj](m) = 0,

i.e.,∑
i

[x
i
α

i
xβa

k
α]∑

j

yjβjm = 0.

i.e.,∑
i

x
i
α

i
xβa

k
α∑

j

yjβjm = 0.

By (1), ∑jyjβjm = 0, i.e., ∑j[yj,βj](m) = 0, ∀m ∈ M.

Hence ∑j[yj,βj] = 0. Since ∑i[xi
,α

i]≠0 is arbitrary, every non zero element

in L has a right β- insulator.

Similarly if M is left strongly prime, then every non zero element of R

has a

left β- insulator.

Thus L is right strongly prime and R is a left strongly prime ring.

Theorem: 4.3.6
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If a Γ- ring M is weakly semiprime then M is strongly prime if

and

only if its left operator ring L is right strongly prime and its right

operator ring

R is left strongly prime.

Proof:

Suppose that L is a right strongly prime Γ- ring.

In order to prove that M is a strongly prime Γ- ring, we shall prove that

for

every β ∈ Γ, every non zero element in M has a right β- insulator.

Let x ≠ 0 ∈ M, β ∈ Γ.

Since M is a left weakly semiprime Γ- ring, [x,β] ≠ 0.

Since L is right strongly prime, there exists a right insulator

S([x,β]) = { n

∑
j=1

[yj
k
,βj

k] k=1,2,⋯m }
For [x,β]. Then Ann({[x,β]c∕c∈S([x,Γ])}) = {0}.

Therefore any ∑l[zl
,δ

l
] ∈ L,

[x,β]
n

∑
j=1

[yj
k
,βj

k] ∑
l

[zl
,δ

l]={0}, ∀k1,2,⋯m

implies that ∑l[zl
,δ

l
] = 0 (1)

Consider S'β = {yj
k
βj

k
x j=1,2,⋯,n;k=1,2,⋯,m}.
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We claim that S'β is a right β- insulator for x.

It is enough to prove that for each α ∈ Γ, rα({xβc c∈S'
β}) = {0}.

Let y ∈ rα({xβc c∈S'
β}), ∀α ∈ Γ. Then

(xβyj
k
βj

k
x)αy = 0, ∀α ∈ Γ and k = 1,2,⋯,m.

∴ [xβyj
k
βj

k
xαy,Γ] = 0, ∀α ∈ Γ and k = 1,2,⋯,m.

Hence [xβyj
k
,βj

k][xαy,Γ] = 0, ∀α ∈ Γ and k = 1,2,⋯,m, that is

[x,β][yj
k
,βj

k][xαy,Γ] = 0, ∀α ∈ Γ and k = 1,2,⋯,m, so that

[x,β]∑n
j=1[yj

k
,βj

k][xαy,Γ]=0, ∀α ∈ Γ and k = 1,2,⋯,m.

From (1), [xαy,Γ] = 0, ∀α ∈ Γ, so that xαy = 0, ∀α ∈ Γ.

Since M is faithful L-R bimodule, we have y = 0. Since x ≠ 0 ∈ M is

arbitrary, for every β ∈ Γ, every non zero element in M has a right β-

insulator

Hence M is right strongly prime Γ- ring.

Similarly if R is a left strongly prime Γ- ring then M is a left strongly

prime

Γ- ring. Converse part follows from theorem 4.3.5.

Proposition: 4.3.7

If M is strongly prime Γ- ring, then M is weakly semiprime Γ-
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ring.

Proof:

Suppose that M is strongly prime Γ- ring.

We shall prove that M is weakly semiprime Γ- ring.

Let x ≠ 0 ∈ M.

It is enough to prove that [x,Γ] ≠ 0 and [Γ,x] ≠ 0.

Suppose [x,Γ] = 0.

Since M is strongly prime Γ- ring, for every β ∈ Γ there exists a

finite

subset Sβ(x) such that for β ∈ M, {xβcαb c∈Sβ(x)} = 0, ∀α ∈ Γ implies

that b = 0.

Now xβcαx = [x,β]cαx = 0cαb = 0, ∀α,β ∈ Γ, c ∈ Sβ(x).

Hence x = 0, a contradiction.

Thus M is weakly semiprime Γ- ring.

Theorem: 4.3.8

Let M be a strongly prime Γ- ring, L and R be its operator

rings. Then L and R are Morita equivalent.

Proof:

It follows from proposition 4.3.7 and theorem 1.2.5.
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CHAPTER - I 

PRELIMINARIES 

Definition: 1.1 

A Graph þ is an order triple (ý(Ă), Ā(Ă), ÿ(Ă)) where, ý(Ă) is a non-empty 

set of verties, Ā(Ă) is a set of edges disjoint from ý(Ă), ÿ(Ă) is a function from Ā(Ă) to the set of all unorder pairs of elements of ý. 

Definition: 1.2 

 A graph Ă is called a planar graph if it has a digraph in which no two edges 

intersect at a vertex or a point other than a vertex. 

Definition: 1.3 

An edge starting and ending with the same vertex is called a loop. 

An edge with distinct ends is called a link. 

Definition: 1.4 

A graph Ă is called a simple graph if 

i. It has no loops. 

ii. No two links join the same pair of vertices. 

Definition: 1.5 

A simple graph Ă is said to be a complete graph if every vertex is adjacent to 

all the other vertices.  A complete graph with ÿ vertices is denoted by þ�.  

Definition: 1.6 

A graph Ă is said to be Bipartite graph if ý(Ă) is partitioned into two sets X 

and Y such that every edge of Ă has one end in X and another end in Y. 

The pair (X,Y) is called a Bipartition of ý. 
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Definition:1.7 

If  (X,Y) is a bipartition of a graph Ă such that every vertex in X is adjacent to 

every vertex in Y.  Then the graph Ă is called complete bipartite graph. 

If |ÿ| = ÿ and |Ā| = Ā then the complete bipartite graph is denoted by þÿ,Ā. 

Definition: 1.8 

Two graphs Ă and ă are said to be isomorphic if there are two bijection            �: ý(Ă) → ý(ă) and ÿ: Ā(Ă) → Ā(ă) such that Āÿ(ÿ) = Ăă ⇔ ĀĀ(ÿ(ÿ)) =�(Ă)�(ă) ∀ÿ ∈ Ā(Ă). 
The pair (�, ÿ) is called an isomorphism. 

If Ă is isomorphic to ă, then its denoted by Ă ≅ ă. 

Definition: 1.9 

The compliment Ă� of a simple graph Ă is the simple graph with vertex set ý, 

two vertices being adjacent in Ă� iff they are not adjacent in Ă. 

Definition: 1.10 

Let Ă = (ý, Ā, Āÿ) be a graph. A graph ă = (ý′, Ā′, ĀĀ) is a subgraph of Ă if 

i. ý′ ⊆ ý 

ii. Ā′ ⊆ Ā 

iii. ĀĀ is a restriction of Āÿ  to Ā′. 
Definition: 1.11 

A subgraph ă of Ă is a proper subgraph if ý(ă) ⊆ ý(Ă). 
A subgraph ă of Ă is a called a spanning subgraph of Ă if ý(ă) = ý(Ă). 

Definition: 1.12 

The degree or valency of a vertex in a graph Ă is the number of edges of Ă 

incident with ý, counting each loop twice. 
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Remark: 1.13 

i. A vertex of degree 0 is called an isolated vertex. 

ii. A vertex of degree 1 is called a 8n9 vertex or a pendent vertex. 

Definition: 1.14 

A graph Ă is regular if degree of each vertex is the same. 

A graph Ă is k-regular graph if the degree of each vertex is k.  

ie.)d(v)=k  ∀ă ∈ ý(Ă). 
Definition: 1.15 

For any graph Ă, �(þ) = ÿÿĀ{þ(ă)\ă ∈ ý(Ă)} ∆(þ) = ÿ�ą{þ(ă)\ă ∈ ý(Ă)} 
Remark: 1.16 

i. In any graph Ă, Ā(Ă) f þ(ă) f ∆(Ă). 
ii. A graph Ă is regular iff Ā(Ă) = ∆(Ă). 

Definition: 1.17 

A finite sequence in which vertices and edges alternatively and which begins 

and end with vertices is called a walk. 

Definition: 1.18 

The length of a walk is the number of edges occurring in the walk. 

Definition: 1.19 

A walk in which edges are not repeated is called a trail. 

A walk in which vertices are not repeated is called a path. 

Definition: 1.20 

A non-trivial closed path of a graph Ă is called the cycle of Ă. 
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Definition: 1.21 

A cycle of length k is called a k-cycle. It is denoted by þā. 

Definition: 1.22 

A vertex ă of a graph Ă is called a cut vertex if its removal increases the 

number of components. 

Definition: 1.23 

A graph that contains no cycles is called an acyclic graph.  A connected 

acyclic graph is called a tree. 

A collection of tree is called a forest. 

Definition: 1.24 

A connected graph that has no cut vertices is called a block.  

Definition: 1.25 

A closed trail containing all points and lines is called an eulerian trail.  A 

graph having an eulerian trail is called an eulerian graph. 

Definition: 1.26 

A spanning cycle in a graph is called a Hamiltonian cycle. 

A graph having a Hamiltonian cycle is called a Hamiltonian graph 

Definition: 1.27  

             Any graph Ă with atleast one bridge is called a bridge graph. 

Definition: 1.28 

A dominating set for a graph Ă = (ý(Ă), Ā(Ă)) is a subset ÿ of ý(Ă) such 

that every vertex not in ÿ is adjacent to atleast one member of ÿ. 

Definition: 1.29 

The least cardinality of a dominating set in Ă is called the domination 

number of Ă and is usually denoted by ÿ(Ă). 
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CHAPTER - II 

PENDANT DOMINATION IN SOME GENERALIZED GRAPHS 

Introduction: 

 In this chapter, we see the application and significance of pendant domination 

in graphs and also find the pendant domination number ÿ��(Ă) in graphs such as 

Crown graph, Helm graph, Cocktail party graph, Banana tree graph, Fire cracker 

graph, Stacked graph, Octahedral graph, Jahangir graph.  The symbol +ą, stands for 

smallest integer greater than or equal to ą. 

Definition: 2.1 

A dominating set ÿ in Ă is called a pendant domination set if +ÿ, contains at 

least one pendant vertex. The minimum cardinality of a pendant dominating set is 

called the pendant domination number denoted by ÿ��(Ă). 
The pendant domination parameter is defined for all non-trivial connected 

graphs of order at least two. Hence, throughout the chapter we assume that by a graph 

we mean a connected graph of order atleast two. 

Results: 2.2 

(i) Let Ă be a complete graph. Then ÿ��(Ă) = 2. 

(ii) Let Ă be a wheel þĀ or a star þ1,Ā21. Then  ÿ��(Ă) = 2. 
(iii) Let þĀ be a cycle with Ā g 3 vertices and let �Ā be a path with Ā g 2 

vertices. Then  

ÿ��(þĀ) =  ÿ��(�Ā) = {  
  Ā3 + 1, ÿĀ Ā ≡ 0(ÿāþ3)+Ā3, , ÿĀ  Ā ≡ 1(ÿāþ3)+Ā3, + 1, ÿĀ  Ā ≡ 2(ÿāþ3) 
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Definition: 2.3 

The crown graph ÿĀ for Ā g 3 is the graph with vertex set ý = {Ă1, Ă2, & , ĂĀ, ă1, ă2, & , ăĀ} and an edge from ý = {Ă1, Ă2,/1 f ÿ, Ā f Ā, ÿ b Ā}.   
Therefore ÿĀ coincides with the complete bipartite graph ÿĀ with the horizontal edges 

removed.  Crown graph ÿ6 is shown in Fig.1. 

Example: 2.4 

 

 

 

 

 

Fig. 1. �ÿ 

 

Theorem: 2.5 

Let Ă be a crown graph with 2n vertices. Then ÿ��(Ă) =  ÿ��(Ă) + 1. 

Proof: 

Let Ă be a crown graph with the vertex set ý = {Ă1, Ă2, & , ĂĀ, ă1, ă2, & , ăĀ}. 
Clearly, the set ý = {Ă1, ă1} is a dominating set of Ă. 

Choose any one vertex Ăÿ or ăÿ where ÿ > 1, then the set ÿ′ = {Ă1, ă1} ∪ {{Ăÿ}āÿ{ăÿ}} 
will be a pendant dominating set of Ă. 

Therefore ÿ��(Ă) =   ³(Ă) + 1. 

Hence Proved. 

 

 

 ýĀ,ÿ
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Definition: 2.6 

The helm graph ăĀ is the graph obtained from a Ā-wheel graph by adjoining 

a pendant edge at each node of the cycle.  The helm graph ăĀ has 2Ā + 1 vertices and  3Ā edges.  Helm graph ă6 is shown in Fig. 2. 

Example: 2.7 

 

Fig. 2. ÿÿ 

Theorem: 2.8 

For any helm graph ăĀ, then ÿ��( ăĀ) = Ā. 

Proof: 

Let (XY) be a partition of ăĀ, with ÿ = {ă1, ă2, & , ăĀ} and Ā = {Ă1, Ă2, & , ĂĀ} ∪ {ă}. 
Let Ă1, Ă2 are the  adjacent vertices of the graph  ăĀ and ÿ is the set of collection of 

all leaves of  ăĀ except the leaves of Ă1 and Ă2, then the set  ÿ′ = |ÿ| ∪ {Ă1, Ă2} will 

be a pendant dominating set of ăĀ. 

Hence  ÿ��( ăĀ) = (Ā 2 2) + 2 = Ā. 
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Definition: 2.9 

The cocktail party graph þĀ×2 is a graph of order 2Ā with the vertex set  ý = {Ăÿăÿ/1 f ÿ, Ā f Ā} and the edge set ý = {ĂÿĂĀ , ăÿăĀ , ĂÿăĀ , ăÿĂĀ\1 f ÿ f Ā f Ā}.  
Cocktail graph of order 8 is shown in Fig. 3. 

Example: 2.10 

 

 

 

 

 

 

 

 

Fig. 3. Cocktail graph of order 8 

 

Theorem: 2.11 

Let Ă be a cocktail party graph of order 2n, then ÿ��( ăĀ) = 2. 

Proof: 

Let Ă be a cocktail party graph and {ă1, ă2, & , ă2Ā} are vertices of  Ă. 

Let us choose the set ÿ = {ă1, ă2}, where ă1 and ă2 are two adjacent vertices in Ă. 
Then the set ÿ will be a minimal pendant dominating set of Ă. 

Hence ÿ��( ăĀ) = 2. 

Hence Proved. 
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Definition: 2.12 

A banana tree graph (Ā, ā) is a graph is obtained by connecting one leaf of 

each Ā copies of a þ star graph with a single root vertex that is distinct from all the 

stars.  Banana tree graph ý3,4 is shown in the Fig. 4. 

Example: 2.13 

 

Fig. 4. �ā,Ă 

 

Theorem: 2.14 

Let Ă be a banana tree graph, then  ÿ��( G) =  ³(Ă). 
Proof: 

Let Ă be a banana tree graph 

Clearly ³(Ă) = Ā. 

The set ÿ = {ý} ∪ {ă} is a dominating set of Ă and ÿ is itself a pendant dominating set 

of  Ă, where {ý} is the collection of all centre vertices of n copies of a star graph and 

v is a vertex in any one copy of a star graph and þÿā(ă) = (Ā + 1). 
Therefore  ÿ��( G) =  ³(Ă). 
Hence Proved. 
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Definition: 2.15 

  An fire cracker ā(ÿ, Ā) is a graph obtained by the series of interconnected 

 ÿ –copies of Ā  stars by linking one leaf from each.  Fire cracker graph ā4,7 is shown 

in Fig.5.  

Examle: 2.16 

   

Fig. 5. ýĂ,Ā 

 

Observation: 2.17 

For any firecracker graph, āĀ,ā where Ā g 2, ā g 3, then   ÿ��( G) = (Ā + 1). 
Theorem: 2.18 

Let Ă be an octahedral graph, then  ÿ��( G) =  ³(Ă). 
Proof: 

Let Ă be an octahedral graph with 6-nodes and 12-nodes and is isomorphic to 

circulant graph. 

The set ÿ = {Ă, ă} is a dominating set of Ă and ÿ is itself a pendant dominating set if 

u,v are adjacent vertices of Ă, and then the set ÿ will be a minimal pendant 

dominating set of Ă. 

Therefore ÿ��( G) =  ³(Ă). 
Theorem: 2.19 

For any stacked book graph  ýĀ,ÿ where ÿ g 3, Ā g 2, then ³(Ă) = Ā. 
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Proof: 

Let ýĀ,ÿ be the stacked book graph with ý(ýĀ,ÿ ) = ă1, ă2, & , ă2Ā+2. Which 

is obtained by the cartesian product of  ÿÿ+1⊗�Ā, where  ÿÿ is the star graph and �Ā 

is the path graph of order n. 

Let {ă1, ă2, & , ăĀ} are vertices of the path and these vertices are dominates all other 

vertices of  ýĀ,ÿ. 

Then the set ÿ = {ă1, ă2, & , ăĀ} is a dominating set of  ýĀ,ÿ and +ÿ, contains a 

pendant vertex, 

Therefore ÿ will be a minimal pendant dominating set of ýĀ,ÿ. 

Hence ÿ��( G) = Ā. 

Definition: 2.20 

For ÿ g 2, Jahangir graph ýĀ,ÿ is a graph of order ÿĀ + 1, consisting of a 

cycle of order Āÿ with one vertex adjacent to exactly ÿ vertices of þĀ,ÿ at a distance Ā to each other.  Jahangir graph ý2,8 is shown in Fig. 6. 

Example: 2.21 

 

Fig. 6. ýĀ,ā 
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Theorem: 2.22 

Let Ă = ýĀ,ÿ be a Jahangir graph with ÿ, Ā g 3. Then 

    ÿ��(�Ā) = { ÿ(Ā21)3 + 2, ÿĀ Ā ≡ 0(ÿāþ3)+ÿĀ3 , + 1, ÿĀ  Ā ≡ 0 āÿ 2(ÿāþ3) 
Proof: 

  Let Ă ≅ ýĀ,ÿ be a Jahangir graph with ÿ, Ā g 3 and let  ý(Ă) ={ă1, ă2, & , ăĀÿ, ăĀÿ+1}, where ăĀÿ+1 is the vertex at the centre, adjacent to vertices 

of þĀ,ÿ. 

First assume Ā ≡ 1(ÿāþ3) 
i.e., Ā = 3ā + 1, for some positive integer  ā. 

From the definition, the vertex ăÿĀ+1 is adjacent to m vertices of  þĀ,ÿ at a distance 3ā + 1. 
Removing the vertex  ăÿĀ+1 and its neighbourhood vertices from Ă, the graph 

induced by ý(Ă) 2 {�[ă]} splits into m components each component isomorphic to �3ā. 

Therefore, the minimum pendant dominating set of Ă is obtained by taking 

dominating set from each component togeather with ăÿĀ+1 and one of its 

neighbourhood vertex. 

That is, if ÿ = ⋃ Āÿÿÿ=1 , where Āÿ denotes ³ set of  ÿ th component, then ÿ ∪{ăÿĀ+1, ă1}, where ă1 is the vertex adjacent to ăÿĀ+1. 

Then the set ÿ will be a minimal pendant dominating set of  Ă. 

Hence  ³(Ă) = ÿ(Ā21)3 + 2. 
Next, suppose Ā ≡  2(ÿāþ3). 
Here, we may consider two possible cases. 
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First, assume ÿ ≡  0(ÿāþ3). Then {ă1, ăÿ, ă2ÿ, ă3ÿ, & , ăĀÿ} will be a dominating 

set of cardinality 
Āÿ3 + 1. 

Next, suppose ÿ ≡  1(ÿāþ3). 
In this case  {ă1, ă3, ă6, & , ăĀÿ} will be a dominating set of size 

Āÿ+43  

i.e., +ÿĀ3 , + 1 

Finally, assume Ā ≡  0(ÿāþ3). 
For any integer ÿ g 3, clearly Āÿ will be a multiple of 3. 

Further, no dominating set contains the centre vertex ăĀÿ . 
Let ÿ be the dominating set of þĀ,ÿ and  +ÿ,  contains only isolated vertices. 

For the purpose of the pendant vertex choose any vertex in þĀ,ÿ is adjacent to any 

vertex in the dominating set. 

Hence, ÿ��( G) =  ³(þĀ,ÿ) + 1    i.e., , ÿ��( G) =  +ÿĀ3 + 1,. 
Hence Proved. 
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CHAPTER - III 

BI-PENDANT DOMINATION NUMBER IN GRAPHS 

Introduction: 

 In this chapter, we see the application and significance of Bi-Pendant 

domination number  ÿĀ��(Ă) in graphs such as Helm graph, Wheel graph, Crown 

graph, Barbell graph, Pan graph, Connected graph and Triangle free graph. 

Definition: 3.1 

A Pendant dominating set  ÿ of a graph Ă is a bi-pendant dominating set if   +ý 2 ÿ, also contains pendant vertex.  The least cardinality of the bi-pendant 

dominating set in Ă   is called the bi-pendant domination number of Ă, denoted by ÿĀ��(Ă).   
The bi-pendant domination number is not defined for the complete graph and bistar 

graph.  In complete graph bi-pendant domination is defined only when Ā = 4, in all 

other cases ÿĀ�� is not defined. 

Example: 3.2 

 

 

 

Fig. 7. þ = þĂ                                              

The possible minimum bi-pendant domination sets for the following graph Ă are: 

(i) ÿ1 = {ă1, ă2} 
(ii) ÿ2 = {ă2, ă3} 
(iii) ÿ3 = {ă3, ă4} 
(iv) ÿ3 = {ă4, ă1} 

ă1 

ă3 

ă1

ă2 

ă4 
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Theorem: 3.3 

Let  �Ā be a path with Ā g 5 vertices. Then 

ÿĀ��(�Ā) = {  
  Ā3 + 1, ÿĀ Ā ≡ 0(ÿāþ3)+Ā3, , ÿĀ  Ā ≡ 1(ÿāþ3)+Ā3, + 1, ÿĀ  Ā ≡ 2(ÿāþ3) 

Proof: 

Let Ă ≅ �Ā be a path and let ý(Ă) = {ă1, ă2, & , ăĀ}. We consider the 

following possible cases here: 

Case 1: 

Suppose Ā ≡ 0(ÿāþ3). 
Then Ā = 3ā, for some integer ā > 1. 

Then the set ÿ = {ă2, ă3, ă3ÿ/2 f ÿ f ā} is a bi-pendant dominating set of  Ă. 

Hence ÿĀ��( G) = |ÿ|.  i.e., ÿ��( G) = Ā3 + 1. 

On the other hand, we have ³(Ă) = Ā3 and any minimum dominating set of  Ă contains 

only isolated vertices. 

Thus ÿĀ��( G) g Ā3 + 1. 

Therefore ÿĀ��( G) = Ā3 + 1.  

Case 2: 

Suppose Ā ≡ 0(ÿāþ3). 
Then Ā = 3ā + 1, for some integer ā > 1. 

Then it is easy to check that any ÿ-set  in Ă contains a pendant vertex and +ý 2 ÿ, 
also contains a pendant vertex. 

Hence any ÿ-set ÿ in Ă itself a bipendant dominating set in Ă. 
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Therefore ÿĀ��( G) = ³(Ă) = +Ā3,. 
Case 3: 

Proof of this case is similar to case 1. 

Observation: 3.4 

i. Let  þĀ be a cycle with Ā g 4 vertices.  Then 

                           ÿĀ��( G) = {  
  Ā3 + 1, ÿĀ Ā ≡ 0(ÿāþ3)+Ā3, , ÿĀ  Ā ≡ 1(ÿāþ3)+Ā3, + 1, ÿĀ  Ā ≡ 2(ÿāþ3) 

ii. Let Ă be a ladder graph with 2Ā vertices. Then  ÿĀ��( G) = +Ā2, + 1 

Theorem: 3.5 

For any helm graph ăĀ with 2Ā + 1 vertices.  Then ÿĀ��(ăĀ) = Ā + 1. 

Proof: 

Let (ÿĀ) be a partion of ăĀ with  ÿ = {ă1, ă2, & , ăĀ} and Ā = {Ă1, Ă2, & , ĂĀ} ∪ {ă}. 
Where {ă} is the vertex attached to all the vertices in the set Ā. 

Let ă, Ă1 are the two adjacent vertices of the graph ăĀ and ÿ is the set of all collection 

of leaves of ăĀ, except the leaf of Ă1. 

Then the set ÿ′ = |ÿ| ∪ {ă, Ă1} will be a bi-pendant dominating set of   ăĀ. 

Therefore  ÿĀ��(ăĀ) = |ÿ′| = (Ā 2 1) + 2 = (Ā + 1). 
Hence Proved. 

Theorem: 3.6 

Let Ă be wheel graph with Ā vertices and Ā g 3.  Then  ÿĀ��(þĀ) = 2. 

Proof: 

Let Ă be a wheel graph of order Ā g 3. 
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Then Ă ≅ þĀ21 + þ1. 

The set ÿ = {Ă, ă} is a pendant dominating set of Ă where ă is the vertex in þ1 and Ă ∈ þĀ21. 

Therefore ÿ is itself a bi-pendant dominating set of Ă. 

Hence ÿĀ��(þĀ) = |ÿ| = 2. 

Observation: 3.7 

Let Ă be a crown graph with 2Ā vertices.  Then ÿĀ��(Ă) = Ā. 

Theorem: 3.8 

Let Ă ≅ þÿ,Ā be a complete bipartite graph with ÿ f Ā. Then   ÿĀ��(þÿ,Ā) = ÿ. 

Proof: 

Let Ă ≅ þÿ,Ā be a complete bipartite graph with ý1 = {ă1, ă2, & , ăĀ} and  ý2 = {Ă1, Ă2, & , Ăÿ} are two partie set in Ă. 

The bi-pendant dominating set of Ă is obtained by taking the one vertex in partite set ý1 and ÿ2 1 vertices in the another partite set ý2. 

Therefore  ÿĀ��(Ă) = 1 + (ÿ 2 1) = ÿ. 

Theorem: 3.9 

Let Ă be a barbell graph of order Ā.  Then ÿĀ��(Ă) = Ā 2 1. 

Proof: 

Let Ă be a barbell graph and let ý(Ă) = {ă1, ă2, & , ă2Ā}.  Let ă1 and ă2 be the 

adjacent vertices of Ă is attached to the copies of complete graph. 

The bi-pendant dominating set of Ă is obtained by taking the vertices ă1, ă2 and 

(Ā 2 3) vertices in any one copies of complete graph. 

Therefore   ÿĀ��(Ă) = 2 + (Ā 2 3) = Ā 2 1. 

Hence Proved. 
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Definition: 3.10  

  The pan graph is the graph obtained by joining a cycle þĀ to singleton graph þ1 with a bridge.  It is denoted by �Ā.  Pan graph  �3 is shown in the Fig. 8. 

Example: 3.11 

 

Fig. 8. �ā 

 

Theorem: 3.12 

        Let Ă be a pan graph. Then  ÿĀ��(Ă) = 2 + +Ā233 ,. 
Proof: 

        Let Ă be a pan graph with vertices {ă1, ă2, & , ăĀ} where ăĀ is the vertex attached 

to the vertex ă1 of þĀ. 

Fix an edge  ÿ = ă1ăĀ. 

Then ÿĀ��(Ă) =   {Ă, ă} ∪  ³(ă) where ă is the graph obtained by removing the 

vertices ă1, ăĀ and its neighbour from Ă. 

Clearly ă ≅ �Ā23. 

Hence   ÿĀ��(Ă) = 2 +  ³(�Ā23) =  2 + +Ā233 , . 
Hence Proved. 

Theorem: 3.13 

        If Ă is a graph then  ÿĀ��(Ă) = 2 if and only if  Ă ≅ Ā + þ1.  Where Ā is a tree  

of order Ā g 3. 
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Proof: 

        Assume that Ă ≅ Ā + þ1, then clearly the set  S = {Ă, ă} will be a bi-pendant  

dominating set of Ă, where Ă and ă are vertices in Ā and þ1 respectively. 

Conversely, if   ÿĀ��(Ă) = 2 then there exist a bi-pendant dominating set of  Ă with |ÿ| = 2. Such that +ý 2 ÿ, is a tree. 

Since each vertex in  +ý 2 ÿ, is adjacent to the vertex in S. 

Let � be the collection of graphs of following types. A cycle, complete graph of order 

4, cycle, path and wheel of order 5 and þ2,2. 

Theorem: 3.14 

        Let Ă be a connected graph of order Ā.  Then ÿĀ��(Ă) =  Ā 2 2  if and only if Ă ∈  �. 
Theorem: 3.15 

        For any integer � > 0, there exist a connected graph Ă such that 

 ³(Ă) = ÿĀ��(Ă) = � + 1. 

Proof: 

        Let �Ā: {ĂĀ , ăĀ , ĄĀ , ąĀ , ĆĀ}(1 f Ā f �) be a path of order 5. 

We show that (Ă) = ÿĀ��(Ă) = � + 1 . ăĀ = {ăĀ , ĂĀ , ąĀ}(1 f Ā f �) 
Its easily observed ÿ belongs to every minimum bi-pendant dominating set of Ă and 

so ÿĀ��(Ă) g 1. 

Also its easily seen that every dominating set of Ă contains at least one element of ăĀ(1 f Ā f �) and so ÿĀ��(Ă) g � + 1 . 
Now the set ÿ = {ÿ} ∪ {ă1, ă2, ă3, & , ăÿ} will be a bi-pendant dominating set of Ă. 

So that ³(Ă) = ÿĀ��(Ă) = � + 1. 
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Theorem: 3.16 

         Let Ă be any graph with Ā vertices.  Then ³(Ă) f ÿ��(Ă) f ÿĀ��(Ă).  Equality 

holds if Ă is a cycle of order Ă. 

Proof: 

         Since every bi-pendant dominating set ia a pendant dominating set and every 

pendant dominating set is a dominating set of Ă, it follows that ³(Ă) f ÿ��(Ă) fÿĀ��(Ă). 
Suppose Ă is a cycle with 4 vertices.  Then ³(Ă) = ÿ��(Ă) = ÿĀ��(Ă) = 2. 

Theorem: 3.17 

        For any graph Ă, we have ³(Ă) f ÿ��(Ă) f ³(Ă) + ´(Ă). 
Proof: 

        Since a bi-pendant dominating set of Ă is a dominating set, it follows that ³(Ă) f ÿĀ��(Ă). 
Now let ă be a vertex in Ă with deg(ă) = ´(Ă) and let ÿ be a dominating set in Ă and 

every dominating set of Ă contains �[ă] so that the set ÿ′ = ÿ ∪ �[ă] will be a bi-

pendant dominating set of Ă,it follows that ÿĀ��(Ă) f ³(Ă) + ´(Ă) and hence the 

right inequality follows. 

Theorem: 3.18 

        Let Ă be a graph with Ā vertices.  Then ³(Ă) + ÿĀ��(Ă) f Ā. 

Proof: 

        Let ÿ be a bi-pendant dominating set.  Then ÿ is a dominating set and +ý 2 ÿ, 
contains a pendant vertex. 

Obviously, ÿĀ��(Ă) f |ÿ|. 
Since ÿ is dominating +ý 2 ÿ, is also a dominating. 



21 

 

Thus ³(Ă) f |ý 2 ÿ|.  Hence ³(Ă) + ÿĀ��(Ă) f |ÿ| + |ý 2 ÿ| proving the result. 

Theorem: 3.19 

        Let Ă be a connected graph with Ā vertices and ă be any graph.  Then 

ÿĀ��(Ă ∘ ă) = { Ā,   ÿĀ  ³(ă) = 1 Ā + 1,   āā/ÿÿĄÿĀÿ 

Proof: 

        For any connected graph Ă with Ā vertices and ă be any graph, we have ÿĀ��(Ă ∘ ă) = Ā and hence ÿĀ��(Ă ∘ ă) f Ā + 1. 

First, suppose ă has a pendant vertex, then clearly the set ÿ = |ý(Ă)| is a bi-pendant 

dominating set in (Ă ∘ ă). 
If ´(Ă) g 2, then the set ÿ = |ý(Ă)| ∪ {Ă} will be a bi-pendant dominating set of Ă ∘ ă, where Ă is a vertex in ă is adjacent to any one vertex in Ă. 

Therefore  ÿĀ��(Ă ∘ ă) = |ÿ| = Ā + 1. 

Theorem: 3.20 

        Let Ă be any graph.  If þÿ�ÿ(Ă) g 3 then  ÿĀ��(Ă) = 2 āÿ 3 

Proof: 

        If Ă has a pendant vertex then clearly  ÿĀ��(Ă) = 2.  Let Ă be a connected graph 

of diameter at least 3. 

If Ă, ă ∈ ý(Ă) with þÿ�ÿ(Ă, ă) g 3 then the set ÿ = {Ă, ă} is a pendant dominating 

set of (Ă). 
Therefore ÿĀ��(Ă) =  3. 

Theorem: 3.21 

        Let Ă be a triangle free graph order at least 3.  Then  ÿĀ��(Ă) = 2 āÿ 3. 

Proof: 

        Let Ă be a triangle free graph. 
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If Ă contains a pendant and an isolated vertex then clearly  ÿĀ��(Ă) = 2. 

Suppose Ă has no pendant and an isolated vertex, then Ă contain atleast one edge say ÿ = Ăă. 
As Ă is triangle free no vertex in Ă can be adjacent to both Ă and ă. 

Thus ÿ = {Ă, ă} will be a  ÿĀ��-set in Ă. 

Now, for any vertex Ą ∈ ý(Ă), the set ÿ ∪ {Ą} will be a ÿĀ��-set in Ă. 

Hence  ÿĀ��(Ă) =  3. 

Hence Proved. 
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CHAPTER - IV 

UPPER PENDANT DOMINATION IN GRAPHS 

Introduction: 

 In this chapter, we see the application and significance of Upper Pendant 

domination in graphs and we also find the Upper Pendant Domination number Г��(Ă) 
for graphs such as Pan graph, Wheel graph, Grid graph, Ladder graph, Stacked book 

graph and Book graph. 

Definition: 4.1 

The minimal pendant dominating set with maximum cardinality is called the 

Upper pendant dominating set.  The cardinality of an upper pendant dominating set 

is called an upper domination number, denoted by  Г��(Ă) .  Any upper pendant 

dominating set of cardinality  Г�� (Ă) is called the Г��- set. 

Result: 4.2 

1. Let  Ă be a completely graph. Then  Г��(Ă) = 2 

2. Let  Ă ≅ þÿ1,ÿ2,&,ÿ�  be a complete multipartite graph. Then Г��(Ă) = 2. 

3. Let be a barbell graph. Then Г��(Ă) = 3 . 

Observation: 4.3 

The upper pendant domination is not defined for totally disconnected graph.  

From the definition of the pendant domination, it is clear that the parameter  Г��(Ă) is 

defined if  Ă  has atleast one edge. Thus, hereafter by a graph, we mean a graph 

having atleast one edge. 
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Observation:  4.4 

1. ÿ��(þĀ) =  Г��(þĀ) for all  n. 

2. ÿ��(�Ā) =  Г��(�Ā)  if and only if  n=2 or 3 and  ÿ��(þĀ) =  Г��(þĀ)  if  and  

only  if  nf6. 

3.  ÿ(þÿ,Ā) =  ÿ��(þÿ,Ā) =  Г(þÿ,Ā)  if and only if  m,n = 2  and  ÿ��(þÿ,Ā) = Г��(þÿ,Ā)  for all  m,ng 1 

Theorem: 4.5 

Let  Ă ≅ þÿ (�1 , �2, & . �ÿ ) be a multi star graph. Then 

Г��(Ă) = 2 + ÿ�ą1fÿfÿ ∑ �Āÿ
Ā=1,Ābÿ  

Proof. 

Let  Ă ≅ þÿ(�1 , �2, & . �ÿ) be a multi  star  of  order  �1 +�2+…..+ �ÿ + m. 

Assume that �1 f �2 f… f �ÿ 

Then, the  collection  S  of  all  leaves  will  be  an  upper  dominating  set  in  Ă  and    

Hence  Г(Ă) = �1 + �2 + … �ÿ 

Picking an edge uv from the star  āÿ1 and taking  the  leaves  of    not  in   þÿ1 ,     

the set   ÿ′ = (ÿ 2 ý(āÿ1)) ∪ {Ă, ă}  will be a pendant dominating set in Ă. 

As the  vertices  in  ÿ′  are  leave and contains  exactly  one  edge, ÿ′  will  be  a   

Minimal pendant dominating set  of  maximum  cardinality. 

Therefore Г��(Ă) = |ÿ′| = 2+∑ �ÿÿÿ=2  

In general, by the maximality,  we  have Г��(Ă) = 2 + max1fÿfÿ∑ �ĀÿĀ=1.Ābÿ . 

Hence Proved. 
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Corollary: 4.6 

For any integer  kg3,  there exists a graph Ă such that  Г��(Ă) = k 

Theorem: 4.7 

Let  Ă ≅ �Ā  be a path of order  ng2.  Then 

Г��(Ă) = { 2,                ÿĀ Ā = 22 + ⌈Ā 2 32 ⌉ , āā/ÿÿĄÿĀÿ 

Proof. 

Let  Ă ≅ �Ā  be a  path and  let   ý(Ă) = {ă1,ă2,….,ăĀ}. 

Clearly,  Г��(�2) = 2. 

Suppose ng 3.  Since any upper pendant dominating set should contain a     

Pendant vertex, we may fix an edge {ă1,ă2} in Ă  and let ă = ý(Ă) 2 �[ă1, ă2] 
Then Г��(Ă) = 2 + Г(ă)  where  ă ≅ �Ā23. 
Therefore, Г��(Ă) = 2+ +Ā232 , . 
Theorem: 4.8 

Let  þĀ be a cycle of order  n g 3.  Then Г��(þĀ) = +Ā2,. 
Proof. 

Let  þĀ be a cycle and {ă1,ă2,….,ăĀ} be the vertex set of  þĀ. 

Fix an arbitrary edge, say uv in þĀ and let  ă = ý(Ă) 2 �[u, v]. 
Then, Г��(Ă) = 2+ Г(ă)  where   ă ≅ �Ā - 4. 

Therefore, Г��(Ă) = 2 +  +Ā242 , = +Ā2,. 
Theorem: 4.9 

Let  Ă be  a Pan graph with  n g 5 vertices. Then  Г��(Ă) = 2+ +Ā232 , . 
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Proof. . 

Let  Ă be a pan graph and  ý(Ă) =  {ă1,ă2,….,ăĀ} where  ăĀ is  the  vertex 

attached to the vertex ă1 of þĀ21 

Fix the edge {ă1,ăĀ} then  for  Г -set of  ă, where ă  is  the  graph  obtained  by     

removing {ă1,ăĀ} and its neighbours  from Ă. 

Clearly,  ă ≅ �Ā-3  and so Г��(Ă) = 2 +  +Ā232 , . 
Theorem: 4.10 

Let  Ă1 and Ă2 be any two graphs. Then Г��(Ă1 ∨ Ă2)= max{Г��(Ă1), Г��(Ă2)} . 
Proof. 

Let  Ă1 and  Ă2 be any two graphs and let  ÿ1, ÿ2  be the  Г��-sets  of  Ă1     

and Ă2 respectively. 

By the definition of  join of graphs,  ÿ1  and  ÿ2 are minimal pendant dominating       

Sets of  Ă1 ∨ Ă2 and so  Г��(Ă1 ∨ Ă2) g max{Г��(Ă1), Г��(Ă2)} . 
 Let ă be any vertex of  Ă1 ∨ Ă2. 

Assume  ă ∈ ý(Ă1) . 

Then  ÿ1 ∪ { ă} fails to be a minimal pendant dominating set. 

On the other hand,  ÿ2 ∪ { ă} fails to be dominating set in  Ă1 v Ă2. 

Thus, Г��(Ă1 ∨ Ă2) f max{Г��(Ă1), Г��(Ă2)} . 
 Therefore, we have Г��(Ă1 ∨ Ă2)= max{Г��(Ă1), Г��(Ă2)} . 
Theorem: 4.11 

Let Ă  be any graph of size at least one. Then  Г��(Ă ∨ āĀ̅̅ ̅) = Г��(Ă) . 

Proof. 
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Let  Ă  be any graph of size at least one and let  ÿ  be  the  Г�� -set  of  Ă. 

Then  ÿ  is also a minimal  dominating set of  Ă ∨ āĀ̅̅ ̅ and so Г (Ă ∨ āĀ̅̅ ̅) g|s| . 

On the other hand,  for  any vertex  ă  of  (Ă ∨ āĀ̅̅ ̅),  the  set  S∪{ ă} will  not  be  

minimal. 

This  proves  that,  Г (Ă ∨ āĀ̅̅ ̅)  f  |s|  and  hence  Г��(Ă ∨ āĀ̅̅ ̅)  =  |S| = Г��(Ă) . 

Corollary: 4.12 

Let  Ă be an m-gonal n-cone  graph.  Then Г��(Ă) = +ÿ2 , . 
Proof. 

Let  Ă  be an m-gonal n-cone  graph. 

Then  Ă  is  the  graph join of the cycle graph þÿ with  āĀ̅̅ ̅ . 
Taking  Ă to be the  cycle graph on  m vertices in the above theorem, we  get 

Г��(Ă) = +ÿ2 , . 
Definition: 4.13 

A wheel graph is a graph formed by connecting a single universal vertex to 

all vertices of a cycle.  Wheel graph þ7 is shown in the Fig. 9. 

Example: 4.14 

 

Fig. 9. �Ā 
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Corollary: 4.15 

For  a  wheel  þĀ  of  order  ng 4, Г��(þĀ) =   +Ā212 , . 
Proof. 

Let  Ă  be  a  wheel  graph  of   order  ng 4. 

Then  Ă ≅  þĀ21 + āĀ̅̅ ̅ 
Therefore, by taking  Ă  to be the cycle on n-1 vertices in above proposition, We 

obtain that Г��(þĀ) = +Ā212 , 
For a wheel  þĀ of order  n, the line graph Ă ≅ L(þĀ)  is  a  bi-regular graph on    

2(n-1) vertices such that degree of  any  vertex in Ă belongs  to the set {n – 1, n}. 

Remark: 4.16 

For a wheel  þĀ+1 of order  n g 4, Г�� (L(þĀ+1) ) = +Ā+12 , . 
Theorem: 4.17 

Let  Ă be a disconnected graph  with  components  Ă1, Ă2,...,Ăÿ . Then  Г��(Ă) = min1fÿfÿ{ Г��(Ăÿ) + ∑ Г(ĂĀ)} .ÿĀ=1,Ābÿ  

Proof. 

We prove this result by using mathematical induction. 

The result is trivially true for  m=1. 

Suppose m=2. 

Then  Ă = Ă1 ∪ Ă2 . 

Let  ÿ1, ÿ2  be  the  Г�� -sets of Ă1 and Ă2 respectively. 

Then  ÿ1 ∪ ÿ2′  and  ÿ2 ∪ ÿ2′  are pendant dominating  sets  in  Ă , where   ÿÿ′  denotes      

the Г -set of  Ăÿ, i = 1,2. 

Therefore  Г��(Ă) f min{Г��(Ă1) + Г(Ă2),  Г��(Ă2) + Г(Ă1)} . 
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On the other hand,  let  ÿ be any  pendant  dominating set in  Ă. 

Then  ÿ  has to dominate  both  ý(Ă1)  and  ý(Ă2)  and +ÿ,  should contain at least   

one pendant vertex. 

Moreover,  the  set  ÿ  should  the  pendant  dominating  set  of  Ă1  or  Ă2. 

Otherwise +ÿ,  contains no pendant vertex which is a contradiction. 

This contradiction shows  that | ÿ | g  min{Г��(Ă1) + Г(Ă2),  Г��(Ă2) + Г(Ă1)} . 

Hence,  | ÿ | =  min{Г��(Ă1) + Г(Ă2), + Г��(Ă2) + Г(Ă1)},  providing  the  result  for  

m=2. 

Next,  suppose  m g 3  and  assume  that  result  is  true  for  m = k-1. 

Let  Ă  be  any  graph  with  the  components  Ă1, Ă2, ….,Ăā21, Ăā . 

Let  Ă′  be  a  graph  with  k-1  components,  say  Ă1, Ă2, ….,Ăā21 . 

Then from the induction  hypothesis  we  have  Г��(Ă′) =  min1fÿfā21{Г��(Ăÿ) + ∑ Г(ĂĀ)}ā21Ā=1,Āb1  . 

Now, we have  Ă = Ă′ ∪ Ăÿ. 

That is, Ă  is the graph  having  only  two  components  namely  Ă  and Ăÿ  . 

Hence from the case  m = 2, we  obtain  that  

 Г��(Ă) = min1fÿfā{Г��(Ăÿ) + ∑ Г(ĂĀ)}ā21Ā=1,Āb1  

Therefore the result is true for  m = k  and hence true for any positive integer m. 

Thus we have Г��(Ă) = min1fÿf�{Г��(Ăÿ) + ∑ Г(ĂĀ)}ÿĀ=1,Āb1  

Let  Ă1  and  Ă2 any two graphs.  Then the cartesian  product  of  Ă1 and  Ă2  is  

Denoted by Ă1 ■ Ă2 and defined to be the graphs  Ă where the vertices where 

u = (Ă1, Ă2 )  and (ă1,ă2) are adjacent  if Ă1 = ă1 and  Ă2  adjacent  to  ă2  or  Ă2 = ă2  

and  Ă1 adjacent to   ă1 . 

The graph �ÿ ■ �Ā  is called a grid graph and  þĀ ■ �2  is  called a prism graph. 
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Definition: 4.18 

A two-dimensional grid graph, also known as a rectangular grid graph or two-

dimentional lattice graph that is the graph Cartesian product of path graphs on 

vertices. 

Example: 4.19 

 

Fig. 10. 

Theorem: 4.20 

Let  Ă ≅ �ÿ ■ �Ā  be a grid  graph. Then Г��(Ă) = Ā +ÿ2 , . 
Proof. 

Let  Ă ≅ �ÿ ■ �Ā be  a  grid  graph  and  let  

 ý(Ă) = {ĂÿĀ/1 f i f m, 1 f  j f n}. 

Choose the minimum dominating set  ÿ′  in one copy  of  �ÿ  and  let  ÿ be the    

set of all vertices in the  row to  which the  vertex of  ÿ′  belongs to. 

Then,  ÿ  is a minimal pendantdominating  set in Ă and further, for no vertex   

in ý 2 ÿ, the set  ÿ ∪{v}  will be a minimal pendant dominating  set. 

Therefore, Г��(Ă) =|ÿ| = n+ÿ2 ,. 
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Definition: 4.21 

The Ladder graph ÿĀ = �Ā × þ2 where �Ā is a path with Ā vertices and ą 

denotes the Cartesian product and þ2 is a complete graph with two vertices. Ladder 

graph  ÿ7 is shown in the Fig. 10. 

Example: 4.22 

 

 

 

 

 

 

 

Fig. 11. ÿĀ 

 

Corollary: 4.23 

Let  Ă  be Ladder Graph.  Then  Г��(Ă) = n. 

Proof. 

Let  Ă ≅ P₂ ■ �Ā  be  a  ladder  graph  and  let  ý(Ă) = {(Ăÿ , ăÿ) / 1 f if n}. 

Fix  an  edge  e = Ă1ă1  of  Ă  and  let  H  be the graph obtained by  removing  the   

vertices Ă1 , ă1and  its  neighbours  from  Ă. 

Then, ă ≅ P₂ ■ �Ā22 and so   Г�� (P₂ ■ �Ā) = 2 + Г�� (P₂ ■ �Ā22)  =  (n-2) + 2 = n. 

Theorem: 4.24 

Let  Ă ≅ �Ā ■ þÿ.  Then  Г��(Ă) = n+1. 
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Proof. 

Let  Ă ≅ �Ā■ þÿ  be  a  graph  of  order  of  2n  where  þĀ be  a  complete  

graph  of Order n and  ÿ(þĀ) = 1 . 
Choosing  two  vertices  from  one  copy  of  þĀ  and  exactly  one  vertex  from  other   

copies  of  þĀ, we  obtain  the  minimal  pendant  dominating  set  of  Ă. 

In  fact, this  set  would  be  a  minimal  pendant  dominating  set  of  maximal 

cardinality. 

Therefore, Г��(Ă) = n+1 . 

Definition: 4.25 

The Cartesian product Ă × ă of graphs Ă and ă  is a graph such that  

 The vertex set Ă × ă is the Cartesian product ý(Ă) × ý(ă), and  

 Any two vertices (Ă, Ă′) and  (ă, ă′) are adjacent in Ă × ă if and only if either 

 Ă = ă and Ă is adjacent to ă in ă, or 

 Ă = ă and Ă is adjacent to ă in Ă. 

Definition: 4.26 

Book graph is a Cartesian product of a star and single edge, denoted by  ýÿ.  

The ÿ-book graph is defined as the graph Cartesian product ÿÿ+1 × �2, where ÿÿ+1 

is a star graph and �2 is the path graph. 

Definition: 4.27 

The Stacked book graph of order (ÿ, Ā) is defined as the Cartesian product 

of  ÿÿ+1 × �Ā where ÿÿ+1 is the star graph and �Ā is the path graph on Ā nodes.  It is 

therefore the graph corresponding to the edges of Ā copies of an ÿ-page <book= 

stacked one on top of another and is the generalization of a book graph.  Stacked book 

graph ý3,4 is shown in the Fig. 12 
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Example: 4.22 

 

 

Fig. 12. �ā,Ă 

Theorem: 4.23 

Let  Ă  be  a  stacked  book  graph. Then, 

Г��(Ă) ={ 2,                 ÿĀ Ā = 1 ÿ(Ā+1)2  ,    if n g 3 and oddÿĀ2 ,         ÿĀĀ ÿĀ ÿăÿĀ  

Proof. 

Let  Ă  be  a  stacked  book  graph. 

Then  Ă   is  the  product  graph  of  þ1,ÿ  with  �Ā,  hence  Ă  contains  m  copies  of   

the  path �Ā attached  to  one  copy  of  �Ā  obtained  by  joining  the  centers  of  the  

star  þ1,ÿ  and  call  it  as the graph  ă. 

Suppose  n=1, then  Ă is a star  and so Г��(G) = 2. 

Assume  n g 2 . 

Let  Ă′  be the graph obtained by deleting vertices of  ă  from Ă. 

Then  Ă′  is the union of  m copies of the path  �Ā . 

Moreover  Г�� (Ă) = Г��(Ă′) from Ă. 

It is clear that the upper pendant dominating set is obtained by choosing upper    
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pendant dominating set in one copy of   �Ā and upper dominating set from other 

copies of  path  . 

Therefore, Г��(Ă) = (m – 1) +Ā2, + 2 + +Ā232 , . 
Suppose n even, then  n =2k, for some integer  þ. 

Substituting  for  n, we  get  Г��(Ă) = 
ÿĀ2  . 

Similarly,  whenever n odd,  we  obtain  that 
ÿ(Ā+1)2  . 

Corollary: 4.24 

Let  Ă be a book of order  2m.  Then Г��(Ă) = m. 

Proof. 

Let  Ă be a book graph. 

Then  Ă  is  the graph Cartesian product of the  star þ1,ÿ  with  P₂. 
Hence, taking n = 2 in the above theorem, we obtain that  Г�� (Ă) = m. 

Definition: 4.25 

A Prism graph of Ā-layers, ĀÿĀ is a simple graph given by the Cartesian product of 

the cycle þÿ and �Ā.  The graph consists of ÿĀ vertices and ÿ(2Ā 2 1) edges. 

Example: 4.25 

 

Fig. 13. 
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Theorem: 4.26 

Let  Ă  be  a  prism  graph  of  order  2n.  Then 

 

Proof. 

Let  Ă be a prism graph  of  order  2n,  then  Ă ≅ þĀ ■ P₂. 
Let  (u,v)  be  any  pair  of  adjacent  vertices  in  Ă. 

Assume that  u  and  v  are  from outside  cycle. 

Suppose  n  odd,  select  
Ā232  non-adjacent vertices from outside cycle not in the   

neighborhood of  u  and  v. 

Then, exactly
Ā212   in the cycle inside not dominated  by  any  of  the vertices in Ă. 

Therefore, the collection of these vertices will be a minimal dominating set  in  Ă. 

Since, we are selecting alternative vertices, the collection will be a minimal   

dominating set of maximum cardinality. 

Hence, Г��(Ă) = n. 

Next, suppose n even. 

As in the above case, let  ÿ  and  ÿ′  be  the upper dominating sets of  the  inner   

and outer cycles on  removing the  vertices  u,v  and  its  neighbor  from  Ă. 

Then, Г��(Ă) = 2 + | ÿ| + | ÿ′|. 
That is, Г�� (Ă) = 2 + 

Ā242  + 
Ā222  = n – 1. 

Since the prism graph  Ă ≅ þĀ ■ �2  consists of  two cycles,  upper  pendant    

domination set may be choose  by  taking upper pendant dominating  set  in  one   

copy of þĀ and upper dominating set  from  another  copy. 
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Therefore, Г��(Ă) = 2 Г��(ýĀ) – 1. 

Generally, the graph  þĀ ■ �ÿ  consists of   m – cycles each of  order n. 
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CHAPTER - V 

THE COMPLEMENTARY PENDANT DOMINATION NUMBER 

IN GRAPHS 

Introduction: 

 In this chapter, we see the application and significance of The Complementary 

Pendant domination number in graphs such as Bistar graph, Multi star graph, Barbell 

graph, Ladder graph, Triangle free graph. 

Definition: 5.1 

A dominating set  ÿ in Ă is called a complementary pendant dominating set 

if  +ý 2 ÿ, contains atleast one pendant vertex.  The minimum cardinality of a 

complementary pendant dominating set is called he complementary pendant 

domination number of Ă, denoted by  ÿā��(Ă). 
Example: 5.2 
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For the graph Ă in Fig. 14, one can verify that ÿ = {3,4,9,12,15} is a dominating set 

with {1,2} as a pendant vertex in +ý 2 ÿ,.  Hence ÿ is a ÿā��(Ă)-set.  Further {3,4,10,15} is the minimum  ÿā��(Ă)-set and so  ÿā��(Ă) = 4. 

Observation: 5.3 

Let Ă be totally disconnected or Ă a star.  Then complementary pendant 

domination number is not defined for Ă. 

Hence throughout this chapter, a graph Ă we assume ÿ g 1. 

 ÿ(�Ā) = ÿ��(�Ā) = ┌(�Ā) = ÿ��(�Ā) if and only in Ā = 4 

 ÿ(þÿ,Ā) = ÿ��(þÿ,Ā) = ┌(þÿ,Ā) = ┌��(þÿ,Ā) = ÿā��(þĀ,ÿ) if and if ÿ, Ā = 2.  
 Let Ă be bistar, then ┌(Ă) = ÿā��(Ă). 

Lemma: 5.4 

The following are true 

(i)  ÿā��(þĀ) = Ā 2 2, Ā g 3. 
(ii) ÿā��(þĀ,ÿ) = ÿ + Ā 2 3,ÿ, Ā g 2. 
(iii) ÿā��(�Ā) = ÿā��(þĀ) = +Ā3, , Ā g 4.  
(iv) ÿā��(þĀ) = 2, Ā g 4.  
(v) ÿā��(þĀ) = ÿā��(�Ā) = Ā 2 3, Ā g 3. 
(vi) For any graph Ă, ³(Ă) f  ÿā��(Ă). 
Proof: 

(i)   Every induced sub graph of āĀ is complete. 

For any two adjacent vertices {Ă, ă} in āĀ, the set ÿ = {ý(āĀ) 2 {Ă, ă}} will be a 

complementary pendant dominating set of āĀ. 
Hence ÿā��(þÿ,Ā) = |ÿ| = Ā 2 2. 



39 

 

(ii) Let {ý1, ý2} are two parties set in þÿ,Ā. 

Choose an arbitrary path �3 = {ă1, ă2, ă3} in þÿ,Ā. 

Then, the set  ÿ = ý 2 {ă1, ă2, ă3} will be a complementary pendant dominating set 

of āÿ,Ā. 
Hence, ÿā��(þÿ,Ā) f |ÿ| = ÿ + Ā 2 2. 

On the other hand, it may be noted that any subset ÿ′ of size at least ÿ+ Ā 2 4, the 

set ý 2 ÿ has minimum degree at least 2. 

Thus, we must have ÿā��(þÿ,Ā) g ÿ + Ā 2 3, proving (ii). 

(iii)  Let Ă be a Cycle or a path with Ā g 4 vertices. 

Then ÿ = {ă1, ă2, ă3} will be a ÿ 2set of Ă and < ý 2 ÿ > contains a pendant vertex 

and so ÿ itself a complementary pendant dominating set of Ă. 

Therefore ÿā��(Ă) = |ÿ| = +Ā3,. 
(iv) Let þĀ be a wheel with Ā g 2 vertices and let u be a vertex at the centre of þĀ. 
Clearly {Ă} will be a dominating set but  ý 2 {Ă} is a cycle þĀ21. 
Hence  ÿā��(þ,Ā) g 2 

Next, choosing an arbitrary vertex ă on cycle þĀ21, the set  ÿ = {Ă, ă} will be a 

minimum complementary pendant dominating set. 

Therefore ÿā��(þĀ) = 2. 

(v)      Clearly Ā(þĀ̅̅ ̅) = Ā 2 3 and so there exist a vertex ă1 in þĀ̅̅ ̅  which is not 

adjacent to two vertices ă1 and ăĀ. 

Now the set  ÿ = ý 2 {ă1, ă2, ăĀ} is a complementary pendant dominating set. 

So ÿ(þĀ̅̅ ̅) f |ý 2 {ă1, ă2, ăĀ}| = Ā 2 3. 
Therefore ÿā�� = Ā 2 3. 
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(vi) Since every complementary pendant dominating set is also a dominating set of 

a graph Ă, it follows that (Ă) f ÿā��(Ă). 
Theorem: 5.5 

Let G be a n-pan Graph, of order Ā g 4. Then ÿā��(Ă) = +Ā3,. 
Theorem 5.6 

Let Ă ≅ þÿ(�1, �2, & . , �ÿ) be a multi star graph, with �1 f �2 f �3 f ⋯ f�Ā. Then ÿā��(Ă) = |�1| + |�2| + ÿ 2 2. 
Proof: 

Let Ă ≅ þÿ(�1, �2, & . , �ÿ) be a multi star of order �1 + �2 +⋯+ �ÿ +ÿ. 
Assume that �1 f �2 f �3 f ⋯ f �ÿ. 
Let Ă and ă be a two adjacent supported vertices of Ă. 

The set S contains leaves of  Ă,ă and all the supported vertices of a multi star graph Ă 

except  Ă,ă. 

 Therefore ÿā��(Ă) = |ÿ| = |�1| + |�2| + ÿ 2 2. 

Theorem: 5.7 

Let Ă be a bistar graph then ÿā��(Ă) = ÿ + Ā. 
Proof: 

Let Ă be a bistar graph. 

The set ÿ = {Ă, ă} is the dominating set of Ă. 

Then < ý 2 ÿ > contains a pendant vertex, therefore S is a complementary pendant 

dominating set of Ă. 

So ÿā��(Ă) = |ÿ| = {ÿ + Ā + 2} 2 2 = ÿ + Ā. 
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Definition: 5.8 

A Barbell graph ý(Ă, Ā) is the graph obtained by connecting Ā-copies of a 

complete graph þ� by a bridge.  Barbell graph  ý16 is shown in the Fig. 15. 

Example: 5.9 

 

Fig. 15. �ÿÿ 

 

Theorem: 5.10 

Let Ă be a Barbell graph. Then ÿā��(Ă) = 2(Ā 2 1). 
Proof: 

Let Ă be a barbell graph and let ý(Ă) = {ă1, ă2, ăĀ}. 
Let ă1 and ă2 be the adjacent vertices of Ă attached to the copies of complete graph. 

Then, clearly the set ÿ = {ă1, ă2} is a dominating set of Ă. 

Now the set ÿ′ = ý 2 ÿ is a complementary pendant dominating set of Ă. 

Therefore ÿā��(Ă) = 2Ā 2 2 = 2(Ā 2 1). 
Hence Proved. 

Theorem: 5.11 

Let Ă be a Ladder graph. Then ÿā��(Ă) = +Ā2, + 2. 
Proof: 

Let Ă be a ladder graph, fix an edge Ă2ă2 of Ă. 
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Then for any ÿ 2set ÿ of �2 × �Ā23, the set ÿ = ÿ′ ∪ {Ă2, ă2} be the minimum 

complementary pendant dominating set of Ă. 

Hence ÿā��(�2 × �Ā23) = ÿ(�2 × �Ā23) + 2 = +Ā2, + 2. 
Theorem: 5.12 

If T is a tree of order Ā g 3, then ∆(Ā) f ÿā��(Ā).  
Furthermore ÿā��(Ā) = ∆(Ā) if and only if T is a wounded spider graph which is not a 

star. 

Theorem: 5.13 

For ÿ g 2, if Ă is a ÿ 2regular graph. Then  ÿā��(Ă) f  ÿ(Ă) + ÿ 2 2. 
Theorem: 5.14 

Let Ă be a graph with n vertices. 

Then ÿ(Ă) + ÿā��(Ă) f Ā. 
Proof: 

Let S be a complementary pendant dominating set. 

Then S is a dominating set and  < ý 2 ÿ > contains a pendant vertex. 

Obviously, ÿā��(Ă) f |ÿ|. 
Since S is a dominating < ý 2 ÿ > is also a dominating. 

Thus ÿ(Ă) f |ý 2 ÿ|. 
Hence ÿ(Ă) + ÿā��(Ă) f |ÿ| + |ý 2 ÿ| = Ā. 
Hence Proved. 

Theorem: 5.15  

Let Ă be any graph. Then + Ā1+∆(ÿ), f ÿā��(Ă) f Ā 2 ∆(Ă). 
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Theorem: 5.16 

Let Ă be any graph with n vertices. Then, 

ÿā��(Ăý�ÿ) = {ÿÿĀ{ÿ, Ā}, ÿĀ Ă ýāĀā�ÿĀĀ � ĂÿĀþ�Āā ăÿÿāÿą.Ā,                            āā/ÿÿĄÿĀÿ  

Proof: 

Let G be any graph of order Ā and let �ÿ be a path of order ÿ. 
Let {ă1, ă2, & , ăĀ} and {Ă1, Ă2, & , Ăÿ} are vertices of Ă and �ÿ respectively. 

If Ă contains a pendant vertex then clearly ÿā��(Ăý�ÿ) = ÿÿĀ{ÿ, Ā}. 
Then < ý(Ăý�ÿ) 2 {ă1, ă2, & , ăĀ} > contains a pendant vertex. 

Therefore ÿā��(Ăý�ÿ) = |Ă| = Ā. 

Theorem: 5.17 

If G is a graph, then ÿā��(Ă) = 1 if Ă ≅ Āýþ1, where T is a tree. 

Proof: 

Assume Ă ≅ Āýþ1, then the set {ă} is a complementary pendant dominating 

set of G. 

Where ý(þ1) = {ă}. 
Conversely if ÿā��(Ă) = 1, then there exist a complementary pendant dominating set 

S of Ă with |ÿ| = 1. 
Such that < ý(Ă) 2 ÿ > is tree, since each vertex in < ý(Ă) 2 ÿ > is adjacent to the 

vertex S.  

 Ă ≅ Āýþ1. where Ā =< ý(Ă) 2 ÿ > 

Theorem: 5.18 

Let Ă be a connected graph with Ā vertices. Then ÿā��(Ă ∘ þ1) = Ā. 
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Proof: 

Let us choose Ă and ă be any two leaves of adjacent supported vertices of the 

graph (Ă ∘ ă). 
The set ÿ = {ý 2 �(Ă, ă)} ∪ {Ă, ă} will be a complementary pendant dominating set 

of (Ă ∘ ă). 
Then |ÿ| f |ý 2 �(Ă, ă)| ∪ {Ă, ă} = Ā 2 2 + 2 = Ā. 
Theorem: 5.19 

Let Ā1 and Ā2 be any two trees of order Ā1 and Ā1 respectively. Then   ÿā��(Ā1 ∘ Ā2) = Ā1.  
Proof: 

Let ý(Ā1) denotes the vertex set of Ā1 and  ý(Ā2) is a dominating set of  Ā1 ∘ Ā2.   

Then <ý(Ā1 ∘ Ā2) 2 ý(Ā1) > contains a pendant vertex, therefore ý(Ā1)  is a 

complementary pendant dominating set of Ā1 ∘ Ā2.  

   ÿā��(Ā1 ∘ Ā2) = |ý(Ā1)| = Ā1. 
Hence Proved. 

Theorem: 5.20 

Let Ă be any graph, if þÿ�ÿ(Ă) g 3 and G contains a no isolated vertex. Then  

   ÿā��(Ă) = 2. 
Proof: 

Let Ă and ă be two vertices of Ă  such that þ(Ă, ă) = þÿ�ÿ(Ă) g 3. 

Obviously Ă and ă dominates Ă̅ since there is no vertex in G adjacent to both Ă and ă. 

Hence {Ă, ă} dominates Ă̅ and  ÿā��(Ă) f 2. 
If    ÿā��(Ă) = 1,then Ă has an isolated vertex, contrary to the hypothesis. 
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Definition: 5.21 

A graph is said to be triangle free if no two adjacent vertices are adjacent to a 

common vertex. 

Example: 5.22 

 

 

 

 

 

 

Fig. 15. 

Theorem: 5.23 

Let Ă be a triangle free graph of order at least 4.  Then  ÿā��(Ă̅) = 2 or 3. 

Proof: 

Let Ă contains an isolated vertex then clearly ÿā��(Ă̅) = 2. 

Suppose Ă has no isolated vertex, then Ă contain at least one edge say ÿ = Ăă. 

As Ă is triangle free no vertex in Ă can be adjacent to both Ă and ă. 

Thus ÿ = {Ă, ă} will be a ÿ-set in Ă. 

Now, for any vertex Ą ∈ ý(Ă), the set ÿ ∪ {Ą} will be a ÿā��-set in Ă. 

Hence, ÿā��(Ă̅) = 3. 

Hence Proved. 
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of eneryption. 1o 
compute the next four wore 

ch ol the 

pute. g(wa). 

general, to caleulat 

)and set W D gWa),Ws= W wi,W W, W2 
alculate Wi, Wi+1,Wi+2, and wI+3, wherci is divisible 

W3. In gen 

WiWi-4 gW-1). We then use w to calculate 

compute 
¢HOuld rst 

Wi+1 W Wi-3, 

Wi+2 i+1 Wi-2, and 

Wi+3Wi+2 Wi-1 

nction g operates in three steps. First it will shift the bytes to the left. 
No 

ow, the fun 

W3 Would he {ki3,k14,k15, k12). The bytes would then be substituted g 

or 

exanple, 
w^ 

scribed in the encryption section. Finally, a rOund constant, ci is to be 

box as descr 

nà the S-bo 

nd constant is generated 

OR'd. 

The 

round 

cor ecursively. To start, C= 012. Then, the 
const stants may be calculated by ci? 02 X Ci-1. It is important to note 

yainung round 

polynomial multiplication over GF (2) reduced by the AES 
4 x3+x+ 1. We note that 02 over GF (28)is multiplication with the nodtlo 

onding ynomial ci-1 by x. 

6Example 0f Encryption a 128-bit Message 

Alice would like to send the message THE BOSS IS HERE" to Bob. Alice and 

nd kave alveady agreed to use the key "APPLE SAUCE OLI!" in case of an emereency 

and 

Trughout the paper all text to her conversion is done via the American Standard Code 

r nfommation Interchange (ASCI). Now, "THE BOSS IS HERE" in hexadecimalis 

54484520424F53532049532048455245 
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JCE OLI" is APPLE SAUCE O 

4150504C4S205341554345204F4C491 

tey used before the first round of encryption. Let us compute the key s 
the 

keyY 

used 

becf 

h the given 128 starting key: 

41 45 55 4F1 
50 20 43 4C 

Ko 50 53 45 49 
L4C 41 20 21J 

= 1,50,50,4C), 

We 
have 

Wo 
={41, 

W 45,20,53,41), 

w=55,43,45,20), and 

Ws= {4F, 4C, 49,21). 

We must now compute g(W3), obtaining 14C, 49,21,4P} after the left shift of the bytes. 

Naxt using the S-box, Table 5.1, we get 29,3B, FD, 84}. Last, we XOR the word with 

the first round constant, {01,00,00,00. Consequently we have, 29=001010012, 

2916 012 = 001010012 012 

The rema ining entries of W3 are unchanged. This yields g(w3) = {28,38, FD, 84). We 

= 001010012 

2816 

upute w4 as described above. 
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W Wo g(wa) 

= {41 28,50 3B,50 FD,4C 84) 
= {D9,6B, AD, C8} 

remaining XOR operations in the same way gives 
rforming the ren 

A8, FE, 89), Ws= 9,08, BB, A9} and w7 = {8644, F2,88), giving us our 

9C, 4B, FE, 

sist 1ouna Key 

K, = {D9,6B, AD, C8,9C, 48, FE, 89,c9,08, BB, A9,86,44, F2,88) 
mnute the next four words we start by computing g(w,): 

compute the i 

on, 

as 
before, 

to 

86,44, F2,88) {44, F2,88,86 

(1B,89,C4,44} 

{19,89, C4,44}. 

on by 2 in binary shifts the number in question to the left one place value and 

into the one's place, in much the same way as multiplying by 10 with 
serts a zero into the 

eiml numbers. Thus, computing the round constant is trivial until the 9th round, where 

the previous round constant was 100000002 and multiplication by 02 would push the 1 

Qut of the 8 bits that make the byte. To fix this, the polynomial representationof 

I00000x 02==x'.x = X", must be reduced back into the field GF (2") via the 

Paymomialx" +x* + x3 +x+1. So, the polynomial representation of our 9" round 

wnstant will be 
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3 +X+ 1) = x* + x3 
mod (x +x++x+1). 

9th round con. etant Ca= {00011011,00,00,00). We compute the 

to our 

multiplying the 9round constant by 02, which yiclds Following the key expansion scheme as described, we 

by nnd comslant 

10110,00,00,00 

10 round keys: 

. = (41,50,50,4C, 45,20,53,41,55,43,45,20,4F,4C, 49,21) 
= {D9,6B, AD, C8,9C, 4B, FE,89, C9,08, BB, A9,86,44, F2,88) 

, co, E2,69,8C, 5C, ,A9,97,05,95, A1,2C, AD, 13, E5, DE,241 

K = {1D, FF, 5F, F1,41,56, C8, F4, D4, F7, E4,59,C7,12,34,7D)) 

K 

.{DC, 7F, CD, 37,9D,29,05, C3,49, DE, E1,9A, 8E, CC, DB. F7 

S87.C5,59,2E, 14, EC, 5C, ED, 53,32, BD, 77, DD, FE, 66,90 

.= (1C, F6,39, EF, 06,14, 65,02,55,28, D8,75,88, D6, BE, E5} 

K, = {AA, 58, E0,2B, AC, 42,85,29, F9,6A, 5D, 5C, 91, BC, E3, B9] 

Ka = {4F, 59,39, EF, E3,0B, BC, C6,14, 61, E1,94, 88, DD, 02,23) 

K = {95,2E, 1F, D2,76,25, A3,14,6C, 44,42,8E, E7,99,40, AD} 

K10 {4D,27,84, 46,3B, 02,29,52,57,46,6B, DC, B0, DF, 2B, 71) 

Now, we can start encryption process. Entering our plain-text message into a 

aik as described in Section 5.4 we have 
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[54 42 20 48 
48 4F 49 45 45 53 53 52 

Mo 

20 53 0 A5 

Cntry-Wise with the original key Ko, obtainin 
20 48] 
49 45 e50 20 43 

52 50 53 45 49 

41 45 55 4F1 
15 07 75 071 18 6F 0A 09 15 00 

54 42 

4C /48 4 53 53 

45 
L6C 12 00 64 

16 1B 
20 

53 
20 45 4C 41 20 21 

entry of our urrent matrix via the S-bo -box from Table 5.1, which 

stitute each 

Hë subst 

C5 9D [59 
A8 67 

C5 
01 AD 

59 63 47 AF 
50 C9 63 43 

nlv the shift row operation to get 

Ne 
then 

apply 

the 
shit 

C5 C5 
A8 67 01 AD 
47 AF 59 63 

59 9D 

L43 50 C9 63 

Round 1 involves multiply1ng by the constant matrix Tihe next 

02 03 01 01 

01 02 03 01 

Cl01 0 02 03 
Lo3 01 01 02 
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C7 [55 
98 B1 

B2 7D 
BD 42 BA 17 6E 0B 82 3C 6D 5C 

OR'd entry-wise wit 
with Ki, producing he 

above 
111atrix is 

[8C 5B 7B FB M F3 FA B5 06 

D5 F9 M117 E9 
L4A B5 C4 D4 

sund 
I 1S 

complete. 
This process repeats for 9 

its the shift column operation. Even after one round of AES, the 16 byt 

more rounds. The only exception is 

oytes 

Kouna 10 omits 

RCE3174ASBF AE9B57BBSD5C4F B06F9D4 

recognizable characters, none of which were in the original plain-text message. 

have ten 

ng after Round 2 we have 

34 05 43 18 
M2 = 91 47 80 CE 

M2FE 33 E3 C4 
19E B5 EO 1E 

far Round 3 the matrixi 

60 CC 08 3C 

Ma 92 93 E3 19 M3F9 4B 7C B3 
36 8E F6 0AJ 

300K at a new example. We will encrypt "THE BOSS IS HERE" and see how the 

ng 4Sigie character, a capital I to lowercase i, affects the matrix after a Singie 
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The key will be the sam so he key expansion is the sanme. We 
start 

an 

vOR operalion. Our initial matrix this tinme is 

nd 

ol' 

AES. 

77 

th an A 

I54 42 20 481 48 4F 69 45 
53 53 52 

20 53 20 45 

Mo 45 

le compte 

42 20 487 

69 
[41 

45 53 52 
A5 

50 53 45 49 15 00 16 1B 

45 
(54 
48 4F 

45 53 

20 53 

55 4F 15 07 75 071 
69 45 50 20 43 18 6F 2A 09 20 451 L4C 41 20 21 L6C 12 00 64 

S-box from Table 5.1 to bstitute via the 

[59 
AD A8 ES 01 

59 63 47 AF 

C5 9D C5 

L50 C9 63 431 

ng the shift row operation yields the matrix 

C5 [59 
|A8 
47 AF 59 63 

C5 9D 
9 E5 01 AD 

43 50 C9 63 

o unsurprisingly our matrix still has only one byte ditferent from the original example: 

we have only applied confusion. Ihe next stepP, mix column, applies the necessary 

diffusion. 

02 03 01 01 59 C5 9D C5 55 5A B2 70 
98 AE BD 42| 

5A B2 7D 

01 02 03 01 A8 ES 01 AD98 AE BD 42 

01 01 02 03 47 AF 59 63 DA 95 6E 0B 

L03 01 01 02J L43 50 C9 63 82 BE 6D 5CI 
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nmatrix is XOR:. with Ri, which yields 

ur curTCnt 
ina, Ur' CUr, 

8C C6 
F3 7B 

ES Mi17 FB B5 
6B 06 D5 L4A 37 C4 D4} F9 

single charact 
one round of. AES with 

a 

acter changed, we have M, differing from 

.ot in the second rOund, the shift row step will shift one 

1huus aCr One. 

entire column. Moreo 

differing elements into each column. After ach column will affec the entire matrix. Hence, a single byte 

these lour diffe, 

in 

an 

After the mix column operation, the 

differing element 

one a 

entire message after the 
diffused into 

the second round. The matrix after 

elhange has difs 

d2 becones 

KOuna. 

[ 33 04 0C OA1 
M 62 CA CF M 0A 6D 

BE 
L6A 

2C 06 
39 7E 7F 

than our original example. This helps illustrate 
hich 

Is a completely lifferent matrix 

y effectively AES diffuses a single bit flip throughout the entire message. 
hOW e 

57 Deeryption

Decryntion is required to retrieve the original message. The steps must be 

Prsed and operations inverted. Thec XOR operation is its own inverse, X BX =0 for 

all XE R, so the first operation for decryption would be to XOR the last round key. The 

irst round of decryption would skip inverting the mix column operation as it was not 

pertormed in the last round of encryption. For all other rounds, we multüply by the 

nverse of the constant matrix 
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[OE O8 0D 091 
09 O OB 0D 

loD 09 O8 O8 
OR OD 09 0 

shif row opers e tuet 
To imver the 

te the right, the third row to dhe righe tride. md the fonurt w fhres 

sey the firs owe sans, ahh he 

nally, to undo the Sbo9 oe oule find teir sntry inide fhe nable 
row and oolumn to find e entry' s re-mage For example, if 

te rghr Pina 

dhe correspondin
e com 

"GD was before the Sbeo. we woid locate 80 in Table 5 1 

and colums "0 Henoe $ (60)-83 
hat it 

is in row " 
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CILAPTER 6 
pISCRETE LOGARITHM PROom.EM 

BLEM 
Nlotivation 

for an ymmetric cipher was still high even after RSA. There wer 

The demand 

computation tionally efticient symmeiric algorithms in DES and later 

Very secure and 

lhe:ady vCry 

that the establishment of keys could be dificult if the 

ir mein weakne 

ere 

The 

ould not physically meet before AES 

communication began. The Diffie-Hell 

nvO parueS could 

vented to satisfy the demand 
key excnange was ellman 

o:ffie-Hellman Key change 

The 

Diffie-Hellman key exchange uses cyclic groups, a class of groups with 
t us say that G is a cyclic group and that a E G is a generator of G. So, for 

erators. 

exists some a E N su that a" = b mod G. »Now, say Alice and Bob all bE Gthe 

1e a key but do not have a secure chain of communication. They ld like to exc 

HOuld 

celect a cyclic grouP, &, ana generator, a. They then each select a group 

could 

Jement 
and keep that elem lement secret. Suppose Alice picks T and Bob selects s. Alice 

would compute 
A = a" mod Gand s send the result to Bob. Bob computes A mod G. 

Doh now has the private key he and Alice will use for encryption. The process is 

EDeated for Alice to have the private key: Bob computes B = a mod G and sends the 

rasult to Alice. Alice then computes B' mod G and they now have the same key. An 

avesdropper,Eve, knows the group G, the generator a, and the public messages between 

d Bob, A and B. Eve can formulate the equation a' =A mod G. The only 



Eve is r. If 
lor solve foT, then the systen The uay to solve lor an exponeit is by ung wyarhats 

Sy to copute. 

the typical 

as 

garithm approuch learned in alyebra lavs is uwe 

lve for the missing exponential in the Diffie11e discrete logarith problem; 

unalely 1or Eve 

he 

aProach 
to so 

,hnge' leads to 

itficulty 

of 
the 

proble 

ads to the ellnan the security of this key exchanye relies 
roblem. 

Logarithm Problem 
piscrete Logar 

iscret 

logarithm problem is formulated as follows: Given prime number P 
The 

tive element a, find x such that a = B mod p. If a group 

Zp, and prin 
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CONCLUSION 
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1. PRELIMINARIES 

Definition: 1.1 

          A Graph ă = (ý, ā) consists of a pair of V and E.  The elements of V are called 

vertices and the elements of E are called edges.  Each edge has a set of one or two 

vertices associated to it, which are called its end points. 

Definition: 1.2 

          Let E be an unordered set of two elements subsets of V.  If we considered 

ordered pair of elements of V then the graph  is called  ă = (ý, ā) a directed graph 

or digraph. 

Definition: 1.3 

          A walk consists of an alternating sequence of vertices and edges consecutive 

elements of which are incident, that begins and ends with a vertex.  A walk is closed 

if it begins and ends at the same vertex. 

Definition: 1.4 

          A cycle is a closed walk in which all the vertices are distinct except u=v, that is 

the initial and terminal points of the walk coincide. 

Definition: 1.5 

          A graph G is called acyclic or forest if, it has no cycles. 

 

 



                                                                                                                     2 

 

Definition: 1.6 

          A bipartite graph is one whose vertex can be partitioned into two subsets X 

and Y so that each edge has one end in X and one end in Y such a partition (X, Y) is 

called a Bipartition of the graph. 

Definition: 1.7 

          A tree is an acyclic connected graph. 

Definition: 1.8 

          For subsets S and S9 of V denote by [S, S9] the set of edges with one end in S 

and the other end in S9.  An edge cut of G is a E of the form [S, S9] where S is a non-

empty proper subset of V and S9=V\S. 

Definition: 1.9 

          A minimal non-empty edge cut of G is called a Bond or cut-set. 

Definition: 1.10 

          A graph G is said to be connected if between every pair of vertices x and y in 

G, there always exists a path in G.  Otherwise, G is called disconnected. 

Definition: 1.11 

          A vertex v of a graph G is a cut-vertex if the edges set E can be partitioned into 

two non-empty subsets ā1 and ā2 such that G(ā1) and G(ā2) have just the vertex v in 

common. 
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Definition: 1.12 

          An edge set E of a graph G is a cut edge of G if W(G-e)>W(G).  In particular, 

the removal of a cut edge from a connected graph makes the graph disconnected. 

Definition: 1.13 

          An edge with identical ends is called a loop. 

Definition: 1.14 

          A connected graph that has no cut vertices is called a Block. 

Definition: 1.15 

          A graph G is planar if it can be drawn in the plane in such a way that no two 

edges meet except at a vertex with which they both are incident.  Any such drawing is 

a plane drawing of G. 

          A graph G is non-planar if no plane drawing of G exists. 

Definition: 1.16 

          A planar graph is an Outer Planar graph if it has an embedding on the plane 

such that every vertex of the graph is a vertex belonging to the same (usually exterior) 

region. 

Definition: 1.17 

          A Tour of G is a closed walk of G which includes every edge of G at least 

once. 
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Definition: 1.18 

          An Euler Tour of G is a tour which includes each edge of G exactly once. 

Definition: 1.19 

          A graph G is called Eulerian or Euler if it has an Euler Tour. 

Definition: 1.20 

          A plane graph G partitions the rest of the plane into a number of arc-wise 

connected open sets.  The sets are called the faces of G. 
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2. DUAL GRAPHS 

2.1 INTRODUCTION 

          A map on the plane or the sphere can be viewed as a plane graph in which the 

faces are the territories, the vertices are places where boundaries meet and the edges 

are the parties of the boundaries that join two vertices from any plane graph we can 

form a related plane graph called its <Dual=. 

2.2 DUAL GRAPHS 

Definition: 2.2.1 

          Let G be a connected planar graph.  Then a dual graph ă∗ is constructed from 

a plane drawing of G, as follows 

          Draw one vertex in each face of the plane drawing, these are vertices of ă∗.  For 

each edge e of a plane drawing, draw a line joining the vertices of ă∗ in faces on 

either side of e, these lines are the edges of ă∗. 

Example: 2.2.2 

(1) Isomorphic dual graphs: 

          We always assume that we have been presented with a plane drawing of G.  

The procedure is illustrated below. 
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                          G                                                                         �∗ 

Figure: 2.1 

          Also if G is a plane drawing of a connected planar graph, then so its dual ă∗, 

and we can thus construct (ă∗)∗, the dual of ă∗. 

 

 

 

 

 

                                    (�∗)∗                                                                     �∗ 

Figure: 2.2 

          The above diagrams demonstrated that the construction that gives rise to ă∗ 

from G can be reversed to give G from ă∗.  It follows that (ă∗)∗ is isomorphic to G. 

(2) Non-isomorphic dual graphs: 

          Dual graphs are not unique, in the sense that the same graph can have non-

isomorphic dual graphs because the dual graph depends on a particular plane  
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embedding.  In Figure 2.3, the blue graphs are isomorphic but their duals red graphs 

are not.  The upper red dual has a vertex with degree 6 (corresponding to the outer 

face of the blue graph) while in the lower red graph all degrees are less than 6. 

 

 

 

 

 

 

 

 

 

Figure: 2.3 

(3) Uniqueness of dual graphs: 

          (1) Consider the graph ă1and its dual ă1∗
.  Also consider the graph ă2 and its 

dual ă2∗
 (see Figure: 2.4)  

          (2) Observe that graph ă1and ă2 are two different planar representations of a 

same graph. 

          (3) The graph ă2∗
 contains a vertex of degree 5, and the graph ă1∗

 contains no 
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vertex of degree 5.  Therefore, ă1∗
 and ă2∗

 are non-isomorphic.  So, we have that ă1 ≅ ă2 but ă1∗ ≇ ă2∗
. 

From (3), we may conclude that two isomorphic planar graphs may have  distinct non-

isomorphic duals. 

 

 

 

 

 

                                   �ÿ                                                                   �ÿ∗
 

 

 

 

 

 

 

                                   �Ā                                                                  �Ā∗
 

Figure: 2.4 

There are many forms of duality in graph theory. 

 

þ1 

þ2 

þ3 
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þ3∗ þ4∗ 

þ5∗ þ6∗ þ7∗ 

þ1∗ 
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þ4∗ 
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Result: 2.2.3 

          (1) The dual of a plane graph is planar multigraph – a graph that may have   

loops and multiple edges. 

          (2) If G is a connected graph and if ă∗ is a dual of G then G is a dual of ă∗. 

Definition: 2.2.4 

          Let ÿ(ă) be the cycle rank of a graph G, ÿ∗(ă) be the co-cycle rank, and the 

relative complement ă 2 Ą of a subgraph H of G be defined as that subgraph 

obtained by deleting the lines of H.  Then a graph ă∗ is a combinatorial dual of G if 

there is one-to-one correspondence subsets of lines, 

          ÿ∗(ă 2 Ā) = ÿ∗(ă) –ÿ(Ā∗) 

          where <Ā∗> is the subgraph of ă∗ with the line set Ā∗. 

          Whitney showed that the geometric dual graph and combinatorial dual graph 

are equivalent, and so may be called <the= dual graph. 

Result: 2.2.5 

          A graph is plane if and only if it has a combinatorial dual. 

Definition: 2.2.6 

          The weak dual of an embedded planar graph is the sub graph of the dual graph 

whose vertices correspond to the bounded faces of the primal graph. 
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Result: 2.2.7 

          A planar graph is outer planar if and only if its weak dual is a forest. 

          A planar graph is a Halin graph if and only if its weak dual is biconnected and 

outer planar. 

2.3 PLANE DUALITY 

Proposition: 2.3.1 

          The dual of any plane graph is connected. 

Proof: 

          Let G be a plane graph and ă∗ a plane dual of G.  Consider any two vertices of ă∗.  There is a curve in the plane connecting them which avoids all vertices of G.  The 

sequence of faces and edges of G traversed by this curve corresponds in ă∗ to a walk 

connecting the two vertices. 

Definition: 2.3.2 

          A simple connected plane graph in which all faces have degree three is called a 

plane triangulation or, for a short triangulation. 

Proposition: 2.3.3 

          A simple connected plane graph is a triangulation if and only if its dual is cubic. 
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Deletion-contraction duality: 

          Let G be a planar graph and ẵ be a plane embedding of G.  For any edge e of G, 

a plane embedding of G\e can be obtained by simply deleting the line e from ẵ.  Thus 

deletion of an edge from a planar graph results in a planar graph.  Although less 

obvious, the contraction of an edge of a planar graph also results in a planar graph.  

Indeed, given any edge e of a planar graph G and a planar embedding ẵ of G, the line 

e of ẵ can be contracted to a single point (and the lines incident to its ends redrawn).  

So, that the resulting plane graph is a planar embedding of G\e. 

          The following two propositions show that the operations of contracting and 

deleting edges in plane graph are related in a natural way under duality. 

Proposition: 2.3.4 

          Let G be a connected plane graph, and let e be an edge of G that is not a cut 

edge. Then (ă\þ)∗ ≅ ă∗ þ∗⁄ . 

Proof: 

          Because e is not a cut edge, the two faces of G incident with e are distinct; 

denote them by ÿ1 and ÿ2.  Deleting e from G results in a amalgamation of ÿ1 and ÿ2 

into a single face f (see Figure: 2.5). Any face of G that is adjacent to ÿ1 and ÿ2 is 

adjacent in G\e to f; all other faces and adjacencies between them are unaffected by 

the deletion of e. 

          Correspondingly, in the dual, the two vertices ÿ1∗
 and ÿ2∗

  of ă∗ which 

correspond to the faces ÿ1 and ÿ2 of G are now replaced by a single vertex of (ă\þ)∗,  
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which we may be denote by ÿ∗, and all other vertices of ă∗ are vertices of (ă\þ)∗.  

Furthermore, any vertex of ă∗ that is adjacent to ÿ1∗
 and ÿ2∗

 is adjacent in (ă\þ)∗ to ÿ∗, and adjacencies between vertices of (ă\þ)∗ other than v are the same as in ă∗. 

The assertion follows from these observations. 

 

 

 

 

 

 

                                 (a)                                                                 (b) 

                            G and �∗                                                   �\ÿ and �∗ ÿ∗⁄  

Figure: 2.5 

Proposition: 2.3.5 

          Let G be a connected plane graph and let e be a link of G.  Then                     (ă þ⁄ )∗ ≅ ă∗\þ∗. 

Proof: 

          Because, G is connected ă∗∗ ≅ ă.  Also because is not a loop of G, the edge þ∗ 

is not a cut edge of ă∗, so ă∗\þ∗ is connected by proposition: 2.3.4, 

 

ÿ1∗
 

ÿ2∗
 

e 

þ∗ ÿ∗ 
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(ă∗\þ∗)∗ ≅ ă∗∗ þ∗∗ ≅ ă þ⁄⁄ . 

          The proposition follows on taking duals. 

          We now apply propositions 2.3.1 and 2.3.3 to show that non separable plane 

graphs have non separable duals. This fact turns out to be very useful. 

Theorem: 2.3.6 

          The dual of a non separable plane graph is non separable. 

Proof: 

          By induction on the number of edges, let G  be a non separable plane graph. 

The theorem is clearly true if G has at most one edge, so we may assume that G has 

atleast two edges, hence no loops or cut edges. Let e be an edge of G. Then either G\e 

or ă þ⁄  is non separable. If G\e is non separable so is (ă\þ)∗ ≅ ă∗ þ∗⁄ , by the 

induction hypothesis and proposition 2.3.4. And we deduce that G* is non separable. 

The case where  ă þ⁄  is non separable can be established by an analogous argument. 

2.4 COMBINATORIAL DUAL 

Proposition: 2.4.1 

          Let G be a 2-connected plane multi graph, and let H be its geometric dual.  

Then H is a combinatorial dual of G.  Moreover, G is a geometric dual graph (and 

hence a combinatorial dual) of H. 

Proof: 

          Since the minimal cuts of G are the minimal separating sets of G, 
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          We now have: 

          (A) If ā ⊆ ā(ă) is the edge set of a cycle in G, then ā∗ is cut in H. 

          (B) If E is the edge set of a forest in G, then Ą 2 ā∗ is connected. 

          Imply that H is a combinatorial dual of G.  In particular, H is 2-connected 

contains at least three vertices (Otherwise, G is a cycle and the claims are easy to 

verify).  To prove that G is a geometric dual of H, it suffices to prove that, for each 

facial cycle ÿ∗ in H, has only one vertex in the face F of H bounded by ÿ∗, (clearly, G 

has no edge inside F).  But, if G has two or more vertices in F, then some two vertices 

of ÿ∗ can be joined by a simple arc inside F having only its ends in common with ă ,Ą.  But, this is impossible by the definition of H. 

          Whitney [wh33a]  proved that combinatorial duals are geometric duals.  This 

gives rise to another characterization of planar graphs. 

Theorem: 2.4.2 

          Let G be a 2-connected multigraph.  Then G is a planar if and only if it has a 

combinatorial dual.  If ă∗ is a combinatorial dual of G, then G has an embedding in 

the plane such that ă∗ is isomorphic to the geometric dual of G.  In particular, also ă∗ 

is planar, and G is a combinatorial dual of ă∗. 

Proof: 

          By proposition 2.4.1, it suffices to prove the second part of the theorem.  The 

proof will be done by induction on the number of edges of G.   
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          If G is a cycle, then any two edges of ă∗ are in a 2-cycle and hence ă∗ has only 

two vertices.  Clearly, G and ă∗ can be represented as a geometric dual pair. 

          If G is not a cycle, then G is the union of a 2-connected subgraph ă ′ and a path 

P such that ă′  + � consists of the two end vertices of P.  By the induction hypothesis 

and by the proposition, < If ă∗ is a combinatorial dual of G and ā ⊆ ā(ă) is a set of 

edges of G such that ă 2 ā has only one component containing edges, then ă∗ þ∗⁄  is a 

combinatorial dual of ă 2 þ (minus isolated vertices)=, Ą = ă∗ ā(�∗)⁄  is a 

combinatorial dual of ă′. By the induction hypothesis, ă′ and H can be represented as 

a geometric dual pair, and ă′ is also a combinatorial dual of H. 

          If þ1 , þ2 are two edges of P, then þ1∗, þ2∗ ,are two edges of ă∗ which belong to 

a cycle ÿ∗ of ă∗. If  ÿ∗ has length at least 3, then it is easy to find a minimal cut in ă∗ 

containing e, but not þ2 . But, this is impossible since any cycle in G containing þ1 

also contains þ2 . Hence, all edges of ā(�)∗ are parallel in ă∗ and join two vertices �1, �2 say, in ă∗. 

          Let �0 be the vertex in H which corresponds to �1, �2.  The edges in H incident 

with �0 form a minimal cut in H. Let C be the corresponding cycle in ă′. As ā(ÿ)∗ 

separates  �0 from Ą 2 �0 in H, C is a simple closed curve separating �0 from Ą 2 �0. 

In particular, C is facial in ă′. 
          Let ÿ1, ÿ2 be the two cycles in ÿ , � containing P such that ā(ÿ�)∗is the 

minimal cut consisting of the edges incident with �� ,  for ÿ = 1,2 .  Now we draw P 

inside the face F of ă′ bounded by C and represent �� inside ÿ� for ÿ = 1,2 .  This way 

we obtain a representation of ă∗ as a geometric dual of G. 
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Proposition: 2.4.3 

          Let G be a 2-connected multigraph and let ă∗ be its combinatoinal dual.  Then ă∗ is 3-connected if and only if G is 3-connected. 

Proof: 

          By Theorem 2.4.2, it sufficies to prove that G is 3-connected whenever ă∗ is 3-

connected.  Suppose that this is not a case if G has a vertex of degree 2, then ă∗ has 

parallel edges, a contradiction. So, G has minimum degree at least 3. Then we can 

write ă = ă1 , ă2  where ă = ă1 + ă2 consists of two vertices, ā(ă1) + ā(ă2) = ∅, 

and each of ă1, ă2 contains atleast three vertices. 

          By Theorem 2.4.2, G is planar.  Then ă has a facial cycle C such that ÿ + ă� is 

path �� for ÿ = 1, 2 . Clearly, ă/ā(ÿ) has two edges which are not in the same block. 

          By proposition, <If, ă∗ is a combinatorial dual of G and ā ⊆ ā(ă) is a set of 

edges of G such that ă 2 ā has only one component containing edges, then ă∗ ā∗⁄  is 

a combinatonal dual of ă 2 ā (minus isolated vertices)=, and Theorem 2.4.2, ă∗ 2ā(ÿ)∗ has two edges which are not in the same block.  As ā(ÿ)∗  is the set of edges 

incident with a vertex of ă∗, ă∗ is not 3-connected. 

Theorem: 2.4.4 

          A necessary and sufficient condition for two planar graphs ă1 and ă2 to be 

duals of each other is as follows.  There is a one to one correspondence between the 

edges in ă1 and the edges in ă2 such that a set of edges in ă1 forms a circuit if and 

only if the corresponding set in ă2 forms a cut-set. 
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Proof: 

          Let us consider a plane representation of a planar graph G.  Let us also draw 

(geometrically) a dual ă∗ of G.  Then consider an arbitrary circuit Г in G.  Clearly, Г 

will form some closed simple curve in the plane representation of G- dividing the 

plane into two areas (Jordan curve theorem).  Thus the vertices of  ă∗ are partitioned 

into non-empty, mutually exclusive subsets- one Г and other outside. 

          In other words, the set of edges Г* in ă∗ corresponding to the set Г in G is a 

cut-set in ă∗.  (No proper subset of Г* will be a cut-set in ă∗).  Likewise it is apparent 

that corresponding to a cut-set ÿ∗ in ă∗ there is a unique circuit consisting of the 

corresponding edge-cut S is a circuit.  This proves the necessity of the theorem. 

          To prove the sufficiency, let G be a planar graph and let ă ′ be the graph for 

which there is a one-to-one correspondence between the cut-sets of G and circuits of ă ′, and vice-versa.  Let ă∗ be a dual graph of G.  There is a one-to-one 

correspondence between the circuits of ă ′ and cut-sets of G, and also between the cut-

sets of G and circuits of ă∗.  There is one-to-one correspondence between the circuits 

of ă ′ and ă∗, implying that ă ′  and ă∗ are 2-isomorphic. 

          By a theorem, <All duals of a planar graph G are 2-isomorphic; and every graph 

2-isomorphic to a dual of G is also a dual of G=, ă ′ must be a dual of G. 

Theorem: 2.4.5 

          Edges in a plane graph G form a cycle in G if and only if the corresponding 

dual edges form a bond in ă∗. 
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Proof: 

          Consider D ⊆ E(G).  If D contains no cycle in G, then D encloses no region.  It 

remains possible to reach the unbounded face of G from every face without crossing 

D.  Hence, ă∗ 2 Ā∗ connected, and Ā∗ contains no edge cut. 

          If D is the edge set of a cycle in G, then the corresponding edge set Ā∗⊆ā(ă∗) 

contains all dual edges joining faces inside D to faces outside D.  Thus Ā∗ contains an 

edge cut. 

          If D contains a cycle and more, then Ā∗ contains an edge cut and more. 

          Thus Ā∗ is a minimal edge cut if and only if D is a cycle. 

 

 

 

 

 

 

 

 

Figure: 2.6 
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Theorem: 2.4.6 

          The following are equivalent for a plane graph G. 

          (A) G is bipartite. 

          (B) Every face of G has even length. 

          (C) The dual graph ă∗ is Eulerian. 

Proof: 

          A⇒B.  A face boundary consists of closed walks.  Every odd closed walk 

contains an odd cycle.  Therefore, in a bipartite plane graph the contributions to the 

length of faces are all even. 

          B⇒A.  Let C be a cycle in G.  Since G has no crossings, C is laid out as a 

simple closed curve; let F be the region enclosed by C.  Every region of G wholly 

within F or wholly outside F.  If we sum the face lengths for the regions inside F, we 

obtain an even number.  Since each face length is even.  This sum counts each edge of 

C once.  It also counts each edge inside F twice, since each such edge belongs twice to 

faces in F.  Hence the parity of the length of C is the same as the parity of the full 

sum, which is even. 

          B⇔C.  The dual graph ă∗ is connected and its vertex degrees are the face 

lengths of G. 

 

 

 

Figure: 2.7 

C 
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Theorem: 2.4.7 

          A graph has a dual if and only if it is planar. 

Proof: 

          We need to prove just the <only if= part.  That is, we have only to prove that a 

non-planar graph does not have a dual.  Let G be a non-planar graph.  Then G 

contains ć5  or ć3,3 or a graph homeomorphic to either of these.  We have already 

seen that a graph G can have a dual only if every subgraph g of G and every 

homeomorphic to g has a dual.  Thus if we can show that neither ć5 nor ć3,3 has a 

dual, we have proved the theorem.  This we shall prove by contradiction as follows: 

          (a) Suppose that  ć3,3 has dual D.  Observe that the cut-sets in ć3,3 correspond 

to circuits in D and viceversa, since ć3,3 has no cut-set consisting of two edges, D has 

no circuit consisting of two edges.  D contains no pair of parallel edges.  Since every 

circuit in ć3,3 is of length four or six, D has no cut-set with les than four edges.  

Therefore, the degree of every vertex in D is at least four.  As D has no parallel edges 

and the degree of every vertex is at least four, D must have (5 × 4) 2⁄ = 10 edges.  

This is a contradiction, because ć3,3 has nine edges and so must its dual.  Thus ć3,3 

cannot have a dual.  Likewise, 

          (b) Suppose that the graph ć5 has a dual H.  Note that ć5 has (1) 10 edges, (2) 

no pair of parallel edges, (3) no cut-set with two edges, and (4) cut-sets with only four 

or six edges.  Consequently, graph H must have (1) 10 edges, (2) no vertex with 

degree less than three, (3) no pair of parallel edges, and (4) circuits of length four and 

six only.  Now graph H contains a hexagon (a circuit of length six), and no more than  
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three edges can be added to a hexagon without creating a circuit of length three or a 

pair of parallel edges.  Since both of these are forbidden in H and H has 10 edges, 

there must be at least seven vertices in at least three.  The degree of each of these 

vertices is at least three.  This leads to H having at least 11 edges which is a 

contradiction. 
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3. SELF DUAL GRAPHS 

3.1 INTRODUCTION 

          Self-dual graph was developed by Brigitte Servatius and Herman Servatius.  

The three forms of self-duality that can be exhibited by a planar graph G, map self-

duality, graph self-duality, matroid self-duality.  They shown how these concepts are 

related with each other and with the connectivity of G.  We use the geometry of self-

dual polyhedral together with the structure of the cycle matroid to construct all self-

dual graphs. 

3.2 FORMS OF SELF-DUALITY 

Definition: 3.2.1 

          A planar graph is isomorphic to its own dual is called a self-dual graphs. 

Example: 3.2.2 

          ć4 is a self-dual graph. 

 

 

 

 

 

Figure: 3.1 
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Definition: 3.2.3 

          Given a planar graph ă = (ý, ā) any regular embedding of the topological 

realization of G into a sphere partitions the sphere into regions called the faces of the 

embedding, and we write the embedded graph, called a map, as � = (ý, ā, Ă).  G 

may have loops and parallel edges. 

Definition: 3.2.4 

          Given a map M, we form the dual map, �∗ by placing a vertex ÿ1∗ in the centre 

of each face f, and for each edge e of M bounding two faces ÿ1 and  ÿ2, we draw a 

dual edge þ∗ connecting the vertices ÿ1∗ and ÿ2∗ and crossing e once transversely.  Each 

vertex v of M will then correspond to a face ÿ∗ of �∗ and we write                        �∗ = (Ă∗, ā∗, ý∗). 

          If the graph G has distinguishable embeddings, then G may have more than one 

dual graph, see figure 3.2.  In this example a portion of the map (ý, ā, Ă) is flipped 

over on a separating sets of two vertices to form (ý, ā, Ă′). 

 

 

                   (ý, ā, Ă)                                                           (Ă∗, ā∗, ý∗) 

* 
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                    (ý, ā, Ă′)                                                              (Ă′ ∗, ā∗, ý∗) 

Figure: 3.2 

          Such a move is called Whitney flip, and the duals of (ý, ā, Ă) and (ý, ā, Ă′) are 

said to differ by a Whitney twist.  If the graph (ý, ā) is 3-connected, then there is a 

unique embedding in the plane and so the dual is determined by the graph alone. 

          Given a map ÿ = (ý, ā, Ă) and its dual ÿ∗ = (Ă∗, ā∗, ý∗), there are three 

notions of self-duality.  The strongest, map self-duality, requires that X and ÿ∗ are 

isomorphic as maps, that is, there is an isomorphism �: (ý, ā, Ă) → (Ă∗, ā∗, ý∗) 

preserving incidences.  A weaker notion requires only a graph isomorphism �: (ý, ā) → (Ă∗, ā∗), in which case we say that the map (ý, ā, Ă) is graph self-dual, 

and we say that ă = (ý, ā) is a self-dual graph. 

Definition: 3.2.5 

          A geometric duality is a bijection Ā: ā(ă) → ā(ă∗) such that þ ∈ ā is the 

edge dual to Ā(þ) ∈ ā(ă∗).  If M is 2-cell, then M is connected; so if M is a 2-cell 

embedding, then (�∗)∗ ≅ � (we use * to indicate the geometric dual operation). 

 

 

* 
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Definition: 3.2.6 

          An algebraic duality is a bijection Ā: ā(ă) → ā(Ĝ) such that P is a circuit of G 

if and only if Ā(Ă) is a minimal edge cut of Ĝ.  Given a graph ă = (ý, ā), an 

algebraic dual of G is a graph Ĝ for which there exist an algebraic duality    Ā: ā(ă) → ā(Ĝ). 

 

 

 

 

 

 

                                                                     (a)                                                                 (b) 

 

 

 

 

 

 

                                    (c)                                                               (d) 

Figure: 3.3 
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          The geometric duals are shown in dotted lines.  Embedding b) is map self-dual, 

c) is graphically self-dual and d) is algebraically self-dual. 

          We now define several forms of self-duality.  Let ă = (ý, ā) be a graph and let � = (ý, ā, Ă)  be a fixed map of G, with geometric dual �∗ = (Ă∗, ā∗, ý∗). 

Definition: 3.2.7 

          1. M is map self-dual if � ≅ �∗. 

          2. M is graphically self-dual if (ý, ā) ≅ (Ă∗, ā∗). 
          3. G is algebraically self-dual if ă ≅ ă∗, where Ĝ is some algebraic dual of G. 

Remark: 3.2.8 

          In the literature, the term matroidal or abstract is sometimes used where we use 

algebraic. 

          We will use the geometric duality operation and, unless specified, we will 

describe a graph as self-dual if it is graphically self-dual.  Since, the dual of a graph is 

always connected, we know that a self-dual graph is connected. 

          The following are a few known results about self-dual graphs. 

Corollary: 3.2.9 

          Let � = (ý, ā, Ă) be a 2-cell embedding on an orientable surface.  If M is self-

dual, then |ā| is even. 

Proof: 

          Since M is self-dual, By theorem (Euler), 
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          <Let � = (ý, ā, Ă) be a 2-cell embedding of a graph in the orientable surface of 

genus k.  Then, 

          |ý| 2 |ā| + |Ă| = 2 2 2�=. 

   ⇒    |ā| = 2 2 2� 2 |ý| 2 |Ă| 
                  = 2(1 2 � 2 |ý|). 

Theorem: 3.2.10 

          The complete graph ć� has a self-dual embedding on an orientable surface, if  

and only if Ā ≡ 0 āĄ 1 (ÿāý 4). 

Theorem: 3.2.11 

          For Ā ≥ 1, there exists a self-dual embedding of some graph G of order n on ÿ�(�21)+1 if and only if Ā ≥ 4Ā + 1. 

          Note that a self-dual graph need not be self-dual on the surface of its genus.  A 

single loop is planar; however it has a (non 2-cell) self-dual embedding on the torus. 

          Also note that there are infinitely many self-dual graphs.  One such infinite 

family for the plane is the wheels.  A wheel þ� consists of cycle of length n and a 

single vertex adjacent to each vertex on the cycle by means of a single edge called a 

Spoke.  The complete graph on four vertices is also þ3 see Figure 3.4 for þ6. 
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                                         The 6-wheel and its dual 

                                                    Figure: 3.4 

3.3 MATROIDS 

          Matroids may be considered a natural generalization of graphs.  Thus when 

discussing a family of graphs, we should also consider the matroidal implications. 

Definition: 3.1.1 

          Let S be a finite set, the ground set, and let I be a set of subsets of S, the 

independent sets.  Then � = (ÿ, ą) is a matroid if 

          1. ∅ ∈ ą; 

          2. If Ć′ ⊆ Ć ∈ ą, then Ć′ ∈ ą; and 

          3. For all ý ⊆ ÿ, all maximal independent subsets of A have the same 

cardinality. 
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          An isomorphism between two matroids �1 = (ÿ1, ą1) and �2 = (ÿ2, ą2) is a 

bijection � ∶ ÿ1 → ÿ2 such that ą ∈ ą1 if and only if �(ą) ∈ ą2 .  If such a χ exists, then  �1 and �2 are isomorphic denoted �1 ≅ �2. 

          Given a graph ă = (ý, ā), the cycle matroid �(ă) of G is the matroid with 

ground set E, and Ă ⊆ ā is independent if and only if F is a forest.  A matroid M is 

graphic if there exists a graph G such that � = �(ă). 

          For a matroid � = (ÿ, ą) the dual matroid �∗ = (ÿ, ą∗) has ground set S and ą ⊆ ÿ in ą∗ if there is a maximal independent set B in M such that ą ⊆ ÿ\þ.  A 

matroid M is co-graphic if �∗ is graphic.  It is easily shown that if G is a connected 

planar graph, then �∗(ă) = �(ă∗). 

          It is well known that G is algebraically self-dual if and only if cycle matroid of 

G and ă∗ are isomorphic. 
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4. A COMPARISON OF FORMS OF SELF-DUALITY 

             It is clear that for a map (ý, ā, Ă) we have, 

Map self-duality ⇒ Graph self-duality ⇒ Matroid self-duality.  However, In general, 

these implications cannot be reversed.  But, we are concerned to what extent these 

implications can be reversed.  The next two results assert that, in the most general 

case they cannot.   

Result: 4.1 

          There exist a map (ý, ā, Ă) such that (ý, ā) ≅ (ā∗, ý∗), but               (ý, ā, Ă) ≇ (Ă∗, ā∗, ý∗). 

Result: 4.2 

         There exist a map (ý, ā, Ă) such that �(ā) ≅ �(ā∗)∗, but (ý, ā) ≇ (Ă∗, ā∗). 

4.1 SELF-DUAL MAPS AND SELF-DUAL GRAPHS 

         A planar 3-connected simple graph has a unique embedding on the sphere, in the 

sense that if p and q are embeddings, then there is a homeomorphism h of the sphere 

so that Ă = /ă.  Any isomorphism between the cycle matroids of a 3-connected graph 

is carried by a graph isomorphism.  Thus for a 3-connected graph 

          Map self-duality ⟸ Graph self-duality ⟸ Matroid self-duality. 

          So self-dual 3-connected graphs, as well as self-dual 3-connected graphic 

matroids, reduce to the case of self-dual maps.  Since, the examples in figure 3.3 are  
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only 1-connected, we must consider the 2-connected case.  In figure 4.1 we see an 

example of a graphically self-dual map whose graph is 2-connected which is not map 

self-dual. 

Theorem: 4.1.1 

          There exists a 2-connected map (ý, ā, Ă) which is graphically self-dual, so that (ý, ā) ≅ (Ă∗, ý∗), but for which every map (ý′, ā′, Ă′) such that �(ā) ≅ �(ā′) is 

not map self-dual. 

Proof: 

          Consider the map in figure 4.1, which is drawn on an unfolded cube.  The graph 

is obtained by gluing two 3-connected self-dual maps together along an edge (a,b) and 

erasing the common edge.  One map has only two reflections as self-dualities, both 

fixing the glued edge; the other has only two rotations of order four as dualities, again 

fixing the glued edge.  The graph self-duality is therefore a combination of both, an 

order 4 rotation followed by a whitney twist of the reflective hemisphere.  It is easy to 

see that all the embeddings of this graph, as well as the graph obtained after the 

whitney flip have the same property. 
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Figure: 4.1 

Theorem: 4.1.2 

          There is a graphically self-dual map (ý, ā, Ă) with (ý, ā) 1-connected and 

having only 3-connected blocks, but for which every map (ý′, ā′, Ă′) such that �(ā) ≅ �(ā′) is not map self-dual. 

Proof: 

          Consider the 3-connected self-dual maps in Figure 4.2.  ÿ1 has only self-

dualities of order 4, two rotations and two flip rotations, while ÿ2 has only a left-right 

reflection and a 180° rotation as a self-duality.  Form a new map ÿ by gluing two 

copies of ÿ2 to ÿ1 in the quadrilateral marked with q9s, with the gluing at the vertices 

a 

a 

b 

b 
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marked ÿ and ÿ∗.  ÿ is graphically self-dual, as can easily be checked, but no gluing 

of two copies of ÿ2 can give map self-duality since every quadrilateral in ÿ1 has order 

4 under any self-duality. 

 

 

 

 

 

 

 

                                                                            ÿÿ 

 

 

 

 

 

 

                                                                             ÿĀ 

Figure: 4.2 
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          In particular, self-dual graphs of connectivity less than 3 cannot in general be            

re-embedded as self-dual maps. 

4.2 SELF-DUAL GRAPHS AND MATROIDS 

          If G is 1-connected, then its cycle matroid has a unique decomposition as the 

direct sum of connected graphic matroids, �(ă) = �1⨁ �2⨁ & & & ⨁��, and if ă∗ 

is a planar dual of G, then �(ă∗) = �(ă)∗ = �1∗ ⨁  �2∗⨁ & & & ⨁��∗.  If G is a 

graph self-dual, then there is a bijection � ∶ �(ă) → �(ă∗) sending cycles to cycles, 

and so there is a partition � of {1, 2, ………k} such that � ∶  �� → ��(�), and we that �(ă) is the direct sum of self-dual connected matroids, together with some pairs of 

terms consisting of a connected matroid and its dual. 

          In the next theorem we see that not every self-dual matroid arises from a self-

dual graph. 

Theorem: 4.2.1 

          There exists a self-dual graphic matroid � such that for any graph ă = (ý, ā) 

with �(ă) = �, and any embedding (ý, ā, Ă) of G, (ý, ā) ≇ (Ă∗, ā∗). 

Proof: 

          Consider �1 and �2, the cycle matroids of two distinct 3-connected self-dual 

maps ÿ1 and ÿ2 whose only self-dualities are the antipodal map. 

          The matroid �1⨁�2 is self-dual, but its only map realizations are as the           
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1-vertex union of ÿ1 and ÿ2, which cannot be self-dual, since the cut vertex cannot 

simultaneously be sent to both <antipodal= faces. 

          So for 1-connected graphs, the three notions of self-duality are all distinct.  For 

2-connected graphs, however we have the following. 

Theorem: 4.2.2 

          If ă = (ý, ā) is a planar 2-connected graph such that �(ā) ≅ �(ā)∗, then G 

has an embedding (ý, ā, Ă) such that (ý, ā) ≅ (Ă∗, ā∗). 

Proof: 

          Let (ý, ā, Ă) be any embedding of G.  Then G is 2-isomorphic, in the sense of 

whitney [15] to (Ă∗, ā∗), and thus there is a sequence of whitney flips which 

transform (Ă∗, ā∗, ý∗) into an isomorphic copy of G and act as re-embeddings of G.  

thus the result is a new embedding (ý, ā, Ă′) of G such that (ý, ā, Ă′) ≅ (Ă′∗, ā∗, ý∗). 

          Thus, to describe 2-connected self-dual graphs it is enough up to embedding, to 

describe self-dual 2-connected graphic matroid. 

4.3 SELF-DUAL MATROIDS 

Definition: 4.3.1 

          A polyhedron P is said to be self-dual if there is an isomorphism � ∶ � → �∗, 

where �∗ denotes the dual of P.  We may regard � as a permutation of the elements of 

P which sends vertices to faces and vice versa, preserving incidence. 
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          As noted earlier 3-connected self-dual graphic matroids are classified via self-

dual polyhedral. 

          On the other hand, 1-connected self-dual matroids are easily understood via the 

direct sum.  Also we show how a 2-connected self-dual matroid M with self-duality � 

arises via 3-connected graphic matroids by recursively constructing its 3-block tree Ā(�) by adding orbits of pendent nodes. 

          The following theorem shows that this construction is sufficient to obtain all 2-

connected self-dual matroids. 

Theorem: 4.3.2 

          Let M be a self-dual connected matroid with 3-block tree T.  Let Ā′ be the tree 

obtained from T by deleting all the pendent nodes, and let �′ be the 2-connected 

matroid determined by Ā′.  Then �′ is also self-dual. 

Proof: 

          Let M be a self-dual connected matroid on a set E, so there is a matroid 

isomorphism ∆ ∶ � → �∗, so � is a permutation of E sending cycles to co-cycles.  

The 3-block tree of �∗ is obtained from that of M by replacing every label with the 

dual label, so  ∆ corresponds to a bijection (�, {��}) of T onto itself, such that for each 

node � of T, �� ∶  �� → ��(�) send cycles of �� to co-cycles of ��(�). 
          The restriction of  (�, {��}) to Ā′ has the same property and so corresponds to a 

self-dual permutation of �′. 
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Theorem: 4.3.3 

          Suppose M is a self-dual 2-connected matroid with self-dual permutation � and 

let þ1 ∈ �.  Let {þ1, þ2, & & , þ�} be the orbit of þ1 under �.  Suppose one of the 

following: 

          (1) k is even and �0 is a 3-connected matroid or a cycle and �0 is a matroid   

automorphism of �0 fixing an edge þ0. 

          (2) k is odd and �0 is a 3-connected self-dual matroid with self-dual 

permutation �0 fixing an edge þ0. 

          For ÿ = 1,2, & & , � set �2�+1 = �0 and �2� = �0∗.  Let �′ be the matroid 

obtained from M by 2-sums with the matroids ��, amalgamating þ0 or þ0∗ in �� with þ�. 
          Let �′ be defined by �′(þ) for þ ∈ � 2 {þ1, þ2, & & , þ�}, �′: �� → �1.  Then �′ is a 2-connected self-dual matroid with self-dual permutation �′.  Moreover, every 

2-connected self-dual matroid and its self-duality is obtained in this manner. 

Proof: 

          The fact that this construction gives a 2-connected  self-dual matroid follows at 

once, since to check if �′ is a self-duality, it suffices to check that (�′) � send cycles 

to co-cycles on each 3-block. 

          The fact that �0 must be self-dual if K is odd follows by considering that �1� is 

a self-duality and maps �0 = �1 onto itself. 
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          To see that all self-dualities arise this way, let �′: �′ → �′ be a self-duality, let � be a pendant node of T, and set �0 = ��. 

          Let M be the self-dual matroid that results from removing from Ā(�′) the K 

nodes corresponding to the orbit of the node �.  �′ induces �: � → �.  Then the 

desired �0 is (��)�. 

4.4 THE STRUCTURES OF SELF-DUAL GRAPHS 

          Given the results of the previous section, we may construct all 2-connected self-

dual graphs; start with any self-dual 2-connected graphic matroid M and chose any 

realization of M as a cycle matroid of a graph G.  Theorem: 4.2.2, asserts that G has 

an embedding as a self-dual graph. 

          Alternatively, we may carry out a recursive construction in the spirit of 

Theorem: 4.4.1 at the graph level, paying careful attention to the orientations in the 2-

sums. 

          The following theorem gives a more geometric construction. 

Theorem: 4.4.1 

          Every 2-connected self-dual graph is 2-isomorphic to a graph which may be 

decomposed via 2-sums into self-dual maps such that the 2-sum on any two of the 

self-dual maps is along two edges, one of which is the pole of a rotation of order 4 and 

the other edge fixed by a reflection. 

 

 

 



                                                                                                                     39 

 

Proof: 

Case: 1 

          In case 1 of Theorem: 4.3.3, we can always choose �0 to be the identity, and 

simply glue in the copies of the maps corresponding to �0 and �0∗ compatibly to 

make a self-dual map. 

Case: 2 

          In case 2 we must have that �0 is a self-dual 3-block containing a self-duality 

fixing þ0, hence it corresponds to a self-dual map and �0 must be a reflection or an 

order 4 rotation fixing þ0, and likewise the 3-block to which it is attached must be 

such an edge.  If both are of the same kind, then the 3-blocks may be 2-summed into a 

self-dual map.  This leaves only the mismatched pair. 

 

 

 

 

 

Figure: 4.3 

(ÿ, Ā)⨁  
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          To see that 2-isomorphism is necessary in the above, consider the self-dual 

graph in Figure:4.3.  The map cannot be re-embedded as a self-dual map, nor does it 

have a 2-sum decomposition described as above, the graph is 2-isomorphic to a self-

dual map. 
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5. Applications 

Building the dual graph: the generalization of street segments 

and the Intersection Continuity Negotiation (ICN) model 

          A dual representation of street patterns is that a principle can be found that 

allows to extend the identity of a street over a plurality of edges; this problem can 

be referred to as one of finding a 88generalization model99. A generalization model 

is a process of complexity reduction used by cartographers while reducing the 

scale of a map; as for the street network, it is a two-steps process: firstly, single 

street segments are merged into longer 88strokes99; secondly, those strokes are 

selected by 88importance99 for map visualization.  

          In this context, the first step is relevant as it is about seeking a principle of 

continuity among different streets/edges, in order to capture the real sense of 

unity, or unique identity, of an urban street throughout a number of intersections. 

The question has been solved in Space Syntax substituting the primal graph 

representation of the network with the axial map 88not properly a graph99 where 

the principle of continuity is the linearity of the street spaces (Fig. 1A).  

          After a first attempt to anchor the representation of street patterns to an 

actual primal graph, based on characteristic nodes and visibility, Jiang and 

Claramunt have recently proposed one relevant model that builds a proper dual 

approach on a different primal representation: under their 88named-street 

approach99 (Fig. 1B) the principle of continuity is the street name: two different 

arcs of the original street network are assigned the same street identity if they 

share the same street name. 
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Figure: 5.1 
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[Figure:5.1. Row A: the Space Syntax way: (1) A fictive urban system; its (2) 

primal axial map network model; and its (3) dual connectivity graph. Row B: 

the named street way (street names replaced by numbers): (1) A fictive urban 

system; its (2) primal network model; and its (3) dual connectivity graph. 

Row C: the ICN way (street names replaced by numbers): (1) A fictive urban 

system; its (2) primal graph; and its (3) dual connectivity graph. In this latter 

proposal, the direct representation of the urban network is properly a graph, 

where intersections are turned into nodes and street arcs into edges; edges 

follow the footprint of real mapped streets (a linear discontinuity does not 

generate a vertex); the ICN process assigns the concatenation of street 

identities throughout nodes following a principle of 88good continuation99.] 

          The main problem with this approach is that it introduces a 

nominalistic component in a pure spatial context, resulting in a loss of 

coherence of the process as a whole: street names are not always meaningful in 

any sense, they are not always reliable as the same street may be termed in 

different ways by different social groups, or in different contexts, at different 

scales, in different ages.  

          Other problems are that street name databases are not easily available for all 

cases or at all scales, and that the process of embedding and updating street names 

into GIS seems rather costly for large datasets. However, implemented by Jiang 

and Claramunt on three real cases, the named-street approach has led to recognize 

a small-world character in large street networks, but no scale-free behaviour in 

their degree distribution. In this work we use a generalization model based on a  
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different principle of continuity, one of 88good continuation99, based on the 

preference to go straight at intersections, a well known cognitive property of 

human way finding. The model, which we term ICN is quite simple and purely 

spatial, in that it excludes anything that cannot be derived by the sole geometric 

analysis of the primal graph itself (Fig. 5.1). 

The model runs in three steps: 

(1) All the nodes are examined in turn. At each node, the continuity of street        

identity is negotiated among all pairs of incident edges: the two edges forming 

the largest convex angle are assigned the highest continuity and are coupled 

together; the two edge with the second largest convex angle are assigned the 

second largest continuity and are coupled together, and so forth; in nodes with 

an odd number of edges, the remaining edge is given the lowest continuity 

value. 

(2) Beginning with one edge chosen at random in the graph, a street ID code is 

assigned to the edge and, at relevant intersections, to the adjacent edges 

coupled in step 1. 

(3) The dual graph is constructed by mapping edges coded with the same street ID 

in the primal graph into nodes of the dual graph, and intersections among each 

pair of edges in the primal graph into edges connecting the corresponding 

nodes of the dual graph. Overlaying double edges in the dual graphs are 

eliminated. Being based on a primal graph, ICN minimizes subjectivity and 

re-enter the mainstream of the network representation of urban and territorial  
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patterns. Being based on a pure spatial principle of continuity, it avoids 

problems of social interpretation within a pure spatial context. Finally, it 

allows a dual, step-distance representation of urban street networks linking it 

to a primal graph, which opens to further investigations in geographic-

Euclidean space. 
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1 

     CHAPTER-1 

                              PRELIMINARIES 

Definition: 1.1  

 A group is a non-empty set þon which there is a binary operation 7 ∶ þ × þ →þsuch that 

• If ÿand Ābelong to þthen ÿ 7 Āis also in þ(closure) 

• ÿ 7 (Ā 7 ā) = (ÿ 7 Ā) 7 āfor all ÿ, Ā, āin þ(associativity) 

• There is an element ă ∈ þsuch that ÿ 7 ă = ă 7 ÿ = ÿfor all ÿ ∈ þ(identity). ă is called the identity element of G. 

• If ÿ ∈ þ, then there is an element ÿ21 ∈ þsuch that ÿ 7 ÿ21 = ÿ21 7 ÿ = 1 (inverse). ÿ21 is called the inverse of ÿ. 

Definition: 1.2 

 A group þis called abelian if the binary operation is commutative, i.e., ÿ 7 Ā =Ā 7 ÿfor all ÿ, Ā ∈ þ. A group which is not abelian is called a non-abelian group. 

Examples: 1.1  

1. The additive group of integers: 

 Let ℤ be the set of integers. 

 Let + be the binary operation of addition in ℤ. 

 Ą + 0 = Ą = 0 + Ą for every Ą ∈ %. Thus (%,+) has an identity element. 

 If Ă, ă, Ąare integers, (Ă + ă) + Ą = Ă + (ă + Ą) 

 i.e. (%,+) is a semigroup. 

 If Ą ∈ %, then 2Ą in ℤ has the property Ą + (2Ą) = 0 = (2Ą) + Ą 
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 i.e. 2Ą is an inverse of Ą in (%,+). 

 Thus we have shown that (%,+) is a group. This group is usually referred to as 

the additive group of integers. ℤ with the addition and 0 as identity is an abelian group. 

2. ℤ with the multiplication is not a group since there are elements which are not 

invertible in ℤ. 

Definition: 1.3 

 Let 7 be binary operation defined on G. An element ă ∈ þ is called a left identity 

if ă 7 ÿ = ÿ for all ÿ ∈ þ. ă is called a right identity if ÿ 7 ă = ÿ for all ÿ ∈ þ. 

Definition: 1.4 

 Let 7 be a binary operation defined on þ. Let ă ∈ þ be the identity element. Let ÿ ∈ þ. An element ÿ21 ∈ þ is called a left inverse of ÿ if ÿ21 7 ÿ = ă. ÿ21 is called a 

right inverse of ÿ if ÿ 7 ÿ21 = ă. 

Definition: 1.5 

 Let ý be a finite set. A bijection from ý to itself is called a permutation of ý. 

Example: 1.2 

 If ý = {1,2,3,4}, Ą ∶ ý → ýgiven by Ą(1) = 2, Ą(2) = 1, Ą(3) = 4 and Ą(4) =3 is a permutation of ý. We shall write this permutation as (1 2 32 1 443).  

 An element in the bottom row is the image of the element just above it in the 

upper row.   

 

 

 



 

3 

Definition: 1.6 

 Let ý be a finite set containing Ą elements. The set of all permutations of ý is 

clearly a group under the composition of functions. This group is called the symmetric 

group of degree Ą and is denoted þĄ. 

Definition: 1.7 

 The set of Ą × Ą invertible matrices with real coefficients is a group for the matrix 

product and identity the matrix ĀĄ. It is denoted by þĀĄ(=) and called the general linear 

group. It is not abelian for Ą g 2. 

Definition: 1.8  

 The order of a group þ, denoted by |þ|, is the cardinality of þ, that is the number 

of elements in þ. 

Examples: 1.3  

1. The trivial group þ = {0} may not be the most exciting group to look at, but still it is 

the only group of order 1. 

2. The group þ = {0, 1, 2, & , Ą 2 1} of integers modulo Ąis a group of order Ą.  

Definition: 1.9 

 A finite group is a group with a finite number of elements. Otherwise, it is an 

infinite group. 

Definition: 1.10  

 A subgroup ÿ of a group þ is a non-empty subset of þ that forms a group under 

the binary operation of þ. 
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 Examples: 1.4 

1. If we consider the group þ = %4 = {0, 1, 2, 3} of integers modulo 4, ÿ = {0, 2} is a 

subgroup of þ. 

2. The set of Ą × Ą matrices with real coefficients and determinant of 1 is a subgroup of þĀĄ(=), denoted by þĀĄ(=) and called the special linear group. 

Definition: 1.11  

 The order of an element ÿ ∈ þ is the least positive integer Ą such that ÿĄ = 1. If 

no such integer exists, the order of ÿ is infinite. We denoteit by |ÿ|. 
Definition: 1.12 

 A group þ is cyclic if it is generated by a single element, which we denote by 

 þ = +ÿ,. We may denote by ÿĄ a cyclic group of Ą elements. 

Example: 1.5  

 A finite cyclic group generated by ÿis necessarily abelian, and can be written 

(multiplicatively) 

 {1, ÿ, ÿ2, & , ÿĄ21} with ÿĄ = 1 

or (additively) 

           {0, ÿ, 2ÿ, . . . , (Ą 2  1)ÿ}with Ąÿ = 0. 

A finite cyclic group with Ą elements is isomorphic to the additive group %Ą of integers 

modulo Ą. 

Definition: 1.13  

 Let ÿ be a subgroup of a group þ. If ą ∈ þ, the right coset of ÿgenerated by ą is ÿą = {/ą, / ∈ ÿ} and similarly the left coset of ÿgenerated by  
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ą ÿĀ ąÿ = {ą/, / ∈ ÿ}. In additive notation, we get ÿ + ą (which usually implies that 

we deal with a commutative group where we do not need to distinguish left and right 

cosets). 

Example: 1.6  

 If we consider the group %4 = {0, 1, 2, 3}and its subgroup ÿ = {0, 2} which is 

isomorphic to %2, the cosets of ÿ in þare 0 + ÿ = ÿ, 1 + ÿ = {1, 3}, 2 + ÿ = ÿ, 3 + ÿ = {1, 3}. 
 Clearly 0 + ÿ = 2 + ÿand 1 + ÿ = 3 + ÿ. 

Definition: 1.14 

 Let ÿ be a subgroup of þ. The number of distinct left(right) cosets of ÿ in þ is 

called the index of ÿ in þ and is denoted by [þ: ÿ]. 
Example: 1.7 

 In (%8,⊕), ÿ = {0,4} is a subgroup. The left cosets of ÿ are given by 0 + ÿ = {0,4} = ÿ 1 + ÿ = {1,5} 2 + ÿ = {2,6} 3 + ÿ = {3,7} 
These are the four distinct left cosets of ÿ. Hence the index of the subgroup ÿ is 4. 
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Definition: 1.15 

 Let þ be a group and ÿ f þ. We say that ÿ is a normal subgroup of þ, or that ÿ 

is normal in þ, if we have āÿā21 = ÿ, for all ā ∈ þ. 

 We denote it ÿ ⊵ þ, or ÿ ³ þ when we want to emphasize that ÿ is a proper 

subgroup of þ. 

Example: 1.8  

 Let þĀĄ(=) be the group of Ą × Ą real invertible matrices, and let þĀĄ(=) be the 

subgroup formed by matrices whose determinant is 1. Let us see that þĀĄ(=) ² þĀĄ(=). 

Definition: 1.16 

 Let Ă be a normal subgroup of þ. Then the group þ/Ă is called the quotient 

group (factor group) of þ modulo Ă. 

Example: 1.9 

 3% is a normal subgroup of (%,+). The quotient group %/3% = {3% + 0,3% +1,3% + 2}. Hence %/3% is a group of order 3. 

Definition: 1.17 

 Given two groups þ and ÿ, a group homomorphism is a map Ą ∶ þ → ÿ such 

that Ą(ýþ) = Ą(ý)Ą(þ) for all ý, þ ∈ þ.  

 Obviously every isomorphism is a homomorphism and a bijective homomorphism 

is an isomorphism.  

Example: 1.10 

 The map Ą ∶ (%,+) → (%,+), defined by Ą(ý) = 2ý is a group homomorphism.  
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For, Ą(ý + þ) = 2(ý + þ) = 2ý + 2þ = Ą(ý) + Ą(þ) 

Note that Ą is 1 2 1. 

Definition: 1.18 

 Two groups þ and ÿare isomorphic if there is a group homomorphism 

 Ą ∶ þ → ÿ which is also a bijection. 

Example: 1.11 

 If we consider again the group þ = %4 = {0, 1, 2, 3} of integers modulo 4 with 

subgroup ÿ = {0, 2}, we have that ÿis isomorphic to %2, the group of integers modulo 2. 
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CHAPTER-II 

MATRIX GROUPS 

Definition: 2.1 

 A binary operation 7 on a set þ is a function mapping þ ×  þ into þ. For each (ÿ, Ā)  ∈  þ ×  þ, we will denote the element 7 ((ÿ, Ā)) of þ by ÿ 7 Ā. 

Definition: 2.2 

 Let 7 be a binary operation on þ and let ÿ be a subset of þ. The subset ÿ is closed 

under 7 if for all ÿ, Ā ∈ ÿ we also have ÿ 7 Ā ∈ ÿ. In this case, the binary operation on ÿ 

given by restricting 7to ÿ is the induced operation of 7 on ÿ. 

Definition: 2.3 

 A group +þ,7, is a set þ, closed under a binary operation 7, such that the 

following properties are satisfied. 

(1) (Associativity)  For all ÿ, Ā, ā Ā þ 

  ÿ, Ā, ā ∈ þ, (ÿ 7 Ā) 7 ā = ÿ 7 (Ā 7 ā). 

(2) (Identity)  

There is a unique element ă in þ such that for all ý ∈ þ, 

  ă 7 ý = ý 7 ă = ý. 

(3) (Inverse)  

For each ÿ ∈ þ, there is a unique element ÿ2in þ such that  

  ÿ 7 ÿ2 = ÿ2 7 ÿ = ă. 
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Definition: 2.4 

 If a subset ÿ of a group þ is closed under the binary operation of þ and if ÿwith 

the induced operation from þ is a group, then ÿ is a subgroup of þ. 

Notation: 

 Let āĄ(=) denotes the set of all Ą × Ą square matrices with entries in =. 

Definition: 2.5 

 The general linear group over = is  þĀĄ(=)= {ý ∈ āĄ(=) | ∃þ ∈ āĄ(=)  with ýþ = þý = ĀĄ} 

Where ĀĄ is the Ą × Ą identity matrix, i.e. þĀĄ(=) is the collection of all invertible Ą × Ą 

matrices. 

Theorem: 2.6 

 þĀĄ(=) is a group with the operation being matrix multiplication. 

Proof: 

 Let Ą ∈ Ă be arbitrary and consider þĀĄ(=).   

 Recall that for square matrices ý, þ ∈ āĄ(=), Ăăā(ý) Ăăā(þ)  =  Ăăā(ýþ). 

Since for all ă, Ą ∈ þĀĄ(=), Ăăā(ă) b 0 b Ăăā(Ą), it follows that  

det(ăĄ) = Ăăā(ă)Ăăā(Ą) b 0. Thus ăĄ ∈ þĀĄ(=) so þĀĄ(=) is closed under matrix 

multiplication. 

(Associativity)  

Let ý = (ÿÿĀ), þ = (ĀÿĀ), ÿ = (āÿĀ) ∈ āĄ(=). Then we have (ý 7 þ) 7 ÿ = ((ÿÿĀ) 7 (ĀÿĀ)) 7 (āÿĀ) 

                    = (∑ ÿÿāĀāĀĄā=1 ) 7 (āÿĀ) 
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                    = (∑ (∑ ÿÿāĀāĂĄā=1 ) 7 (āĂĀ)ĄĂ=1 ) 

                    = (∑ ÿÿĂĄĂ=1 7 (∑ ĀĂāĄā=1 7 āāĀ)) 

                    = (ÿÿĀ) 7 (∑ ĀĂāĄā=1 7 āāĀ) 

                    = (ÿÿĀ) 7 ((ĀÿĀ) 7 (āÿĀ)) 

                    = ý 7 (þ 7 ÿ). 

Thus, matrix multiplication is associative, so Associativity holds for þĀĄ(=) in 

particular. 

(Identity)  

Let ý ∈ þĀĄ(=)where 

  ý = [ÿ11 ÿ12ÿ21îÿĄ1
ÿ22îÿĄ2

ï ÿ1Ąï⋱ï ÿ2ĄîÿĄĄ] 

Let ĀĄ be the matrix defined as    

  ĀĄ = [1 00î0 1î0
ï 0ï⋱ï 0î1] 

 It immediately follows that ýĀĄ = ĀĄý = ý, and since Ăăā(ĀĄ) = 1, ĀĄ ∈ þĀĄ(=) 

(Inverses)  

 Since for all ý ∈ þĀĄ(=), ý is invertible by the definition of þĀĄ(=), so ý21 exists. And since ý21 is also invertible ((ý21)21 = ý), ý21 ∈ þĀĄ(=). 

 Therefore, þĀĄ(=) is a group under matrix multiplication.  

Definition: 2.7 

 A sequence of real numbers (ÿĄ) converges to a real number ÿ if, for every ∊ > 0, 

there exists an Ă ∈ ℕ such that whenever Ą g Ă it follows that |ÿĄ 2 ÿ| < ∊. 
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Definition: 2.8  

 Let ýă be a sequence of matrices in āĄ(=). We say that ýă converges to a 

matrix ý if each entry of ýă converges (as ă → ∞ to the corresponding entry of ý (i.e. if (ýă)ÿĀ converges to (ý)ÿĀfor all 1 f ÿ, Ā f Ą). 

Definition: 2.9 

 A matrix group is any subgroup þ ⊂ þĀĄ(=) with the following property. If  ýăis any sequence of matrices in þ, and ýă converges to some matrix ý, then either 

 ý ∈ þ, or ý is not invertible. 

Definition: 2.10 

 The special linear group over =, denote þĀĄ(=), is the set of all Ą × Ąmatrices 

with a determinant of 1, that is 

  þĀĄ(=) = {ý ∈ þĀĄ(=)|Ăăāý = 1}. 
Definition: 2.11 

 A function Ą ∶ ý → = is continuous at a point ā ∈ ý if, for all ∊ > 0, there exists a Ă> 0 such that whenever |ý 2 ā| < Ă (and ý ∈ ý) it follows that |Ą(ý) 2 Ą(ā)| < ∊. 

Definition: 2.12 

 Let Ą ∶ ý → =, and let ā be a limit point of the domain ý. We say that Ăÿăý→ýĄ(ý) = Ā provided that, for all ∊ > 0, there exists a Ă > 0 such that whenever |ý 2 ā| < Ă it follows that |Ą(ý) 2 Ā| < ∊. 
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Theorem: 2.13 

Let Ą ∶ ý → =and let ā ∈ ý be such that there exists some sequence (ýĄ) where ýĄ ∈ ý 

for all Ą ∈ Ă and ýĄ → ā. The function Ą is continuous at ā if and only if any one of the 

following holds true. 

(1)Ą(ýĄ) → Ą(ā), 

(2) Ăÿăý→ýĄ(ý) = Ą(ā). 

Proof: 

 Let Ą ∶ ý → =, and let ā ∈ ý be such that the sequence (ýĄ) where ýĄ ∈ ý for all Ą ∈ Ă has the property that ýĄ → ā. Suppose that Ąis continuous at ā and let ∊ > 0 be 

arbitrary. Since Ą is continuous at ā, there exists some Ă > 0 such that whenever ý ∈ ý 

and |ý 2 ā| < Ă we are guaranteed that |Ą(ý) 2 Ą(ā)| <∈. Towards contradiction, 

assume that limĄ→∞ Ą(ýĄ) b Ą(ā). Thus there exists some Ă ∈ ℕ such that for all Ą g Ă, |ýĄ 2 ā| < Ă and |Ą(ýĄ) 2 Ą(ā)| g ∊, which is a contradiction to our assumption that |Ą(ý) 2 Ą(ā)| < ∊ for all ý ∈ ý. Thus Ą(ýĄ) → Ą(ā) by contradiction. 

 Now suppose that Ąis not continuous at ā. This implies that there exists some 

 ∊0> 0 such that for all Ă > 0, there exists some ý0 ∈ ý such that |ý0 2 ā| < Ă and |Ą(ý0) 2 Ą(ā)| g ∊0. For each Ą ∈ ℕ, let ĂĄ = 1/Ą. This implies that there exists some ýĄ ∈ ý such that |ýĄ 2 ā| > ĂĄ and |Ą(ýĄ) 2 Ą(ā)| g ∊0. Clearly, the sequence (ýĄ) has 

the property that ýĄ →c, as for all ∊> 0, there exists someĂ ∈ ℕ such that for all Ą g Ă, 

it follows that |ýĄ 2 ā| < ĂĄ < ∊. Thus, the sequence (ýĄ) has the property that ýĄ → ā 

and for all Ă2 ∈ Ăthere exists some Ą0 g Ă2such that |Ą(ýĄą) 2 Ą(ā) g| ∈0. This proves 

that if ýĄ → ā(with ýĄ ∈ ý), then Ą(ýĄ) → Ą(c). Thus, Ą is continuous at ā by the 
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contrapositive. Therefore, statement (1) of Theorem 2.13 holds if and only if Ą is 

continuous at ā. 

(2) We show that statement (1) is equivalent to statement (2). Using Definition 2.12, Ăÿăý→ýĄ(ý) = Ą(ā) states that for all ∊ > 0, there exists a Ă > 0 such that whenever |ý 2 ā| < Ă it follows that |Ą(ý) 2 Ą(ā)| < ∊. This is equivalent to the statement <if ýĄ → ā (with ýĄ ∈ ý), then Ą(ýĄ) → Ą(ā)" using Definition 2.11.  Therefore, statement 

(1) is equivalent to statement (2), proving Theorem 2.13 in its entirety.  

 

Theorem: 2.14 

 The determinant function det : āĄ(=) → = is continuous. 

Proof: 

 The proof will proceed by induction on Ą. First, let Ą = 1. Since the determinant 

of a 1 × 1 real matrix is simply the entry itself, the determinant function is continuous as 

it just outputs the entry itself. Thus, thedeterminant function from ā1(=) to = is 

continuous. Now, assume that the determinant function from ā�(=) to = is continuous, 

with the goal of proving that the determinant function from āĄ+1(=) to = is continuous. 

Let A ∈ āĄ+1(=) 

Where   

  ý = [ ÿ1,1 ÿ1,2ÿ2,1îÿĄ+1,1
ÿ2,2îÿĄ+1,2

ï ÿ1,Ąï⋱ï ÿ2,ĄîÿĄ+1,Ą
ÿ1,Ą+1ÿ2,Ą+1îÿĄ+1,Ą+1] 

 By the definition of the determinant, det ý = ∑ (21)ÿ+ĀĄ+1ÿ=1 ÿÿ,Ā āÿ,Āwhere āÿ,Ā is 

the minor of the ÿ 2 Ā�/ entry. Since āÿ,Ā is the determinant of a Ą × Ą matrix for each 
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ÿ, Ā ∈ {1,2,ï , Ą + 1}, Ăăā ý is simply a sum of continuous functions multiplied by a real 

number, so det A is continuous. Thus, the determinant function from āĄ+1(=) to = is 

continuous, proving the original statement by induction. 

Theorem: 2.15 

 þĀĄ(=) is a matrix group. 

Proof: 

 Let Ą ∈ ℕ be arbitrary. We first prove that þĀĄ(=) is a subgroup of þĀĄ(=). 
Letý, þ ∈ þĀĄ(=). Since det (ýþ) = det (ý)det (B) and Ăăā(ý) = 1 = Ăăā(þ). since ý, þ ∈ þĀĄ(=), it follows that det(ýþ) = det(ý) det(þ) = 1(1)=1.ÿ/ĂĀ ýþ ∈ þĀĄ(=), 

so þĀĄ(=)is closedunder matrix multiplication. Also, since Ăăā(ĀĄ) = 1, ĀĄ ∈ þĀĄ(=). 

Lastly, Since Ăăā(ýý21) = Ăăā(ĀĄ) = 1 = Ăăā(ý)Ăăā(ý21) and Ăăā(ý)=1, it follows Ăăā(ý21)=1,so ý21 ∈ þĀĄ(=). Thus þĀĄ(=) is a subgroup of þĀĄ(=). 

 Let (ýă) be a sequence of matrices where ýă ∈ þĀĄ(=) for each ă ∈ Ă and ýă → ý. Since Ăăāýă = 1 for all ă ∈ Ă and since the determinant is a continuous 

function by Theorem 2.14, it follows by Theorem 2.13 that Ăăāý = 1A=1 as well. 

Therefore, A ∈ þĀĄ(=), so þĀĄ(=) is a matrix group. To understand the orthogonal 

group ăĄ(=), we will first cover what it means to be orthogonal. 

Definition: 2.16 

 The standard inner product on ýĄ is the function from =Ą × =Ą → = defined by +(ý1, ý2, ï , ýĄ), (þ1, þ2, ï , þĄ),= = ý1. þ1 + ý2. þ2 + ï+ ýĄ. þĄ 

Definition: 2.17 

 The standard norm on ýĄ is the function from =Ą → =+defined by 
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|ý|= = √+ý, ý,=. 

Definition: 2.18 

 Vectors ý, þ ∈ ýĄ are called orthogonal if +ý, þ, = 0. 

Definition: 2.19 

 A vector ý ∈ ýĄ is called a unit vector |ý| = 1. 

Definition: 2.20  

 A matrix ý ∈ āĄ(=)is said to be orthogonal if the column vectors of ý are 

orthogonal unit vectors. 

 Note that this definition is equivalent to stating that +ýý, þý, = +ý, þ, for all ý, þ ∈ =. This condition is known as an isometry condition, meaning that an orthogonal 

matrix is a distance preserving linear transformation. It follows from the above definition 

alone that for all orthogonal matrices ý ∈ āĄ(=), ý�ý = ĀĄ = ýý� where ý� is the 

transpose of matrix ý, that is, if ÿÿ,Ā is the entry of A in the ÿ�/ row and Ā�/ column of ý, 

then ÿÿ,Ā is the entry in the jth row and ÿ�/ column of ý� .The following definitions 

generalizes orthogonality over different fields. 

Definition: 2.21 

 The orthogonal group over ℝ is defined as ăĄ(=) = {ý ∈ þĀĄ(=)|+ýý, þý, = +ý, þ, for all ý, þ ∈ =Ą}. 
Definition: 2.22 

 A set {ý1, ý2, & , ýĄ} of =Ą is called orthonormal if +ýÿ , ýĀ, = 1 when ÿ = Ā and +ýÿ , ýĀ, = 0 when ÿ b Ā. 
 As an example, an orthonormal set of =Ą, is the set 
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 ℬ = {ă1 = (1,0, . . . ,0), ă2 = (0,1, . . . ,0), . . . , ăĄ = (0,0, . . . ,1)} 
The set ℬ is called the standard orthonormal basis for =Ą. 

Lemma: 2.23 

 If ý, þ ∈ āĄ(=), then ýþ� = þ�ý� . 

Proof:  

 Let ý, þ ∈ āĄ(=) where 

  ý = [ÿ11 ÿ12ÿ21îÿĄ1
ÿ22îÿĄ2

ï ÿ1Ąï⋱ï ÿ2ĄîÿĄĄ] and þ = [Ā11 Ā12Ā21îĀĄ1
Ā22îĀĄ2

ï Ā1Ąï⋱ï Ā2ĄîĀĄĄ] 

The following equalities hold. 

(ýþ)� = ([ÿ11 ÿ12ÿ21îÿĄ1
ÿ22îÿĄ2

ï ÿ1Ąï⋱ï ÿ2ĄîÿĄĄ] [Ā11 Ā12Ā21îĀĄ1
Ā22îĀĄ2

ï Ā1Ąï⋱ï Ā2ĄîĀĄĄ])�
 

                 

     =      ([ÿ11Ā11 + ï+ ÿ1ĄĀĄ1 ÿ11Ā12 + ï+ ÿ1ĄĀĄ2ÿ21Ā11 + ï+ ÿ2ĄĀĄ1îÿĄ1Ā11 + ï+ ÿĄĄĀĄ1
ÿ21Ā12 + ï+ ÿ2ĄĀĄ2îÿĄ1Ā12 + ï+ ÿĄĄĀĄ2

ï ÿ11Ā1Ą + ï+ ÿ1ĄĀĄĄï⋱ï ÿ21Ā1Ą + ï+ ÿ2ĄĀĄĄîÿĄ1Ā1Ą + ï+ ÿĄĄĀĄĄ])�
 

     =     [ÿ11Ā11 + ï+ ÿ1ĄĀ1Ą ÿ21Ā11 + ï+ ÿ2ĄĀĄ1ÿ11Ā12 + ï+ ÿ1ĄĀĄ2îÿ11Ā1Ą + ï+ ÿ1ĄĀĄĄ
ÿ21Ā12 + ï+ ÿ2ĄĀĄ2îÿ21ĄĀ1Ą + ï+ ÿ2ĄĀĄĄ

ï ÿĄ1Ā11 + ï+ ÿĄĄĀĄ1ï⋱ï ÿĄ1Ā12 + ï+ ÿĄĄĀĄ2îÿĄ1Ā1Ą + ï+ ÿĄĄĀĄĄ] 

     =     [Ā11 Ā21Ā12îĀ1Ą
Ā22îĀ2Ą

ï ĀĄ1ï⋱ï ĀĄ2îĀĄĄ] [ÿ11 ÿ21ÿ12îÿ1Ą
ÿ22îÿ2Ą

ï ÿĄ1ï⋱ï ÿĄ2îÿĄĄ] 

      =    þ�ý� . 
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Theorem: 2.24 

 If ý ∈ āĄ(=), then (ýĄ)� = (ý�)Ą. 
Proof:  

 Let ý ∈ āĄ(=). We proceed by induction on Ą. First, let Ą = 1. Clearly, 

 (ý1)� = ý� = (ý�)1, so this case holds. Now, suppose that (ýĄ)� = (ý�)Ą holds for 

some Ą ∈ ℕ. 

 By Lemma 2.23, it follows that,  

 (ý�)Ą+1 = (ý�)Ąý� = (ýĄ)�ý� = (ýýĄ)ÿ = (ýĄ+1)� . 

 Therefore, (ýĄ)� = (ý�)Ą is true by the principle of mathematical induction.  

Definition: 2.25 

 If ý ∈ āĄ(=), define =ý: =Ą → =Ąand Āý: =Ą → =Ąsuch that for all ý ∈ =Ą, =ý(ý) = ý. ýand Āý(ý) = (ý. ý�)�. 

Theorem: 2.26 

 For all ý ∈ þĀĄ(=), ý ∈ ăĄ(=) if and only if ý . ý� = ĀĄ. 

Proof:  

 Let ý = [ÿÿĀ]Ą ∈ þĀĄ(=) be arbitrary. (⇒) Suppose that ý ∈ ăĄ(=). Since {ă1 = (1,0, . . . ,0), ă2 = (0,1, . . . ,0), . . . , ăĄ =(0,0, . . . ,1)} is an orthonormal basis for =Ą and +ý . ý, þ . ý, = +ý, þ,, it follows that {=ý(ă1),=ý(ă2), & , =ý(ăĄ)} 
is an orthonormal set of vectors.{=ý(ă1),=ý(ă2),& ,=ý(ăĄ)} is precisely the set of row 

vectors of ý, where =ý(ăÿ) is the ÿ�/ row of ý. Notice that 
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(ý . ý�)ÿĀ  =  (row ÿ of ý). (column Ā of ý�)                
                                                =  (row ÿ of ý). (row Ā of ý) = +(row ÿ of ý), (row Ā of ý),. 
          Thus, (ý . ý�)ÿĀ = 1. 

when ÿ = Ā as +(row ÿ of ý), (row Ā of ý), = +=ý(ăÿ),=ý(ăÿ), = 1 and  (ý . ý�)ÿĀ = 0 when ÿ b Ā as +(row ÿ of ý), (row Ā of ý), = +=ý(ă1),=ý(ă2), = 0. Thus, ý . ý� = ĀĄ. (⇐) Suppose that ý . ý� = ĀĄ. This implies that +=ý(ăÿ),=ý(ăÿ), = 1 and +=ý(ăÿ), =ý(ăĀ), = 0 when ÿ b Ā.  Let be arbitrary where ý = (ý1, ý2, & , ýĄ)  and 

 þ = (þ1, þ2, & , þĄ). 
We see that, +ý . ý, þ . ý, = +=ý(ý),=ý(þ), 
                    = +∑ ýÿ(row ÿ of ý), ∑ þĀ(row Ā of ý)ĄĀ=1Ąÿ=1 , 
                    =∑ ýÿĄÿ=1 +(row ÿ of ý), (row Ā of ý),þÿ 
                    = ý1. þ1 + ý2. þ2 + ï+ ýĄ. þĄ 

                    = +ý, þ,. 
Therefore, ý ∈ ăĄ(=) proving the statement. 
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CHAPTER-3 

TOPOLOGY OF MATRIX GROUPS 

Definition: 3.1 

 A topology on a non-empty set ă is a collection � of subsets of ă having the 

following properties. 

(1) �and ă are in � . 

(2) The union of the elements of any subcollection of � is in � . 

(3) The intersection of the elements of any finite subcollection of � is in � . 

 A set ă for which a topology � has been specified is called a topological space, 

denoted (ă, �). 

Definition: 3.2 

 If (ă, �) is a topological space, we say that a subset Ā of ă is an open set of ă if Ā belongs to the collection �. Similarly, if Ā is an open set containing some point ý ∈ ă, 

then we say that Ā is a neighborhood of ý. 

Definition: 3.3 

 A subset ý of a topological space (ă, �) is said to be closed if the set ă 2 ýAis 

open in �. 

Definition 3.4. 

 If ă is a non-empty set, a basis for a topology on ă is a collection ℬ of subsets of ă such that 

(1) For each ý ∈ ă, there exists some þ ∈ ℬ∈ such that ý ∈ þ. 
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(2) If ý ∈ ă such that ý ∈ þ1 ∩ þ2 for some þ1, þ2 ∈ ℬ, there exists a þ3 ∈ ℬ such that ý ∈ þ3 ⊂ þ1 ∩ þ2. 

 If we have some topology � and ℬ is a basis for � , then � is the collection of all 

arbitrary unions of elements of ℬ. A simple example of a topology and a basis is the real 

numbers, which is explained in the following example. 

Example: 3.5 

 The collection ℬ of open intervals in =, precisely defined as   ℬ = {(ÿ, Ā) | where ÿ <  Ā and ÿ, Ā ∈ =},  
is a basis for a topology on =. 

Proof:  

 Let ℬ be the collection of all open subsets of =, that is 

  ℬ = {(ÿ, Ā) | where ÿ < Ā}. 
 To satisfy condition 1 of a basis, it is easy to see that for any ý ∈ =, the open set (ý 2 1, ý + 1) ∈ ℬ contains ý. For condition 2, let ý ∈ ă be such that ý ∈ (ÿ1, Ā1) ∩(ÿ2, Ā2) for some (ÿ1, Ā1), (ÿ2, Ā2) ∈ ℬ. 

Without loss of generality, assume ÿ1 < ÿ2that and Ā1 < Ā2. Thus ý ∈ (ÿ1, Ā1) ∩(ÿ2, Ā2) = (ÿ2, Ā1) ∈ ℬ, so ℬ is in fact a basis.  

 The union of the elements of ℬ gives us the standard topology on =. The standard 

topology on = is one of the most fundamental examples of a topology, and will be used 

to associate matrix groups with topologies in the upcoming sections. Now we look to 

classify distance within topologies, specifically =Ą, through the use of a function called a 

metric. 
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Definition: 3.6 

 A metric ton a non-empty set ă is a function Ă ∶ ă × ă →R  having the following properties. 

(1) Ă(ý, þ) g 0 for all ý, þ ∈ ă; Ă(ý, þ) = 0 if and only if ý = þ. 

(2) Ă(ý, þ) = Ă(þ, ý)y)=d(y, x) Ąąÿ ÿĂĂ ý, þ ∈ ă. 

(3) (Triangle inequality) Ă(ý, þ) + Ă(þ, ÿ) g Ă(ý, ÿ) for all ý, þ, ÿ ∈ ă. 

Definition: 3.7 

 Let Ă be a metric on a set ă and let ý ∈ ă. Given Ā > 0, the set þþ(ý, Ā) = {þ | Ă(ý, þ) < Ā and þ ∈ ă} 
is called the Ā-ball centered at ý. 

Definition: 3.8 

 If Ă is a metric on the set ă, then the collection of all Ā-balls þþ(ý, Ā), for ý ∈ă∈X and Ā > 0, is a basis for a topology on ă, called the metric topology induced by Ă. 

 One important example of a metric is called the Euclidean metric on =Ą, which 

will be useful when relating real matrix groups of size n with the space =Ą2
. 

Example: 3.9 

 Let ý = (ý1, ý2, & , ýĄ), þ = (þ1, þ2, & , þĄ) ∈ =Ą. Let Ă ∶ =Ą × =Ą → = be 

the function defined as Ă(ý, þ) = 6ý 2 þ6 = √(ý1 2 þ1)2 + (ý2 2 þ2)2 + ï+ (ýĄ 2 þĄ)2 

is a metric on =Ą called the  Euclidean metric. 
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Lemma: 3.10 

 For all ý, þ ∈ =Ą, |ý . þ| f 6ý66þ6. 

Proof:  

First, suppose that ý = 0̅ or þ = 0̅. We see that |ý . þ| = 0 f 0 = 6ý66þ6, so our claim 

holds in this case. Now, suppose that ý b 0̅and þ b 0̅. Let ÿ0 = 16ý6and Ā0 = 16þ6. First 

note that 0 f 6ÿý ± Āþ6for all ÿ, Ā ∈ =. 

 Through the use of this inequality after squaring both sides, the following 

inequalities hold. 

0 f ‖ 16ý6 ý ± 16þ6þ‖2
 

    = (√( 16ý6 ý1 ± 16þ6 þ1)2 + ï+ ( 16ý6 ýĄ ± 16þ6 þĄ)2)2
 

    = 
16ý62 ý12 ± 26ý66þ6 ý1þ1 + 16þ62 þ12 + ï+ 16ý62 ýĄ2 ± 26ý66þ6 ýĄþĄ + 16þ62 þĄ2 

    = 
16ý62 (ý12 + ï+ ýĄ2) ± 26ý66þ6 (ý1þ1 + ï+ ýĄþĄ) + 16þ62 (þ12 + ï+ þĄ2) 

    = 
16ý62 6ý62 ± 26ý66þ6 (ý . þ) + 16þ62 6þ62 

    = 2 ± 26ý66þ6 (ý . þ). 

 This implies that ∓ 16ý66þ6 (ý . þ) f 1, which implies that |ý . þ| f 6ý66þ6, 

proving the statement.  

Example: 3.9  

 Let ý = (ý1, ý2, & , ýĄ), þ = (þ1, þ2, & , þĄ) ∈ =Ą. Let Ă ∶ =Ą × =Ą → = be 

the function defined as 
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Ă(ý, þ) = 6ý 2 þ6 = √(ý1 2 þ1)2 + (ý2 2 þ2)2 + ï+ (ýĄ 2 þĄ)2 

is a metric on =Ą called the Euclidean metric. 

Proof:  

 Let Ă ∶ =Ą × =Ą → = be the function defined as Ă(ý, þ) = √(ý1 2 þ1)2 + (ý2 2 þ2)2 + ï+ (ýĄ 2 þĄ)2 

We will show that Ă satisfies the three conditions given in Definition 3.6, 

(1) Let ý = (ý1, ý2, & , ýĄ),þ = (þ1, þ2, & , þĄ) ∈ =Ą. Since (ýÿ 2 þÿ)2 g 0 for all ÿ ∈{1,2, & , Ą}, it immediately follows that Ă(ý, þ) g 0. If ý = þ, then Ă(ý, þ) = √(ý1 2 þ1)2 + (ý2 2 þ2)2 + ï+ (ýĄ 2 þĄ)2 

                                  = √(ý1 2 ý1)2 + (ý2 2 ý2)2 + ï+ (ýĄ 2 ýĄ)2 

                                  = 0 

If Ă(ý, þ) = 0, then (ý1 2 þ1)2 + (ý2 2 þ2)2 + ï+ (ýĄ 2 þĄ)2 = 0, so (ýÿ 2 þÿ) = 0 

for all 1 f ÿ f Ą, implying that ýÿ = þÿfor all 1 f Ą f Ą. Thus ý = þ. We have, Ă(ý, þ) = √(ý1 2 þ1)2 + (ý2 2 þ2)2 + ï+ (ýĄ 2 þĄ)2 

                                  = √(þ1 2 ý1)2 + (þ2 2 ý2)2 + ï+ (þĄ 2 ýĄ)2 

                                  = Ă(þ, ý). 

(2) Let us consider 6ý + þ62. Recall the definition of a standard inner product from 

definition 2.16, the following equalities hold. 6ý + þ62 = (ý + þ) . (ý + þ) 

                = (ý1 + þ1)2 + ï+ (ýĄ + þĄ)2 

                = ý12 + 2ý1þ1 + þ12 + ï+ ýĄ2 + 2ýĄþĄ + þĄ2 

                =(ý12 + ï+ ýĄ2) + 2(ý1þ1 + ï+ ýĄþĄ) + (þ12 + ï+ þĄ2) 
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                = (ý . ý) + 2(ý . þ) + (þ . þ) 

                = 6ý62 + 2(ý . þ) + 6þ62. 

 Through our knowledge of absolute values and though the use of Lemma 3.10, we 

see that this implies 6ý + þ62 = 6ý62 + 2(ý . þ) + 6þ62                 f 6ý62 + 2|ý . þ| + 6þ62 

                                                   f 6ý62 + 26ý66þ6 + 6þ62 

                                                   = (6ý6 + 6þ6)2. 

 Taking the square root of both sides of the inequality above,  

we get 6ý + þ6 f 6ý6 + 6þ6. 

 Now let ÿ = (ÿ1, ÿ2, & , ÿĄ) ∈ =Ą.  

We see that, 

 Ă(ý, þ) = 6ý 2 þ6 = 6ý 2 ÿ + ÿ 2 þ6      f 6ý 2 ÿ6 + 6ÿ 2 þ6                                                      =   Ă(ý, ÿ) + Ă(ÿ, þ)                                                 
Therefore, Ă is a metric on =Ą. 

 The metric space induced by the Euclidean metric on =Ą is known as the 

Euclidean topology on =Ą. The Euclidean topology on =Ą is the topology that we need to 

relate =Ą and āă(=) with each other. 

 To relate =Ą and āă(=) to each other, we can create a one-to-one 

correspondence between =Ą2
 and āĄ(=) by creating the bijective function 

 � ∶ =Ą2 → āĄ(=) defined as 
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 �(ý) = �(ý11, ý12, . . . , ý1Ą, ý21, ý22, . . . , ýĄĄ) =[ý11 ý12ý21îýĄ1
ý22îýĄ2

ï ý1Ąï⋱ï ý2ĄîýĄĄ] 

Thus ,we can actually talk about the Euclidean space ýĄ2
 and still work with matrices, 

which allows us to study the geometry and topologies of matrix groups through the use of 

the Euclidean metric and the subspace topology applied to the Euclidean topology. 

Definition: 3.11  

 Let (ă, �) be a topological space. If Ą is a subset of ă, the collection �� = {Ą ∩ Ā|Ā ∈ �} 
is a topology on Ą , called the subspace topology. With this topology, Ą is called a 

subspace of ă. 

 Thus, the topologies of matrix groups are structurally equivalent to subspace 

topologies of the Euclidean topology. 

 With an understanding of the topology of matrix groups, we are poised to 

understand the proof that ăĄ(ý) is a matrix group. The following definition and theorems 

will be used in the proof that ăĄ(=) is a matrix group. 

Theorem: 3.12 

 Let (Ą, ��) be a subspace of (ă, �). Then a set ý is closed in Ą if and only if it 

equals the intersection of a closed set of ă with Ą . 

Proof:  

 Let (Ą, ��) be a subspace of (ă, �). Let ý be closed in Ą. Thus, Ą 2 ý ∈ ��, so Ą 2 ý = Ā ∩ Ą where Ā ∈ � . Since ă 2 Ā is closed in ă and ý = Ą ∩ (ă 2 Ā), ý is the 

intersection of Ą with a closed set of ă. 
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  Now let ý ⊂ Ą be such that ý = ÿ ∩ Ą where ÿ is closed in ă. Then ă 2 ÿ ∈�, so Ą ∩ (ă 2 ÿ) ∈ ��. Since (ă 2 ÿ) ∩ Ą = Ą 2 ý, Ą 2 ý ∈ ��, so ý is closed in Ą, as 

desired.  

Definition: 3.13 

 Let (ă, �) and (Ą, �2), be topological spaces. A function Ą: ă → Ą is said to be 

continuous if for each open subset ā of Ą, the set Ą21(ā) is an open subset of ă. 

Theorem: 3.14 

 Let (ă, �) and (Ą, �2)be topological spaces, let Ą: ă → Ą. If Ą is continuous, then 

for every closed subset þ of Ą , the set Ą21(þ) is closed in ă. 

Proof:  

 Let (ă, �) and (Ą, �2) be topological spaces and let Ą: ă → Ą. Suppose that Ą is 

continuous and let þ be a closed set of Ą . Since Ą 2 þ ∈ �2, and Ą is continuous, Ą21(Ą 2 þ) is open in � . Since Ą21(Ą 2 þ) = Ą21(Ą ) 2 Ą21(þ) = ă 2 Ą21(þ), it 

follows that Ą21(þ) is closed in ă, as desired.  

Theorem: 3.15 

 ăĄ(=) is a matrix group. 

Proof: 

 Let Ą ∈ Ă be fixed, we will first show that ăĄ(=) is a group. First, note that 

theidentity matrix ĀĄ is in ăĄ(=) since for any ý, þ ∈ =Ą, +ýĀĄ, þĀĄ, = +ý, þ,. Second, 

note thatăĄ(=) inherits inverses from þĀĄ(=) since for any ā ∈ ăĄ(=), ā21 = ā�, so ā21 is orthogonal since, 

  ā21(ā21)� = ā�(ā�)� = ĀĄand (ā21)�ā21 = (ā�)�ā� = ĀĄ.  
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Lastly orthogonal matrices are closed under multiplication since for any ý, þ ∈ăĄ(=), (ýþ)� = þ�ý� and thus ýþ(ýþ)� = ýþþ�ý� = ýý� = ĀĄ and (ýþ)�ýþ =þ�ý�ýþ = þ�þ = ĀĄ. Thus, ăĄ(=) is a subgroup of þĀĄ(=).Since for all matrices Ă,ā ∈ āĄ(=),Ăăā(Ă) = Ăăā(Ă�) ÿĄĂ Ăăā(Ă)Ăăā(ā) = Ăăā(Ăā) it follows that if ý ∈ ăĄ(=), then Ăăā(ý)2 = Ăăā(ýý) = Ăăā(ýý� ) = Ăăā(ĀĄ) = 1, so Ăăā(ý) =  ±1. 

Now, define ÿ ∶ þĀĄ(=) → þĀĄ(=) by ÿ(ă) = ăă�for all ă ∈ þĀĄ(=). 

It is clear that ÿ is continuous since, for all ă ∈ þĀĄ(ă) where ă = [ýÿĀ] the 

 ÿ 2 Ā�/entry of ÿ(ă) is simply ∑ ýÿāýĀāĄā=1 , which is a polynomial function in =. Thus, 

since ÿ21({ĀĄ}) = ăĄ(=) and one-point sets are closed in =Ą2
, {ĀĄ} is closed in þĀĄ(=) 

by Theorem 3.12, so it follows by Theorem 3.14 that ăĄ(=) is closed in þĀĄ(=). 

Therefore, ăĄ(=) is a matrix group. 
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                                       CHAPTER-4 

LIE ALGEBRAS 

Definition: 4.1  

 Let ā ⊂ =ă and let x ∈ M. The tangent space to M at x is defined as 

 ÿýā = {ā′(0) | ā ∶ (2Ā, Ā ) → ā is differentiable with ā(0) = ý}. 
 The function ā ∶ (2Ā, Ā ) → ā in the previous definition is referred to commonly 

as a path through the pointý. Thus, the tangent space to ā ⊂ =ă at ý is the collection of 

slopes of all paths such that each component function of  ā is differentiable from (2Ā, Ā ) 

to ℝ. 

 Due to the correlation stated in Section 3 between āĄ(=) and =Ą2
, we are able to 

consider matrix groups as subsets of the Euclidean space. This gives us the ability to talk 

about tangent spaces of matrix groups, which gives us the definition of a Lie algebra, 

given below. 

Definition: 4.2  

 The Lie algebra of a matrix group þ ⊂ þĀĄ(=) is the tangent space to þ at  the 

identity matrix In. We denote the Lie Algebra of G as � ∶= �(þ):= ÿ��þ. 

 In Theorem 4.4, we prove that the Lie algebras of matrix groups are subspaces of āĄ(=).To do so, we will use the product rule for paths in āĄ(=), which is the subject of 

the following theorem. 

Theorem 4.3.  

 If ā, Ā ∶ (2Ā, Ā) → āĄ(=)are differentiable, then the product path (ā. Ā)(ā) ∶=ā(ā). Ā(ā) is differentiable. Furthermore, (ā. Ā)′(ā) = ā(ā). Ā2(ā) + ā2(ā). Ā(ā) 
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Proof:  

 Let ā, Ā ∶ (2Ā, Ā) → āĄ(=) be differentiable. When Ą = 1, then we have the 

product rule from calculus. Since ((ā. Ā)(ā))ÿĀ = ∑ ā(ā)ÿĂĄĂ=1 . Ā(ā)ĂĀ and ā(ā)ÿĂ. Ā(ā)ĂĀis 

a product of functions from (2Ā, Ā) to =, it follows that  ((ā. Ā)2(ā))ÿĀ= ∑ ā(ā)ÿĂĄĂ=1 . Ā2(ā)ĂĀ + ā2(ā)ÿĀ. Ā(ā)ĂĀ 

                      = (ā(ā). Ā2(ā))ÿĀ + (ā2(ā). Ā(ā))ÿĀ 

Theorem: 4.4 

 The Lie algebra � of a matrix group þ ⊂ þĀĄ(=) is a real subspace of āĄ(=). 

Proof:  

 Let þ ⊂ þĀĄ(=) be an arbitrary matrix group. To prove that g is a subspace of āĄ(=), we need to prove that � is closed under scalar multiplication and matrix addition. 

 Thus, let � ∈ ý and and let ý ∈ �, so ý = ā2(0) where  ā: (2Ā, Ā) → =Ą is a 

differentiable path such that ā(0) = ĀĄ. Let � ∶ (2�Ā, �Ā) → =Ą be the path defined as �(ā) ∶= ā(� . ā) for all ā ∈ (2�Ā, �Ā). Since �′(ā) = � . ā2(� . ā), it follows that �′(0) =� . ý. Thus, since �(0) = ā(� . 0) = ĀĄ, we can conclude that � . ý ∈ �. 

 Next, let ý, þ ∈ �. Thus, ý = ā2(0) and þ = Ā2(0) where ā ∶ (2Ā1, Ā1) → =Ą and Ā ∶ (2Ā2, Ā2) → =Ą are differentiable paths such that ā(0) = Ā(0) = ĀĄ. 

 Let Ā = min{Ā1, Ā2}, Let � ∶ (2Ā, Ā) → =Ą be the product path defined as �(ā) ∶=ā(ā). Ā(ā) for all ā ∈ (2Ā, Ā)ϵ)By Theorem 4.3, we know that �is a differentiable path 

that lies in þ with  �′(0) = ā(0). Ā′(0) + ā′(0). Ā(0) = ĀĄ . þ + ý . ĀĄ = ý + þ 

Therefore ý + þ ∈ �, proving that � is a real subspace of āĄ(=).  
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              Since Lie algebras are vector space over = , we are able to classify matrix 

groups and their Lie algebras according to their basis. 

Definition: 4.5 

 The dimension of a matrix group þ is the dimension of its Lie algebra. 

 In order to give examples of Lie algebras � of matrix group þ ⊂ þĀĄ(=), we must 

construct paths āý: (2Ā, Ā) → þ for each ý ∈ þ such that ā(0) = ĀĄ andā′(0) = ý. The 

simplest way to accomplish this is to use a function called matrix exponentiation, which 

requires a few definitions to understand the beautiful simplicity of the concept. 

Definition: 4.6 

 A vector field is a continuous function ý ∶ =ă → =ă. 

Definition: 4.7 

 An integral curve of a vector field ý ∶ =ă → =ă is a path ÿ ∶ (2Ā, Ā) → =ă such 

that ÿ2(ā) =  ý(ÿ(ā)) for all ā ∈ (2Ā, Ā). 

  Intuitively, the vector field ý ∶ =ă → =ăgives the value of the tangent vector to 

every point on the path ÿ ∶ (2Ā, Ā) → =ă Surprisingly, matrix exponentiation gives us an 

integral curve for every element in the Lie algebra of a matrix group.  

 As matrix exponentiation is defined by power series of matrices, we will 

introduce terms and results that refer to series in āĄ(=). 

Definition: 4.8 

 Let ý ∈ āĄ(=) where 

ý = [ÿ11 ÿ12ÿ21îÿĄ1
ÿ22îÿĄ2

ï ÿ1Ąï⋱ï ÿ2ĄîÿĄĄ] 
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The Euclidean norm of ý, denoted |ý|, is defined as |ý| = √(ÿ11)2 + ï+ (ÿ1Ą)2 + (ÿ21)2 + ï+ (ÿ2Ą)2 + (ÿĄ1)2 + ï+ (ÿĄĄ)2 

 The Euclidean norm of a matrix is better understood as the square root of the sum 

of squares of the entries of the matrix. 

Definition: 4.9  

 Let ýÿ ∈ āĄ(=) for all ÿ ∈ %7. We say that the series  ∑ ýÿ = ý0 + ý1 + ý2 +∞ÿ=0ïconverges (absolutely) if, for all ÿ, Ā ∈ %7,  (ý0)ÿĀ + (ý1)ÿĀ + (ý2)ÿĀ + ï converges 

(absolutely) to some (ý)ÿĀ ∈ =. This is denoted as ∑ ýÿ = ý∞ÿ=0 . 

Lemma: 4.10 

 For all ă, Ą ∈ āĄ(=), |ăĄ| f |ă| . |Ą|. 
Proof:  

 Let ă, Ą ∈ āĄ(=) be arbitrary. Recall that for all ý, þ ∈ =Ą, |+ý, þ,| f |ý| . |þ| 
(the Schwarz inequality). Using the Schwarz inequality, it follows that for all indices ÿ, Ā, 

|(ăĄ)ÿĀ|2 =  |∑ăÿĂĄĂĀĄ
Ă=1 |2                                                            

= |+(row ÿ of ă), (column Ā of Ą)�,|2 f |(row ÿ of ă)|2. |(column Ā of Ą)�|2 

= (∑|ýÿĂ|2Ą
Ă=1 ) . (∑|ĄĂĀ|2Ą

Ă=1 )                     
Thus it follows that|ăĄ|2 =    ∑ |ăĄÿĀ|2Ąÿ,Ā=1  

f ∑ ((∑|ýÿĂ|2Ą
Ă=1 ) . (∑|ĄĂĀ|2Ą

Ă=1 ))Ą
ÿ,Ā=1  
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=       (∑|ýÿĂ|2Ą
Ă=1 ) . (∑|ĄĂĀ|2Ą

Ă=1 ) 

=           |ă|2|Ą|2                           
Taking the square root of this equation, we get |ăĄ| f |ă| . |Ą|, as desired. 

Theorem: 4.11  

 Let Ą(ý) = ā0 + ā1ý + ā2ý2 + ï = ∑ āÿýÿĄÿ=1  be a power series with coefficients āÿ ∈ = and a radius of convergence =. If ý ∈ āĄ(=) satisfies |ý| < ý, then Ą(ý) =ā0ĀĄ + ā1ý + ā2ý2 + ï = ∑ āÿýÿĄÿ=1 converges absolutely. 

Proof:  

 Let Ą(ý) = ā0 + ā1ý + ā2ý2 + ï be a power series with coefficients āÿ ∈ = with 

a radius of convergence =. Let ý ∈ āĄ(=) be such that |ý| < ý. For any indices ÿ, Ā, we 

must show that |(ā0ĀĄ)ÿĀ| + |(ā1ý)ÿĀ| + |(ā2ý2)ÿĀ| + ïconverges. For any ā ∈ ℕ, it 

follows by Lemma 4.10, |(āāýā)ÿĀ| f |āāýā| = |āā||ýā| f |āā| . |ý|ā 

 Since |ý| < ý, it follows that |(ā0ĀĄ)ÿĀ| + |(ā1ý)ÿĀ| + |(ā2ý2)ÿĀ| + ï converges, 

so Ą(ý) = ā0ĀĄ + ā1ý + ā2ý2 + ï converges absolutely. Through the use of Theorem 

4.11, we are able to rigorously define matrix exponentiation. 

Definition: 4.12  

Let ý ∈ āĄ(=). The matrix exponentiation of ý is the function 

ăý = exp(ý) = ĀĄ + ý + 12! ý2 + 13! ý3 + ï = ∑ 1ÿ! ýÿ∞
ÿ=1  



 

33 

Those with sufficient calculus knowledge will recall that the radius of convergence for 

the power series of ăý is infinite, so ăý converges absolutely for all ý ∈ āĄ(=) by 

Theorem 4.11.  

 Also, considering the function ā ∶ (2Ā, Ā) → āĄ(=) be defined as ā(ā) = ă�ý =ĀĄ + āý + 12! (āý)2 + 13! (āý)3 + ï., it follows that ā(0) = ă0ý = ĀĄ + 0ý + 12! (0ý)2 +
13! (0ý)3 + ï = ĀĄ , ā(ā) = ă�ý is indeed a path. In fact, ā(ā) = ă�ý is one of the most 

useful paths when trying to define Lie algebras of matrix groups. The following theorems 

will help us understand the power of matrix exponentiation. 

Theorem: 4.13 

 The path ā(ā) = ă�ý = ĀĄ + āý + 12! (āý)2 + 13! (āý)3 + ï , where ý ∈ āĄ(=), is 

differentiable with derivative ā′(ā) = ý . ă�ý. 

Proof: 

 Let ý ∈ āĄ(=) and let the function ā ∶ (2Ā, Ā) → āĄ(=) be defined as ā(ā) =ă�ý = ĀĄ + āý + 12! (āý)2 + 13! (āý)3 + ï for all ā ∈ (2Ā, Ā) 

By Theorem 4.11, we know that ā(ā) is absolutely convergent, so we can take the 

derivative of ā(ā). Thus, through term-by-term differentiation, it follows that for all ā ∈(2Ā, Ā), 

ā′(�) = ĂĂā (ĀĄ + āý + 12! (āý)2 + 13! (āý)3 + ï) = ý + āý2 + 12! ā2ý3 + ï 

                                                             =   ý . ă�ý 
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Theorem: 4.14 

 Let ý, þ ∈ āĄ(=). If ýþ = þý, then ăý+þ = ăýăþ. 

Proof:  

 Let ý, þ ∈ āĄ(=) be such that ýþ = þý 

Due to the commutativity of ý and þ,  (ý + þ)ā = (ý + þ)(ý + þ)(ý + þ)& (ý + þ) 

                = (ý2 + ýþ + þý + þ2)(ý + þ)& (ý + þ) 

                = (ý2 + 2ýþ + þ2)(ý + þ)& (ý + þ) 

                = (ý3 + ý2þ + 2ýþý + 2ýþ2 + þ2ý + þ3)& (ý + þ) 

                = (ý3 + 3ý2þ + 3ýþ2 + þ2)& (ý + þ) î 
                = ýā + āýā21þ + (ā2)ýā22þ2 + ï+ ( āā21)ýþā21 

                = ∑ (ā�)ýā2�þ�ā�=0  

The following equalities hold. ăý+þ = ĀĄ + ý + þ + 12! (ý + þ)2 + 13! (ý + þ)3 + ï 

         = ∑ 1ÿ! (ý + þ)ÿ∞ÿ=0  

         = ∑ 1ÿ! (∑ (ÿĀ) ýÿ2ĀþĀÿĀ=0 )∞ÿ=0  

         = ∑ 1ÿ! (∑ ÿ!(ÿ2Ā)!Ā! ýÿ2ĀþĀÿĀ=0 )∞ÿ=0  

         = ∑ (∑ 1(ÿ2Ā)!Ā! ýÿ2ĀþĀÿĀ=0 )∞ÿ=0  

         = ĀĄ + ý + þ + 12! ý2 + ýþ + 12! þ2 + 13! ý3 + 12! ý2þ + 12! ýþ2 + 13! þ3 + ï 

         = (∑ 1ā! ýā∞ā=0 ) (∑ 1ā! þā∞ā=0 ) 
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         = ăýăþ. 

 Now, using Theorems 4.13 and 4.14, we will find the Lie algebras for þĀĄ(=) , ăĄ(=), and þĀĄ(=). When referring to the Lie algebra of a matrix group, we write the 

Lie algebra in lower case letters. For example, the Lie algebra of þĀĄ(=)  is typically 

denoted ąĂĄ(=). 

Theorem: 4.15 

 āĄ(=) is the Lie algebra of þĀĄ(=). 

Proof:  

 Let ý ∈ āĄ(=). By Theorem 4.14, ăý. ă2ý = ăý2ý = ă0 = ĀĄ, so ăý is invertible 

and thus ăý ∈ þĀĄ(=). Let ā ∶ (2Ā, Ā) → þĀĄ(=) be defined as ā(ā) = ă�ý for all ā ∈(2Ā, Ā). By Theorem 4.14, ă�ý. ă2�ý = ă�ý2�ý = ă0 = ĀĄ, so ă�ý ∈  þĀĄ(=) as well. 

Since ā(0) = ĀĄand ā2(0) = ý, it follows that ý ∈ ąĂĄ(=) and thus āĄ(=) ⊂ ąĂĄ(=). 

 For the other direction, since the paths ā(ā) are all Ą × Ąnmatrices, their 

derivatives at 0 are Ą × Ą matrices as well, so �(þĀĄ(=)) ⊂ āĄ(=). Therefore, by 

double inclusion, āĄ(=) = ąĂĄ(=). 

Notation.  ăĄ(=) = {ý ∈ āĄ(=) | ý + ý� = 0} 

 

Lemma: 4.16  

 If ý ∈ ąĄ(=), then ăý ∈ ăĄ(=). 

Proof:  

 Let ý ∈ ąĄ(=). By Theorem 2.24, we see that 
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(ăý)� = (∑ ý�Ą!∞Ą=0 )� = ∑ (ý�)�Ą!∞Ą=0 = ∑ (ý�)�Ą!∞Ą=0 = ăý�
 

 Since ý ∈ ăĄ(=), ý� = 2ý. Thus,  ăý(ăý)� = ăýăý� = ăýă2ý = ăý2ý = ă0 = ĀĄ. 
 By Theorem 2.26, it follows that ăý ∈ ăĄ(=).  

Theorem: 4.17  

 ăĄ(=) is the Lie algebra of ă(=). 

Proof:  

 First, let ý ∈ ąĄ(=). By Lemma 4.16, it follows that the path ā(ā) = ă�ý ∈ăĄ(=).Since ā(0) = ĀĄ and ā2(0) = ý, it follows that ý ∈ �(ăĄ(=)), so ąĄ(=) ⊂�(ăĄ(=)). 

 Next, let þ ∈ �(ăĄ(=)). Thus, there exists some path � ∶ (2Ā, Ā) → ăĄ(=), such 

that �(ā) ∈ ăĄ(=) for all ā ∈ (2Ā, Ā),�(0) = ĀĄ and �2(0) = þ.  

 Since �(ā) ∈ ăĄ(=) for all ā ∈ (2Ā, Ā), �(ā) . �(ā)� = ĀĄby Theorem 2.26. Using 

the product rule for differentiation, it follows that ĂĂā (�(ā) . �(ā)�) = �′(ā). �(ā)� + �(ā) . �′(ā)� , 
and since �(ā) . �(ā)� = ĀĄ, we get that ĂĂā (�(ā) . �(ā)�) = ĂĂā (ĀĄ) = 0 

When ā = 0, we get 

 0     =       ĂĂ0 (�(0) . �(0)�) 

                             =     �2(0) . �(0)� + �(0) . �2(0)�       =        þ . ĀĄ + ĀĄ . þ� 
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=      þ + þ� 

 Thus, þ ∈ ąĄ(=), which demonstrates that �(ăĄ(=)) ⊂ ąĄ(=). Therefore, ąĄ(=) 

is the Lie algebra of ă(=). Lemma 4.18 will help in finding the Lie algebra of þĀĄ(=).  

 First, we introduce notation that will be used in the proof of Lemma 4.18. 

Lemma: 4.18 

 If ā ∶ (2Ā, Ā) → āĄ(=)  is differentiable and ā(0) = ĀĄ, then ĂĂā|�=0 det(ā(ā)) = āÿÿāă(ā2(0)) 

where āÿÿāă(ā2(0)) is the sum of the entries of the main diagonal of ā2(0). 

Proof:  

 Let  ā ∶ (2Ā, Ā) → āĄ(=) be differentiable with ā(0) = ĀĄ ĂĂā|�=0 det(ā(ā)) = ĂĂā|�=0 ∑(21)Ā+1 . ā(ā)1Ā  . det(ā(ā)[1, Ā])Ą
Ā=1  

         = ∑(21)Ā+1 . (ā2(0)1Ā . det(ā(0)[1, Ā]) + ā(0)1Ā . ĂĂā|�=0 det(ā(0)[1, Ā]))Ą
Ā=1  

              = ā′(0)11 . þþ�|�=0 det(ā(0)[1,1]).                                                                             
 Computing 

þþ�|�=0 det(ā(0)[1,1]) through the same argument Ą times, we get ĂĂā|�=0 det(ā(ā)) = ā2(0)11 + ā2(0)22 + ï+ ā2(0)ĄĄ 

= āÿÿāă(ā2(0)). 
Theorem: 4.19 

 The Lie algebra of þĀĄ(=) is ĀĂĄ(=) = {ý ∈ āĄ(=) | āÿÿāă(ý) =  0} 
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Proof:  

 Let ý ∈ �(þĀĄ(=)). Thus, there exists some path  ā ∶ (2Ā, Ā) → þĀĄ(=) such 

that ā is differentiable, ā(0) = ĀĄ, and ā′(0) = ý. By Lemma 4.18, it follows that āÿÿāă(ā′(0)) = āÿÿāă(ý) = 0.This show that,   ý  ∈ ĀĂĄ(=) = {ý ∈ āĄ(=) | āÿÿāă(ý) =  0}, so �(þĀĄ(=)) ⊂ ĀĂĄ(=). 

 On the other hand, let þ ∈ āĄ(=)∈M_n(R) be such that āÿÿāă(þ) = 0. Let � ∶(2Ā, Ā) → þĀĄ(=):(-ϵ,ϵ)→SL_n(R) be defined as 

�(ā) = [   
 ��11+1det(��+�þ) ��12det(��+�þ)āÿ21îāÿĄ1

āÿ22 + 1îāÿĄ2
ï ��1�det(��+�þ)ï⋱ï āÿ2ĄîāÿĄĄ + 1]   

 
 

Note that �(0) = ĀĄ and 

�2(ā) = [  
  �11(det(��+�þ))2(��11+1)( ���det(��+�þ))det(��+�þ)2 ïÿ21îÿĄ1

ï⋱ï
�1�(det(��+�þ))2(��1�+1)( ���det(��+�þ))det(��+�þ)2ÿ2ĄîÿĄĄ ]  

  
 

 Thus, by Lemma 4.18, 

�2(0) = [   
 �11(det(��+(0)þ))2((0)�11+1)(���ýÿ(þ))det(��+(0)þ)2 ïÿ21îÿĄ1

ï⋱ï
�1�(det(��+(0)þ))2((0)�1�+1)(���ýÿ(þ))det(��+(0)þ)2ÿ2ĄîÿĄĄ ]   

 
 

          = [   
 �11(1)2((0)�11+1)(0)12 ïÿ21îÿĄ1

ï⋱ï
�1�(1)2((0)�1�+1)(0)12ÿ2ĄîÿĄĄ ]   

 
 

          = ý 

Sincedet(ĀĄ + āþ) = ∑ (21)Ā+1 . (ĀĄ + āþ)1Ā . det((ĀĄ + āþ)[1, Ā])ĄĀ=0 , 
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it follows that 

det(ĀĄ + āþ) = ∑(21)Ā+1 . (ĀĄ + āþ)1Ā . 1det(ĀĄ + āþ) . det((ĀĄ + āþ)[1, Ā])Ą
Ā=0  

                                =  1det(��+�þ)  . (∑ (21)Ā+1 . (ĀĄ + āþ)1Ā . det((ĀĄ + āþ)[1, Ā])ĄĀ=0 ) 

                                =   
1det(��+�þ)  . det(ĀĄ + āþ) 

                                = 1. 

 Thus, �(ā) ∈ þĀĄ(=) for all ā ∈ (2Ā, Ā), and since �′(0) = ý, ý ∈ �(þĀĄ(=)). 

Therefore, ĀĂĄ(=) ⊂ �(þĀĄ(=)), so ĀĂĄ(=) = �(þĀĄ(=)). 
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CHAPTER-5 

MANIFOLDS AND LIE GROUPS 

Definition: 5.1 

 A Lie group is a set G with two structures: G is a group and G is a (smooth, real) 

manifold.  These structures agree in the following sense: multiplication and inversion are 

smooth map. 

 A morphism of Lie group is a smooth map which also preserves the group 

operation: Ą(ą/) = Ą(ą)Ą(/), Ą(1) = 1. 
 In a similar way, one defines complex Lie groups.  However, unless specified 

otherwise, <Lie group= means a real Lie group. 

Theorem: 5.2 

 Let G be a Lie group.  Denote by þ0 the connected component of unity.  Then þ0 

is a normal subgroup of G and is a Lie group itself.  The quotient group is þ þ0ÿĀ⁄  

discrete. 

Proof. 

         We need to how that þ0 is closed under the operations of multiplication and 

inversion.Since the image of a connected topological space under a continuo map is 

connected, the inversion map ÿ must take þ0 to one component of G, that which contains ÿ(1) = 1, namely þ0. In similar way one show that þ0 is closed under multiplication. 

         To check that this a normal subgroup, we must show that if g∈ þ and  / ∈ þ0, then ą/ą21 ∈ þ0.  Conjugation by g is continuous and thus will take þ0 to some connected 

component of G;  since it fixes 1, this component is þ0. 
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         This fact that the quotient is discrete is  obvious. 

         This theorem mostly reduces the study of arbitrary Lie groups to the study of finite 

groups and connected lie groups.  In fact, one can go further and reduce the study of 

connected lie groups to  connected simply-connected lie groups. 

Theorem: 5.3 

   If G is a connected lie groups then its universal cover þ� has a canonical structure 

of a lie group such that  the covering map Ć: þ� → þ is a morphism of lie groups, and ÿăÿ Ć = �1(þ) as a group.  Moreover, in this case ÿăÿ Ć is a discrete central subgroup in þ� 

Proof: 

            If M,N are connected manifolds, then any continuous map Ą:ā → Ă can be lifted 

to a map Ą:� ā� → Ă�. Moreover, if we choose m∈ ā, n∈ Ă such that f(m) = n and choose 

liftings ă� ∈ ā�, Ą� ∈ Ă� such that Ć(ă�) = ă, Ć(Ą�)= Ą, there is a unique lifting Ą̃ of f such 

that Ą̃(ă�) = Ą�. 

 Now let us choose some element 1� ∈ þ� such that Ć(1�) = 1 ∈ þ. Then, by the 

above theorem there is a unique map �̃: þ� → þ� which lifts the inversion map ÿ: þ → þ and 

satisfies �̃(1�) = 1� .  

 In a similar way construct the multiplication map þ� × þ� → þ�. 

Definition: 5.4 

 A Lie subgroup ÿ of a Lie group þ is a subgroup which is also a submanifold. 
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Remark: 5.5 

 In this definition, the word <Submanifold= should be understood as <imbedded 

submanifold=. In particular, this means ÿ is locally closed but not necessarily closed; as 

we will how below,it will automatically be closed. 

Theorem: 5.6 

(1) If þ is a connected Lie group and Ā is a neighborhood of I, then U 

 generates G. 

(2) Let Ą: þ1 → þ2 be a morphism of Lie groups, with þ2 connected Ą7: ÿ1þ1 → ÿ1þ2 is surjective. Then f is surjective. 

Proof: 

(1) Let H be the subgroup generated by U. Then ÿ is open in G,for any element 

         /Āÿ,  set the h . U is a neighborhoods of h in G. Since it is an open subset of     

manifold, it is a submanifolds, so ÿ is a Lie subgroup.  

(2) Given the assumption, the inverse function theorem says that Ą is  

Surjective onto some neighborhood  Ā of  1Āþ2. Since an image of a group morphism is 

a subgroup, and Ā generates þ2, Ą is surjective. 

As in the tLheory of discrete groups, given a subgroup ÿ ⊂ þ, we can define the notation 

of cosets and define the coset space þ ÿ⁄  as the set of equivalence classes. The following 

theorem shows that the coset space is actually a manifolds. 

Notation.  

 Let þ� ∶= {Ă ∈ āĄ(=)| |Ă| < ÿ}. 
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Theorem: 5.7 

             Let G ⊂ GĀĄ(=) be a matrix group, with Lie algebra g ⊂ gĀĄ(=). 

1. For all X ∈ g, ăý ∈ G. 

2. For sufficiently mall r>0, V = exp(þ� ∩ g) is a neighborhood of ĀĄ in 

G, and the restriction exp : (þ� ∩ g)→ V is a diffeomorphism. 

Proof  

       The proof of Theorem 5.7 requires delving into the world of analysis and is 

rather lengthy, and is therefore beyond the scope of this paper.  The proof of Theorem 5.1 

can be found in Tapp’s Matrix Groups for Undergraduates, and is worth studying to 

understand the inner workings of matrix groups. 

          Going forwards, we look to define manifolds and prove that all matrix groups are 

manifolds, the prof of which relies heavily on Theorem 5.7.  First we will add some more 

definitions to our stockpile, specifically those that pertain to functions in a topological 

space. 

 Let U ⊂ =Ą be an open set in the Euclidean topology on =Ą.  Any function     

f : U → =ă can be thought of as m separate function, that I, f = (Ą1, Ą2…….Ąă) 

 where Ąÿ : U → = for each i ∈ {1,2, & . .ă}.  An example of such a function would be the 

function h : =2 → =3 defined as h(x, y) = (xy, ý2 2 þ2, ý3 +  þ) for all x, y∈ =2, which 

is defined by the separate functions /1, /2, /3 : =2 → =3 where /1(x,y) = xy,  /2(x,y)  = ý2 2 þ2, and /3(x,y) = ý3 +  þ. 

DEFINITION: 5.8 

 Let Ā ⊂ =Ą be an open set in the standard topology on =Ą and let Ą ∶  Ā → =ă 

be a function. The directional derivatives of the component functions {Ą1, Ą2, & , Ąă} in the 
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directions of the standard orthonormal basis vectors {ă1, ă2, & , ăă} of =Ą are called 

partial derivatives of Ą and are denoted as ÿĄÿÿýĀ (Ć) ∶= Ă(Ąÿ)Ć(ăĀ). 
 Directional derivatives of a function Ą measure the rates of change of each of the 

component functions of Ą. If we fix ÿ ∈ {1,2, & ,ă} and Ā ∈ {1,2, & ,ă} and if 
�Ā��ý� (Ć) 

exists for all Ć ∈ Ā, then the function ą ∶  Ā → =ă defined as ą(Ć) = �Ā��ý� (Ć) is a well-

defined function from Ā to =ă, so we can take the partial derivatives of ą. If the partial 

derivatives of ą exist, they are called second order partial derivatives of f.  Following in 

this matter, if we take r partial derivatives of your function f and the partial derivatives 

exists, then we say that they are the ÿ�/ order partial derivatives of f. 

Definition: 5.9 

 Let Ā ⊂ =Ą be an open set in the standard topology on =Ą and let Ą: Ā → =ă be 

a function. The function Ą is called ÿ� on Ā if all ÿ�/ order partial derivatives exist and 

are continuous on Ā, and Ą is called smooth on Ā if f is ÿ� on Ā for all positive integers ÿ. 

  Similarly, we can define smoothness for any set ă ⊂ =Ą, not just open sets. 

Definition: 5.10  

 If ă ⊂ =Ą, then Ą: ă → =Ą is called smooth if for all Ć ∈ ă, there exists an open 

neighborhood Ā of Ć in =ă and a smooth function Ą̃: Ā → =Ąwhich agrees with f on ă ∩Ā. 
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 Using this more general definition of smoothness, we can create a type of 

similarity between subsets of =Ą, which will allow us to define a manifold in =Ą. 

Definition: 5.11 

 Let ă ⊂ =Ą and Ą ⊂ =ă are called diffeomorphic if there exists a smooth 

bijective function Ą ∶ ă → Ą whose inverse is also smooth. In this case, Ą is called a 

diffeomorphism. 

Theorem: 5.12 

 Any matrix group is a manifold. 

Proof:  

 Let þ ⊂ þĀĄ(=) be a matrix group with Lie algebra �. Choose a sufficiently 

small ÿ > 0 which is guaranteed by Theorem 5.8. Thus, ā ∶= exp(þ� ∩ �):=(B_r∩g) is a 

neighborhood of ĀĄ in þ, and the restriction map exp ∶ þ� ∩ � → ā is a diffeomorphism, 

so exp ∶ þ� ∩ � → ā is a parametrization at ĀĄ. 

 Next, let ą ∈ þ be arbitrary. Define the function ℒā ∶ þ → þ as ℒā(ý) = ą. ý for 

all ý ∈ þ. ℒā is injective because if ą .  ý = ą .  þ for some A,B ∈ þ then ý = þ through 

left multiplication by ą21. Also, ℒā is surjective because, for all ÿ ∈ þ, ℒā(ą21. ÿ) = ÿ, 

so ℒā is bijective. Since matrix multiplication from āĄ(=) × āĄ(=) → āĄ(=) can be 

thought of as a function with Ą2 component functions, it follows that ℒā is smooth as 

each component function is a polynomial over ℝ, so all ÿ�/ order partial derivatives exist 

and are continuous on þ.  

 Also, since þ is a group, ą21 exists. Thus, the inverse function of ℒā is (þ) =ℒā21 (þ) =  ą21 . þ, which is also smooth through the same reasoning. Thus, ℒā is a 
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diffeomorphism from þ to þ, so ℒā(ā) in particular is a neighborhood of ą in þ as ℒā 

maps open neighborhoods to open neighborhoods being a diffeomorphism.  

 Therefore, (ℒā 8 exp) ∶ þ� ∩ � → ℒā(ā) is a parametrization at ą as the 

composition of diffeomorphisms is diffeomorphic, proving that þ is a manifold. We are 

now able to move on to the high point of this section. 

Definition: 5.13  

 A Lie group is a manifold, þ, with a smooth group operation þ × þ → þ and a 

smooth inverse map. 

Theorem: 5.14 

 All matrix groups are Lie groups. 

Proof:  

 Let þ ⊂ þĀĄ(=) be a matrix group. From Theorem 5.12, we know that þ is a 

manifold. Also, from the proof of Theorem 5.12, we know that matrix multiplication over 

matrix groups is smooth, so the group operation of þ is smooth. Further, the inverse map 

of þ is the function Ă ∶ þ → þ defined as Ă(ý) = 1det(ý) adj(ý), which is smooth as this is 

also just a calculation of polynomials in ℝ (this is a standard result from linear algebra). 

This shows that þ is a Lie group, proving the statement. 
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CHAPTER 1 

PRELIMINARIES 

Definition: 1.1 

 A fuzzy set   of a set   is a function             .  Fuzzy sets taking the 

values 0 and 1 are called crisp sets. 

 Let   and   be two fuzzy subsets of a set  .  Then the following expressions are  

i.     iff          , for all    . 

ii.     iff     and    . 

iii.            min {         },      . 

iv.            max {         },      . 

Definition: 1.2 

 A function            is a called fuzzy subgroup (in short FSG) of   if 

i.       g min {         } 

ii.  (   ) g             . 

 It is easy to show that a fuzzy subgroup of a group   satisfies                                and  (         , for all    , where e is the identity element of  . 
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Definition: 1.3 

 Let   be a fuzzy subgroup of a group  , then it is called fuzzy normal subgroup 

(FNSG) of   if                      
Definition: 1.4 

 Let   a fuzzy subgroups of a group  .  For   in  , the fuzzy coset     of   is 

defined by                  for all   in  .   

Definition: 1.5 

 Let            is a fuzzy normal subgroup of group  .  For any    , the 

fuzzy set              defined by                          is called a left fuzzy 

coset of  .   

Definition: 1.6 

  Let            is a fuzzy normal subgroup of group  .  For any    , the 

fuzzy set              defined by                   ,     is called a right fuzzy 

coset of  .  

Definition: 1.7 

 Let   be a fuzzy set of a group  .  For        , the upper level subset of   is the 

set        {         g   . 
 Clearly,          and if       , then                . 
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Definition: 1.8 

 Let   be a fuzzy subgroup of a group  .  The subgroup                with              are called upper level subgroup of  . 

Definition: 1.9 

 Let   :       be a homomorphism of a group    into a group   .  Let   and   

be fuzzy subsets of   and    respectively, then      and        are respectively the 

image of fuzzy set   and the inverse image of fuzzy set  , defined as 

           {     {                                                                                                , for every       

and            (    )  for every      . 

Definition: 1.10 

 If   is a fuzzy subset of a set  , then the standard fuzzy complement of  , is the 

fuzzy subset    of  , defined by             , for all   in  . 

Definition: 1.11 

 If       and (    ) are any two groups, then the function         is called a 

homomorphism if                 , for all   and   in  . 

Definition: 1.12 

 If       and (    ) are any two groups, then the function         is called a 

anti-homomorphism if                 , for all   and   in  . 
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Definition: 1.13 

 Let   be a group and   be a fuzzy subgroup  .  Then,   is a cyclic fuzzy 

subgroup of  , if    is a cyclic subgroup for all   in [0, 1], and is defined as                   {     g   ⁄             }. 
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CHAPTER 2 

  – FUZZY SUBGROUP 

Definition: 2.1 

  Let   be a fuzzy subset of a group  .  Let α   [0,1].  Then the fuzzy set    of   is 

called the   – fuzzy subset of   (with respect to) and is defined a              * ( )  + for all      
Result: 2.2 

1) Let   and   be two fuzzy subsets of  .  Then (   )       . 
2) Let       be a mapping and   and   be two fuzzy subsets of   and   respectively, then  

a)    (  )  (   ( ))  
b)  (  )  ( ( ))  

Proof: 

1) Let   and   be two fuzzy subsets of  .  

To Prove: (   )       .  

   Now, (   )   min *(   )( )  + 
         min *    *  ( )  ( )+  + 

                              *    * ( )  +     * ( )  ++ 
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                   min {  ( )   ( )+    
         (     )(x), for all       

    Hence (   )         
2) Let       be a mapping and   and   be two fuzzy subsets of   and   

respectively. 

a) To prove:    (  )  (   ( ))  
          (  )( )     ( ( )) 
       min { ( ( ))  } 
       min *   (  )( )  + 
       (   ( )) ( )  for all     

      Hence    (  )  (   ( ))   
b) To prove:  (  )  ( ( ))  
 (  )( )      *(  )( )   ( )   + 
             *     * ( )  +   ( )   + 
              *    * ( )   ( )    +  + 
              * ( )( )  + 

            ( ( ))  (y), for all     
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     Hence  (  )  ( ( ))  

Definition: 2.3 

Let   be a fuzzy subset of a group  .  Let     [0,1].  Then   is called   – fuzzy 

subgroup (in short   – FSG) of   if    is fuzzy subgroup of   i.e. if the following 

conditions hold 

i)   (  )     *  ( )   ( )+ 
ii)   (   )     ( )                  

Theorem: 2.4 

If     ,   - is a   – fuzzy subgroup of a group  , then 

i)   ( )     ( )        where e is the identity element of  . 

ii)   (    )     ( )      ( )    ( )            
Proof: 

 Let     ,   - is a   – fuzzy subgroup of a group  . 

i) To prove:    ( )     ( )        where e is the identity element of  . 

                     ( )     (    )    
                         *  ( )   (   )+    
       = min {  ( )    ( )+   

          =   ( ) 
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       ( )    ( )        where   is the identity element of  .  

ii) Let   (    )     ( )             ---------- (1) 

      To prove:   ( )    ( )            
        ( )     (     ) 

                *  (    )    ( )+    
  ( )     ( )   [Since By part (i)]             ---------- (2) 

  ( )     (     ) 
              *  (    )      ( )+    
                *  (    )        ( )+    
           *   (    )   ( )+  
            *   ( )   ( )+   [Since By (1)]  

  ( )     ( )    [Since By part (i)]        ---------- (3) 

From (2) and (3) 

Thus   ( )    ( )            
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Theorem: 2.5 

If   be a fuzzy subgroup of the group  , then   is also   – fuzzy subgroup of  . 

Proof: 

 Let   be a fuzzy subgroup of the group  . 

 To prove:   is also α – fuzzy subgroup of  .  

Let       be any elements of the group. 

    (  )      *  (  )  +    
                   *    *  ( )  ( )+   +}    

                  *    * ( )  +     * ( )  ++          

              min {  ( )   ( )+    
Thus   (  )       *   ( )   ( )+ 
Also,   (   )      * (   )  +    
      {* ( )  +}   

               ( )    
Hence   is a α – fuzzy subgroup of  . 
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Theorem: 2.6 

 Let   be a fuzzy subset of a group   such that  (   )   ( ) hold for all     

Let    , where   = Inf { ( )     }.  Then   is   – fuzzy subgroup of  . 

Proof:  

 Let   be a fuzzy subset of a group   such that  (   )   ( ) hold for all     
 Let    , where   = Inf {  ( )      }.   

 To Prove:   is α – fuzzy subgroup of  .  

Since           

 (i.e) Inf  {  ( )      }   α  

  ( )               ---------- (1) 

 Since   be a fuzzy subset of a group  . 

  Then,   ( )       * ( )   +    
 (i.e)    ( )      for all    .   [Since By (1)]     

 Thus,    (  )       *  ( )      ( )+ hold for all      .  

Further, ( (   )   ( ) hold for all    .  

     (   )    ( ) 
 Hence   is α – fuzzy subgroup of  . 
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Theorem: 2.7 

 Intersection of two   – fuzzy subgroups of a group   is also   – fuzzy subgroup 

of  . 

Proof: 

 Let   and   be two α – fuzzy subgroups of a group  . 

 To Prove: (   ) is a α – fuzzy subgroup of  .  

 Let       be any element, then 

 (   ) (  )  (     )(  )   [Since By Result: 2.2 (1)] 

        *   (  )   (  )+    
      min {min {  ( )   ( )+   min {  ( )   ( )+}    

     min { min {  ( ),   ( )}, min {  ( )   ( )} 

        *(     )( ) (     )( )+    
     min {(   ) ( )  (   ) ( )+   [Since By Result: 2.2 (1)]    

 Thus (   ) (  )    min {(   ) ( ) (   ) ( )+  
 Also, (   ) (   )   (     )(   )   [Since By Result: 2.2 (1)] 

              min {  (   )   (   )+    
 Since   and   be two   – fuzzy subgroups of a group  . 
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 Also, (   ) (   )   min {   ( )   ( )+    
               (     )( )    

 (   ) ( )   [Since By Result: 2.2 (1)]  

 Hence (   ) is a   – fuzzy subgroup of  . 

Definition: 2.8 

 Let   be   – fuzzy subgroup of a group  , where α   [0,1].  For any    , 

define a fuzzy set     of  , called   – fuzzy right coset of   in   as follows 

   ( )    min { (    )  +, for all        
Similarly, we define the   – fuzzy left coset      of   in   follows 

  ( )    min { (    )  }, for all     . 

Definition: 2.9 

 Let   be α – fuzzy subgroup of a group  , where     [0,1].  Then   is called         – fuzzy normal subgroup ( α – FNSG ) of   if and only if          , for all      
Theorem: 2.10 

 If   is a Fuzzy normal subgroup of a group  , then   is also a   – fuzzy normal 

subgroup of a group  . 

 



13 

 

Proof: 

 Let   is a Fuzzy normal subgroup of a group  . 

 To prove:   is also a   – fuzzy normal subgroup of a group  . 

  Then for any    , we have        
 Therefore, for any    , we have (    )( )  (  )( ) 
 (i.e)  (    )   (    ) 
 So min * (    )  +     * (    )  +  
 (i.e) (     )( )  (   )( ) 
 So, we have           , for all     

  Hence   is a   – fuzzy normal subgroup of a group  .  

Theorem: 2.11 

 Let   be a   – fuzzy normal subgroup of a group  . Then   (     )    ( ) or 

equivalently,   (  )    (  ) , holds for all        
 Proof: 

 Let   be a   – fuzzy normal subgroup of a group  .  

 To prove:   (  )    (  ) , holds for all        
 Since   be a   – fuzzy normal subgroup of a group  .  
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 Therefore,          hold for all      
 (     )(   )  (   )(   ) hold for all       .   

 min * (      )  +      * (      )  + 
   (      )     (      ) 
   ((  )  )     ((  )  ) 
 Since   is   – fuzzy subgroup of a group   so   (   )     ( ), for all      
 Therefore,   (  )     (  ) 
Theorem: 2.12 

Let   be an   – fuzzy subgroup of a group   such that      , where                           * ( )            +.  Then   is also a   – fuzzy normal subgroup of a     

group  . 

Proof: 

 Let   be an   – fuzzy subgroup of a group   such that      , where                            * ( )            +.    
 To prove:   is also a   – fuzzy normal subgroup of a group  . 

 Since     
 (i.e)      
     * ( )            +    
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 ( )    for all                           ---------- (1) 

and so min * ( )  +         [Since By (1)]         ---------- (2) 

   ( )    min {A(    )  +  
         [Since By (2)]           ---------- (3) 

Similarly,   ( )    min {A(    )  } 

                 [Since By (2)]         ---------- (4)   

  From (3) and (4)  

Thus    ( )    ( )  , for all      

Therefore           , for all     . 

Hence   is a   – fuzzy normal subgroup of a group  . 

Theorem: 2.13 

 Let   be a α-fuzzy normal subgroup of a group  , then the set                        *       ( )     ( )+ is a normal subgroup of  . 

Proof: 

 Let   be a   fuzzy normal subgroup of a group  . 

 Let      *       ( )     ( )+         ---------- (1) 

 To prove:     is a normal subgroup of  . 
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 Clearly,       for e     . 
 Let         be any element. 

 Then we have   (    )      *  ( )   (   )+  
              *  ( )   ( )+ 
               *  ( )   ( )+     [Since By (1)] 

              ( ) 
Therefore,   (    )    ( )          ---------- (2) 

But,   (    )    ( )            ---------- (3) 

  From (2) and (3) 

Therefore,   (    )    ( )   
          
Thus     is a subgroup of  . 

Further, Let      and      , we have 

  (     )    ( ) 
            ( )     [Since By (1)] 

           
 Hence,     is a normal subgroup of  .  
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Theorem: 2.14 

Let   be a   fuzzy normal subgroup of a group  , then           iff          . 
Proof: 

 Let   be a   fuzzy normal subgroup of a group  . 

 Let                      ---------- (1) 

 To prove:           
   (    )      * (      + 
            ( )   
            ( )     [Since By (1)] 

            * (      + 
            * ( )  + 
           ( ) 
 Therefore,   (    )     ( )  
            
 Conversely, 

 Let          
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 To prove:            

 Then,   (    )     ( )           ---------- (2)  

 Let     be any element. 

 Now,  

 (     )( )      * (    )  + 
         (    )  
         ((    )(    )) 
           *  (    )   (    )+ 
           *  ( )   (    )+     [Since By (2)] 

 But,   (    )    ( ) 
 (     )( )     (    ) 
       (     )( ) 
 Therefore, (     )( )  (     )( )          ---------- (3) 

 Interchanging the role of   and  , we get 

 (     )( )  (     )( )           ---------- (4) 

   From (3) and (4) 

 Therefore, (     )( )  (     )( ), for all    . 
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 Hence,           . 

Definition: 2.15 

 The group  /   of a   – fuzzy coset of the   – fuzzy normal subgroup   of   is 

called the factor group or the quotient group of   by   . 

Theorem: 2.16 

 Let            be a homomorphism of group    into a group   .  Let   be          – fuzzy subgroup of group   .  Then    ( ) is α – fuzzy subgroup of group   . 
Proof: 

Let            be a homomorphism of group    into a group   .  
Let   be a α – Fuzzy subgroup of group   .   
To Prove:    ( ) is α – fuzzy subgroup of group   .  
Let            be any element.   

Then, (   ( ))  (    )     (  )(    )   [Since By Result: 2.2 (2) (a)]  

           (( (    )))    
                 ( (  ) (  ))    
             *  ( (  ))   ( (  ))+    
             *   (  )(  )     (  )(  )+    
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          min {(   ( )) (  ) (   ( )) (  )} 

Thus (   ( ))  (    )      *(   ( )) (  )    (   ( )) (  )+ 
Also, (   ( )) (   )      (  )(   )   [Since By Result: 2.2 (2) (a)] 

        (( (   )))     
        (( ( )  )) 
        (( ( ))) 
Thus  (   ( )) (   )     (  )( )    
Hence    ( ) is   – Fuzzy subgroup of   . 

Theorem: 2.17 

 Let            be a homomorphism of a group    into a group   .  Let   be a     – Fuzzy normal subgroup of group   , then    ( ) is a   – Fuzzy normal subgroup of 

group   . 
Proof: 

 Let            be a homomorphism of a group    into a group   .  
Let   be a   – Fuzzy normal subgroup of group   .   
To Prove:    ( ) is a   – Fuzzy normal subgroup of group   .  

Let               be any element. 
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 Then, (   ( )) (    )     (  )(    )    [Since By Result: 2.2 (2) (a)]  

           ( (    ))    
           ( (   ) (   )) 
           ( (   ) (   )) 
           ( (    )) 
             (  )(    )    
         (   ( )) (    )   [Since By Result: 2.2 (2) (a)] 

 Thus (   ( )) (    )     (  )(    ) 
 Hence    ( ) is a   – Fuzzy normal subgroup of group   .  
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CHAPTER 3 

  – FUZZY SUBGROUP 

Definition: 3.1 

 Let   and   be any two sets.  A mapping             is called a   – fuzzy 

set in G. 

Definition: 3.2 

 A   – fuzzy set μ of a group G is called   – fuzzy subgroup of  , if for all    

         .        

i)             {             } 
ii)                 

Definition: 3.3 

 A   – Fuzzy set μ of a group G is called an anti   – fuzzy subgroup of  , if for all          , 

i)             {             }  
ii)                   
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Definition: 3.4        

 Let   be a group.  A   – fuzzy subgroup μ of a group   is called   – fuzzy 

normal subgroup of   if for all          ,                   or                                . 

Definition: 3.5 

 Let       be a group and   be a set.  A anti   – fuzzy subgroup   of   is said to 

be an anti   – fuzzy normal subgroup (AQFNSG) of   if,                 for all        

         . 

Theorem: 3.6 

 If μ is a   – fuzzy subgroup of a group   if and only if       is a   – fuzzy 

subgroup of a group    
Proof: 

 Suppose μ is a Q – fuzzy subgroup of a group    
 Then for all          ,              {             } 
 Now,  

                 {                       } 
               –      {               } 

                {               } 
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 Taking complement on both sides 

                      {                }   

 We have μ        μ    , q), for all      and    .  

   1 -    (   ) = 1 -   (   ,  ) 

     (   ) =   (   ,   ) 

 Taking complement on both sides 

                            

 Hence       is a   – fuzzy subgroup of a group  . 

Theorem: 3.7 

 If   is a   – fuzzy subgroup of a group   then               {             } for all       and    .  

Proof: 

 Let   be a   – fuzzy subgroup of a group  . 

 To prove:             min {            )} for all       and    . 

Then for all         and      ,           min {            )}                     (   ,  ) =        

 Now, 
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       ,  )   min {     ), A(   ,   } 

       ,  )   min {             }  

 Therefore,  

       ,      min {             } for all              . 

Theorem: 3.8 

 If   is an anti   – fuzzy subgroup of group   then       is also an anti                – fuzzy subgroup of group   for all     and      
Proof: 

 Let   be an anti   – fuzzy subgroup of group  . 

 To prove:       is also an anti   – fuzzy subgroup of group   for all     and    . 

 Then for all     and      
i.      (xy, q)    (        , q) 

                    (   (xg   y)g, q) 

                   (                ) 

                 {                   } for all       and     

ii.                         
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                               for all       and     

Hence       is also an anti   – fuzzy subgroup of group   for all     and         .    

Theorem: 3.9 

 Let   be a group.  Let   be a   – fuzzy normal subgroup of a group   then    is 

an anti   – fuzzy normal subgroup of a group  . 

Proof: 

 Let   be a group.  

 Let   be a   – fuzzy normal subgroup of a group  . 

 (i.e)                   

 To prove:    is an anti   – fuzzy normal subgroup of a group  .  

 Now to show that    is an anti   – fuzzy subgroup of a group  .  

          min {             } 
 1              min {                   } 
            1  min {                   } 
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            max {               } 
 Hence,    is an anti   – fuzzy subgroup of a group  . 

 Since   be a   – fuzzy normal subgroup of a group  .  

 (i.e)                    

 1                         

                     

 Therefore, 

    is an anti   – fuzzy normal subgroup of a group  .  

Theorem: 3.10 

 Let   be a   – fuzzy normal subgroup of a group   with identity  .  Then                     for all       and    . 

Proof:                  

 Let   is a   – fuzzy normal subgroup of a group  . 

 That is                                    ---------- (1) 

 To prove:                 for all       and    . 

 Now, 
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        (          ) 

                    

                 [Since By (1)] 

Therefore,                 

Definition: 3.11 

 Let   be a field.  Let   and   any to fuzzy sets in X.  A mapping  

               is called   – fuzzy set in X. 

Definition: 3.12 

 Let    be a   – fuzzy set in a field   is said to be   – fuzzy field in   if for all                 and      . 

i.   (       )       {                } 
ii.                    

iii.   (      )       {               } 
iv.                             in  . 

Theorem: 3.13 

 If    be a   – fuzzy field in   and    be a subset of   .  Then    is a   – fuzzy 

subfield of    in  . 
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Proof: 

 Given    is a   – fuzzy field in  . 

 Let          and      
 To prove:    is a   – fuzzy subfield of    in  . 

 From the definition, 

i.   (       )      {               } 
ii.                    

iii.   (      )      {                } 
iv.                             in   for all        and        . 

Hence    is a fuzzy field in  . 

Therefore    is a   – fuzzy subfield of    in  . 
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CHAPTER 4 

     FUZZY SUBGROUP 

Definition: 4.1 

 If   is a   3 fuzzy subgroup of a group  , then  [ ] is the complement of             – fuzzy subgroup  , and is defined by  [ (   )] = 1-  (   ), for all   in   and   in  . 

Definition: 4.2 

 Let   and   be any two non-empty sets and   ,   -.  Then, a mapping             ,   - is called      fuzzy subset in  , with regard to fuzzy set   if   (   )      * (   )  +, for all     and    . 

Theorem: 4.3 

 Let    and    be two      fuzzy subset of  .  Then (   )          

Proof: 

 Let    and    be two      fuzzy subset of G.    

 To prove: (   )           

 (   ) (   )      *(   )(   )  + 
         *    * (   )  (   )+  + 
         *    * (   )  +      * (   )  ++ 
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         *  (   )   (   )+ 
        (   )    (   ) 

     (     )(   ), for all     and     

    Hence, (   )           

Theorem: 4.4 

 Let         be a mapping.  Let    be fuzzy subset of   and    be fuzzy subset 

of   .  Then, 

i.  (  )  ( ( ))    

ii.    (  )  (   ( ))      

Proof: 

 Let         be a mapping.  Let    be fuzzy subset of   and    be fuzzy subset 

of   .  
i. To prove:  (  )  ( ( ))    

 (  (   ))       *  (   ) |  (   )  (    )+ 
             *    * (   )  + |  (   )  (    )+ 
             *    * (   ) |  (   )  (    )+  + 
             { ( (    ))  } 
          ( ( )(    )) , for all    ,        and     
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Hence,  (  )  ( ( ))  

ii. To prove:    (  )  (   ( ))   

    (  (   ))     ( (   )) 

         { ( (   ))  } 
         *   (  (   ))  + 

       (   ( (   ))) , for all     and      
  Hence,    (  )  (   ( ))   

Definition: 4.5 

 Let   be a   3 fuzzy subgroup of a group   and    [0,1]. Then,    is called             fuzzy subgroup of  , if for all       and     the following condition hold: 

i.   (    )      *  (   )   (   )+ and  

ii.   (     )     (   ) 

Theorem: 4.6 

 Every    fuzzy subgroup of group   is      fuzzy subgroup of  . 

Proof: 

 Let   be   3 fuzzy subgroup of  .  

Let     be any two elements in a group  . 
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To prove:   be      fuzzy subgroup of  .   

 Then,   (    )      * (    )  +  
           *    * (   )  (   )+   + 
            *    * (   )  +      * (   )  ++ 
            *  (   )   (   )+ 
 Therefore,   (    )      *  (   )   (   )+  
   (     )      * (     )  +  
              * (   )  + 
             (   ) 

 Therefore,   (     )     (   ) 

 Hence,   is      fuzzy subgroup of  . 

Theorem: 4.7 

 If    is      fuzzy subgroup of a group  , then 

i.   (   )     (   ) for all     and    , where   is the identity 

element of a group  . 

ii. A set    *     (   )     (   )        ⁄ + is an      fuzzy 

subgroup of a group  . 
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Proof: 

 Let    is      fuzzy subgroup of a group  . 

i. To prove:   (   )     (   ) for all       and        where   is the      

identity element of a group  .  

  (   )    (      )  
        *  (   )   (     )+ 
        *  (   )   (   )+ 
      (   )  

      Hence,   (   )     (   )               . 

ii.     To prove:   is an      fuzzy subgroup of the group  . 

The set   ≠   as at least there exists       Let         and      . 

Then,   (   )     (   )    (   )  
  (      )      *  (   )   (     )+ 
                *  (   )   (   )+ 
                *  (   )   (   )+  
               (   )  

  So,   (      )    (   )  
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By part (i), we can show that   (   )    (      )  
Therefore,   (      )     (   ) 

Hence,   is an      fuzzy subgroup of the group  . 

Theorem: 4.8 

 Let    be      fuzzy subgroup of a group  .  If   

   (      )     (   ), then   (   )     (     ) for all   and   in   and   in  . 

Proof: 

 Let    be a      fuzzy subgroup of a group  . 

Let   (      )    (   ), for all         and      .                  ---------- (1) 

Then,   (   )    ( (    )  )  
      ((    )   )  
        {  ((    )  )   (   )}  
        *  (   )   (   )+     [Since By (1)] 

       (   )     [Since By theorem: 4.7 (i)] 

 Therefore,   (   )     (   )           ---------- (2) 

   (   )     (     ) 

         ((    )     ) 
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         (   (    )  ) 

          *  (     )   (      )+ 
          *  (   )   (   )+     [Since By (1)]           

         (   )     [Since By theorem: 4.7 (i)]          

 Therefore,   (   )     (   )          ---------- (3) 

    From (2) and (3), 

Hence,   (   )     (   ) 

Theorem: 4.9 

 If    and    is an      fuzzy subgroup of a group  , then (   )  is also an       fuzzy subgroup of the group  . 

Proof: 

 Let    and    is an      fuzzy subgroup of a group  . 

 Let     be any two elements in   and   in  .  

 To prove: (   )  is also an       fuzzy subgroup of the group  . 

 Then, 

 (   ) (    )  (     )(    )     [Since By Result: 2.2 (1)] 

           *  (    )   (    )+ 
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       *    *  (   )   (   )+     *  (   )   (   )++ 
       *    *  (   )   (   )+     *  (   )   (   )++ 
       *(     )(   ) (     )(   )+ 
       *(   ) (   ) (   ) (   )+     [Since By Result: 2.2 (1)]  

Therefore, 

  (   ) (    )      *(   ) (   ) (   ) (   )+ 
(   ) (     )  (     )(     )     [Since By Result: 2.2 (1)] 

           *  (     )   (     )+ 
           *  (   )   (   )+ 
       (     )(   )  
       (   ) (   )     [Since By Result: 2.2 (1)]  

Therefore, (   ) (     )  (   ) (   )  
 Hence, (   )  is also an       fuzzy subgroup of the group  .  

Theorem: 4.10 

 If    is an      fuzzy subgroup of a group  , then  (  ) is an      fuzzy 

subgroup of the group  . 
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Proof: 

 Let    is an      fuzzy subgroup of a group  . 

 To prove:  (  ) is an      fuzzy subgroup of the group  . 

  ,  (    )-      (    )   

                 *  (   )   (   )+ 
                 *    (   )     (   )+  
                 * ,  (   )-  ,  (     )-+ 
 Therefore, 

 ,  (    )-      * ,  (   )-  ,  (     )-+,       and       

  ,  (     )-      (     ) 

        (   ) 

     ,  (   )- 
Therefore,  ,  (     )-   ,  (   )- 
Hence,  (  ) is an      fuzzy subgroup of the group  . 

Theorem: 4.11 

 Let   is   fuzzy subgroup of a group  .  Then,    is a     fuzzy subgroups 

of groups   iff   (    )      *  (   )   (   )+ for all     in   and   in  . 
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Proof: 

 Let   is   fuzzy subgroup of a group  . 

 Let    is a     fuzzy subgroups of groups  . 

 To prove:   (    )      *  (   )   (   )+ for all     in   and   in  . 

 Then,   (    )      *  (   )   (     )+ 
            *  (   )   (   )+ 
 Therefore,   (    )      *  (   )   (   )+, for all     in   and   in  . 

 Conversely, 

 Let   (    )      *  (   )   (   )+         ---------- (1) 

for all     in   and   in  . 

Let   is   fuzzy subgroup of a group  . 

To prove:    is a     fuzzy subgroups of groups  . 

Then,   (  )    ( (   )    ) 

       *  (   )   (     )+     [Since By (1)] 

       *  (   )   (   )+ 
Therefore,   (  )      *  (   )   (   )+ for all     in   and   in  . 

  (     )     (      ) 
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           *  (   )   (   )+ 
          (   )     [ Since By theorem:4.7 (i)] 

 Therefore,   (     )    (   ), for all   in   and   in  . 

 Where   is the identity element of  . 

Hence,    is a     fuzzy subgroups of groups  . 

Definition: 4.12 

 Let    and    be any two     fuzzy subgroups of groups   and   , 
respectively.  Then,       said to be product of    and    and is defined as                                     ((    )  )      *  (   )   (    )+,        ,  ′    ′ and      . 

Theorem: 4.13  

 If    and    be two      fuzzy subgroups of groups   and    respectively, 

then       is a      fuzzy subgroup of a group     . 
Proof: 

 Let    and    be two      fuzzy subgroups of groups   and    respectively. 

 To prove:       is a      fuzzy subgroup of a group     .  
 If        , and         , then (    ) (    )       , 
      ((    )(    )  )        (,(  ) (    )-  ) 
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        *  (    )   (      )+ 
        *    *  (   )   (   )+     *  (    )   (    )++  
        *    *  (   )   (    )+     *  (   )   (    )++   
        {     ((    )  )      ((    )  )}  
 Therefore, 

                 ((    )(    )  )      {     ((    )  )      ((    )  )}  
      ((    )    )        ((    (  )  )  ) 

         *  (     )   ((  )    )+ 
         *  (   )   (    )+  
          ((    )  ) 

Therefore,      ((    )    )       ((    )  )  

 Hence,       is a      fuzzy subgroup of a group     .  
Theorem: 4.14 

 If       and       are      fuzzy subgroups of a groups    ′ and      
respectively, then the following statements are true: 

i. If   (   )     (   ) for all     and    , then    is an                         fuzzy subgroup of a group   . 
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ii. If   (    )     (   ) for all       and     , then    is an                 fuzzy subgroup of a group  . 

Where e and e′ are the identity elements of groups   and   , respectively. 

Proof: 

 Let       and       are      fuzzy subgroups of a groups      and      respectively with         and     . 

i. Let   (   )     (   ) for all       and      . 

To prove:    is an      fuzzy subgroup of a group   . 
Since   (   )     (   )      ---------- (1) 

for all       and      . 

Then,   (    )      *  (    )   (      )+ 
                           (    )       (,(  ) (    )-  )  

           (,(   ) (     )-  ) 

                    *     ((   )  )      ((     )  )+ 
          *    *  (   )   (   )+      *  (   )   (     )++ 

         *  (   )   (     )+     [Since By (1)] 

 Therefore,   (    )      *  (   )   (     )+ 
 Since    are      fuzzy subgroup of a group   . 
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 Therefore,   (     )    (    ) 

 Hence,    are      fuzzy subgroup of a group   .  
ii. Let   (    )     (   ) for all     and    . 

To prove:    is an      fuzzy subgroup of a group  . 

Since   (    )     (   )          ---------- (2) 

for all       and       
Then,   (    )      *  (      )   (      )+ 

     (    )       (,(    ) (    )-  )  

         (,(    ) (      )-  ) 

        *     ((    )  )      ((      )  )+ 
        *    *  (   )   (    )+      *  (     )   (    )++ 
        *  (   )   (     )+     [Since By (2)] 

 Therefore,   (    )      *  (   )   (     )+ 
 Since    are      fuzzy subgroup of a group  . 

 Therefore,   (     )    (    ) 

 Hence,    are      fuzzy subgroup of a group  .  
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Definition: 4.15 

 Let        be any mapping from a group   into a group   .  Let    be an            fuzzy subgroup of a group in     ( )  defined by   (    )        (   ),                (  )     and      . Then,    is called an inverse image of    under map   and is denoted by    (  ). 

Theorem: 4.16 

 Let        be an anti-homomorphism from a group   into the group   , and   be a non-empty set.  If    is an      fuzzy subgroup of  , then the                           

anti-homomorphism image  (  ) is an      fuzzy subgroup of   . 
Proof: 

 Let        be an anti-homomorphism from a group   into the group   . 
 Let   be a non-empty set.  

Let    be an      fuzzy subgroup of   and its image  (  ) be in   . 
To prove:  (  ) is an      fuzzy subgroup of   .  

 Then for all  ( )  ( ) in  ,    in   

  (  ( ( ) ( )  ))   (  ( (  )  ))    
               (    ) 

                *  (   )   (   )+ 
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               { (  ( ( )  ))  (  ( ( )  ))}  
 Therefore,  (  ( ( ) ( )  ))      { (  ( ( )  ))  (  ( ( )  ))} and for 

all  ( ) in  ′ and   in  . 

  (  ( ( )    ))   (  ( (   )  ))   
          (     ) 

          (   )  
         (  ( ( )  )) 

Therefore,  (  ( ( )    ))   (  ( ( )  )) 

 Hence,  (  ) is an      fuzzy subgroup of   .  
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CHAPTER-1 

PRELIMINARIES 

Definition: 1.1 

  A fuzzy set A of a set is a function ý 8 ÿ → [0,1].  Fuzzy sets taking the values 

0 and 1 are called Crisp sets 

  Let A and B be two fuzzy subsets of a set X. 

 ý ⊆ þ if and only if ý(Ċ) f þ(Ċ), for all Ċ * ÿ 

 ý = þ if and only if ý ⊆ þ and þ ⊆ ý 

 The complement of the fuzzy set A is ýĀ and is defined as ýĀ(Ċ) = 1 2 ý(Ċ) 

 (ý + þ)(Ċ) = min{ý(Ċ), þ(Ċ)} , ∀ Ċ * ÿ 

 (ý , þ)(Ċ) = max{ý(Ċ), þ(Ċ)} , ∀ Ċ * ÿ 

Definition: 1.2 

  A function ý 8 � → [0,1] is a fuzzy subgroup (FSG) of a group G if and only 

if ý(Ċċ−1) g min{ý(Ċ), ý(ċ)},   ∀ Ċ, ċ * � 

Definition: 1.3 

  A function ý 8 � → [0,1] is an anti fuzzy subgroup (AFSG) of a group G if 

and only if ý(Ċċ−1) f max{ý(Ċ), þ(Ċ)} , ∀ Ċ, ċ * � 

Definition: 1.4 

  A fuzzy subgroup (or anti fuzzy subgroup) A of a group G is called fuzzy 

normal subgroup (FNSG) [or anti fuzzy normal subgroup (AFNSG)] of G if and 

only if  ý(ċ−1Ċċ) = ý(Ċ) or equivalently, ý(Ċċ) = ý(ċĊ), holds for all Ċ, ċ * �. 
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Definition: 1.5 

Let A be a fuzzy subset of a group G.  Then A is called a Anti fuzzy subgroup  

 ý(Ċċ) f max{ý(Ċ), ý(ċ)} 

 ý(Ċ−1) f ý(Ċ), ÿāĄ Ăþþ Ċ, ċ * � 

It is easy to show that an anti fuzzy subgroup of a group G satisfies ý(Ċ) g ý(þ) and ý(Ċ−1) = ý(Ċ), for all Ċ * �, where e is the identity element of G. 

Definition: 1.6 

  Let A be a fuzzy subset of a group G and ÿ * [0,1].  Then the fuzzy sets ýÿ 

and ýÿ of G are respectively called the ÿ-fuzzy subset and ÿ-anti fuzzy subset of G 

(w.r.t fuzzy set A) and is defined as  ýÿ(Ċ) = min {ý(Ċ), ÿ} and 

 ýÿ(Ċ) = max{ý(Ċ), 1 2 ÿ} , ∀Ċ * � 

Definition: 1.7 

  Let A be a fuzzy subset of a group G and ÿ * [0,1].  Then A is called ÿ-fuzzy 

subgroup (ÿ-FSG) of G if ýÿ(Ċċ−1) g min{ýÿ(Ċ), ýÿ(ċ)} ; ∀ Ċ, ċ * �. 
Definition: 1.8 

  A fuzzy subgroup (or anti fuzzy subgroup) A of a group G is called ÿ-fuzzy 

normal subgroup (ÿ-FNSG) [or ÿ-anti fuzzy normal subgroup (ÿ-AFNSG)] of G 

if and only if  

[ýÿ(ċ−1Ċċ) = ýÿ(Ċ) or equivalently, ýÿ(Ċċ) = ýÿ(ċĊ) , holds for all Ċ, ċ * � 

Or 

[ýÿ(ċ−1Ċċ) = ýÿ(Ċ) or equivalently, ýÿ(Ċċ) = ýÿ(ċĊ) , holds for all Ċ, ċ * �] 
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Definition: 1.9 

  Let A be a fuzzy subset of a group and ÿ * [0,1].  Then A is called ÿ-anti fuzzy 

subgroup (ÿ-AFSG) of G if ýÿ(Ċċ−1) f max{ýÿ(Ċ), ýÿ(ċ)} , ∀ Ċ, ċ * �. 
Proposition: 1.10 

  If A be a FSG of the group G, then A is also ÿ-FSG as well as ÿ-AFSG of G. 

Proposition: 1.11 

  Let ý 8 � → [0,1] be a ÿ-FSG of a group G, then 

 ýÿ(Ċ) f ýÿ(þ), ∀ Ċ * �, where e is the identity element of G 

 ýÿ(Ċċ−1) = ýÿ(þ) ⟹ ýÿ(Ċ) = ýÿ(ċ), ∀ Ċ, ċ * � 

Proposition: 1.12 

  Let ý 8 � → [0,1] be an ÿ-AFSG of a group G, then 

 ýÿ(Ċ) g ýÿ(Ā), ∀ Ċ * �, where E is the identity element of G 

 ýÿ(Ċċ−1) = ýÿ(Ā) ⟹ ýÿ(Ċ) = ýÿ(ċ), ∀ Ċ, ċ * � 

Proposition: 1.13 

  If A is a FNSG of a group G, then A is also a ÿ-FNSG as well as ÿ-AFNSG  of  

G. 

Definition: 1.14 

  Let X be a nonempty set.  A mapping ý 8 ÿ → [0,1] is called a fuzzy subset of 

X. 
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Definition: 1.15 

  Let A be a fuzzy subset of a universe X and � * [0,1].  The set  

ý� = {Ċ * ÿ 8 ý(Ċ) g �} is called level subset of a fuzzy set A 

   Definition: 1.16 

 Let A be an anti fuzzy subgroup of a group G.  For any Ċ * �, the fuzzy set Ċý 

defined by (Ċý)(ċ) = ý(Ċ−1ċ), for all ċ * � is called a left anti fuzzy coset of A.  

The right anti fuzzy coset of A may be defined in the same way. 

Definition: 1.17 

 It is quite evident that a group homomorphism ÿ admits the following 

characteristics: 

1. ÿ(ý)ÿ(Ċ) g ý(Ċ), for every element Ċ * �1 

2. If  ÿ is bijective map, then ÿ(ý)ÿ(Ċ) = ý(Ċ), for all Ċ * �1 

Definition: 1.18 

 Let ÿ 8  �1 → �2 be a homomorphism of group �1 into a group �2.  Let A and 

B be fuzzy subsets of �1 and �2 respectively, then ÿ(ý) and ÿ−1(þ) are respectively 

the image of fuzzy set A and the inverse image of fuzzy set B, defined as 

ÿ(ý)(ċ) = {sup{ý(Ċ): Ċ * ÿ−1(ċ)} ; ÿÿ ÿ−1ċ b ∅1                                         ; ÿÿ ÿ−1ċ = ∅  , for every ċ * �2 

   and ÿ−1(þ)(Ċ) = þ(ÿ(Ċ)), for every Ċ * �1 
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Definition: 1.19 

 Let ąÿ: [0,1] × [0,1] → [0,1] be the bounded sum conorm defined by 

ąÿ(Ă, ă) = min (Ă + ă, 1),  0 f Ă f 1, 0 f ă f 1 

Clearly bounded sum conorm satisfies all the axioms of Ć-conorm. 

Remark: 1.20 

 Clearly, ý1 = ý , ý0 = 0̃ , ĂĀý ý1 = ý , ý0 = 1̃ 
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CHAPTER-2 

(α, β)-ANTI FUZZY SUBGROUP AND THEIR 

PROPERTIES 

Definition: 2.1 

  Let ýÿ  and ýĀ  denote respectively the α-fuzzy set and β-anti fuzzy set of the 

set X (w.r.t the fuzzy set A).  Then the fuzzy set ý(ÿ,Ā) defined by 

                            ý(ÿ,Ā) = �ĂĊ{(ýÿ)Ā(Ċ), ýĀ(Ċ)},  for every Ċ * ÿ , is called (ÿ, Ā)-anti 

fuzzy set of X (w.r.t. the fuzzy set A), Where ÿ, Ā * [0,1] such that ÿ + Ā f 1. 

Remark: 2.2 

 ý(1,0)(Ċ) = �ĂĊ{(ý1)Ā(Ċ), ý0(Ċ)} = �ĂĊ{ýĀ(Ċ), 1} = 1 

 ý(0,1)(Ċ) = �ĂĊ{(ý0)Ā(Ċ), ý1(Ċ)} = �ĂĊ{1, ý(Ċ)} = 1 

Definition: 2.3 

Let A be a (ÿ, Ā)-anti fuzzy set of a group G (w.r.t/ the fuzzy set A), then A is 

called (ÿ, Ā)-anti fuzzy subgroup ((ÿ, Ā) 2 �ý�þ) of G if the following conditions 

hold 

I. ý(ÿ,Ā)(Ċċ) f �ĂĊ{ý(ÿ,Ā)(Ċ), ý(ÿ,Ā)(ċ)} 

II. ý(ÿ,Ā)(Ċ−1) = ý(ÿ,Ā)(Ċ), ÿāĄ Ăþþ Ċ, ċ * � 

        Equivalently, we have 

ý(ÿ,Ā)(Ċċ−1) f �ĂĊ{ý(ÿ,Ā)(Ċ), ý(ÿ,Ā)(ċ)}, ÿāĄ þĈþĄċ Ċ * � 
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Remark: 2.4 

 If A is a (ÿ, Ā)-anti fuzzy subgroup of a group G, then we have 

I. ý(ÿ,Ā)(þ) f ý(ÿ,Ā)(Ċ), where e is the identity of group G 

II. If ý(ÿ,Ā)(Ċċ−1) = ý(ÿ,Ā)(þ) ⟹ ý(ÿ,Ā)(Ċ) = ý(ÿ,Ā)(ċ) 

Proof: 

I. ý(ÿ,Ā)(þ) = �ĂĊ{(ýÿ)Ā(þ), ýĀ(þ)} 

      f �ĂĊ{(ýÿ)Ā(Ċ), ýĀ(Ċ)} 

      = ý(ÿ,Ā)(Ċ) 

    II.     ý(ÿ,Ā)(Ċ) = ý(ÿ,Ā)(Ċċ−1ċ)  

                 f �ĂĊ{ý(ÿ,Ā)(Ċċ−1), ý(ÿ,Ā)(ċ)} 

                 = �ĂĊ{ý(ÿ,Ā)(þ), ý(ÿ,Ā)(ċ)} 

                      = ý(ÿ,Ā)(ċ) 

                   = ý(ÿ,Ā)(ċĊ−1Ċ)  

        f �ĂĊ{ý(ÿ,Ā)(Ċċ−1), ý(ÿ,Ā)(Ċ)} 

                  = �ĂĊ{ý(ÿ,Ā)(þ), ý(ÿ,Ā)(Ċ)} = ý(ÿ,Ā)(Ċ) 

  Hence ý(ÿ,Ā)(Ċ) = ý(ÿ,Ā)(ċ)  

Proposition: 2.5 

 Let A be a α-FSG as well as β-AFSG of a group G, then A is also (ÿ, Ā)-AFSG 

of G. 
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Proof: 

 Let x, y be any element of the group G, then  

 ý(ÿ,Ā)(Ċċ−1) = �ĂĊ{(ýÿ)Ā(Ċċ−1), ýĀ(Ċċ−1)} 

                                                                       f �ĂĊ{max {(ýÿ)Ā(Ċ), (ýÿ)Ā(ċ)}, ÿĂĊ{ýĀ(Ċ), ýĀ(ċ)}} 

             = �ĂĊ{max {(ýÿ)Ā(Ċ), ýĀ(Ċ)}, max {(ýÿ)Ā(ċ), ýĀ(ċ)}} 

             = �ĂĊ{ý(ÿ,Ā)(Ċ), ý(ÿ,Ā)(ċ)} 

  Thus ý(ÿ,Ā)(Ċċ−1) f �ĂĊ{ý(ÿ,Ā)(Ċ), ý(ÿ,Ā)(ċ)} 

                Hence A is a (ÿ, Ā)-AFSG of G. 

Theorem: 2.6 

 Let A be a FSG of a group G, then A is also (ÿ, Ā)-FSG of G. 

Proof: 

 Since A is a FSG of group G. 

Therefore A is a α-FSG as well as A is β-AFSG of G  [7proposition 1.10] 

Hence the result follows from proposition 2.5 

Remark: 2.7 

    The converse of the theorem (2.6) need not be true  

 (i.e) A fuzzy set A of a group G can be (ÿ, Ā)-AFSG of G without being FSG 

of  G . 
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Example: 2.8 

 Let � = {þ, Ă, ă, Ăă}, where Ă2 = ă2 = þ and Ăă = ăĂ be the klein four group. 

   Proof: 

    Let the fuzzy set A of G be defined as  

    ý = {< þ, 0.1 >, < Ă, 0.3 >, < ă, 0.3 >, < Ăă, 0.4 >} 

   Clearly, A is not a FSG of G. 

   Take ÿ = 0.05 ĂĀý Ā = 0.6 

Then ý(Ċ) > ÿ, ∀ Ċ * �. 
So that ýÿ(Ċ) = min{ý(Ċ), 0.05} = 0.05 

⟹ (ýÿ)Ā(Ċ) = 1 2 0.05 = 0.95 , ÿāĄ Ăþþ Ċ * � 

Also, ýĀ(Ċ) = �ĂĊ{ý(Ċ), 1 2 Ā} ∀ Ċ * � 

  = �ĂĊ{ý(Ċ), 1 2 0.6} ∀ Ċ * � 

  = �ĂĊ{ý(Ċ), 0.4} ∀ Ċ * � 

  = 0.4 

   Further, ý(0.05,0.6)(Ċ) = �ĂĊ{(ý0.05)Ā(Ċ), ý0.6(Ċ)} ∀ Ċ * � 

           = �ĂĊ{0.95, 0.4}   = 0.95 

Thus, ý(0.05,0.6)(Ċċ−1) f �ĂĊ{ý(0.05,0.6)(Ċċ−1), ý(0.05,0.6)(Ċċ−1)} /āþý ÿāĄ Ăþþ 
 Ċ * �. 

    Hence A is (0.05, 0.6)-AFSG of G. 
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Proposition: 2.9 

 Let A be a fuzzy subset of a group G. Let ÿ f Ă ĂĀý Ā f 1 2 ă, where 

 Ă = inf {ý(Ċ): ÿāĄ Ăþþ Ċ * �} and ă = sup{ý(Ċ): ÿāĄ Ăþþ Ċ * �}. Then A is a 

 (ÿ, Ā)-AFSG of G.  

   Proof:  

    Since ÿ f Ă ĂĀý Ā f 1 2 ă ⟹ ÿ + Ā f Ă + 1 2 ă f ă + 1 2 ă = 1 

   Now, ÿ f Ă ⟹ Ă g ÿ 

     ⟹ inf{ý(Ċ): ÿāĄ Ăþþ Ċ * �} g ÿ 

     ⟹ ý(Ċ) g ÿ ∀ Ċ * � 

          6 ýÿ(Ċ) = min{ý(Ċ), ÿ} = ÿ, ∀ Ċ * � 

   ⟹ (ýÿ)Ā(Ċ) = 1 2 ÿ, ∀ Ċ * �.     
   Similarly, as Ā f 1 2 ă ⟹ ă f 1 2 Ā 

         ⟹ sup{ý(Ċ): ÿāĄ Ăþþ Ċ * �} f 1 2 Ā, ∀ Ċ * �    

         ⟹ ý(Ċ) f 1 2 Ā, ∀ Ċ * � 

          6  ýĀ(Ċ) = max{ý(Ċ), 1 2 Ā} = 1 2 Ā, ∀ Ċ * � 

   Now, ý(ÿ,Ā)(Ċ) = �ĂĊ{(ýÿ)Ā(Ċ), ýĀ(Ċ)} 

       = �ĂĊ{1 2 ÿ, 1 2 Ā}, ∀ Ċ * � 

   Therefore, ý(ÿ,Ā)(Ċċ−1) f �ĂĊ{ý(ÿ,Ā)(Ċ), ý(ÿ,Ā)(ċ)} /āþý ∀ Ċ, ċ * � 

    Hence, A is a (ÿ, Ā) 2AFSG of group G. 
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Remark: 2.10 

 Intersection of two (ÿ, Ā) 2AFSG’s of a group G need not be (ÿ, Ā) 2AFSG 

of  G. 

Example: 2.11 

 Let G = Z, the group of integers under ordinary addition of integers. 

Define the two fuzzy sets A and B by 

ý(Ċ) = {0.5 ,   ÿÿ Ċ = 3ā0.7,   āĆ/þĄĉÿąþ        and   þ(Ċ) = { 0.6,   ÿÿ Ċ = 2ā0.8,   āĆ/þĄĉÿąþ  
Take ÿ = 0.4 ĂĀý Ā = 0.35, then we have  

ý0.4(Ċ) = min{ý(Ċ), 0.4} = 0.4, ∀Ċ * ā and 

 ý0.35(Ċ) = max{ý(Ċ), 0.65} = {0.65,   ÿÿ Ċ = 3ā0.7,   āĆ/þĄĉÿąþ   
þ0.4(Ċ) = min{ý(Ċ), 0.6} = 0.6, ∀Ċ * ā and 

 ý0.35(Ċ) = max{þ(Ċ), 0.65} = {0.65,   ÿÿ Ċ = 2ā0.8,   āĆ/þĄĉÿąþ   
ý(0.4,0.35)(Ċ) = �ĂĊ{(ý0.4)Ā(Ċ), ý0.35(Ċ)} 

                   = {0.65,   ÿÿ Ċ = 3ā0.7,   āĆ/þĄĉÿąþ   and 

 þ(0.4,0.35)(Ċ) = �ĂĊ{(þ0.4)Ā(Ċ), þ0.35(Ċ)} = {0.65,   ÿÿ Ċ = 2ā0.8,   āĆ/þĄĉÿąþ   
It can be easily verify that A and B are (0.4, 0.35)-AFSG of Z 

Now, (ý + þ)(Ċ) = min{ý(Ċ), þ(Ċ)} = { 0.5,   ÿÿ Ċ * 2ā0.6,   ÿÿ Ċ * 3ā 2 2ā0.7,   ÿÿ Ċ + 2ā āĄ Ċ + 3ā  
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(ý + þ)0.4(Ċ) = min{(ý + þ)(Ċ), 0.4} = 0.4 

⟹ ((ý + þ)0.4)Ā(Ċ) = 0.6, ∀Ċ * ā 

(ý + þ)0.35(Ċ) = max{(ý + þ)(Ċ), 0.65} = {0.65,   ÿÿ Ċ * 2ā āĄ Ċ * 3ā0.7,   ÿÿ Ċ + 2ā āĄ Ċ + 3ā   
(ý + þ)(0.4,0.35)(Ċ) = �ĂĊ{((ý + þ)0.4)Ā(Ċ), (ý + þ)0.35(Ċ)} 

          = �ĂĊ{0.6, (ý + þ)0.35(Ċ)} =  {0.65,   ÿÿ Ċ * 2ā āĄ Ċ * 3ā0.7,   ÿÿ Ċ + 2ā āĄ Ċ + 3ā   
 Take x = 9 and y = 4, we get  

(ý + þ)(0.4,0.35)(Ċ 2 ċ) = (ý + þ)(0.4,0.35)(9 2 4) 

       = (ý + þ)(0.4,0.35)(5) 

      = 0.7 

But (ý + þ)(0.4,0.35)(9) = 0.65 ĂĀý (ý + þ)(0.4,0.35)(4) = 0.65 

Therefore, �ĂĊ{(ý + þ)(0.4,0.35)(9), (ý + þ)(0.4,0.35)(4)} 

= �ĂĊ{0.65, 0.65} = 0.65 

Clearly, (ý + þ)(0.4,0.35)(9 2 4) > �ĂĊ{(ý + þ)(0.4,0.35)(9), (ý + þ)(0.4,0.35)(4)} 

 Hence ý + þ is not (0.4, 0.35)-AFSG of Z. 

Remark: 2.12 

 Union of two (ÿ, Ā)-AFSG’s of a group G need not be (ÿ, Ā)-AFSG of G. 

Example: 2.13 

 Let G = Z, the group of integers under ordinary addition of integers. 
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Define the two fuzzy sets A and B as in Example (2.11) 

Now, (ý , þ)(Ċ) = max{ý(Ċ), þ(Ċ)} = { 0.6,   ÿÿ Ċ * 2ā0.7,   ÿÿ Ċ * 3ā 2 2ā0.8,   ÿÿ Ċ + 2ā āĄ Ċ + 3ā 

(ý , þ)0.4(Ċ) = min {(ý , þ)(Ċ), 0.4} ⟹ ((ý , þ)0.4)Ā(Ċ) = 0.6 ∀Ċ * ā 

(ý , þ)0.35(Ċ) = max{(ý , þ)(Ċ), 0.65} = { 0.65,   ÿÿ Ċ * 2ā0.7,   ÿÿ Ċ * 3ā 2 2ā0.8,   ÿÿ Ċ + 2ā āĄ Ċ + 3ā 

(ý , þ)(0.4,0.35)(Ċ) = max {((ý , þ)0.4)Ā(Ċ), (ý , þ)0.35(Ċ)} 

           = �ÿĀ{0.6, (ý , þ)0.35(Ċ)} = { 0.65,   ÿÿ Ċ * 2ā0.7,   ÿÿ Ċ * 3ā 2 2ā0.8,   ÿÿ Ċ + 2ā āĄ Ċ + 3ā 

Take x = 9, y = 4, we get 

(ý , þ)(0.4,0.35)(Ċ 2 ċ) = (ý , þ)(0.4,0.35)(9 2 4) 

      = (ý , þ)(0.4.0.35)(5) 

      = 0.8 

But (ý , þ)(0.4,0.35)(9) = 0.7 and (ý , þ)(0.4,0.35)(4) = 0.65 

Therefore, �ĂĊ{(ý , þ)(0.4,0.35)(9), (ý , þ)(0.4,0.35)(4)} = �ĂĊ{0.7, 0.65} = 0.7 

Clearly, (ý , þ)(0.4,0.35)(9 2 4) > �ĂĊ{(ý , þ)(0.4,0.35)(9), (ý , þ)(0.4,0.35)(4)} 

Hence, ý , þ is not (0.4, 0.35)-AFSG of Z. 
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CHAPTER-3 

(ÿ, Ā)-ANTI FUZZY COSETS AND NATURAL 

HOMOMORPHISM 

Definition: 3.1  

 Let A be (ÿ, Ā)-AFSG of a group G, where ÿ, Ā * [0,1] such that ÿ + Ā f 1.  
For any Ċ * �, define a fuzzy set (ý(ÿ,Ā))ý of G, called (ÿ, Ā)-anti fuzzy right coset 

of A in G as follows 

  (ý(ÿ,Ā))ý(Ā) = ý(ÿ,Ā)(ĀĊ−1), for all  Ċ, Ā * �. 
Similarly, 

 We define a fuzzy set (ý(ÿ,Ā))ý  of G, called (ÿ, Ā)-anti fuzzy left coset of A 

in G as follows 

  (ý(ÿ,Ā))ý (Ā) = ý(ÿ,Ā)(Ċ−1Ā), for all  Ċ, Ā * �. 
   Definition: 3.2 

 Let A be (ÿ, Ā)-AFSG of a group G, where ÿ, Ā * [0,1] such that ÿ + Ā f 1. 
Then A is called (ÿ, Ā)-anti fuzzy normal subgroup ((ÿ, Ā)-AFNSG) of G is and 

only if (ý(ÿ,Ā)) = (ý(ÿ,Ā))ý ý 
 for all Ċ * �. 

Theorem: 3.3 

 If A is a FNSG of a group G, then A is also a (ÿ, Ā)-AFNSG of G. 
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Proof: 

 Let A be a FNSG of G. 

Therefore A is ÿ-FSNG of G as well as A is Ā-AFNSG of G [By proposition 1.12] 

   Let Ċ, Ā * � be any element. 

   Then, 

    (ý(ÿ,Ā))(Ā) = ý(ÿ,Ā)(Ċ−1Ā)ý 
 

               = max {(ýÿ)Ā(Ċ−1Ā), ýĀ(Ċ−1Ā)} 

              = max {(ýÿ)Ā(ĀĊ−1), ýĀ(ĀĊ−1)} 

              = (ý(ÿ,Ā))ý(Ā) 

Thus  (ý(ÿ,Ā)) = (ý(ÿ,Ā))ý ,    ÿāĄ Ăþþ Ċ * �ý 
 

Hence A is (ÿ, Ā)-AFNSG of G. 

Remark: 3.4 

 The converse of the above theorem need not be true. 

Example: 3.5 

 Let � = ÿ3 = < Ă, ă 8  Ă3 = ă3 = þ, ăĂ = Ă2ă > be the dihedral group with 

six elements. 

Define the AFSG A of ÿ3 by  

 {0.8,     ÿÿ Ċ * < ă >0.7,        āĆ/þĄĉÿąþ    

Note that A is not a FNSG of G, for ý(Ă2(Ăă)) = 0.8 b 0.7 = ý(Ăă(Ă2)). 
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Now take ÿ = 0.6, Ā = 0.1,  then we get 

ý0.6(Ċ) = min{ý(Ċ), 0.6}  ∀ Ċ * �     [by definition 1.5] 

   = 0.6 

ý0.1(Ċ) = max{ý(Ċ), 0.9} ∀ Ċ * �      [by definition 1.5] 

 = 0.9 

(ý0.6)Ā(Ċ) = 1 2 ý0.6(Ċ)                            

       = 1 2 0.6 

                   = 0.4 

Therefore, ý(0.6,0.1)(Ċ) = max {(ý0.6)Ā(Ċ), ý0.1(Ċ)}, ∀ Ċ * � 

     = max {0.4, 0.6} 

     = 0.9 

   Thus, we get ý(0.6,0.1)(Ċċ) = ý(0.6,0.1)(ċĊ) = 0.9 , ∀ Ċ, ċ * � 

   Hence A is (0.6, 0.1)-AFNSG of G. 

   Proposition: 3.6 

    Let A be a (ÿ, Ā)-AFNSG of a group G.  Then ý(ÿ,Ā)(ċ−1Ċċ) = ý(ÿ,Ā)(Ċ) 

   or equivalently, ý(ÿ,Ā)(Ċċ) = ý(ÿ,Ā)(ċĊ) , holds for all Ċ, ċ * �. 
   Proof: 

    Let A be a (ÿ, Ā)-AFNSG of a group G. 

   Therefore, (ý(ÿ,Ā)) = (ý(ÿ,Ā))ý ý 
 hold for all Ċ * �. 
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    ⟹ (ý(ÿ,Ā))(ċ−1) = (ý(ÿ,Ā))ý(ċ−1)ý  hold for ċ−1 * �. 
    ⟹ ý(ÿ,Ā)(Ċ−1ċ−1) = ý(ÿ,Ā)(ċ−1Ċ−1) 

    ⟹ ý(ÿ,Ā)((ċĊ)−1) = ý(ÿ,Ā)((Ċċ)−1)  

    ⟹ ý(ÿ,Ā)(ċĊ) = ý(ÿ,Ā)(Ċċ)     [by definition 2.3 (ii)] 

Next, we show that for some specific values of ÿ, Ā every (ÿ, Ā)-AFSG A of G will 

always be (ÿ, Ā)-AFNSG of G.  In this direction, we have the following: 

Proposition: 3.7 

 Let A be a (ÿ, Ā)-AFSG of a group G such that ÿ f Ă and Ā f 1 2 ă, where Ă = �Āÿ{ý(Ċ) 8 ÿāĄ Ăþþ Ċ * �} and ă = �ćĂ(ý(Ċ) 8 ÿāĄ Ăþþ Ċ * �}.  Then A is (ÿ, Ā)-AFNSG of G. 

Proof: 

 From proposition (2.9), we have  

ý(ÿ,Ā)(Ċ) = max {(ýÿ)Ā(Ċ), ýĀ(Ċ)}, ∀ Ċ * � 

     = min{1 2 ÿ, 1 2 Ā} , ∀ Ċ * �  

⟹ ý(ÿ,Ā)(Ċċ) = max{1 2 ÿ, 1 2 Ā} = ý(ÿ,Ā)(ċĊ), ∀Ċ, ċ * �.   
Hence A is (ÿ, Ā)-AFNSG of G. 

Proposition:  3.8 

 Let A be a (ÿ, Ā)-anti fuzzy normal subgroup of G, then the set  

�(ÿ,Ā) = {Ċ * �: ý(ÿ,Ā)(Ċ) = ý(ÿ,Ā)(þ)}  is a normal subgroup of G. 
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Proof: 

 Clearly, ��(ÿ,Ā) b ∅, for þ * ��(ÿ,Ā) . 
Let Ċ, ċ * ��(ÿ,Ā) be any element.   

Then ý(ÿ,Ā)(Ċċ−1) f max {ý(ÿ,Ā)(Ċ), ý(ÿ,Ā)(ċ)} 

             = max {ý(ÿ,Ā)(þ), ý(ÿ,Ā)(þ)} 

             = ý(ÿ,Ā)(þ) 

(i.e) ý(ÿ,Ā)(Ċċ−1) f ý(ÿ,Ā)(þ) , but ý(ÿ,Ā)(þ) f ý(ÿ,Ā)(Ċċ−1) 

Therefore, ý(ÿ,Ā)(Ċċ−1) = ý(ÿ,Ā)(þ) 

So, Ċċ−1 * ��(ÿ,Ā) 
Thus, ��(ÿ,Ā)  is a subgroup of G. 

Further, let Ċ * ��(ÿ,Ā)   and ċ * � be any element. 

Now, ý(ÿ,Ā)(ċ−1Ċċ) = ý(ÿ,Ā)(Ċ) = ý(ÿ,Ā)(þ) ⟹ ċ−1Ċċ * ��(ÿ,Ā) 
Hence ��(ÿ,Ā) is a normal subgroup of G. 

Proposition: 3.9 

  Let A be a (ÿ, Ā)-AFNSG of group G, then  

   (I)  (ý(ÿ,Ā)) = (ý(ÿ,Ā))þ ý 
 if and only if Ċ−1ċ * ��(ÿ,Ā)   

(II)  (ý(ÿ,Ā))ý = (ý(ÿ,Ā))þ  if and only if Ċċ−1 * ��(ÿ,Ā) 
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Proof: 

 I.   let (ý(ÿ,Ā)) = (ý(ÿ,Ā))þ ý 
 

 ý(ÿ,Ā)(Ċ−1ċ) = (ý(ÿ,Ā))(ċ)ý 
 

             = (ý(ÿ,Ā))(ċ)þ   

             = ý(ÿ,Ā)(ċ−1ċ) 

             = ý(ÿ,Ā)(þ) 

 So, Ċ−1ċ * ��(ÿ,Ā)  
Conversely, let Ċ−1ċ * ��(ÿ,Ā) ⟹ ý(ÿ,Ā)(Ċ−1ċ) = ý(ÿ,Ā)(þ) 

Let Č * � be any element of G 

Then, (ý(ÿ,Ā))ý (Č) = ý(ÿ,Ā)(Ċ−1Č) 

          = ý(ÿ,Ā){(Ċ−1ċ)(ċ−1Č)} 

          f max {ý(ÿ,Ā)(Ċ−1ċ), ý(ÿ,Ā)(ċ−1Č)} 

          = max {ý(ÿ,Ā)(þ), ý(ÿ,Ā)(ċ−1Č)} 

          = ý(ÿ,Ā)(ċ−1Č) 

          (ý(ÿ,Ā))ý (Č) = (ý(ÿ,Ā))þ (Č)  

Interchanging  the role of  Ċ, ċ we get, 

 (ý(ÿ,Ā))(Č) = (ý(ÿ,Ā))þ ý (Č), ∀ Č * � ⟹ (ý(ÿ,Ā))ý = (ý(ÿ,Ā))þ  

 II.    This follows similarly as part (I) 
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Proposition: 3.10 

 Let A be a (ÿ, Ā)-AFNSG of a group G and x, y, u, v be any element in G. 

If (ý(ÿ,Ā)) = (ý(ÿ,Ā))ÿ ý 
 and (ý(ÿ,Ā)) = (ý(ÿ,Ā))Ā ,þ 

 then (ý(ÿ.Ā)) = (ý(ÿ,Ā))ÿĀ ýþ 
. 

Proof: 

  Since, 

(ý(ÿ,Ā)) = (ý(ÿ,Ā))ÿ ý 
 and (ý(ÿ,Ā)) = (ý(ÿ,Ā))Ā ,þ 

 then (ý(ÿ.Ā)) = (ý(ÿ,Ā))ÿĀ ýþ 
.  

Now, (Ċċ)−1(ćĈ) = ċ−1(Ċ−1ć)Ĉ 

        = ċ−1(Ċ−1ć)(ċċ−1)Ĉ 

       = [ċ−1(Ċ−1ć)ċ](ċ−1Ĉ) * ��(ÿ,Ā) 
[As ��(ÿ,Ā) is a normal subgroup of G] 

So, (Ċċ)−1(ćĈ) * ��(ÿ,Ā) ⟹ (ý(ÿ,Ā)) = (ý(ÿ,Ā))ÿĀ ýĀ 
 

   Proposition: 3.11 

    The set �/ý(ÿ,Ā) of all ÿ-anti fuzzy cosets of  (ÿ, Ā)-AFNSG A of a group G,  

   form a group under the well defined operations ⊗. 

   Proof: 

    It is easy to check that the identity element of �/ý(ÿ,Ā) is (ý(ÿ,Ā))þ,� 
 where 

   þ is the identity element of the group G, and the inverse of an element  

     (ý(ÿ,Ā)) ÿą (ý(ÿ,Ā))ý−1 ý 
. 
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             Definition: 3.12 

    The group �/ý(ÿ,Ā) of all (ÿ, Ā)-anti fuzzy coset of the (ÿ, Ā)-AFNSG A of  

   G is Called the factor group or the quotient group of G by ý(ÿ,Ā). 
   Theorem: 3.13 

 A natural mapping ÿ: � → �/ý(ÿ,Ā), where G is a group and �/ý(ÿ,Ā) is the set 

of all (ÿ, Ā)-anti fuzzy cosets of the (ÿ, Ā)-AFNSG A of G defined by 

 ÿ(Ċ) = (ý(ÿ,Ā))ý  is an onto homomorphism with ker ÿ = ��(ÿ,Ā) 
Proof: 

 Let Ċ, ċ * � be any element. 

Then, ÿ(Ċċ) = (ý(ÿ,Ā)) = (ý(ÿ,Ā))ý ýþ (ý(ÿ,Ā)) =þ ÿ(Ċ)ÿ(ċ). 
Therefore, ÿ is a homomorphism. 

Moreover, ÿ is surjective (obvious) 

Now, ker ÿ = {Ċ * � 8 ÿ(Ċ) = (ý(ÿ,Ā))� } 

         = {Ċ * �: (ý(ÿ,Ā)) = (ý(ÿ,Ā))� ý } 

         = {Ċ * � 8  þ−1Ċ * ��(ÿ,Ā)} 

         = {Ċ * � 8 Ċ * ��(ÿ,Ā)} 

         = ��(ÿ,Ā)  
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CHAPTER-4 

HOMOMORPHISM OF (ÿ, Ā)-ANTI FUZZY GROUPS 

Lemma: 4.1 

 Let ÿ: ÿ → Ā be a mapping and A and B be two fuzzy subsets of X and Y 

respectively, the 

  (ÿ)   ÿ−1(þ(ÿ,Ā)) = (ÿ−1(þ))(ÿ,Ā) 
  (ÿÿ)  ÿ(ý(ÿ,Ā)) = (ÿ(ý))(ÿ,Ā) 

   Proof: 

    (ÿ)       ÿ−1(þ(ÿ,Ā))(Ċ) = þ(ÿ,Ā)(ÿ(Ċ)) 

        = max {(þÿ)Ā(ÿ(Ċ)), þĀ(ÿ(Ċ))} 

        = max {ÿ−1((þÿ)Ā)(Ċ), ÿ−1(þĀ)(Ċ)} 

        = max {[(ÿ−1(þ))ÿ]Ā(Ċ), (ÿ−1(þ))Ā(Ċ)} 

 = (ÿ−1(þ))(ÿ,Ā)(Ċ) 

     Hence ÿ−1(þ(ÿ,Ā)) = (ÿ−1(þ))(ÿ,Ā) 
 (ÿÿ)       ÿ(ý(ÿ,Ā))(ċ) = sup {ý(ÿ,Ā)(Ċ): ÿ(Ċ) = ċ} 

              = sup {max {(ýÿ)Ā(Ċ), ýĀ(Ċ)}: ÿ(Ċ) = ċ} 

              = max {sup {(ýÿ)Ā(Ċ): ÿ(Ċ) = ċ} , {ýĀ(Ċ): ÿ(Ċ) = ċ}} 

              = max {ÿ((ýÿ)Ā)(ċ), ÿ(ýĀ)(ċ)} 
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              = max {[(ÿ(ý))ÿ]Ā(ċ), (ÿ(ý))Ā(ċ)} = (ÿ(ý))(ÿ,Ā)(ċ) 

Theorem: 4.2 

 Let ÿ: �1 → �2 be a homomorphism of group �1 into a group �2.  Let B be (ÿ, Ā)-AFSG of group �2.  Then ÿ−1(þ) is (ÿ, Ā)-AFSG of group �1. 
 Proof: 

 Let B be an (ÿ, Ā)-AFSG of group �2. 

 Let Ċ1 , Ċ2 * �1 be any element. 

Then (ÿ−1(þ))(ÿ,Ā)(Ċ1Ċ2) = ÿ−1(þ(ÿ,Ā))(Ċ1Ċ2) 

                      = þ(ÿ,Ā)((ÿ(Ċ1Ċ2)) 

                            = þ(ÿ,Ā)(ÿ(Ċ1)ÿ(Ċ2)) 

             f max {þ(ÿ,Ā)(ÿ(Ċ1)), þ(ÿ,Ā)(ÿ(Ċ2))} 

         = max {ÿ−1(þ(ÿ,Ā))(Ċ1), ÿ−1(þ(ÿ,Ā)(Ċ2)}   [by lemma 4.1] 

Thus, (ÿ−1(þ))(ÿ,Ā)(Ċ1Ċ2) f max {(ÿ−1(þ))(ÿ,Ā)(Ċ1), (ÿ−1(þ))(ÿ,Ā)(Ċ2)} 

Also, (ÿ−1(þ))(ÿ,Ā)(Ċ−1) = ÿ−1(þ(ÿ,Ā))(Ċ−1) 

                = þ(ÿ,Ā)(ÿ(Ċ−1)) 

                                            = þ(ÿ,Ā)(ÿ(Ċ)) = ÿ−1(þ(ÿ,Ā))(Ċ) 

Thus, (ÿ−1(þ))(ÿ,Ā)(Ċ−1) = ÿ−1(þ(ÿ,Ā))(Ċ) 

Hence ÿ−1(þ) is a (ÿ, Ā)-AFSG of �1. 
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Theorem: 4.3 

 Let ÿ 8  �1 → �2 be a homomorphism of a group �1 into a group �2.  Let B be 

an (ÿ, Ā)-AFNSG of of group �2, then ÿ−1(þ) is an (ÿ, Ā)-AFNSG of group �1. 

Proof: 

 Let B be an (ÿ, Ā)-AFNSG of of group �2. 
 Let Ċ1, Ċ2 * �1 be any element. 

Then, (ÿ−1(þ))(ÿ,Ā)(Ċ1Ċ2) = ÿ−1(þ(ÿ,Ā))(Ċ1Ċ2) 

                            = þ(ÿ,Ā)(ÿ(Ċ1)ÿ(Ċ2)) 

                           = þ(ÿ,Ā)(ÿ(Ċ2)ÿ(Ċ2)) 

            = þ(ÿ,Ā)(ÿ(Ċ2Ċ1) = (ÿ−1(þ))(ÿ,Ā)(Ċ2Ċ1) 

Thus, (ÿ−1(þ))(ÿ,Ā)(Ċ1Ċ2) = (ÿ−1(þ))(ÿ,Ā)(Ċ2Ċ1) 

Hence ÿ−1(þ) is an (ÿ, Ā)-AFNSG of �1. 
Theorem: 4.4 

 Let ÿ 8  �1 →  �2 be a bijective homomorphism of group �1 onto a group �2.  
Let A be an (ÿ, Ā)-AFSG of group �1.  Then ÿ(ý) is an (ÿ, Ā)-AFSG of group �2. 
Proof: 

 Let A be an (ÿ, Ā)-AFSG of group �1. 
Let ċ1, ċ2 * �2 be any element. 

Then there exists unique element Ċ1, Ċ2 * �1  such that ÿ(Ċ1) = ċ1 and ÿ(Ċ2) = ċ2 
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   (ÿ(ý))(ÿ,Ā)(ċ1ċ2) = (ÿ(ý)(ÿ,Ā))(ċ1ċ2) = sup {ý(ÿ,Ā)(Ċ1Ċ2): ÿ(Ċ1Ċ2) = ċ1ċ2} 

       f sup {max{ý(ÿ,Ā)(Ċ1), ý(ÿ,Ā)(Ċ2)},  
                     ĉ/þĄþ ÿ(Ċ1) = ċ1 ĂĀý ÿ(Ċ2) = ċ2} 

          = max{sup{ý(ÿ,Ā)(Ċ1): ÿ(Ċ1) = ċ1} , sup{ý(ÿ,Ā)(Ċ2): ÿ(Ċ2) = ċ2}} 

                = max {(ÿ(ý(ÿ,Ā))) (ċ1), (ÿ(ý(ÿ,Ā))) (ċ2)} 

          = max {(ÿ(ý))(ÿ,Ā)(ċ1), (ÿ(ý))(ÿ,Ā)(ċ2)}      [by lemma 4.1] 

   Thus (ÿ(ý))(ÿ,Ā)(ċ1ċ2) f  max {(ÿ(ý))(ÿ,Ā)(ċ1), (ÿ(ý))(ÿ,Ā)(ċ2)}       

   Also, (ÿ(ý))(ÿ,Ā)(ċ−1) = ÿ(ý(ÿ,Ā)(ċ−1) = sup {ý(ÿ,Ā)(Ċ−1): ÿ(Ċ−1) = ċ−1} 

         = sup{ý(ÿ,Ā)(Ċ): ÿ(Ċ) = ċ} 

      = (ÿ(ý(ÿ,Ā)))(ċ) 

   Hence ÿ(ý) is an (ÿ, Ā)-AFSG of �2.   
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CHAPTER-5 

�-anti fuzzy subgroups 

5.1 �-anti fuzzy subgroups 

Definition: 5.1.1 

 Let A be a fuzzy subset of a set X and � * [0,1]. The fuzzy set ý� of X is called 

the �-Anti fuzzy subset of X (w.r.t. fuzzy set A) and is defined as  

ý�(Ċ) = ąÿ(ý(Ċ), 1 2 �), ÿāĄ Ăþþ Ċ * ÿ. 
Theorem: 5.1.2 

 Let A and B be any two fuzzy subsets of X. Then (ý , þ)� = ý� , þ� . 
Proof: 

 By definition (5.1.1), we have 

                 (ý , þ)�(Ċ) = ąÿ((ý , þ)(Ċ), 1 2 �) 

                           = ąÿ(max(ý(Ċ), þ(Ċ)) , 1 2 �) 

      = max (ąÿ(ý(Ċ), þ(Ċ)), 1 2 �)   

      = max (ąÿ(ý(Ċ), 1 2 �), ąÿ(þ(Ċ), 1 2 �) 

      = max (ý�(Ċ), þ�(Ċ)) 

 Hence implies that ý , þ)� = ý� , þ� . 
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Definition: 5.1.3 

 Let A be a fuzzy subset of a group � and � * [0,1].  Then A is called ā-anti 

fuzzy subgroup of G. In other words A is ā-anti fuzzy subgroup if ý� admits the 

following 

  1. ý�(Ċċ) f max {ý�(Ċ), ý�(ċ)} 

  2. ý�(Ċ−1) f ý�(Ċ), ÿāĄ Ăþþ Ċ, ċ * �.    
Proposition: 5.1.4 

 If ý: � → [0,1] is an ā-anti fuzzy subgroup of a group G, then 

 1. ý�(Ċ) g ý�(þ), for all Ċ * �, where e is the identity element of G. 

 2. ý�(Ċċ−1) = ý�(þ) which implies that ý�(Ċ) = ý�(ċ), for all Ċ, ċ * �. 
   Proof: 

1. ý�(þ) = ý�(ĊĊ−1)  

                   f max (ý�(Ċ), ý�(Ċ−1)) 

              = max (ý�(Ċ), ý�(Ċ)) 

                   = ý�(Ċ). 
     Hence ý�(þ) f ý�(Ċ), for all Ċ * �. 

            2. ý�(Ċ) = ý�(Ċċ−1ċ)    

         f max (ý�(Ċċ−1), ý�(ċ)) 

         = max (ý�(þ), ý�(ċ))  

            = ý�(ċ) 
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                Hence ý�(Ċ) f ý�(ċ), for all Ċ * �.                          (1) 

  Similarly, ý�(ċ) = ý�(ċĊ−1Ċ) 

                     f max(ý�(ċĊ−1), ý�(Ċ)) 

        = max(ý�(þ), ý�(Ċ)) 

        = ý�(Ċ) 

      Hence  ý�(ċ) f (Ċ), for all Ċ * �.                         (2) 

                From (1) and (2), 

   ý�(Ċ) = ý�(ċ), for all Ċ, ċ * �. 
Proposition: 5.1.5 

 Every anti fuzzy subgroup of a group G is an ā-anti fuzzy subgroup of G. 

Proof: 

 Let A be anti fuzzy subgroup of a group G.  

Let Ċ, ċ be any two elements in G. 

Consider, 

    ý�(Ċċ) = ąÿ(ý(Ċċ), 1 2 �) 

     f ąÿ(max(ý(Ċ), ý(ċ)) , 1 2 �) 

     = max(ąÿ(ý(Ċ), ý(ċ)), 1 2 �) 

     = max (ąÿ(ý(Ċ), 1 2 �), ąÿ(ý(ċ), 1 2 �) 

             ý�(Ċċ) f max(ý�(Ċ), ý�(ċ)) 
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    Further, ý�(Ċ−1) = ąÿ(ý(Ċ−1), 1 2 �) 

           = ąÿ(ý(Ċ), 1 2 �) = ý�(Ċ).      
Consequently, A is ā-anti fuzzy subgroup of G. 

Remark: 5.1.6 

 The converse of above proposition need not to be true. 

Example: 5.1.7 

 Let � = {þ, Ă, ă, Ăă}, where Ă2 = ă2 = þ and Ăă = ăĂ be the klein four group. 

 Let the fuzzy set A of G be defined as 

 ý = {< þ, 0.1 >, < Ă, 0.3 >, < ă, 0.4 >, < Ăă, 0.5 >} 

   Take � = 0.05 then 

      ý�(Ċ) = ąÿ(ý(Ċ), 1 2 �) 

     = min (ý(Ċ) + 1 2 �, 1) 

     = min (ý(Ċ) + 1 2 0.05,1) 

   ý�(Ċ) = 1, for all Ċ * �. 
 This implies that ý�(Ċċ) f max (ý�(Ċ), ý�(ċ)) 

    Further, we have Ă−1 = Ă, ă−1 = ă ĂĀý (Ăă)−1 = Ăă. 
    Hence we have ý�(Ċ−1) = ý�(Ċ),  for all Ċ * �. 

    This implies that A is ā-anti fuzzy subgroup of G. 

    Clearly A is not anti fuzzy subgroup of G. 
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Proposition: 5.1.7 

 The union of two ā-anti fuzzy subgroups of a group G is also ā-anti fuzzy 

subgroup. 

  Proof: 

    Let A and B be two ā-anti fuzzy subgroups of a group G. 

    Consider, for all Ċ, ċ * �, 
    (ý , þ)�(Ċċ) = (ý� , þ�)(Ċċ) 

                            = max(ý�(Ċċ), þ�(Ċċ)) 

                 f max (max(ý�(Ċ), ý�(ċ)) , max(þ�(Ċ), þ�(ċ))) 

      = max (max(ý�(Ċ), þ�(Ċ)) , max(ý�(ċ), þ�(ċ))) 

      = max ((ý , þ)�(Ċ), (ý , þ)�(ċ)) 

    Thus (ý ,, þ)�(Ċċ) f max ((ý , þ)�(Ċ), (ý , þ)�(ċ)) 

Moreover, 

     (ý , þ)�(Ċ−1) = (ý� , þ�)(Ċ−1) 

           = max (ý�(Ċ−1), þ�(Ċ−1)) 

         = max (ý�(Ċ), þ�(Ċ)) 

     (ý , þ)�(Ċ−1) = (ý , þ)�(Ċ) 

 Consequently, (ý , þ) is ā-anti fuzzy subgroup of G. 
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Corollary: 5.1.8 

    The union of any finite number of ā-anti fuzzy subgroups of a group G is also  

ā-anti fuzzy subgroup of G. 

Remark: 5.1.9 

The intersection of two ā-anti fuzzy subgroups of a group G need not be ā-anti 

fuzzy subgroup of G. 

Example: 5.1.10 

 Consider the group of integers Z. Define the two fuzzy subsets A and B of Z as 

follows 

  ý(Ċ) = {0.5,     ÿÿ Ċ = 3ā1,      āĆ/þĄĉÿąþ   

and  

  þ(Ċ) = { 0.8,    ÿÿ Ċ = 2ā0.83, āĆ/þĄĉÿąþ 

It can be easily verified that A and B are ā-anti fuzzy subgroups of Z. 

Now, (ý + þ)(Ċ) = min (ý(Ċ), þ(Ċ)) 

Therefore, (ý + þ)(Ċ) = { 0.5,     ÿÿ Ċ * 3ā0.8,   ÿÿ Ċ * 2ā 2 3ā0.83     āĆ/þĄĉÿąþ  

Take Ċ = 9 ĂĀý ċ = 4 

Then, (ý + þ)(Ċ) = 0.5 ĂĀý (ý + þ)(ċ) = 0.8 

But (ý + þ)(Ċ 2 ċ) = (ý + þ)(9 2 4) 
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      = (ý + þ)(5) 

      = 0.83 

And max ((ý + þ)(Ċ), (ý + þ)(ċ) = max (0.5, 0.8) 

Clearly, (ý + þ)(Ċ 2 ċ) > max ((ý + þ)(ċ)) 

Consequently, ý + þ is not ā-anti fuzzy subgroup of G. 

Hence, the intersection of two ā-anti fuzzy subgroups of G need not be ā-anti fuzzy 

subgroup of G.  

5.2 �-anti fuzzy normal subgroups 

Definition: 5.2.1 

Let Abe an ā-anti fuzzy subgroup of a group G and � * [0,1].  The right �-anti 

fuzzy coset of A in G is denoted by ý�Ċ and its defined as  

 ý�Ċ(Ā) = ąÿ(ý(ĀĊ−1), 1 2 �), for all Ċ, ċ * �. 
Similarly, we define the �-anti fuzzy left coset Ċý� of G as follows 

 Ċý�(Ā) = ąÿ(ý(Ċ−1Ā), 1 2 �), for all Ċ, ċ * �. 
Definition: 5.2.2 

 Let A be an ā-anti fuzzy subgroup of a group G and � * [0,1].  Then A is called ā-anti fuzzy normal subgroup of G if and only if Ċý� = ý�Ċ, for all Ċ * �. 
Proposition: 5.2.3 

 Every anti fuzzy normal subgroup of a group G is an ā-anti fuzzy normal 

subgroup of G. 
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Proof: 

 Let A be anti fuzzy normal subgroup of a group G. 

 Then for any Ċ * �, we have Ċý = ýĊ 

   ⟹ Ċý(Ā) = ýĊ(Ā), ÿāĄ Ăþþ Ċ * �. 
 Then we have, 

  ý(Ċ−1Ā) = ý(ĀĊ−1), 
                            ⟹ ąÿ(ý(Ċ−1Ā), 1 2 �) 

                 = ąÿ(ý(ĀĊ−1), 1 2 �) 

Hence, Ċý� = ý�Ċ, ÿāĄ Ăþþ Ċ * �.  
Consequently, A is ā-anti fuzzy normal subgroup of G. 

Remark: 5.2.4 

 The converse of the above proposition need not to be true. 

Example: 5.2.5  

 Consider the dihedral group of degree 3 with finite presentation 

� = ÿ3 =< Ă, ă: Ă3 = ă2 = þ, ăĂ = Ă2ă >.  Define the anti fuzzy subgroup of ÿ3 ăċ 

  ý(Ċ) = {0.1,   ÿÿ Ċ *< ă >0.2,   āĆ/þĄĉÿąþ  

Take � = 0.6, we have 

 Ċý� = Ċý�(Ā) = ąÿ(ý(Ċ−1Ā), 1 2 �) 

     = ąÿ(ý(Ċ−1Ā), 0.4) 
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     = ąÿ(ý(ĀĊ−1), 0.4) 

     = ąÿ(ý(ĀĊ−1), 1 2 �) 

     = ý�Ċ(Ā)  = ý�Ċ 

This shows that A is ā-anti fuzzy normal subgroup of G. 

 ý(Ă2(Ăă) = ý(Ă3ă) = ý(ă) = 0.1 

 ý((Ăă)Ă2) = ý(Ă(ăĂ)Ă) = ý(Ă(Ă2ă)Ă) = ý(Ă3ăĂ) = ý(ăĂ) = 0.2 

This implies that A is not anti fuzzy normal subgroup of G. 

Proposition: 5.2.6 

 Let A be an ā-anti fuzzy normal subgroup of a group G.  Then ý�(ċ−1Ċċ) =ý�(Ċ) or equivalently, ý�(Ċċ) = ý�(ċĊ), hold for all Ċ, ċ * �. 
Proof: 

 Since A be an ā-anti fuzzy normal subgroup of a group G. 

 Therefore, Ċý� = ý�Ċ, holds for all Ċ * �. 
 This implies that 

  Ċý�(ċ−1) = ý�Ċ(ċ−1), ċ * �.                                 (1) 

 By definition (5.2.1), 

 (1) becomes, ąÿ(ý(Ċ−1ċ−1), 1 2 �) = ąÿ(ý(ċ−1Ċ−1), 1 2 �) 

 Which implies that, ý�((ċĊ)−1) = ý�((Ċċ)−1). 
 Consequently, ý�(Ċċ) = ý�(ċĊ). 
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Definition: 5.2.7 

 Let A be an ā-anti fuzzy normal subgroup of a group G. we define a set 

��� = {Ċ * �: ý�(Ċ) = ý�(þ)}, where e the identity element of G. 

The following result illustrate that the set ��� is infect a normal subgroup of G. 

Proposition: 5.2.8 

 Let A be an ā-anti fuzzy normal subgroup of a group G.  Then ��� is a normal 

subgroup of G. 

Proof:  

 Obviously, ��� b ∅, ÿāĄ þ * ��� 

Let Ċ, ċ * ��� be any element. 

Then we have, ý�(Ċċ−1) f max (ý�(Ċ), ý�(ċ−1)) 

         = max (ý�(Ċ), ý�(ċ)) 

         = max (ý�(þ), ý�(þ)) 

         = ý�(þ) 

This implies that  

 ý�(Ċċ−1) f ý�(þ), ăćĆ ý�(Ċċ−1) g ý�(þ)  

Therefore, ý�(Ċċ−1) = ý�(þ), which implies that Ċċ−1 * ��� 

Hence ��� is a subgroup of G. 

Further, let Ċ * ��� and ċ * �. 
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We have ý�(ċ−1Ċċ) = ý�(Ċ) = ý�(þ). 
This implies that ċ−1Ċċ * ��� . 
Consequently, ��� is normal subgroup of G. 

Proposition: 5.2.9 

    Let A be an ā-anti fuzzy normal subgroup of G, then 

     1. Ċý� = ċý� if and only if Ċ−1ċ * ��� . 
     2. ý�Ċ = ý�ċ if and only if Ċċ−1 * ��� . 

Proof: 

 1.  Suppose that Ċý� = ċý�, for Ċ, ċ * �. 
By definition (5.15), the above relation becomes, 

 ý�(Ċ−1ċ) = ąÿ(ý(Ċ−1ċ), 1 2 �) 

       = (Ċý�)(ċ) 

       = (ċý�)(ċ) 

       = ąÿ(ý(ċ−1ċ), 1 2 �) 

       = ąÿ(ý(þ), 1 2 �)  = ý�(þ). 
This implies that Ċ−1ċ * ��� . 
Conversely, let Ċ−1ċ * ��� , which implies that ý�(Ċ−1ċ) = ý�(þ). 
For any element Č * ��� . 

     (Ċý�)(Č) = ąÿ(ý(Ċ−1Č), 1 2 �) 
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           = ý�(Ċ−1Č) 

           = ý�((Ċ−1ċ)(ċ−1Č)) 

           f max (ý�((Ċ−1ċ), ý�(ċ−1Č)) 

           = max (ý�(þ), ý�(ċ−1Č))     = ý�(ċ−1Č) 

     (Ċý�)(Č) = (ċý�)(Č) 

Interchanging the roles of Ċ ĂĀý ċ, we get (Ċý�)(Č) = (ċý�)(Č), ÿāĄ Ăþþ  
Č * �. 

Consequently, (Ċý�) = (ċý�). 
 2.  one can prove this part analogous to (1). 

Proposition: 5.2.10 

Let A be ab ā-anti fuzzy normal subgroup of a group G and Ċ, ċ, ć, Ĉ be any 

element in G.  If Ċý� = ćý� and ċý� = Ĉý� then Ċċý� = ćĈý�. 
   Proof: 

 Given that Ċý� = ćý� and ċý� = Ĉý�, 

Which implies that Ċ−1ć and ċ−1Ĉ *  ���. 
Consider, (Ċċ−1)ćĈ = ċ−1(Ċ−1ć)(ċċ−1)Ĉ * ���. 

     = [ċ−1(Ċ−1ć)ċ](ċ−1Ĉ) *  ���. 
This implies that (Ċċ)−1ćĈ * ���. 
Consequently, Ċċý� = ćĈý� . 
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Definition: 5.2.11 

 Let A be an ā-anti fuzzy normal subgroup of a group G.  The set of all ā-anti 

fuzzy cosets of A denoted by �/ý� forms a group under the binary operation * defined 

as follow. 

 Let Ċý� , ċý� * �/ý�,Ċý� ∗ ċý� = (Ċ ∗ ċ)ý� , Ċ, ċ * �. 
This group is called the factor group or the quotient group of G with respect to ā-anti 

fuzzy normal subgroup ý� . 
Theorem: 5.2.12 

 The set �/ý� defined in proposition (5.2.9) forms a group under the above 

stated binary operation *. 

Proof: 

 Let ý�Ċ1 = ý�Ċ2  ĂĀý ý�ċ1 = ý�ċ2, ÿāĄ Ċ1, Ċ2, ċ1, ċ2 * �.  
Let Ā * � be any element of G. 

 [ý�Ċ1 ∗ ý�ċ1](Ā) = (ý�Ċ1ċ1)(Ā) 

         = ąÿ(ý(Ā(Ċ1ċ1)−1)1 2 �) 

          = ąÿ(ý(Āċ1−1Ċ1−1), 1 2 �) 

          = ąÿ(ý(Āċ1−1)Ċ1−1, 1 2 �) 

          = ý�Ċ1(Āċ1−1) 

          = ý�Ċ2(Āċ1−1) 

          = ąÿ(ý(Āċ1−1)Ċ2−1, 1 2 �) 
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          = ąÿ(ý(Ċ2−1Ā)ċ1−1, 1 2 �) 

          = ý�ċ1(Ċ2−1Ā) 

          = ý�ċ2(Ċ2−1Ā) 

               = ąÿ(ý(Ċ2−1Ā)ċ2−1, 1 2 �) 

          = ąÿ(ý(ċ2−1Ċ2−1)Ā, 1 2 �) 

          = ąÿ(ý(Ċ2ċ2)−1Ā, 1 2 �) 

          = ąÿ(ýĀ(Ċ2ċ2)−1, 1 2 �) 

          = (ý�Ċ2ċ2)(Ā). 
This implies that * is well defined. 

Obviously, the set �/ý� admits closure and associative properties with respect to the 

binary operation *. 

Moreover, ý� ∗ Ċý� = þý� ∗ Ċý� = (þ ∗ Ċ)ý� = Ċý� , which implies that ý� is 

identity of �/ý�. 

It is easy to note that inverse of each element of �/ý� exist as if for Ċý� * �/ý�, there 

exist 

 Ċ−1ý� * �/ý� such that (Ċ−1ý�) ∗ (Ċý�) = (Ċ−1 ∗ Ċ)ý� = ý� . 
Consequently, (�/ý�) is a group under *. 
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Theorem: 5.2.13 

 Let ý� be an ā-anti fuzzy normal subgroup of a group G.  Then there exists a 

natural epimorphism between � and �/ý� which may be defined as  Ċ → ý�Ċ, Ċ *�, where ���  is kernel of this homomorphism. 

Proof: 

 ÿ is homomorphism as if for Ċ, ċ * �. 
We have, ÿ(Ċċ) = ý�Ċý�ċ = ÿ(Ċ)ÿ(ċ). 
Obviously ÿ is surjective as well. 

Consequently, ÿ is an epimorphism from � to �/ý� . 
Further, ýþĄÿ = {Ċ * � 8 ÿ(Ċ) =  ý�þ} 

            = {Ċ * � 8  ý�Ċ = ý�þ} 

            = {Ċ * � 8 Ċþ−1 * ���} 

            = ��� . 
Theorem: 5.2.14 

 Let ý� be an ā-anti fuzzy normal subgroup of a group G.  Then show that �/ý� ≅ �/��� . 
Proof: 

 By theorem (5.2.12), �/���  is well defined. 

Define a map ÿ: �/ý� → �/���  
  ÿ(Ċý�) = Ċ��� , Ċ * � 
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ÿ is well defined because if Ċý� = ċý� , which implies that Ċ��� = ċ��� . 
This implies that ÿ(Ċý�) = ÿ(ċý�) 

ÿ is injective as if ÿ(Ċý�) = ÿ(ċý�),  which implies that Ċ��� = ċ��� . 
Hence, Ċý� = ċý� . 
ÿ is surjective as for each Ċ��� * �/��� , there exist Ċý� * �/ý� such that 

 ÿ(Ċý�) = Ċ��� 

ÿ is homomorphism as for each Ċý� , ċý� * �/ý� 

   ÿ(Ċý�ċý�) = ÿ((Ċċ)ý�) 

            = Ċċ��� 

            = Ċ���ċ��� 

            = ÿ(Ċý�)ÿ(ċý�). 

Consequently, there is an isomorphism between �/ý� and �/��� . 
5.3 HOMOMORPHISM OF A �-FUZZY SUBGROUP 

Theorem: 5.3.1 

 Let ÿ: �1 → �2 be a bijective homomorphism from a group �1 to a group �2 

and B be an ā-fuzzy subgroup of group �2.  Then  ÿ−1(þ) is an ā-fuzzy subgroup �1. 
Proof: 

 Given that B is an ā-anti fuzzy subgroup of group �2.   
 Let Ċ1, Ċ2 * �1 be any element. 
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To prove: 

 1. (ÿ−1(þ))�(Ċ1Ċ2) f  max {(ÿ−1(þ))�(Ċ1), (ÿ−1(þ))�(Ċ2)} 

 2. (ÿ−1(þ))�  = ÿ−1(þ�)(Ċ) 

Then, 

 (ÿ−1(þ))�(Ċ1Ċ2) = ÿ−1(þ�)(Ċ1Ċ2) 

         = þ�(ÿ(Ċ1Ċ2)) 

         = þ�(ÿ(Ċ1)ÿ(Ċ2) 

         f max {þ�(ÿ(Ċ1)), þ�(ÿ(Ċ2))} 

        = max {ÿ−1(þ�)(Ċ1), ÿ−1(þ�)(Ċ2)} 

        = max {(ÿ−1(þ))�(Ċ1), (ÿ−1(þ))�(Ċ2)} 

Thus, 

 (ÿ−1(þ))�(Ċ1Ċ2) f  max {(ÿ−1(þ))�(Ċ1), (ÿ−1(þ))�(Ċ2)} 

Also, 

  (ÿ−1(þ))� = ÿ−1(þ�)(Ċ−1) 

          = þ�(ÿ(Ċ−1)) 

          = þ�(ÿ(Ċ)−1) 

          = þ�(ÿ(Ċ)) 

  (ÿ−1(þ))�  = ÿ−1(þ�)(Ċ) 

Consequently, ÿ−1(þ) is an ā-anti fuzzy subgroup of group �1. 
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Theorem: 5.3.2 

 Let ÿ: �1 → �2 be an isomorphism form a group �1 to group �2 and B be an ā-

anti fuzzy normal subgroup of a group �2.  Then ÿ−1(þ) is an ā-anti fuzzy normal 

subgroup of group �1. 

Proof: 

 Given that B is an ā-anti fuzzy normal subgroup of group �2. 
 Let Ċ1, Ċ2 * �1 be any element. 

Then, 

 (ÿ−1(þ))�(Ċ1Ċ2) = ÿ−1(þ�)(Ċ1Ċ2) 

         = þ�(ÿ(Ċ1Ċ2)) 

         = þ�(ÿ(Ċ1)ÿ(Ċ2)) 

         = þ�(ÿ(Ċ2Ċ1)) 

 (ÿ−1(þ))�(Ċ1Ċ2) = ÿ−1(þ�)((ÿ−1(þ))�(Ċ2Ċ1)  

Consequently, ÿ−1(þ) is ā-anti fuzzy normal subgroup of group �1. 
Theorem: 5.3.3 

 Let ÿ: �1 → �2 be a bijective homomorphism from a group �1 to a group �2 

and ý be an ā-anti fuzzy subgroup of group �1.  Then ÿ(ý) is an ā-anti fuzzy subgroup 

of group �2.  

Proof: 

 Given that ý is an ā-anti fuzzy subgroup of group �1.  
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Let ċ1, ċ2 * �2 be any element. 

Then there exist unique element Ċ1, Ċ2 * �1 such that ÿ(Ċ1) = ċ1 and ÿ(Ċ2) = ċ2. 

Consider, 

    (ÿ(ý))�(ċ1ċ2) = ąÿ(ÿ(ý)(ċ1ċ2), 1 2 �) 

     = ąÿ(ÿ(ý)ÿ(Ċ1)ÿ(Ċ2), 1 2 �) 

     = ąÿ(ý(Ċ1Ċ2), 1 2 �)         [7 ÿ(ý)ÿ(Ċ) = ý(Ċ)] 
     = ý�(Ċ1Ċ2) 

     f max (ý�(Ċ1), ý�(Ċ2), for all Ċ1, Ċ2 * �1 

               f max (min{ý�(Ċ1): ÿ(Ċ1) = ċ1} , min{ý�(Ċ2): ÿ(Ċ2) = ċ2}) 

     = max (ÿ(ý�)(ċ1), ÿ(ý�)(ċ2)) 

     = max ((ÿ(ý))�(ċ1), (ÿ(ý))�(ċ2)) 

Further, 

 (ÿ(ý))�(ċ−1) = ÿ(ý�)(ċ−1) 

   = min{ý�(Ċ−1): ÿ(Ċ−1) = ċ−1} 

   = min{ý�(Ċ): ÿ(Ċ) = ċ} 

   = (ÿ(ý))�(ċ) 

Consequently, ÿ(ý) is ā-anti fuzzy subgroup of �2. 
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Theorem: 5.3.4 

 Let ÿ: �1 → �2 be a bijective homomorphism from a group �1 to a group �2 

and ý be an ā-anti fuzzy normal subgroup of  �1.  Then ÿ(ý) is an ā-anti fuzzy normal 

subgroup of group �2. 
Proof: 

 It is sufficient to show that ÿ(ý)� is anti fuzzy normal in �2. 
Given that A is ā-anti fuzzy normal subgroup of group �1. 
Let ċ1, ċ2 * �2 be any element. 

Then there exists unique elements Ċ1, Ċ2 * �1 such that ÿ(Ċ1) = ċ1 and  ÿ(Ċ2) = ċ2. 

Consider, 

 (ÿ(ý))�(ċ1ċ2) = ąÿ(ÿ(ý)(ċ1ċ2), 1 2 �) 

     = ąÿ(ÿ(ý)ÿ(Ċ1)ÿ(Ċ2), 1 2 �) 

     = ąÿ(ÿ(ý)ÿ(Ċ1Ċ2), 1 2 �) 

     = ąÿ(ý(Ċ1Ċ2), 1 2 �) 

     = ý�(Ċ1Ċ2) 

     = ý�(Ċ2Ċ1) 

     = ąÿ(ý(Ċ2Ċ1), 1 2 �) 

     = ąÿ(ÿ(ý)ÿ(Ċ2Ċ1), 1 2 �) 

     = ąÿ(ÿ(ý)ÿ(Ċ2)ÿ(Ċ1), 1 2 �) 

     = ąÿ(ÿ(ý)(ċ2ċ1), 1 2 �) 
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     = (ÿ(ý))�(ċ2ċ1). 
Consequently, ÿ(ý) is a ā-anti fuzzy normal subgroup of �2. 

 













INTRODUCTION 

In a topological space filter is an important tool to study many properties.  The closure of 

a set A can be characterized using convergent filters.  The continuity of a function from 

one topological space to another can be characterized using convergent filters. In the year 

1965 Lotfi A. Zadeh [14] introduced the concept of fuzzy sets and fuzzy logic.  In the 

year 1968 C. L. Chang [3] introduced Fuzzy topological spaces. In the year 2014 We [3] 

introduced fuzzy sequences in a metric space. Also We [3] introduced fuzzy nets in 

topological spaces. 

In 1994 H. Maki and K. Balachandran [6] introduced α generalized closed set. In 1996 H. 

Maki and others [6] introduced generalized pre closed set. In the year 1997 A. Csaszar [5] 

introduced the concept of generalized open sets. S. Palaniammal [11] introduced tri 

topological space. She introduced a new tool named generalized filter and defined 

convergence of generalized filters.  

In the year 2009, R. Shen [12] studied connectedness in generalized topological spaces. 

In the same year R.X. Shen [13] made some remarks on product of generalized 

topological spaces. In 2010 R. Baskaran, M. Murugalingam and D. Sivaraj [2] introduced 

some new concepts in generalized topological spaces.  

After the introduction of generalized topology by A. Csaszar [4] in the need for 

generalizing the limit concept in generalized topology was felt and hence R. Baskaran,  

M. Murugalingam, D. Sivaraj [2] introduced generalized nets in generalized topological 

spaces and studied the convergence of generalized nets. R. Baskaran and                        



M. Murugalingam [2] modified the concept of connectedness in generalized topological 

space. 
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CHAPTER 1 

PRELIMINARIES 

Definition: 1.1 

 Let ÿ be a non empty set and let � be a collection of subsets of ÿ then 

   1. Φ * � and ÿ * � 

   2. The intersection of any two sets in � belong to � 

   3. The union of any number of sets in � belong to � 

 the � is called a topology on ÿ. The pair (ÿ, �) is called a topological space. 

Definition: 1.2 

 The collection consisting of only the set ÿ and Φ is the topology on ÿ which is 

known as indiscrete topology (or) trivial topology. 

Definition: 1.3 

 Let ÿ be a non empty set. ý ⊂ ÿ(ÿ) is called a filter on ÿ if  

   1. Φ + ý 

   2. ý1, ý2 * ý ⇒ ý1 + ý2 

   3. � * ý and � ⊂ þ ⇒ þ * ý 
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Definition: 1.4 

 Let (ÿ, Ā) be a topological space and let þ * ÿ. ý� is a filter on ÿ. ý� is called the 

neighbourhood filter on ÿ. 

Definition: 1.5 

 Let ÿ be a non empty set. Let ÿ * ÿ. ý = {ý ⊂ ÿ ÿ⁄ * ý}, ý is a filter. This filter 

is called the principal filter at ÿ. 

Definition: 1.6 

 Let ÿ be a non empty set. Let ý = {ÿ}. Then ý is a filter on ÿ. This ý is called 

the Indiscrete filter on ÿ. 

Definition: 1.7 

 Let ÿ be a non empty set and  ÿ ⊂ ÿ. ý = {ý ÿ⁄ ⊂ ý}. This filter is called 

principal filter at ÿ. 

Definition: 1.8 

 Let (ÿ, Ā) be a topological space and ý be a filter on ÿ. ý is said to converge to þ, 

if ý� ⊂ ý. ÿ is called a limit of ý. 

Definition: 1.9 

 Let ÿ be a non empty set. ý ⊂ ÿ(ÿ) is called a generalized filter if 

   1. § + � 
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   2. ý * � and þ ⊂ ý ⇒ þ * �. 

Definition: 1.10 

 Let ý be a generalized filter in a generalized topological space X. ý is said to 

converge to an element þ X if every open set containing þ belongs to ý.  we write ý → ÿ, ÿ is called a limit of ý. 

Definition: 1.11 

 Let ÿ be a non empty set and let ý be a generalized filter on ÿ. ÿ ⊂ ÿ(ÿ) is called 

a bases for the generalized filter ý if ÿ ⊂ ý and every element of ý is a superset of some 

elements of ÿ. ý is called the generalized filter generated by ÿ. 

Definition: 1.12 

 Let ÿ be a generalized topological space. Let ÿ be the collection of all open sets 

containing a fixed point þ. The generalized filter generated by ÿ is called the 

neighbourhood of filter of � and it is denoted by ý(ÿ). 
Definition: 1.13 

 Let ý1 and ý2 be fuzzy filter on ÿ. ý2 is said to be finer than ý1 if  ý1(ý) f ý2(ý) 

for all ý * ÿ(ÿ). 

Definition: 1.14 

 Let (ÿ, Ā) be a topological space. Let � be a filter on ÿ. Let ÿ * ÿ. � is called a 

fuzzy neighbourhood filter at a if �(ý) = 1 if ý is an open set containing ÿ. 
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Definition: 1.15 

 Let (ÿ, Ā) be a topological space Let � be a filter on ÿ. Let ÿ * ÿ. � is called a 

fuzzy neighbourhood filter at a if �(ý) g ÿ if A is an open set containing ÿ. 

Definition: 1.16 

 Let ÿ be a non empty set. A function ý: ÿ → [0,1] is called a fuzzy set on ÿ. 

Definition: 1.17 

 Let ý and þ be fuzzy sets on ÿ. 

 ý , þ: ÿ → [0,1] is defined as ý , þ(þ) = max {ý(þ), þ(þ)} 
 ý + þ: ÿ → [0,1] is defined as ý + þ(þ) = min{ý(þ), þ(þ)} 

Definition: 1.18 

 A generalized filter base S is said to converge to a point ÿ if the generalized filter 

generated by ÿ converges to x. we write S → x. 

Definition: 1.19 

 Let ÿ be a non empty set. Let ÿ * ÿ. Define �: ÿ(ÿ) → [0,1] as �(ý) = 1 if ÿ *ý and �(ý) = 1 if ÿ + ý. This � is called the fuzzy principal filter at ÿ. 

Definition: 1.20 

 Let ÿ be a non empty set. A fuzzy set ý on ý × ÿ is called a fuzzy sequence in ÿ. That is., ý: ý × ÿ → [0,1] is called a fuzzy sequence in ÿ 
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Definition: 1.21 

 Let ÿ be an infinite set.ý = {ý ⊂ ÿ 7 ý� is finite}. ý is the complement of a finite 

set and ý is called a cofinite set. ý is the collection of all cofinite subsets of ÿ. 

Definition: 1.22 

 A topological space ÿ is said to be Hausdroff space if for each distinct pair of þ bÿ in ÿ, there exists neighbourhoods ā and Ă of ÿ and Ā respectively such that ā + Ă = ∅ 

 

 

   

 

 

 

 

 

 

 

 

CHAPTER 2 
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FUZZY FILTERS 

2.1 Fuzzy Filters 

Definition: 2.1.1 

          First we recall the concept of filter in a topological space. Let ÿ be a non empty 

set ý ⊂ ÿ(ÿ) is called a filter (Crisp filter) on ÿ if 

  1. Φ + ý 

  2. ý is closed under finite intersection. 

       (i.e) ý, þ * ý ⇒ ý + þ * ý. 

  3. þ * ý and B ⊂ A ⇒ A * F. 

  Now we define Fuzzy Filter. 

Definition: 2.1.2 

          Let ÿ be a non empty set. A fuzzy set f on ÿ(ÿ) is called a fuzzy filter    Ą: ÿ(ÿ) → [0,1] if 
  1. Ą(Φ) = 0 

  2. Ą(ý + þ) g min {Ą(ý), Ą(þ)} 

  3. þ ⊂ ý ⇒ Ą(þ) f Ą(ý) 

Example: 2.1.3 
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 Let ÿ = {1,2,3}. Define Ą: ÿ(ÿ) → [0,1] as 

 Ą(Φ) = 0, Ą({1}) = 1, Ą({2}) = 0, Ą({3}) = 0, Ą({1,2}) = 1, Ą({1,3}) = 5, 

 Ą({2,3}) = 0, Ą(ÿ) = 1. 

 Ą is a fuzzy filter on ÿ. 

Theorem: 2.1.4 

          Let Ą be a fuzzy filter on ÿ. Then Ą(ý + þ) = min {Ą(ý), Ą(þ)} 

Proof: 

 Let Ą be a fuzzy filter. 

 Then Ą(ý + þ) g min{Ą(ý), Ą(þ)}  ......................... (1) 

 Since (ý + þ) ⊂ ý, 

 We have Ą(ý + þ) f Ą(ý). 

 Also (ý + þ) ⇒ Ą(ý + þ) f Ą(þ). 

 Now Ą(ý + þ) f Ą(ý) and Ą(ý + þ) f Ą(þ) 

 Hence Ą(ý + þ) f min {Ą(ý), Ą(þ)}  ……………..(2) 

 From (1) and (2) we have  

 Ą(ý + þ) = min {Ą(ý), Ą(þ)}. 

Theorem: 2.1.5 
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          Every crisp filter is a fuzzy filter. 

Proof: 

 Let ý be a crisp filter on ÿ. 

 Then ý ⊂ ÿ(ÿ) where 

    1. Φ + ý 

    2.  ý, þ * ý ⇒ ý + þ * ý 

    3. þ ⊂ ý, þ * ý ⇒ ý * ý 

 Now define Ą: ÿ(ÿ) → [0,1] as Ą(ý) = { 1  if   ý * ý  0  āā/ăÿýÿĀă 

Claim: 

 1. ý is crisp filter 

 Hence Φ + ý 

 ∴ Ą(Φ) = 0. 

 2. Take ý, þ * ÿ(ÿ) 

     Case: 1 

 Let ý + þ * ý. 

 ý + þ ⊂ ý and ý + þ ⊂ þ. 

 Hence ý, þ * ý. 
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 Now Ą(ý + þ) = 1 

         Ą(ý) = 1 

         Ą(þ) = 1 

 Hence have Ą(ý + þ) = min {Ą(ý), Ą(þ)}. 

Case: 2 

 Let  ý + þ + ý. 

 Hence Ą(ý + þ) = 0 

 If ý * ý and þ * ý then  ý + þ * ý. 

 Therefore either ý + ý or þ * ý. 

 HenceĄ(ý) = 0 āÿ Ą(þ) = 0. 

 Hence min{Ą(ý), Ą(þ)} = 0. 

 Therefore Ą(ý + þ) = min {Ą(ý), Ą(þ)}. 

 3. Let þ ⊂ ý. 

Case: 1 

 Let þ * ý. 

 Then Ą(þ) = 1. 

 Now þ ⊂ ý, þ * ý implies ý * ý and hence Ą(ý) = 1. 
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 Therefore Ą(þ) f Ą(ý) 

Case: 2 

 Let þ + ý. 

 Then Ą(þ) = 0 

 Now Ą(ý) = 0 āÿ 1. 

 Hence Ą(þ) f Ą(ý). 

 Hence Ą is a fuzzy filter. 

 The given crisp filter ý can be identified with the fuzzy filter Ą. 

 Every crisp filter can be considered as a fuzzy filter. 

Note: 2.1.6 

 The converse is not true. 

 A fuzzy filter need not be a crisp filter. 

for example, 

 Let ÿ = {1,2,3}. 

 Define Ą: ÿ(ÿ) → [0,1] as 

 Ą(Φ) = 0, Ą{1} = 1, Ą{2} = 2, Ą{3} = 0, Ą{1,2} = 1, Ą{1,3} = 2, Ą{2,3} = 0, 

 Ą(ÿ) = 1, 
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 Clearly Ą is a fuzzy filter. 

 ý takes value other than 0 and 1. 

 Hence Ą is not a crisp filter. 

Theorem: 2.1.7 

            Intersection of two fuzzy filters on ÿ is a fuzzy filter on ÿ. 

Proof: 

            Let Ą and ą be two fuzzy filters on ÿ. 

            Ą: ÿ(ÿ) → [0,1], ą: ÿ(ÿ) → [0,1]. 
 Let / = Ą + ą. 

 / is defined as /: ÿ(ÿ) → [0,1] where /(ý) = min {Ą(ý), ą(ý)}. 

      1. Ą and ą are fuzzy filters. 

          Hence Ą(Φ) = 0, ą(Φ) = 0. 

          Now /(Φ) = min{Ą(Φ), ą(Φ)} = min{0,0} = 0. 

      2. Let ý, þ ⊂ ÿ 

          Ą is a fuzzy filter. 

 Therefore Ą(ý + þ) g min {Ą(ý), Ą(þ)}. 

 ⇒ Ą(ý + þ) g min {Ą(ý), Ą(þ), ą(ý), ą(þ)} 
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 Hence Ą(ý + þ) g min {min Ą(ý), ą(ý), min Ą(þ), ą(þ)} 

 Therefore Ą(ý + þ) g min {/(ý), /(þ)} …………….. (1) 

 Similarly ą(ý + þ) g min {/(ý), /(þ)} ……………….. (2) 

 From (1) and (2) 

 min {Ą(ý + þ), ą(ý + þ)} g min {/(ý), /(þ)}. 

 Hence /(ý + þ) g min {/(ý), /(þ)}. 

 3. Let þ ⊂ ý. 

     Ą and ą are fuzzy filters. 

     Therefore Ą(þ) f Ą(ý) 

     Hence ą(þ) f ą(ý) 

     Hence min {Ą(þ), ą(þ)} f min {Ą(ý), ą(ý)} 

     Hence Ą + ą(þ) f Ą + ą(ý) 

     Hence /(þ) f /(ý) 

 From 1,2,3 / is a fuzzy filter. 

Definition: 2.1.8                                                                                                                           

 We recall the definition of ÿ cut of a fuzzy set. Let ý be a fuzzy set on ÿ.          

Let ÿ * [0,1]. Then ÿ cut of ý denoted as ÿý is defined as ÿý = {þ / ý(þ) g ÿ}. Now 

we see that ÿ cut of a fuzzy filter is a crisp filter. 
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Theorem: 2.1.9 

          Let ý be a fuzzy filter on a non empty set ÿ. Let ÿ * Āÿ ý. Let ÿ b 0. Then ÿ cut 

of ý is a crisp filter on ÿ. 

Proof: 

 Let ý be a fuzzy filter on a non empty set �. 

 ý: ÿ(ÿ) → [0,1] is a fuzzy filter. 

 ÿý = {ý * ÿ(ÿ) ý(ý)⁄ g ÿ} 

 We claim that ÿý is a crisp filter on ÿ. 

 Here ÿ b 0. 

    1. ý(Φ) = 0 ⇒ ý(Φ) is not greater than or equal to ÿ. 

       Hence Φ + ÿý. 

    2. Let ý, þ * ÿý. 

        Then ý(ý) g ÿ and ý(þ) g ÿ. 

        Then implies min{ý(ý), ý(þ)} g ÿ. 
     Now ý(ý + þ) g min {ý(ý), ý(þ)} g ÿ. 

     Hence ý + þ * ÿý. 

     Therefore ý, þ * ÿý ⇒ ý + þ * ÿý. 
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 3. Let ý * ÿý and ý ⊂ þ. 
     ý * ÿý implies ý(ý) g ÿ. 

     ý ⊂ þ and F is a fuzzy filter. 

     Therefore ý(þ) g ý(ý). 

     Hence ý(þ) g ÿ. 

     Therefore þ * ÿý. 

     Hence ý * ÿý and ý ⊂ þ ⇒ þ * ÿý. 

     Therefore ÿý is a crisp filter on X. 

Note: 2.1.10 

 Converse is not true. 

 Let ý: ÿ(ÿ) → [0,1] be a fuzzy set on ÿ. ÿý is a crisp filter. Then ý need not be a 

fuzzy filter.  

 for example,  

 Let ÿ = {ÿ, Ā} 

Define Ą: ÿ(ÿ) → [0,1] as  

 Ą(Φ) = 0, Ą{ÿ} = .4, Ą{Ā} = .1, Ą{ā} = .1, Ą{ÿ, Ā} = .1, Ą{ÿ, ā} = .1,    

 Ą{Ā, ā} = .5, Ą(ÿ) = 1. 

 Take ÿ = .5 
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 ÿĄ = {{Ā, ā}, ÿ}. 

 ÿĄ is a crisp filter.  

 Now {ÿ} ⊂ {ÿ, Ā}, Ą{ÿ} = .4 and Ą{ÿ, Ā} = .1. 

 Hence Ą is not a fuzzy filter. 

 Therefore ÿ cut of a fuzzy filter is a crisp filter does not imply that Ą is a fuzzy 

filter. 

2.2 CONVERGENCE OF FUZZY FILTERS 

Definition: 2.2.1 

          Let ÿ be a topological space. Let ý be a fuzzy filter on ÿ. Let ÿ * ÿ. ý is said to 

be converges to ÿ if for every open neighbourhood ā of ÿ , ý(ā) = 1. 8ÿ9 is called limit 

of ý. 

Definition: 2.2.2                                                                                                           

 Let ÿ be a topological space. Let ý be a fuzzy filter on ÿ. Let * ÿ. Let ÿ * (0,1]. ý is said to converge to 8ÿ9 at level ÿ, if for every neighbourhood ā of ÿ, ý(ā) g ÿ. 8ÿ9 is 

called ÿ −level limit of ý. 

Example: 2.2.3 

 Let ÿ = {ÿ, Ā, ā}. 
 Ā = {Φ, {ÿ}, ÿ}. 
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 ý: ÿ(ÿ) → [0,1] is defined as  

 ý(Φ) = 0, ý{ÿ} = 1, ý{Ā} = 0, ý{ā} = 0, ý{ÿ, Ā} = 1, ý{ÿ, ā} = 1, 

 ý{Ā, ā} = 0, ý(ÿ) = 1. 

 The neighbourhood of ÿ are {ÿ} and ÿ. 

 ý{ÿ} = 1 ÿĀĂ ý(ÿ) = 1. 

 Hence ý converges to ÿ. 

 The neighbourhood of b is ÿ only and ý(ÿ) = 1. 
 Hence ý → Ā. 
 The neighbourhood of c is ÿ only and ý(ÿ) = 1. 

 Hence ý → ā. 

Result: 2.2.4 

 The above example shows that limit of a fuzzy use not be unique. But may be 

unique also. 

Example: 2.2.5 

 ÿ = {ÿ, Ā} 

 Ā = ÿ(ÿ) 

 ý: ÿ(ÿ) → [0,1] is defined as  
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 ý(Φ) = 0, ý{ÿ} = 1, ý{Ā} = 0, ý(ÿ) = 1. 

 Hence ý converges to ÿ. 

 ý does not converges to Ā. 

 So in the example limit of ý is unique. 

Example: 2.2.6 

 Let ÿ = {ÿ, Ā, ā} 

 Ā = {Φ, {ÿ}, {Ā}, {ÿ, Ā}, ÿ} 

 ý: ÿ(ÿ) → [0,1] is defined as  

 ý(Φ) = 0, ý{ÿ} = .6, ý{Ā} = .4, ý{ÿ, Ā} = .6, ý{ÿ, ā} = .6, ý{Ā, ā} = .4, 

 ý(ÿ) = 1. 

 Take ÿ = .6. 

 Consider the neighbourhood of ÿ. {ÿ}, {ÿ, Ā}, ÿ 

 ý{ÿ} g ÿ, ý{ÿ, Ā} g ÿ, ý(ÿ) g ÿ. 

 Hence ý converges to ÿ at level ÿ = .6 

 ý does not converges to Ā at level ÿ = .6 

 The neighbourhood of Ā are {Ā}, {ÿ, Ā}, ÿ. 

 Here ý{Ā} = .4 is not greater than or equal to ÿ. 
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 Hence ý does not converges to b at level ÿ. 

 The neighbourhood of c is ÿ only. 

 ý(ÿ) = 1 g ÿ. 
 Hence F converges to c at level ÿ = .6. 

Result: 2.2.7 

 Let ý be a fuzzy filter and let Ā f ÿ. Then if ý converges to ÿ at level ÿ, then ý 

converges to ÿ at level Ā 

Theorem: 2.2.8 

Let ý be a fuzzy filter on ÿ. Let ÿ * (0,1]. Let ÿ * ÿ. Then the fuzzy filter ý 

converges to ÿ at level ÿ iff the crisp filter ÿ −cut of ý converges to ÿ. 

Proof: 

 Let ý converges to ÿ at level ³. 

 ÿý = {ý ý(ý)⁄ g ÿ} 

 Let ā be a neighbourhood of ÿ. 

 Since ý converges to a, ý(ā) g ÿ. 
 Hence ā * ÿý. 

            The crisp filter ÿý contains every neighbourhood of ÿ. 
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 Hence ÿý converges to ÿ. 

 Conversely, Suppose ÿý converges to ÿ. 

 We claim that the fuzzy filter ý converges to a at level ³. 

 Let ā be a neighbourhood of ÿ. 

 Since ÿý converges to ÿ, ā * ÿý. 

 Hence ý(ā) g ÿ. 

 Therefore the fuzzy filter ý converges to ÿ at level ³. 

Definition: 2.2.9 

 Let ÿ be an infinite set. A function ý: ÿ(ÿ) → [0,1] is called a fuzzy co finite 

filter, if ý(ý) = {1 if ý�  is finite0    otherwise  

Theorem: 2.2.10 

 Fuzzy co finite filter is a fuzzy filter. 

Proof: 

 Let ý: ÿ(ÿ) → [0,1] be defined as F(A) ={1 if ý�  is finite0    otherwise  

 Now consider Φ * ÿ(ÿ) 

 Φ� = ÿ which is not finite. 

 Hence F(Φ) = 0. 
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 Take ý, þ * ÿ(ÿ) 

 If F(A) = 0 and F(B) = 0 then whatever be the value of ý(ý + þ). 

 We have ý(ý + þ) g min {ý(ý), ý(þ)}. 

 Now suppose F(A) = 1 and F(B) = 1, then ý� is finite and þ� is finite. 

 Hence ý� , þ�  is finite which implies (ý + þ)� is finite. 

 Hence ý(ý + þ) = 1. 

 Hence have ý(ý + þ) g min {ý(ý), ý(þ)}. 

 Now suppose as ý(ý) = 0 and ý(þ) = 1, then min{F(A),F(B)} = 0. 

 Hence ý(ý + þ) g min {ý(ý), ý(þ)}. 

 Let ý ⊂ þ. 

 If ý(ý) = 0 then whatever be the value of F(B), we have ý(þ) g ý(ý). 

 If ý(ý) = 1 then ý� is finite. 

 This implies that þ� is finite. 

 Hence ý(þ) = 1. 

 Therefore ý(ý) f ý(þ). 

 Hence ý ⊂ þ ⇒ ý(ý) f ý(þ). 

 Hence ý is a fuzzy filter. 



21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 
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FUZZY GENERALIZED FILTER (FUZZY G FILTER) 

3.1 Fuzzy Generalized Filter: 

Definition: 3.1.1  

          Let ÿ be a non empty set ý: ÿ(ÿ) → [0,1] is called fuzzy generalized filter if  

1. ý(Φ) = 0. 

2. ý ⊂ þ ⇒ ý(ý) f ý(þ) for all ý, þ in ÿ(ÿ). 
Example: 3.1.2 

          Let ÿ = {1,2,3}. Define ý: ÿ(ÿ) → [0,1] as 

 Φ → 0, {1}→0.4, {2}→ 0.4, {3}→ 0.4,{1,2}→ 0.5, {1,3}→ 0.5, {2,3}→ 0.5, 

 {1,2,3}→ 0.6, 

 ý is a fuzzy g filter. 

Theorem: 3.1.3 

          Every crisp g filter is a fuzzy g filter. 

Proof: 

            Let � be a g filter on a non empty set ÿ. 

 Define ý: ÿ(ÿ) → [0,1] as ý(ý) = 1 if A* � and ý(ý) = 0 if A+ �. 

 We claim that F is a fuzzy g filter on ÿ. 
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 1.Φ + � and hence ý(Φ) = 0. 

 2. Let ý ⊂ þ. Let ý(ý) = 0. Now ý(þ) = 0 or ý(þ) = 1. 

 Therefore ý(ý) f ý(þ). 

 Let ý(ý) = 1. Then A* �. 

 Since � is a g filter and ý ⊂ þ, and we have þ * �. 

            ⇒ ý(þ) = 1.  

 Hence ý(ý) f ý(þ). 

 Therefore ý is a fuzzy g filter. 

 The crisp filter can be identified uniquely with the fuzzy g filter. 

 Hence every crisp g filter is a fuzzy g filter. 

Note: 3.1.4 

          Converse is not true. 

 A fuzzy g filter need not be a crisp g filter. 

for example,  

          Let ÿ = {1,2,3}. Define ý: ÿ(ÿ) → [0,1] as {Φ} → 0. 

 {1} → 0.5, {2} → 0.6, {1,2} → 0.7, {1,3} → 0.6, {2,3} → 0.7, {1,2,3} → 0.9, 

 F is a fuzzy g filter. 
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F is not a crisp g filter. 

Theorem: 3.1.5 

 The ÿ − cut of a fuzzy filter is a crisp g filter. 

Proof: 

 Let ÿ b Φ, 

 Let F be a fuzzy g filter on ÿ. 

 Let ÿý = ÿ cut of F. 

 We claim that ÿý is a crisp g filter. 

 1. Since F is a fuzzy g filter, ý(Φ) = 0 

     Therefore ý(Φ) is not greater than or equal to ÿ. 

     Hence Φ + ÿý. 

 2. Let ý * ÿý and ý ⊂ þ. 

     ý * ÿý ⇒ ý(ý) g ÿ. 
     Now ý ⊂ þ and ý is a fuzzy g filter. 

     Hence ý(þ) g ý(ý). 

     Therefore ý(þ) g ÿ. 

     This implies þ * ÿý. 
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     Hence ÿý is a crisp g filter. 

     Therefore ÿ cut of a fuzzy g filter is a crisp g filter. 

Note: 3.1.6 

 Converse is not true. 

That is, Let ý: ÿ(ÿ) → [0,1] be a function. Let ÿ * (0,1]. ÿ − cut of ý is a crisp g filter 

does not imply that ý is fuzzy g filter. 

For example,  

 Let ÿ = {1,2,3}. 

 Define ý: ÿ(ÿ) → [0,1] as  

 {Φ} → 0, {1} → 0.4, {2} → 0.4, {3} → 0.4, {1,2} → 0.3, {1,3} → 0.5,        

 {2,3} → 0.5, {1,2,3} → 0.5. 

 Take ÿ = 0.5 

 ÿ − cut of ý = {{1,3}, {2,3}, {1,2,3}} 

 ÿ − cut of ý is a crisp g filter. ý({2}) = 0.4 ý({1,2}) = 0.3 

 Hence, F is not a fuzzy g filter. 

 

Theorem: 3.1.7 
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 Let ý be function ÿ(ÿ) → [0,1]. If for each ÿ * Āÿ ý and ÿ b 0, ÿ −cut of ý, is 

a g-filter then ý is a fuzzy g filter. 

Proof: 

 Let ý: ÿ(ÿ) → [0,1] be a function. 

 For each ÿ * Āÿ ý and ÿ b 0, ÿ − cut of F is a crisp g filter on ÿ. 

 First we prove that ý(Φ) = 0. 

 Let ý(Φ) = ÿ. 

 If ÿ b 0, then by assumption, ÿ − cut of ý is a crisp g filter. 

 Since ý(Φ) = ÿ, Φ belongs to ÿ − cut of ý. 
 This shows that the crisp g filter ÿ − cut of ý contains Φ. 

 This is a contradiction. 

 Hence ³ = 0. 

 Therefore ý(Φ) = 0. 

 Let ý ⊂ þ. 

 We prove that ý(ý) f ý(þ). 

 Let ý(ý) = ÿ. 

 If ÿ = 0 then ý(þ) g ý(ÿ). 
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 If ÿ b 0 consider ÿ − cut of ý which is a crisp g filter by assumption. 

 Now ý(ý) g ÿ ⇒ ý * ÿ − cut of ý. 

 Now ý * ÿ − cut of ý, ý ⊂ þ and ÿ − cut of ý is a crisp g filter. 

 Hence þ * ÿ − cut of ý. 
 Hence ý(þ) g ÿ. 

 This implies ý(þ) g ý(ÿ). 

 Hence ý ⊂ þ ⇒ ý(ý) f ý(þ). 

 Therefore ý is a fuzzy g filter. 

Example: 3.1.8 

 Let ÿ = {1,2,3}. 

 Define ý: ÿ(ÿ) → [0,1] as  

 {Φ} → 0, {1} → 0.4, {2} → 0.5, {3} → 0.5, {1,2} → 0.6, {2,3} → 0.7, 

 {1,3} → 0.6, ÿ → 0.7. 

 Consider values of ÿ * Āÿ ý and ÿ b 0. 

 We have ÿ1 = 0.4, ÿ2 = 0.5, ÿ3 = 0.6, ÿ4 = 0.7. 

 ÿ1 cut of ý = {{1}, {2}, {3}, {1,2}, {1,3}, {2,3}, ÿ}.  

Clearly ÿ1 cut of ý is a crisp g filter 
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 ÿ2 cut of ý = {{2}, {3}, {1,3}, {2,3}, ÿ}. Clearly ÿ2 cut of ý is a crisp g filter. 

 ÿ3 cut of ý = {{1,2}, {1,3}, {2,3}, ÿ}. Clearly ÿ3 cut of ý is a crisp g filter. 

 ÿ4 cut of ý = {{2,3}, ÿ}. Clearly ÿ4 cut of ý is a crisp g filter. 

 For all possible values of ÿ,ÿ cut of ý is a crisp g filter. 

 Clearly ý is a fuzzy g filter. 

Theorem: 3.1.9 

 Every fuzzy filter is a fuzzy g filter. 

Proof: 

 Let ÿ be a non empty set. 

 Let ý be a fuzzy filter on ÿ. 

 Since ý is a fuzzy filter, ý(Φ) = 0 and ý ⊂ þ ⇒ ý(ý) g ý(þ). 

 Hence ý is a fuzzy g filter. 

Note: 3.1.10 

 Converse is not true. 

 A fuzzy g filter need not be a fuzzy filter. 

 

for example, 
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Let ÿ = {1,2,3}. Define ý: ÿ(ÿ) → [0,1] as {Φ} → 0. 

 {1}→ 0.3, {2} → 0.3, {3} → 0.3, {1,2} → 0.4, {1,3} → 0.4, {2,3} → 0.4, ÿ → 1. 

 Clearly F is a fuzzy g filter. 

 Take ý = {1,2}, þ = {1,3}, ý + þ = {1}, ý(ý + þ) = 0.3 

 min{ý(ý), ý(þ)} = min{0.4,0.4} = 0.4. 

 ý(ý + þ) < min{ý(ý), ý(þ)}. 

 Hence ý is not a fuzzy filter. 

Theorem: 3.1.11 

 Union of two fuzzy g filters on a non empty set ÿ is a fuzzy g filter on ÿ. 

Proof: 

 Let ÿ be a non empty set. 

 Let ý and ÿ be a two fuzzy g filters on ÿ. 

  1. Since F and H are fuzzy g filters, ý(Φ) = 0 and ÿ(Φ) = 0. 

      Hence max{ý(Φ), ÿ(Φ)} = 0. 

      Therefore (ý , ÿ)Φ = 0. 

  2. Let ý ⊂ þ. 

      Since F is a fuzzy g filter, we have ý(ý) f ý(þ). 
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      Since H is a fuzzy g filter, we have ÿ(ý) f ÿ(þ). 

      Now ý(ý) f ý(þ) and ÿ(ý) f ÿ(þ) 

      ⇒ max{ý(ý), ÿ(ý)} f max{ý(þ), ÿ(þ)} 

      This implies (ý , ÿ)(ý) f (ý , ÿ)(þ). 

      Hence ý , ÿ is a fuzzy g filter. 

3.2 Convergence of Fuzzy G Filter: 

Definition: 3.2.1 

 Let ý be a fuzzy g filter on a topological space ÿ. Let ÿ * ÿ. ý is said to converge 

to ÿ if for every neighbourhood ā of ÿ. ý(ā) = 1. We write ý → ÿ, ÿ is called limit of ý. 

Example: 3.2.2 

 Let ÿ = {ÿ, Ā, ā}. Ā = {Φ, {ÿ}, {ÿ, Ā}, {ÿ, ā}, {ÿ, Ā, ā}} 

 Define ý: ÿ(ÿ) → [0,1] as  

 ý{Φ} = 0, ý{ÿ} = 0.1, ý{Ā} = 0.1, ý{ā} = 0.1, ý{ÿ, Ā} = 1, ý{Ā, ā} = 0.6, 

 ý{ÿ, ā} = 0.5, ý(ÿ) = 1. 

 ý converges to b. ý does not converges to a. ý does not converges to c. 

Result: 3.2.3 
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 Limit of a fuzzy g filter need not be unique. 

Example: 3.2.4 

 Let ÿ = {ÿ, Ā, ā}. Ā = {Φ, {ÿ}, {ÿ, Ā}, {ÿ, ā}, ÿ} 

 Define ý: ÿ(ÿ) → [0,1] as  

 ý{Φ} = 0, ý{ÿ} = 1, ý{Ā} = 0.1, ý{ā} = 0.2, ý{ÿ, Ā} = 1, ý{Ā, ā} = 1 

 ý{ÿ, ā} = 1, ý(ÿ) = 1. 

 Hence ý → ÿ, ý → Ā and ý → ā. 

Result: 3.2.5 

 Limit of a g filter in a topological space need not be unique even if space is 

haussdroff. 

Example: 3.2.6 

 ÿ = {ÿ, Ā, ā}. Ā = ÿ(ÿ) 

 Define ý: ÿ(ÿ) → [0,1] as  

 ý(ý) = 1, if ý b Φ, ý(ý) = 1 if ý = Φ. 

 

 

Theorem: 3.2.7 
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 Let ý be a fuzzy g filter on a topological space X. If ý → ÿ then ÿ − cut of F 

converges to a for any ÿ * (0,1], ÿ * Im F. 

Proof: 

 Let ý be a Fuzzy g filter  converges to a. 

 Consider ÿý = ÿ − cut of ý. 

 Let U be a neighbourhood of a. 

 Since ý converges to a, ý(ā) = 1 

 Therefore ý(ā) g ÿ. 

 Hence ā * ÿý. 

 Therefore ÿý contains all neighbourhood of a. 

 Hence ý converges to a. 

Note: 3.2.8 

 Converse is not true. 

If one ÿ − cut of ý converges to ÿ then we can say that the fuzzy g filter ý 

converges to ÿ. 

 

for example,  

 Let ÿ = {1,2,3}. Define ý: ÿ(ÿ) → [0,1] as 
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{Φ} → 0, {1} → 0.5, {2} → 0.3, {1,2} → 0.7, {1,3} → 0.6, {2,3} → 0.7, ÿ → 0.7 

 The topology Ā on ÿ is given by Ā = {Φ, {1}, {1,2}, {1,3}, ÿ}. 

 Take ÿ = 0.5, Now ÿ − cut of ý = {{1}, {1,2}, {1,3}, {2,3}, ÿ}. 

 ÿ − cut of ý converges to 1. 

 But ý does not converge to 1. 

Theorem: 3.2.9 

 Let ý be a fuzzy g filter on a topological space (ÿ, Ā). If the 1-cut of ý converges 

to ÿ then ý converges to ÿ. 

Proof: 

            Let ý: ÿ(ÿ) → [0,1] be a fuzzy g filter on ÿ. (ÿ, Ā) is a topological space. 

 Let 1-cut of ý converge to ÿ. 

 Now we claim that the fuzzy g filter ý converges to ÿ. 

 Let ā be an open set containing ÿ. 

 Since the crisp g filter 1-cut of ý converges to ÿ. 

 ā * 1 − cut of ý. 

 Hence ý(ā) = 1. 

 This is true for all open sets containing to ÿ. 
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 Hence the fuzzy g filter ý converges to ÿ. 

Theorem: 3.2.10 

 Let ÿ be a generalized topological space. Let ÿ be a g filter base. ÿ → þ iff for 

every open set þ containing þ, there exists an element ý in ÿ such that ý ⊂ þ 

Proof: 

 Let ÿ → þ. Then the g filter ý Which is generated by ÿ converges to þ. If þ is any 

open set containing þ 

 Since ý converges to x, þ * ý. Since ý is generated by the g filter base ÿ, there 

exists ý * ÿ such that ý ⊂ þ. 

Conversely, 

 Let ý be the filter generated by ÿ. Let þ be any open set Containing þ,  

Then there exists ý * ÿ such that ý ⊂ þ which implies þ * ý. 

Hence ý → þ which gives ÿ → þ. 

 

 

 

CHAPTER 4 

FUZZY NETS  
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4.1 Fuzzy Nets: 

Definition: 4.1.1 

 Let (ÿ, Ā) be a topological space. Let � be a directed set. A function                    Ą: � × ÿ → [0,1] is called a fuzzy net on ÿ. 

We recall the definition of net on set ÿ. A function from � → ÿ Where � is a directed set 

is called a net. Hereafter we call this net as crisp net. 

Theorem: 4.1.2 

 Every crisp net in ÿ induces a fuzzy net in ÿ. 

Proof: 

 Let ÿ be a non empty set.  

 Let � be a directed set and let ý be a crisp net on ÿ. 
 That is, ý: � → ÿ is a function. 

 This function ý can be associated with a function from � × ÿ → [0,1]. 
 Define þ: � × ÿ → [0,1] 
 Take � * � , þ * ÿ. 

 If ý(�) = þ then we define þ(�, þ) = 1. 

 If ý(�) b þ then we define þ(�, þ) = 0 
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 Therefore we get þ: � × ÿ → [0,1] using the given crisp net ý on ÿ. 

 Hence, any crisp net in ÿ induces a fuzzy net on ÿ. 

Theorem: 4.1.3 

 Every fuzzy sequence in ÿ is a fuzzy net in ÿ. 

Proof: 

 Let ý be a fuzzy sequence in ÿ. 

 Then ý is a function from ý × ÿ → (0,1] 
 That is, ý: ý × ÿ → (0,1] 
 It is clear that (ý, f) is an ordered set. 

 Hence, ý is a fuzzy net on ÿ. 

 Therefore, every fuzzy sequence is a fuzzy net. 

Note: 4.1.4 

 Converse is not true. 

 A fuzzy net on ÿ need not be a fuzzy sequence in ÿ. 

 

for example, 

 Let � = ÿ(ÿ) where ÿ = {1,2,3} 
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 Consider zero function ý: � × ÿ → [0,1] 
 It is clear that ý is a fuzzy net. 

 Since the directed set � b ý, ý is not a fuzzy sequence. 

 Hence, a fuzzy net need not be a fuzzy sequence. 

Theorem: 4.1.5 

 Let ý: � × ÿ → (0,1] be a fuzzy net. If for each � * �, there exists  þ * ÿ such 

that ý(�, þ) = 1 then ý induces a crisp net. 

Proof: 

 Let ý: � × ÿ → (0,1] be a fuzzy net. 

 Now we define a function Ą: � → ÿ as Ą(�) = þ if ý(�, þ) = 1. 

 Clearly Ą is a crisp net which is induced by the fuzzy net ý. 

Theorem: 4.1.6 

 Let ý: � × ÿ → (0,1] be a fuzzy net. If for each � * �, there exists unique þ * ÿ 

such that ý(�, þ) = 1 and ý(�, ÿ) = 0 for ÿ b þ, then ý is a crisp net. 

Proof: 

 Let ý: � × ÿ → (0,1] be a fuzzy net. 

 Define Ą: � → ÿ as ý(�) = þ where ý(�, þ) = 1. 
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 Clearly Ą is a crisp net. 

 Now the fuzzy net induced by Ą is given fuzzy net ý. ý and ý are the same. 

 Hence, ý is a crisp net. 

4.2 CONVERGENCE OF FUZZY NET 

 Let (ÿ, Ā) be a topological space and Ą: � → ÿ where Ą(�) = þ� be a net in ÿ. 

We say the net (þ�) converges to þ0 if for every neighbourhood ā of þ0, ÿ0 * � such that þ� * ā for all � g �0. 

Definition: 4.2.1 

 Let (ÿ, Ā) be a topological space. Let ý: � × ÿ → [0,1] be a fuzzy net. Let þ0 *ÿ. Let ÿ * (0,1]. The fuzzy net A is said to be converges to þ0 at level ÿ if  

  1. For each � * �, there exists atleast one þ in ÿ such that ý(�, þ) g ÿ 

  2. For each neighbourhood ā of þ0, there exists �0 * �, such that þ *ā ∀ � g �0 and ý(�, þ) g ÿ. 

Definition: 4.2.2 

 Let ÿ be a non empty set. Let � be a directed set. Let  þ0 * ÿ. Define           ý: � × ÿ → [0,1] as ý(�, þ0) = 1 and ý(�, þ) = 0 if þ b þ0. This is called constant                       

net and is denoted by ý�0. 

Theorem: 4.2.3 
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 Let (ÿ, Ā) be a topological space. The constant fuzzy net ý�0 converges to þ0 at 

level ÿ > 0. 

Proof: 

 Let ý�0: � × ÿ → [0,1] be defined as ý(�, þ) = 1 if þ = þ0 and 0 otherwise. 

 Let ā be a neighbourhood of þ0. Take any ÿ * (0,1]. Take any �0 * � 

 Now � g �0 and ý(�, þ) g ÿ ⇒ ý�0(�, þ) = 1 ⇒ þ = þ0 ⇒ þ * ā. 

 Therefore, for any neighbourhood ā, there exists �0 * � such that � g �0 and ý�0(�, þ) g ÿ. 

 Therefore ý�0 converges to þ0 

Definition: 4.2.4 

 Let (ÿ, Ā) be a topological space. Let ý be a fuzzy net in ÿ. ý is called an 

attractive fuzzy net if ý converges to every point of ÿ. 

Example: 4.2.5 

 ÿ = {ÿ, Ā, ā}, Ā = {Φ, {ÿ, Ā}, ÿ}, � = (ÿ(ÿ), ⊂) 

 Let ÿ(ÿ) = {ý0, ý1, ý2, ý3, ý4, ý5, ý6, ý7} where 

 ý0 = {Φ}, ý1 = {ÿ}, ý2 = {Ā}, ý3 = {ā}, ý4 = {ÿ, Ā}, ý5 = {ÿ, ā}   
 ý6 = {Ā, ā}, ý7 = ÿ  
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 Define ý: � × ÿ → [0,1] as ý(ý0, ā) = 14  , ý(ý1, ā) = 1 ,  
 ý(ý2, ÿ) = 14  , ý(ý3, ā) = 1 , ý(ý4, Ā) = 1 , ý(ý5, ā) = 1, 
 ý(ý6, Ā) = 1 , ý(ý7, ÿ) = 1. 

 We have seen that ý converges to ÿ, Ā ÿĀĂ ā. 

 Hence, ý is an attractive fuzzy net.  

Theorem: 4.2.6 

 Let (ÿ, Ā) be a topological space. The constant net ý� is an attractive net iff every 

non empty open set contains ÿ. 

Proof: 

 Let ý� be an attractive net and let ā be a non empty open set. 

 Take Ā * ā. Now ý� converges to Ā. 

 Hence, there exists �0 * � such that � g �0 and ý(�, þ) g ÿ ⇒ þ * ā 

 � g �0 and ý�(�, þ) = 1 implies þ * ā. 

 Now ý�(�, þ) = 1 implies þ = ÿ. 

 Hence, ÿ * ā. 
 Hence, every non empty open set contain ÿ. 

Conversely, suppose every non empty open set contain ÿ. 
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 Let Ā * ÿ 

 Let ā be a neighbourhood of Ā. 

 Take any �0 * � 

 Now � g �0 and ý�(�, þ) g ÿ implies  � g �0 and ý�(�, þ) = 1 implies þ = ÿ. 

 Hence, þ * ā 

 Therefore, for every neighbourhood ā of b there exists �0 * � such that � g �0 

and ý�(�, þ) g ÿ implies þ * ā. 

 Hence ý� converges to Ā. 

 Therefore, ý� converges to every point of ÿ. 

 Hence ý� is an attractive net. 

Definition: 4.2.7 

 Let ý: � × ÿ → [0,1] be a fuzzy net. Let �0 * � and ÿ * [0,1]. We define ā(�0, ÿ) = {þ 7  � g �0 and ý(þ, �)  g  ÿ}. ā(�0, ÿ) is called a tail of the fuzzy net ý. It is 

called the (�0, ÿ) tail of ý. 

Theorem: 4.2.8                                                                                                     

 Let ý be a fuzzy net in topological space ÿ. If ý converges to ÿ * ÿ at level ÿ 

then for every neighbourhood ā of a, there exists �0 * � such that ā contains ā(�0, ÿ) 

and ā(�0, ÿ) b Φ  

Proof: 
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 Let ý converges to ÿ at level ÿ then  

 1. For each � * �, there exists atleast one þ in ÿ such that ý(�, þ) g ÿ. 

 2. For each neighbourhood U of a, there exists �0 * � such that þ * ā for all   

     � g �0 and ý(�, þ) g ÿ. 

 Now consider the tail ā(�0, ÿ). 

 Since for each � * �, there exists atleast one þ in ÿ such that ý(�, þ) g ÿ, we 

have ā(�0, ÿ) b Φ. 

Claim: ā(�0, ÿ) ⊂ ā. 

 þ * ā(�0, ÿ) implies ý(�, þ) g ÿ for all � g �0. 

 Now � g �0 and ý(�, þ) g ÿ implies þ * ā. 

 Therefore ā(�0, ÿ)  ⊂ ā. 

 Hence, there exists �0 such that ā contains ā(�0, ÿ) and ā(�0, ÿ) b Φ. 

Theorem: 4.2.9                                                                                                         

 Let ý be a fuzzy net in ÿ such that for each � * �, there exists þ * ÿ with ý(�, þ) g  ÿ. If the every neighbourhood ā of a there exists �0 * � such that ā contains ā(�0, ÿ) and ā(�0, ÿ) b Φ then ý converges to ÿ. 

Proof: 

 Let ý: � × ÿ → [0,1] be a fuzzy net. It is given that 
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  1. For each � * �, there exists þ * ÿ such that ý(�, þ) g ÿ 

  2. Let U be a neighbourhood of a ,there exists �0 * �, such that  ā(�0, ÿ) ⊂ ā � g �0 and ý(�, þ) g ÿ implies þ *  ā(�0, ÿ) which implies þ *  ā. 

 Hence , ý converges to ÿ. 

Definition: 4.2.10 

 Let ý: � × ÿ → [0,1] be a fuzzy net. ý is called a s-fuzzy net if for each � * � 

there exists unique þ in ÿ where ý(�, þ) = 1. 

Definition: 4.2.11 

 Let ý: � × ÿ → [0,1] be a s-fuzzy net. Define Ą: � → ÿ as Ą(�) = þ if   ý(�, þ) = 1. The crisp net Ą is called the induced crisp net. 

Theorem: 4.2.12 

 Let ÿ be a topological space. Let ý be a s-fuzzy net and let Ą be the induced crisp 

net. If ý converges to ÿ, at level ÿ then Ą converges to ÿ. 

Proof: 

 Let ý be a s-fuzzy net. ý: � × ÿ → [0,1] 
 Ą: � → ÿ is defined as Ą(�) = þ where ý(�, þ) = 1. 

 Now ý is converges to ÿ. 

 We claim that Ą converges to ÿ. 
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 Let ā be a neighbourhood of ÿ. 

 Since ý converges to a, there exists �0 * � such that � g �0 and ý(�, þ) g ÿ 

implies þ * ā. 

 Take � g �0 consider Ą(�) 

 ý(�, Ą(�)) = 1 and hence ý(�, Ą(�)) g ÿ . 

 Therefore Ą(�) * ā. 

 Hence for every neighbourhood of a, there exists �0 * � such that Ą(�) * ā for 

all � g �0. 

 Therefore the crisp net ý converges to ÿ. 

Theorem: 4.2.13 

 Every crisp net is a s-fuzzy net. 

Proof: 

 Let Ą be a crisp net in ÿ. 
 Then Ą: � → ÿ is a function. 

 Consider Ą as a fuzzy net. 

 It is ý: � × ÿ → (0,1] defined as ý(�, þ) = 1 if þ = Ą(�) and 0 otherwise. 

 Clearly for each � * ÿ there exists unique þ = Ą(�) such that ý(�, þ) = 1. 

 Hence ý is a s-fuzzy net. 
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Result: 4.2.14 

 If a s-fuzzy net takes only two values 0 and 1 then it is a crisp net. 

Result: 4.2.15 

 Let f be a crisp net. Then it can be considered as a fuzzy net. Let it be A. Then A 

is a s-fuzzy net. Hence A induces a crisp net. The crisp net induced by the s-fuzzy net A 

is the given crisp net f. 

 

 



CONCLUSION 

In this project I have discuss the concept of fuzzy filters, fuzzy generalized filters, fuzzy 

nets and fuzzy generalized nets. These tools will be useful to study many topological 

properties. I have also given some concepts in various generalizations also various 

convergence of fuzzy filter and fuzzy net can be introduced and properties can be studied. 
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CHAPTER 1 

        PRELIMINARIES 

Definition 1.1: 

 A right near-ring is a set N together with two binary operations 8+9 and 8.9 

such that  

 1. (N, +) is a group. 

 2. (N, ∙) is a semi group. 

 3. For all x,y,z in N, (x+y)z = xz + yz for each x,y,z in N and x∙0 = 0 for 

every x in N. 

Notation 1.2: 

 Near-ring are usually denoted by N,N1, N1 or similar symbols. We abbereviate 

(N,+, ∙) by N. Multiplication will in most cases be indicated by juxtapositions so we 

writen1n2. In dealing with general near-rings the neutral element of (N,+) will be 

denoted by 0. |N| will be the order of the near-ring N. The term <near- ring= will often 

be abbreviated by <nr=. The class of all near-ring will be denoted by ŋ . 

Definition 1.3: 

A near-ring which is not a ring is called a non-ring. 
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Definition 1.4: 

If |N| < ∞ we say the near-ring is finite if |N| = ∞ we call N to be an Infinite near-

ring. 

Remark 1.5: 

Every ring is a near-ring. 

Definition 1.6: 

A subgroup M of a near-ring N with N. M ⊆ N is called a sub near-ring. 

Example 1.7: 

Let (z,+,∙) be a near-ring. (2z,+,∙) is a sub near-ring. 

Definition 1.8: 

Let N be a near-ring. If (N,+) is abelian, we call N an abelian near-ring. 

Definition 1.9: 

Let N be a near-ring. If (N,∙) is commutative we call N itself a commutative near-

ring. 

Definition 1.10: 

An element a in N is said to be distributive, if a(b+c) = ab + ac for all b and c in N. 

Definition 1.11: 

Let (P,+) be a group with 0 and let N be a near-ring. Let µ: N × P → P; (P,µ) is called 

an N-group if for all p * P and for all n, n1 * N we have (n + n1)p = np +n1p and                          

(n n1)p = n( n1)p. Np stands for N-groups. 
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Definition 1.12: 

A subgroup S of  Np with NS ⊂ S is a N-subgroup of P. 

Definition 1.13: 

Let N be a near-ring and P be a N-group. A normal subgroup I of (N,+) is called an 

ideal of N if  

 (i) IN ⊆ I 

 (ii) For all n, n1 * N and for all i * I, n( n1+ i) - nn1 * I . 

Definition 1.14: 

N is called a near-field if it contains an identity and each non-zero element has a 

multiplicative inverse. 

Definition 1.15: 

An element n * N is called nilpotent if nk = 0 for some positive integer k. 

Definition 1.16: 

An element e in N is called idempotent, if e2= e. 

Definition 1.17: 

An idempotent a in N is called a central if ax = xa for all in N. 

Definition 1.18: 

N is integral if N has no non-zero zero divisors. 
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Definition 1.19: 

N0 = {n* N/ n0=0} is called the zero symmetric part of N. 

Definition 1.20: 

Nc = {n* N/ n0=n} = {n* N / nn9 = n, ∀ n9* N} is called the constant part of N. 

Definition 1.21: 

If N = N0, then N is called constant near-ring. 

Note 1.22: 

(i)      η0 stands for the class of all zero symmetric near-rings. 

(ii)    ηc stands for the class of all constant near-rings. 

Definition 1.23: 

N is regular if for every x in N there is some y in N such that x=xyz. 

Definition 1.24: 

A map f: N → N is called a mate function if for all x in N, x=xf(x)x. f(x) is called a 

mate of x. 

Note 1.25: 

N∗ denotes the set of all non-zero elements of N, (i.e.) N∗=N-{0}. 

Definition 1.26: 

The zero symmetric part of N is {n * N/ n0=0} and is denoted by N0. N is called zero 

symmetric if N =N0. 
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Definition 1.27: 

N is subdirectly irreducible if and only if the intersection of any family of non-zero 

ideals is again non-zero. 

Definition 1.28: 

N has IFP (Insertion of Factors property) if for x,y * N, xy=0 ⇒xny=0 for all n* 

N. 

Definition 1.29: 

N is said to be Property �� if for all ideals I of N, xy * I ⇒ yx * I. 

Definition 1.30: 

N has Strong IFP if for all ideals I of N ab * I ⇒ anb * I for all a,b,n * N. 

Note 1.31: 

Every simple near-ring is subdirectly irreducible. 

Theorem 1.32: 

The following are equivalent for a zero symmetric near-ring. 

1) N is a near-field. 

2) Nd ≠ {0} and for all n * N-{0}, Nn = N 

Definition 1.33: 

N is called Boolean if and only if a2= a for all a * N. 
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Definition 1.34: 

N is called a nil near-ring if every element of N is nilpotent. 

Definition 1.35: 

N is said to be subcommutative if Na = aN for all a * N. 

Definition 1.36: 

N is said a�� near-ring (��′  near-ring) if there exists a positive integer k such that xkN = xNx. 

Definition 1.37: 

Clearly {0} and N are ideals of N. These are called trivial ideals. 

Definition 1.38: 

N is simple if and only if N has no non-trivial ideals. 

Definition 1.39: 

N is called weak commutative if abc = acb ∀ a,b,c * N. 

Definition 1.40: 

If N is a strong �1 near-ring then N is zero symmetric. 

Definition 1.41: 

N is a strong �1 near-ring if and only if axa = xa for all a,x * N 
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CHAPTER 2: ��- NEAR RING AND ITS SUBSET 

Section 2.1: ��- NEAR RING 

Definition 2.1.1: 

N is called an ��- NEAR RING if for every a * N, there exists x  * N∗ such that     

axa = xa. 

Theorem 2.1.2: 

Let N be an S1- near ring  

 1) If ax = 0 then xa = 0 

 2) If ax * E then xa * E 

 3) If the right cancellation law is valid in N then xa * E implies ax * E, for all 

a * N and for some x * N∗ 

Proof: 

Let a * N, 

Since N is an S1- near ring there exists x * N∗ such that axa = xa ⇢(1) 

 1) If ax = 0 then from (1) we get, xa = 0a = 0. 

Thus xa = 0 

 2) If ax * E then (xa)2 = ax ⇢(2) 

Now (xa)2 = (xa)xa = (axa)xa (by(1)) 

       = (ax)2a = (axa) (by(2)) 
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       = axa = xa. That is (xa)2 = xa 

3) Now (ax)2a = (ax)a. 

Since the right cancellation law is valid in N, (ax)2 = ax 

Thus ax * E. 

Theorem 2.1.3: 

Let N be an S1- near ring without non-zero zero divisors. If N is commutative then N 

is Boolean. 

Proof: 

Let a * N 

Since N is an S1- near ring, there exists x * N∗ such that axa = xa. 

Since N is commutative, a(ax) = ax ⇒ (a2-a)x = 0 

Since N has no non-zero zero divisors, a2-a = 0. 

Consequently N is Boolean. 

Theorem 2.1.4: 

Let N be a nil near-ring, then N is an S1- near ring if and only if N is zero symmetric. 

Proof: 

For the only if part, 

We take a * N. 

Since N is an S1- near ring, there exists x * N∗ such that axa = xa  ⇢ (1) 
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We shall prove that axka = xka  ⇢ (2) for all positive integers k. 

We use induction on k, eqn (1) demands (2) is true for k =1 

Assume that the result is true for k = s-1. 

If k= s then axsa = axs−1(xa) = axs−1(axa) (by(1)) = (axs−1a)xa =(xs−1a)xa = xs−1(axa) = xs−1(xa) = xsa. 

Thus axka = xka for all positive integers k. 

Since axta = xta, a0a = 0a 

⇒ a0 = 0. 

Thus N is zero symmetric. 

For the if part, 

Let a * N 

Since N is nil, there exists a positive integer k > 1 such that ak = 0 

N is zero symmetric. This implies xa = 0, where x = ak−1. 

Therefore axa = a(xa) = a0 = 0 

[7N=N0] = xa. 

Thus N is an S1- near ring. 

Theorem 2.1.5:                                                                                 

Let N be a Boolean near-ring. Each of the following statements implies that N is an S1- near ring. 
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 (i) N is zero symmetric 

 (ii) N is an IFP near-ring with identity 

 (iii) Na = aNa for all a* N (N is a P1′ near-ring) 

 (iv) N is subcommutative 

 (v) N is distributive. 

Proof: 

(i) Let N be a zero symmetric near-ring. 

Let a * N 

If a ≠ 0, we take x = a. 

Then axa = a2a = aa [since N is Boolean] = xa. 

That is axa = xa. 

If a = 0 then for any x * N∗, axa = 0 = xa [since N=N0]. 

Consequently N is an S1- near ring. 

(ii)  Let N be an IFP near-ring with identity 819 and let a * N. Since N is Boolean, a2 = a ⇒ a2- a = 0 ⇒ (a-1)a = 0. 

Since N has IFP, (a-1)xa = 0 for all x * N. 

In particular (a-1)xa = 0 for any x * N∗ ⇒ axa-xa = 0 ⇒ axa = xa. 

Thus N is an S1- near ring. 

(iii) Let a * N 
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Since Na = aNa, for any x * N, there exists y  * N such that xa = aya. 

Therefore axa = a(xa) = a(aya) = a2ya = aya 

[Since N is Boolean] = xa and (iii) follows. 

(iv) Let a * N 

Since N is subcommutative, Na = aN. 

Therefore for any x * N, there exists y * N such that xa = ay. 

Therefore axa = a(xa) = a(ay) = a2y = ay [since N is Boolean] = xa. 

That is axa = xa for all x * N. 

In particular axa = xa for any x * N∗. 

Thus N is an S1- near ring. 

(v) Let N be a distributive near-ring. Since every distributive near-ring is zero 

symmetric, the result follows from (i). 

Section 2.2: THE SUBSET OF �� NEAR-RING ���(a), a * N 

Definition 2.2.1: 

 N is called an ��- near ring if for every a * N, there exists x * N∗ such that 

axa = xa. 

Notation 2.2.2: 

For any a * N, we can denote {x * N∗/axa = xa} by NS1(a). 
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Remark 2.2.3: 

It follows that N is an ��- near ring if and only if NS1(a)≠ 0 for all a * N. 

Example 2.2.4: 

Let (N,+,⋅) be the near-ring where (N,+) is the klein9s four group N = {0,a,b,c} and 

the semigroup operation 8⋅9 is defined as follows 

 

 

 

 

   

Clearly this is an S1- near ring. We observe that N(x) ≠ ∅ for all x *N. 

(NS1(0) = {a,b,c}, NSa(a) = {a}, NSb(b) = {b}, NSc(c) = {c} 

Theorem 2.2.5: 

Let N be an S1- near ring. If a * NS1(a) for all a *N then N is regular. 

Proof: 

Let a *N. 

By hypothesis, a = xa for some x * NS1(a). 

Since, x* NS1(a), axa = xa. 

Therefore a = axa. 

⋅ 0 a b c 

0 0 0 0 0 

a 0 a a A 

b 0 b b B 

c 0 c c C 
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Thus N is regular. 

Remark 2.2.6: 

Converse of theorem 2.2.5 is not valid. Consider the near-ring (N,+,⋅) where (N,+) is 

the group of integers modulo 6 and 8⋅9 is defined as follows. 

⋅ 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 0 1 2 3 4 5 

2 0 2 4 0 2 4 

3 0 3 0 3 0 3 

4 0 4 2 0 4 2 

5 0 5 4 3 2 1 

 

This S1- near ring is regular. But 2 + NS1(2) and 5 + NS1(5). 

Lemma 2.2.7: 

Let N be an S1- near ring. Then NS1(a) has no non-zero zero divisors if and only if NS1(a) is a multiplicative system. 

Proof: 

Since N is a S1- near ring, NS1(a) ≠ ∅ for all a * N 

Now, let x,y  * NS1(a). Then x, y * N∗ 

Then axa = xa, aya = ya 

Then, it follows a(xy)a = ax(ya) = ax(aya) = (axa)ya = (xa)ya = x(aya) = x(ya) = (xy)a 
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Further, NS1(a) has no non-zero zero divisors, xy ≠ 0 

Consequently, xy * NS1(a) 

Thus, NS1(a) is a multiplicative system. 

Conversely, let x,y * NS1(a) 

Since, NS1(a) is a multiplicative system, xy * NS1(a) 

6 NS1(a) ⊂ N∗, it follows that xy ≠ 0 

Hence, NS1(a) has no non-zero divisor. 

Theorem 2.2.8: 

N is zero symmetric if and only if N∗ = NS1(0) 

Proof: 

Let x * N∗ 

Since N = N0 

x0 = 0 ⇒ 0x0 = 0 = x0 

⇒ x * NS1(0) 

Clearly,N∗ = NS1(0) 

Conversely,N∗ = NS1(0) 

⇒ 0x0 = x0 for all x * N∗ 

⇒ x0 = 0 6 N is zero symmetric. 
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CHAPTER 3 : STRONG ��-NEAR RINGS 

Definition 3.3.1: 

A near-ring N is said to be STRONG ��-NEAR RING if N∗ = NS1(a) for all a*N. 

Example 3.3.2: 

 Let (N,+) be the symmetric group of degree 3 with N={0,a,b,c,x,y} and we define 8⋅9 
as follows 

 

 

 

 

 

 

This near-ring is a strong S1-near ring. It is worthy nothing that it is not regular. 

Theorem 3.3.3: 

N is a strong S1-near ring if and only if axa = xa for all a * N and for all x* N∗ 

Proof: 

By defn, N∗ = NS1(a) 

⋅ 0 A b c x y 

0 0 0 0 0 0 0 

a 0 A b c 0 0 

b 0 A b c 0 0 

c 0 A b c 0 0 

x 0 0 0 0 0 0 

y 0 0 0 0 0 0 
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axa = xa 

Converse part, axa = xa 

By theorem 2.2.5, Let a * N 

By hypothesis, a * NS1(a) 

axa = xa ⇒ a = xa for all x * NS1(a) 

Since, x * NS1(a) 

axa = xa ⇒ axa = a (7xa = a) 

N is regular. 

⇒ N is zero symmetric (N = N0) 

⇔ N∗ = NS1(a) 

6 N is Strong S1-near ring. 

Corollary 3.3.4: 

Every Strong S1-near ring is an S1-near ring. 

Proof: 

By above theorem. 

Theorem 3.3.5: 

If N is a Strong S1-near ring then N is zero symmetric. 
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Proof: 

Since N is a Strong S1-near ring 

From theorem 3.3.3 

axa = xa for all a * N and for all x * N∗ 

Putting a = 0, 

0x0 = x0 for all x * N∗ 

⇒ x0 = 0 for all x * N∗ 

By defn, zero symmetric of N is {x * N / x0=0} 

6 N is zero symmetric. 

We furnish below the characterization of Strong S1-near rings. 

Theorem 3.3.6: 

N is Strong S1-near ring if and only if axa = xa for all a,x * N. 

Proof: 

If N is a Strong S1-near ring 

Then from theorem 3.3.5 

N is zero symmetric 

⇒ a0 = 0 for all a * N 

⇒ a0a = 0 = 0a for a * N 

axa = xa 
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⇒ 0a0 = 0a for all a * N 

Theorem 3.3.7: 

Let N be a Strong S1-near ring. Then 

(i) ab and ba * E for all a,b * N. 

(ii) N has (*IFP). 

(iii) N has Strong IFP. 

(iv) N has Property (P4). 

Proof: 

Let N be a Strong S1-near ring. Then it follows from Theorem 3.3.8 that axa = xa for 

all a,x * N   ⇢  (1) 

(i) Let a,b * N. Now (1) implies that ab = bab = (ba)b = (aba)b = (ab)2 

⇒ ab * E. 

Again (1) implies that ba = aba = (ab)a = (bab)a = (ba)2 

⇒ ba * E. 

(ii) Suppose xy = 0 for x,y * N ⇢  (2) 

Now, yx = xyx (by 1) 

⇒ (xy)x = 0x = 0 

Also, for every n * N,  xny = x(ny) = x(yny) = (xy)ny = 0ny = 0 

That is xny = 0 
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6 N has (*IFP) 

(iii) Let I be an ideal of N 

Suppose ab * I for a,b * N 

By theorem 3.3.5, 

N is zero symmetric and 

6 NI ⊂ I   ⇢  (3) and IN ⊂ I   ⇢  (4) 

Now, for any n* N, anb = (an)b = (nan)b = na(nb) = na(bnb) 

= n(ab)nb * NIN = (NI)N ⊂ IN ⊂ I 

That is anb * I 

6 N has Strong IFP. 

(iv) Let I be an ideal of N 

Suppose xy * I for x,y * N 

By (iii), IN ⊂ I and NI ⊂ I 

Now, (yx)2 = yxyx = y(xy)x * NIN = (NI)N ⊂ IN ⊂ I 

(yx)2 * I 

From (i) we get yx = (yx)2 * I 

(i.e) yx * I 

Consequently, N has (P4) 
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Theorem 3.3.8: 

Let N be a Boolean near-ring. Each of the following statements implies that N is a 

Strong S1-near ring, 

1) N is commutative 

2) N is an IFP near-ring with identity 

3) N is a P1′ near-ring 

4) N is sub commutative 

Proof: 

1) Let N be a commutative near-ring and let a,b * N 

Now aba = a(ba) 

    = a(ab) (7 N is commutative) 

    = a2b 

   = ab (since N is Boolean) 

    = ba 

2) Let N be an IFP near-ring with identity 819 and let a * N. 

Since N is Boolean, a2 = a ⇒ a2- a = 0 

⇒ (a-1)a = 0 

Since N has IFP, (a-1)xa = 0 for all  x * N, 

⇒ axa-xa = 0 ⇒ axa = xa. 
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Thus N is an Strong S1-near ring. 

3) Let a * N, 

Since Na = aNa, for any x * N, there exists y * N such  that xa = aya 

Therefore, axa = a(xa) 

  = a(aya) 

  = a2ya 

  = aya (N is Boolean) 

  = xa 

4) Let a * N, 

Since Na = aN, for any x * N, there exists y * N such  that xa = ay 

Therefore, axa = a(xa) 

  = a(ay) 

  = a2y 

  = ay (N is Boolean) 

  = xa 

⇒ axa = xa. 

Hence N is an Strong S1-near ring. 
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Theorem 3.3.9: 

Let N be a strong S1-near ring. If N has no non-zero zero divisors then we have the 

following: 

1) N is simple 

2) N is sub directly irreducible 

3) N is distributive 

4) N is a near-field 

5) N is Boolean 

6) N is regular 

Proof: 

1) Suppose N has a non-trivial ideal I  

Let i be a non-zero element of I. Now let y * N. Since N is a Strong S1-near ring by 

theorem 3.3.8, iyi = yi ⇒ (iy-i)I = 0 

Since N has no non-zero zero divisor, iy-y = 0 

⇒ iy = y. That is y = iy * IN ⊂ I [ I is an ideal of N] 

⇒ y * I. Therefore N ⊂ I and hence I = N. 

Thus N is simple. 

2) Follows from (1) and from theorem 1.31 

3) Let x,y * N. 
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Clearly, 0 * Nd. Let b * N∗. 

Since N is strong S1, b(x+y)b = (x+y)b = xb+yb = bxy + byb = (bx+by)b 

That is b(x+y)b = (bx+by)b ⇒ (b(x+y)-(bx+by))b = 0 

Since N has no non-zero zero divisors, b(x+y)-(bx+by) = 0 

⇒ b(x+y) = bx+by. Consequently N is distributive. 

4) Let n * N. 

Since ana = na for all a * N∗, (an-a)a = 0 

Since N has no non-zero zero divisors, an-n = 0 

That is na ⊂ an * Nn. 

Consequently N = Nn ⇒ N is a near-field (by (iii) and theorem 1.32) 

5) Let a * N∗ 

Since aaa = aa, (a2-a)a = 0. 

Since N has no non-zero zero divisors, a2-a = 0 

⇒ a2 = a. 

Consequently N is Boolean. 

6) From (5) we get, N is Boolean and we know that every Boolean near-ring is 

Regular. 

Theorem 3.3.10: 

Let N be a strong S1near-ring. Then N is rregular if and only if N is Boolean. 
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Proof: 

For the only if part, 

Let a * N. 

Since N is regular, there exists x * N such that axa = a. 

Therefore a = xa. Now a2 = aa = a(xa) = a. 

That is a2 = a. Thus N is Boolean. 

The proof of if part is obvious. 

Theorem 3.3.11: 

Let N be a strong S1near-ring. Then the following are true: 

1) Every right identity of N is a left identity of N. 

2) xy is a left identity if and only if x and y are left identities for all x,y * N. 

3) If (0 8 xy) = {0} then xy is the identity for all x,y * N. 

4) (0 8 xy) = (0 8 yx) for all x,y * N. 

Proof: 

Since N is a Strong S1near-ring, aba = ba for all a,b * N. 

1) If e is the right identity of N then xe = x for all x * N. 

Now xe = exe = e(xe) = ex ⇒ x = ex 

That is ex = x for all x * N. 

Thus e is a left identity of N. 
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2) Let x,y * N 

Assume that xy is a left identity 

Let n * N. 

Therefore, xyn = n ⇒ y(xyn) = yn ⇒ (yxy)n = yn 

⇒ (xy)n = yn ⇒ n = yn. 

That is yn = n 

Therefore xn = n and yn = n for all n * N. 

Now (xy)n = x(yn) = xn = n. 

That is (xy)n = n for all n * N. 

Then xy is a left identity. 

3) Let z * N 

Now (z-zxy)xy = zxy-z(xy)2 

   = zxy – zxy [7 xy * E by theorem 3.3.11] 

   = 0 

Therefore z – zxy * (0 8 xy). 

Since (0 8 xy) = {0}, z – zxy = 0 

⇒ z – zxy that is zxy – z. Thus xy is a right identity of N. 

Now (1) implies that, it is a left identity as well and (3) as follows. 

4) Let n * (0 8 xy) ⇒ nxy = 0 
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Now nyx = n(yx) = n(xyx) 

     = (nxy)x = 0x = 0. 

That is nyx = 0  ⇒n * (0 8 yx) 

Therefore (0 8 xy) ⊂ (0 8 yx) ⇢ (1) 

Similarly let n * (0 8 yx) ⇒ nyx = 0. 

Now nxy = n(xy) = n(yxy) 

= (nyx)y = 0y = 0. 

That is nxy = 0 ⇒ n * (0 8 xy) 

Therefore (0 8 yx) ⊂ (0 8 xy) ⇢ (2) 

From (1) and (2) we get, 

(0 8 xy) = (0 8 yx) 

Theorem 3.3.12: 

Any homomorphic image of a Strong S1near-ring is a Strong S1near-ring. 

Proof: 

Let N be a strong S1near-ring and let f : N ⟶ N′ be a homomorphism. 

Since N is strong S1, by theorem 3.3.8 

xyx = yx for all x,y * N 

Let x′,y′ * N′ 
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Then there exists x,y * N such that f(x) = x′ and f(y) = y′ 
Clearly then, x′y′x′ = y′x′ and the desired result follows. 

Theorem 3.3.13: 

Every Strong S1 near-ring is isomorphic to a subdirect product of subdirectly 

irreducible Strong S1 near-rings. 

Proof: 

By defn (Every near-ring is isomorphic to a subdirect product of subdirectly 

irreducible near-rings.) 

N is isomorphic to a subdirect product of subdirectly irreducible near-rings Ni9s say 

and each Ni is a homomorphic image of N under projection map ∏i. The desired 

result now follows from Theorem 3.3.10. 

Theorem 3.3.14: 

Let N be a Strong S1 near-ring with mate function f. Then N is subdirectly irreducible 

if and only if N is simple. 

Proof: 

Since N is Strong S1, by theorem 3.3.5 N is zero symmetric 

    Suppose N is subdirectly irreducible. First we prove that for any non-zero 

idempotent e in N, (0 8 e) = {0}. Let D = {e * E – {0}/(0 8 e) ≠ {0}} 

Suppose D ≠ ∅. 

Let B = ⋂ (0 8 e)�*�  
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Now, theorem 3.3.9 demands that N has (*IFP) 

From theorem 3.3.6 and R(4) we see that (0 8 e) is an ideal. 

Since N is subdirectly irreducible. R(1) shows that B  ≠ {0} 

Let a * B-{0} ⇒ ae = 0 for all e * D ⇢ (1) 

Now f(a)ae = f(a)0 = 0 [since N = N0 ] ⇒ ef(a)a = 0 ⇒ e * (0 8 f(a)a) 

⇒ f(a)a * D ⇒ af(a)a = 0 [by (1)] ⇒ a = 0 which is a contradiction to a ≠ 0. 

Consequently, for any non-zero idempotent e in N, (08e) = {0}. 

Since N is Strong S1 near-ring from Theorem 3.3.8 we get exe = xe 

⇒ (ex-x)e = 0 ⇒ ex-x * (08e) = {0} 

⇒ ex = x for all x* N, (i.e) x = ex * Nx ⇒ N = Nx for all x* N. 

Thus N is Simple. 

Converse is obvious by proposition 1.38. 

We conclude our discussion with the following structure theorem for Strong S1 near-

rings. 

Theorem 3.3.15: 

Every Strong S1 near-ring with a mate function is isomorphic to a subdirect product of 

simple near-rings. 

Proof: 

Collecting the pieces proved in theorem 3.3.13 and 3.3.14 we get the desired results. 
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CHAPTER 4 : �� NEAR-RING 

SECTION 4.1: �� NEAR-RING 

Definition 4.1.1: 

N is a B1 near-ring if for every a * N, there exists x * N∗ such that Nax = Nxa. 

Example 4.1.2: 

Every constant near-ring is a B1 near-ring. 

Theorem 4.1.3: 

Let N be a near-ring. Each of the following statements implies that N is a B1 near-

ring. 

(i) N is a zero symmetric nil near-ring. 

(ii) N is weak commutative 

(iii) N has identity 8I9 

(iv) N is a near-field. 

Proof: 

(i) Let a * N. 

If a = 0, then for any x * N∗, Nax = Nxa = N0 = {0}. 

If a * N∗, since N is nil, there exists a positive integer k such that ak = 0. 

Put x = ak−1 ≠ 0. 
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Now Nax = Naak−1 = Nak = Nak−1a ⇒ Nxa = N0 ={0}. 

Thus N is a B1 near-ring. 

(ii) Let a * N. 

For any x * N∗, y  * Nax 

⇒ y = nax, where n * N. 

Since N is weak commutative, y = nxa * Nxa. 

Therefore, Nax ⊂ Nxa. 

Similarly, Nxa ⊂ Nax and hence N is a B1 near-ring. 

(iii) Follows by taking x = 1 in the definition 4.1.1 

(iv) Follows from (iii) 

Theorem 4.1.4: 

Let N be a B1 near-ring. If N is a Strong S1 near-ring without non-zero zero divisors 

then the following are true. 

(i) Every non-zero N-subgroup of N is an B1 near-ring. 

(ii) Every non-zero ideal of N is an B1 near-ring. 

Proof: 

Since N is a Strong S1 near-ring, 

N is zero symmetric and aba = ba for all a,b * N  ⇢ (1) 

(i) Let M be an N-subgroup of N and let m * M. 
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Then To prove M is a B1 near-ring. 

If m = 0 then for any x * N∗, Nmx = N0 = {0} [since N is zero symmetric] = Nxm. 

If m ≠ 0  

Since N is a B1 near-ring, there exists y * N∗ such that Nmy = Nym  ⇢ (2) 

Let n = ym 

It follows that n * M∗. 

Now, Mmn = Mn(ym)  

                    ⊂ Nm(ym) 

                    = (Nmy)m 

                    = N(ym)m [by (2)] 

                    = N(mym)m [by (1)] 

                    = Nm(ym)m ⊂ M(ym)m = Mnm. 

That is Mmn ⊂ Mnm  ⇢ (3) 

In a similar fashion we get Mnm ⊂ Mmn  ⇢ (4) 

From (3) and (4) we get, 

Mmn = Mnm. 

Consequently, M is a B1 near-ring. 

(ii) Since N is zero symmetric, 
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It demands that every ideal of N is an N-subgroup of N and now (ii) follows from (i). 

Theorem 4.1.5: 

Let N be a B1 near-ring. Then for every a * N, there exists x * N∗ such that the 

following are true. 

(i) There exists n * N such that axa = nax. 

(ii) Nax ⊂ Na ∩ Nx 

(iii) If N is Boolean then Naxa = Nxa. 

(iv) If N is a Strong S1 near-ring then there exists n * N such that xa = nax. 

Proof: 

Let a * N. 

Since N is a B1 near-ring, there exists x * N∗ such that Nax = Nxa  ⇢ (1). 

(i) Since axa * Nxa, 

By using (1) we get, 

axa = nax for some n * N and (i) follows. 

(ii) From (1) we get, 

Nax = Nxa ⊂ Na. 

Obviously Nax ⊂ Nx. 

Therefore, Nax ⊂ Na ∩ Nx 

(iii) When N is Boolean, 
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Nxa = Nxa2= (Nxa)a = (Nax)a [by(1)] 

and (iii) follows. 

(iv) Since N is a Strong S1 near-ring, the result follows from (i). 

SECTION 4.2: STRONG �� NEAR-RINGS 

Definition 4.2.1: 

We say that N is a Strong ��near-ring if Nab = Nba for all a,b * N. 

Example 4.2.2: 

Every commutative near-ring is a strong B1 near-ring. 

Theorem 4.2.3: 

Every Strong B1 near-ring is a B1 near-ring. 

Proof: 

Straight forward. 

Remark 4.2.4: 

Converse of theorem 4.2.3 is not valid.  

Remark 4.2.5: 

It is obvious that the property of N being Strong B1 is preserved under near-ring 

homomorphisms. 
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Theorem 4.2.6: 

Every Strong B1 near-ring is isomorphic to a subdirect product of subdirectly 

irreducible strong B1 near-rings. 

Proof: 

By theorem 1.62, p.26 of Pilz 

[N is isomorphic to a subdirect product of subdirectly irreducible near-rings Ni′s  say, 

and each Ni is a homomorphic image of N under the usual projection map ∏ i] 
By remark 4.2.5, Every Strong B1 near-ring is isomorphic to a subdirect product of 

subdirectly irreducible Strong B1 near-ring. 

Lemma 4.2.7: 

If N is a Strong B1 near-ring if and only if for all a,b,c * N, there exists n * N such 

that abc = ncb. 

Proof: 

<Only if= part, 

Let a,b,c * N 

Now abc * Nbc 

Since N is Strong B1 near-ring, Nbc = Ncb. 

Therefore, abc * Ncb and this implies that abc = ncb for some n * N. 

<If= part, 

Let a,b,c * N 
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Now abc * Nbc. 

From our assumption, there exists n * N such that abc = ncb * Ncb. 

Therefore, Nbc ⊂ Ncb. 

In a similar fashion we get,9 

Ncb ⊂ Nbc. 

Thus N is a strong B1 near-ring. 

Theorem 4.2.8: 

Let N be a Strong B1 near-ring. If N is regular then we have the following: 

(i) For every a * N, there exists x * N such that a = a2x. 

(ii) N has no non-zero nilpotent elements. 

(iii) Any two principal N-subgroup of N commute with each other. 

(iv) N is a P1 near-ring 

(v) N is left bipotent. 

Proof: 

Since N is regular, For every a * N, there exists x * N such that a = axa  ⇢ (1) 

(i) Since N is a strong B1 near-ring, lemma 4.2.7 gurantees that there exists n * N 

such that axa = nax  ⇢ (2). 

From (1) and (2) we get 

a = nax  ⇢ (3). 
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Now na = n(axa) [by (1)] 

              = (nax)a 

              = aa [by (3)] 

              = a2. 

That is a2 = na  ⇢ (4). 

Using (4) in (3) we get, 

a = a2x. 

(ii) Let a * N. 

Suppose a2= 0. 

Now, (i) demands that there exists x * N such that a = a2x and  

Therefore a = 0. 

Now R(1) guarantees that N has no non-zero nilpotent elements. 

(iii) First we show that NaN = Na for all a * N. 

Let y * NaN. 

Then y = nan′ for some n,n′ * N  ⇢ (5). 

Now lemma 4.2.7 demands that nan′ = zn′a for some z * N  ⇢ (6). 

Combining (5) and (6) we get, 

y = zn′a = (zn′)a * Na. 

Therefore NaN ⊂ Na  ⇢ (7). 
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Also from (1) we get, 

Na = Naxa = Na(xa) ⊂ NaN. 

That is Na ⊂ NaN  ⇢ (8). 

From (7) and (8) we get, 

NaN = Na  ⇢ (9). 

Let b,c * N. 

Now NbNc = (NbN)c = (Nb)c [by (9)] 

= Nbc = Ncb [ since N is a strong B1 near-ring] 

= (Nc)b = (NcN)b [ by (9)] = NcNb. 

That is NbNc = NcNb and (iii) as follows. 

(iv) For any a * N, 

Let y * aN. 

 

Then there exists z * N such that y = az = (axa)z [by (1)] 

= a(xaz). 

That is y = a(xaz)  ⇢ (10). 

Now lemma 4.2.7 demands that there exists n * N such that xaz = nza  ⇢ (11). 

From (10) and (11) we get, 

y = a(nz)a * aNa. 
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Therefore aN ⊂ aNa  ⇢ (12). 

Obviously aNa ⊂ aN  ⇢ (13). 

From (12) and (13) we get, 

aNa = aN. 

Thus N is a P1 near-ring. 

(v) From (1), we get 

Na = Naxa = (Nax)a = (Nxa)a  [Since N is a strong B1 near-ring] 

= Nxa2 ⊂ Na2 [since Nx ⊂ N]. 

Therefore Na ⊂ Na2 

Consequently, Na = Na2. 

Thus N is left bipotent. 

Corollary 4.2.9: 

Let N be a zero symmetric strong B1 near-ring. If N is regular then N is the subdirect 

product of integral near-rings. 

Proof: 

Let N be a strong B1 near-ring. 

Since N is regular. Theorem 4.2.8 (ii) guarantees that, N has non-zero nilpotent 

elements. 

As N is zero symmetric, the desired result now follows from R(3). 
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Theorem 4.2.10: 

Let N be a strong B1 near-ring. If N is Boolean then the following are true. 

(i) NaNb = Nab for all a,b * N. 

(ii) All principal N-subgroups of N commute with one another. 

(iii) Every ideal of N is a strong B1 near-ring 

(iv) Every N-subgroup of N is a strong B1 near-ring. 

(v) Every N-subgroup of N is an invariant N-subgroup of N. 

Proof: 

Since N is a strong B1 near-ring, Nab = Nba  ⇢ (1) 

(i) Let a,b * N. 

Since N is Boolean, a = a2 * aN. 

Thus we have a * aN 

⇒ Na ⊂ NaN ⇒ Nab ⊂ NaNb. 

For the reverse inclusion y * NaNb 

⇒ y = nan′b for some n,n′ * N  ⇢ (2). 

Since N is a strong B1 near-ring, 

By using lemma 4.2.7, we get 

nan′ = zn′a where z * N. 

Therefore from (2) we get, 
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y = zn′ab = (zn′)ab * Nab. 

The desired now follows. 

(ii) Let a,b * N. 

Now NaNb = Nab [ by (i)] 

= Nba [ by (1)] = NbNa [ by (i)] and (ii) follows. 

(iii) Let I be any ideal of N. 

Let a,b * I. 

Now Iab = Ia2b [since N is Boolean] 

= (Ia)ab ⊂ I(Nab) = I(Nba) [by (1)] ⊂ Iba  

That is Iab ⊂ Iba. 

Similarly we get, Iba ⊂ Iab. 

Consequently, I is a strong B1 near-ring. 

(iv) Let M be an N-subgroup of N. 

Therefore, NM ⊂ M  ⇢ (3). 

Let x,y * M. 

Let z * Mxy ⊂ Nxy = Nyx [by (1)] 

= Ny2x [ since N is Boolean] 

= (Ny)yx ⊂ (NM)yx ⊂ Myx [by (3)]. 
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Therefore, Mxy ⊂ Myx. 

Similarly we get, Myx ⊂ Mxy. 

Consequently M is a strong B1 near-ring. 

(v) Let M be a N-subgroup of N. 

Let z * MN  

⇒ z = mn = m2n for some m * M and n * N  ⇢ (4) 

Since N is a strong B1 near-ring, lemma 4.2.7 demands that there exists n′ * N such  

that  m2n = n′nm  ⇢ (5) 

From (4) and (5) we get, 

zn = n′nm * NM ⊂ M [since M is an N-subgroup of N]. 

Therefore, MN⊂ M. 

Thus M is an invariant N-subgroup of N. 

We conclude our discussion with the following characterization of 

strongB1near-rings. 

Theorem 4.2.11: 

Let N be a Boolean near-ring. Then N is a strong B1 near-ring if and only if Na ∩ Nb= 

Nab for all a,b * N. 

Proof: 

Only if part, 
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Let y  * Na ∩ Nb. 

⇒  y * Na and y * Nb 

Therefore y = na =n′b for some n, n′ * N. 

Now by lemma 4.2.7, there exists z * N such that y2= (na)(n′b) 

= (nan′)b = (zn′a)b = (zn′a)b * Nab.  

⇒  y2 * Nab 

Since N is a Boolean, this yields y * Nab. 

Thus Na ∩ Nb ⊂ Nab  ⇢ (1) 

Since N is a strong B1 near-ring, Nab = Nba. 

But Nba ⊂ Na and Nab ⊂ Nb. 

Hence Nab ⊂ Na ∩ Nb  ⇢ (2) 

From (1) and (2) we get, 

Na ∩ Nb = Nab. 

If part, 

Let a,b * N  

Now Nab = Na ∩ Nb = Nb ∩ Na = Nba. 

Thus N is a strong B1 near-ring. 
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CHAPTER-1 

PRELIMINARIES 

Definition: 1.1 

A set S together with two associative binary operations called addition and 

multiplication (denoted by + and · respectively) will be called semiring provided  

1) Addition is a commutative operation. 

2) Multiplication distributes over addition both from the left and from the 

right. 

3) There exists 0 * þ such that þ + 0 = þ and þ · 0 = 0 · þ = 0 for each þ * þ. 

Definition: 1.2 

Let (Ā, +) and (Г, +) be commutative semigroups. If there exists a mapping Ā × Г × Ā → Ā (images to be denoted by þÿÿ, þ, ÿ * Ā, ÿ * Г) satisfying the 

following axioms for all þ, ÿ, Ā * Ā and α,Ā * Г, 

1) þÿ(ÿ + Ā) = þÿÿ + þÿĀ, 
2) (þ + ÿ)ÿĀ = þÿĀ + ÿÿĀ, 
3) þ(ÿ + Ā)ÿ = þÿÿ + þĀÿ, 
4) þÿ(ÿĀĀ) = (þÿÿ)ĀĀ, 

then Ā is called a Г-semiring. 
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Definition: 1.3 

A Г-semiring Ā is said to have zero element if there exists an element 0 * Ā 

such that 0 + þ = þ = þ + 0 and 0ÿþ = þÿ0 = 0, for all þ * Ā. 
Definition: 1.4 

Let Ā be a Г-semiring and � be a non-empty subset of Ā. � is called a                      Г-subsemiring of Ā if � is a sub-semigroup of (Ā, +) and �Г� ⊆ �. 

Definition: 1.5 

Let Ā be a Г-semiring. A subset � of Ā is called a left ideal of Ā if � is 

closed under addition and  ĀГ� ⊆ �.  

Definition: 1.6 

Let Ā be a Г-semiring. A subset � of Ā is called a right ideal of Ā if � is 

closed under addition and �ГĀ ⊆ �. 

Definition: 1.7 

� is called an ideal of Ā if it is both left and right ideal. 

Definition: 1.8 

 Let Ā be a non-empty set. A  mapping ÿ: Ā → [0,1] is called a fuzzy subset of Ā. 
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Definition: 1.9 

Let ÿ be a fuzzy subset of a non-empty subset Ā, for ā * [0,1] the set ÿþ ={þ * Ā/ÿ(þ) g ā} is called level subset of Ā with respect to ÿ. 

Definition: 1.10 

 Let Ā be a Г-semiring. A fuzzy subset µ of Ā is said to be a fuzzy                  Г-subsemiring of Ā if it satisfies the following conditions         

1) µ(þ + ÿ) g ÿÿĀ{µ(þ), µ(ÿ)}                                                             

2) µ(þÿÿ) g ÿÿĀ{µ(þ), µ(ÿ)}, ÿāÿ ÿþþ þ, ÿ * Ā, ÿ * Г. 

Definition: 1.11 

 A fuzzy subset µ of a Г-semiring Ā is called a fuzzy left ideal of Ā if for all þ, ÿ * Ā, ÿ * Г 

1) µ(þ + ÿ) g ÿÿĀ{µ(þ), µ(ÿ)} 

2) µ(þÿÿ) g µ(ÿ)(µ(þ)) 

Definition: 1.12 

 A fuzzy subset µ of a Г-semiring Ā is called a fuzzy ideal of Ā if for all þ, ÿ * Ā, ÿ * Г 

1) µ(þ + ÿ) g min{µ(þ), µ(ÿ)} 
2) µ(þÿÿ) g ÿÿþ{µ(þ), µ(ÿ)} 
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Definition: 1.13 

 An ideal � of a Г-semiring Ā is called ý ideal if for all 

 þ, ÿ * Ā, þ + ÿ * �, ÿ * � ⇒ þ * �. 
Definition: 1.14 

 A fuzzy subset µ: Ā → [0,1] is non-empty if µ is not the constant function. 

Definition: 1.15 

 For any two fuzzy subsets ÿ and µ of Ā, ÿ ⊆ µ means ÿ(þ) f µ(þ) for all þ *Ā. 

Definition: 1.16 

 Let ÿ and Ā be fuzzy subsets of Г-semiring Ā. Then ÿ ∘ Ā is defined by  

ÿ ∘ Ā(Ā) = { supÿ=ý�þ{min{ÿ(þ), Ā(ÿ)}},0,                  āā/þÿýÿĀþ.  

where þ, ÿ * Ā, ÿ * Г, for all Ā * Ā. 

Definition: 1.17 

 Let ÿ and Ā be fuzzy subsets of Г-semiring Ā. Then ÿ + Ā is defined by 

ÿ + Ā(Ā) = { supÿ=ý+þ{min{ÿ(þ), Ā(ÿ)}},0,                  āā/þÿýÿĀþ.  

where þ, ÿ * Ā, ÿ * Г, for all Ā * Ā. 
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Definition: 1.18 

 Let ÿ and Ā be fuzzy subsets of Г-semiring Ā. Then ÿ , Ā is defined by ÿ ,Ā(Ā) = ÿÿþ{ÿ(Ā), Ā(Ā)} where þ, ÿ * Ā, ÿ * Г, for all Ā * Ā. 

Definition: 1.19 

 Let ÿ and Ā be fuzzy subsets of Г-semiring Ā. Then ÿ + Ā is defined by ÿ +Ā(Ā) = ÿÿĀ{ÿ(Ā), Ā(Ā)} where þ, ÿ * Ā, ÿ * Г, for all Ā * Ā. 

Definition: 1.20 

 A function ÿ: ý → Ā where ý and Ā are Г-semirings is said to be a                 Г-semiring homomorphism if ÿ(ÿ + Ā) = ÿ(ÿ) + ÿ(Ā) and ÿ(ÿÿĀ) = ÿ(ÿ)ÿÿ(Ā)   

for all ÿ, Ā * ý, ÿ * Г. 

Definition: 1.21 

Let � be a non-empty subset of Ā. The characteristic function of � is a fuzzy 

subset of Ā is defined by ÿ�(þ) = {1, ÿÿ þ * �; 0, ÿÿ þ + �.  
Definition: 1.22 

 A fuzzy ideal f of a Г-semiring Ā with zero 0 is said to be a ý-fuzzy ideal of Ā if ÿ(þ + ÿ) = ÿ(0) and ÿ(ÿ) = ÿ(0) ⇒ ÿ(þ) = ÿ(0), for all þ, ÿ * Ā. 
Definition: 1.23 

 A fuzzy ideal ÿ of a Г-semiring Ā is said to be a fuzzy ý-ideal of Ā if ÿ(þ) gÿÿĀ{ÿ(þ + ÿ), ÿ(ÿ)}, for all þ, ÿ * Ā. 
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CHAPTER-2 

�-FUZZY IDEAL  

Definition: 2.1 

A ÿ-fuzzy subset µ of a Г-semiring Ā is called a ÿ-fuzzy Г-subsemiring of Ā 

if 

1) µ(þ + ÿ) g ÿÿĀ{µ(þ), µ(ÿ)}  
2) µ(þÿÿ) g ÿÿĀ{µ(þ), µ(ÿ)}, for all þ, ÿ * Ā, ÿ * Г. 

Definition: 2.2 

 A ÿ-fuzzy Г-subsemiring of a Г-semiring Ā is called a ÿ-fuzzy left (right) 

ideal of Ā if µ(þÿÿ) g µ(ÿ)(µ(þ)). 
Definition: 2.3 

 If µ is a fuzzy left and a fuzzy  right ideal of Г-semiring Ā then µ is called a  ÿ-fuzzy ideal of Ā. 

Theorem: 2.4 

 Let µ be a ÿ-fuzzy ideal of Г-semiring Ā. Then µ(þ) f µ(0) for all þ * Ā. 
Proof: 

 Let þ * Ā, ÿ * Г. 

 Now, µ(0) = µ(0ÿþ) g µ(þ) 
 Therefore µ(0) g µ(þ) 
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 Hence µ(þ) f µ(0), for all þ * Ā. 

Theorem: 2.5 

 Let Ā be a Г-semiring. µ is a ÿ-fuzzy left ideal of Ā if and only if for any ā *ÿ such that  µā b ɸ, µþ is a left ideal of Г-semiring Ā. 

Proof: 

 Let µ be a ÿ-fuzzy left ideal of Г-semiring Ā and ā * ÿ such that µā b ɸ. 

            Let þ, ÿ * µþ 

  ⇒ µ(þ), µ(ÿ) g ā 

  ⇒ ÿÿĀ{µ(þ), µ(ÿ)} g ā 

 Also µ(þ + ÿ) g ÿÿĀ{µ(þ), µ(ÿ)} 

  ⇒ µ(þ + ÿ) g ā 

  ⇒ þ + ÿ * µþ 

 Let þ * Ā, ÿ * µþ , ÿ * Г. 

  µ(þÿÿ) g µ(ÿ) g ā 

  ⇒ þÿÿ * µþ  

 Therefore µā is a left ideal of Г-semiring Ā. 

 Conversely suppose that µā is a left ideal of Г-semiring Ā. 

 Let þ, ÿ * Ā. 
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 Let ā = ÿÿĀ{µ(þ), µ(ÿ)} 

  Then µ(þ), µ(ÿ) g ā 

   ⇒ þ, ÿ * µþ 

  ⇒ þ + ÿ * µþ 

   ⇒ µ(þ + ÿ) g ā 

   ⇒ µ(þ + ÿ) g ÿÿĀ{µ(þ), µ(ÿ)} 

  Let þ, ÿ * Ā 

  Let µ(ÿ) = Ā 

   ⇒ ÿ * µý 

   ⇒þÿÿ * µý 

   ⇒ µ(þÿÿ) g Ā 

  ⇒µ(þÿÿ) g µ(ÿ) 

  Therefore µ is a ÿ-fuzzy left ideal. 

Theorem: 2.6 

 Let Ā be a Г-semiring and Āµ = {þ * Ā/µ(þ) g µ(0)}.  If µ is a ÿ-fuzzy 

ideal of Ā then Āµ is an ideal of Г-semiring. 

Proof:   

 Let µ be a ÿ-fuzzy ideal of Г-semiring Ā. 
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 Let þ, ÿ * Āµ 

  ⇒ µ(þ) g µ(0), µ(ÿ) g µ(0) 

  ⇒ µ(þ + ÿ) g ÿÿĀ{µ(þ), µ(ÿ)} 

  ⇒ µ(þ + ÿ) g µ(0) 

  ⇒ þ + ÿ * Āµ 

 Now µ(þÿÿ) g ÿÿĀ{µ(þ), µ(ÿ)} 

  ⇒ µ(þÿÿ) g µ(0)                        (Since µ(þ), µ(ÿ) g µ(0)) 

  ⇒þÿÿ * Āµ 

 Let þ * Āµ, ÿ * Ā, ÿ * Г. 

  ⇒ µ(þ) g µ(0) 

  ⇒ µ(ÿÿþ) g µ(þ) g µ(0) 

  ⇒ µ(ÿÿþ) g µ(0) 

  ⇒ ÿÿþ * Āµ 

 Similarly þÿÿ * Āµ  

 Hence Āµ is an ideal of Г-semiring Ā. 
Theorem: 2.7 

 Let Ā and þ be Г-semirings and ѱ: Ā→þ be an onto homomorphism. If µ is a ÿ-fuzzy ideal of þ then the pre image of µ under ѱ is a ÿ-fuzzy ideal of Ā. 
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Proof: 

 Let µ be a ÿ-fuzzy ideal of þ and ɤ be the pre image of µ under ѱ. 

Let þ, ÿ * Ā, ÿ * Г 

 ɤ(þ + ÿ) = µ(ѱ(þ + ÿ)) 

                   = µ(ѱ(þ) + ѱ(ÿ)) 

                 g ÿÿĀ{µ(ѱ(þ)), µ(ѱ(ÿ))} 
                            = ÿÿĀ{ɤ(þ), ɤ(ÿ)} 

 Therefore ɤ(þ + ÿ) g ÿÿĀ{ɤ(þ), ɤ(ÿ)} 

            And ɤ(þÿÿ) = µ(ѱ(þÿÿ)) 

                      = µ(ѱ(þ)ÿѱ(ÿ)) 

                                 g ÿÿĀ{µ(ѱ(þ)), µ(ѱ(ÿ)} 

                                 = ÿÿĀ{ɤ(þ), ɤ(ÿ)} 

           Therefore ɤ(þÿÿ) g ÿÿĀ{ɤ(þ), ɤ(ÿ)} 

           Hence ɤ is a ÿ-fuzzy subsemiring of Г-semiring Ā. 

            Let þ, ÿ * Ā, ÿ * Г.                                                                                                            ɤ(þÿÿ) = µ(ѱ(þÿÿ)) 

                            = µ(ѱ(þ)ÿѱ(ÿ)) 

                          g µ(ѱ(þ)) 

                          = ɤ(þ) 
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 ⇒ ɤ(þÿÿ) g ɤ(þ) 

 Therefore ɤ is a ÿ-fuzzy left ideal of Г-semiring Ā. 

 Similarly ɤ is a ÿ-fuzzy right ideal of Г-semiring Ā. 

 Hence ɤ is a ÿ-fuzzy ideal of Ā. 

Theorem: 2.8 

 Let Ā be a Г-semiring. If � is an ideal of Г-semiring Ā then there exist a        ÿ-fuzzy ideal µ of Ā such that µā = �, for some ā * ÿ. 

Proof: 

 Suppose � is an ideal of Г-semiring Ā and ā * ÿ. 

 We define ÿ-fuzzy subset of Ā by µ(þ) = {ā,       ÿÿ þ * �0, āā/þÿýÿĀþ  
  ⇒µ(ā) = �. 

 Let Ā * ÿ. 

 We have µĀ = {Ā,          ÿÿ Ā = 0�, ÿÿ 0 < Ā f āɸ,     āā/þÿýÿĀþ 

 Hence every non-empty subset µĀ of µ is an ideal of Г-semiring Ā. 

 By theorem: 2.5, 

 µ is a ÿ-fuzzy ideal of Г-semiring Ā. 
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Theorem: 2.9 

 Let µ and ɤ be two ÿ-fuzzy ideals of Г-semiring Ā. Then µ + ɤ is a ÿ-fuzzy 

ideal of Г-semiring Ā. 

Proof: 

 Let ÿ, Ā * Ā, ÿ * Г. 

 Now, 

 µ + ɤ(ÿ + Ā) = ÿÿĀ{µ(ÿ + Ā), ɤ(ÿ + Ā)} 

             g ÿÿĀ{ÿÿĀ{µ(ÿ), µ(Ā)}, ÿÿĀ{ɤ(ÿ), ɤ(Ā)}} 

             = ÿÿĀ{ÿÿĀ{µ(ÿ), ɤ(ÿ)}, ÿÿĀ{µ(Ā), ɤ(Ā)}} 

                        = ÿÿĀ{µ + ɤ(ÿ), µ + ɤ(Ā)} 

 ⇒ µ + ɤ(ÿ + Ā) g ÿÿĀ{µ + ɤ(ÿ), µ + ɤ(Ā)} 

 Also, 

 µ + ɤ(ÿÿĀ) = ÿÿĀ{µ(ÿÿĀ), ɤ(ÿÿĀ)} 

          g ÿÿĀ{ÿÿþ{µ(ÿ), µ(Ā)}, ÿÿþ{ɤ(ÿ), ɤ(Ā)}} 

                     = ÿÿþ{ÿÿĀ{µ(ÿ), ɤ(ÿ)}, ÿÿĀ{µ(Ā), ɤ(Ā)}} 

                                = ÿÿþ{µ + ɤ(ÿ), µ + ɤ(Ā)} 

 ⇒ µ + ɤ(ÿÿĀ) g ÿÿþ{µ + ɤ(ÿ), µ + ɤ(Ā)} 

 Hence µ + ɤ is a L-fuzzy ideal of Г-semiring Ā. 
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Definition: 2.10 

 A mapping µ: Ā × Ā → ÿ is called a ÿ-fuzzy subset of  Ā2
. 

Definition: 2.11 

 A ÿ-fuzzy subset µ of Ā × Ā is called a ÿ-fuzzy Г-subsemiring of Ā2
 if the 

following conditions are satisfied  

1) µ(þ + ÿ, Ā + ÿ) g ÿÿĀ{µ(þ, Ā), µ(ÿ, ÿ}, 
2) µ(þÿÿ, Āÿÿ) g ÿÿĀ{µ(þ, Ā), µ(ÿ, ÿ)},  

for all (þ, Ā), (ÿ, ÿ) * Ā × Ā, ÿ * Г. 

Definition: 2.12 

 A ÿ-fuzzy Г-subsemiring of Ā × Ā, µ is called a ÿ-fuzzy left(right) ideal of  Ā2
 if µ(þÿÿ, Āÿÿ) g µ(ÿ, ÿ)(µ(þ, Ā)). 

Definition: 2.13 

 If µ is a ÿ-fuzzy left and ÿ-fuzzy right ideal of  Ā × Ā, µ is called a ÿ-fuzzy 

ideal of Ā2. 
Theorem: 2.14 

 Let µ be a ÿ-fuzzy ideal of  Ā × Ā. Then µ(þ, ÿ) f µ(0,0) for all  

(þ, ÿ) * Ā × Ā. 

Proof: 

 Let (þ, ÿ) * Ā × Ā, ÿ * Г. 
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 Now,  

  µ(0,0) = µ(0ÿþ, 0ÿÿ) 

              g µ(þ, ÿ) 

 ⇒ µ(0,0) g µ(þ, ÿ) 

 Hence µ(þ, ÿ) f µ(0,0), for all (þ, ÿ) * Ā × Ā 

Theorem: 2.15 

 µ is a ÿ-fuzzy left ideal of Ā2
 iff for ā * ÿ such that µā b ɸ, µā is a left ideal 

of Ā × Ā. 

Proof: 

 Let µ be a ÿ-fuzzy left ideal of Ā × Ā and ā * ÿ such that µā b ɸ. 

            Let (þ, Ā), (ÿ, ÿ) * µþ 

  ⇒µ(þ, Ā), µ(ÿ, ÿ) g ā 

  ⇒µ(þ + ÿ, Ā + ÿ) g ÿÿĀ{µ(þ, Ā), µ(ÿ, ÿ)} g ā 

  ⇒µ(þ + ÿ, Ā + ÿ) g ā 

 Let (þ, Ā) * Ā × Ā, (ÿ, ÿ) * µþ and ÿ * Г. 

 Then µ(þÿÿ, Āÿÿ) g µ(ÿ, ÿ) g ā      (Since (ÿ, ÿ) * µþ , µ(ÿ, ÿ) g ā) 

  ⇒(þÿÿ, Āÿÿ) * µþ 

            Therefore µā is a left ideal of Ā × Ā. 
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 Suppose that µā is a left ideal of Ā × Ā. 

 Let (þ, Ā), (ÿ, ÿ) * Ā × Ā and ā = ÿÿĀ{µ(þ, Ā), µ(ÿ, ÿ)} 
 Then µ(þ, Ā), µ(ÿ, ÿ) gt 

  ⇒(þ, Ā), (ÿ, ÿ) * µþ 

  ⇒µ(þ + ÿ, Ā + ÿ) g ā 

  ⇒µ(þ + ÿ, Ā + ÿ) g ÿÿĀ{µ(þ, Ā), µ(ÿ, ÿ)} 

 Now, let (þ, Ā), (ÿ, ÿ) * Ā2 

             Let µ(ÿ, ÿ) = Ā 

  ⇒(ÿ, ÿ) * µý 

  ⇒(þÿÿ, Āÿÿ) * µý 

  ⇒µ(þÿÿ, Āÿÿ) g Ā = µ(ÿ, ÿ) 

  ⇒µ(þÿÿ, Āÿÿ) g µ(ÿ, ÿ) 

 Hence µ is a ÿ-fuzzy left ideal. 

Theorem:2.16 

 Define Āµ = {(þ, ÿ) * Ā × Ā/µ(þ, ÿ) g µ(0,0)}. If µ is a ÿ-fuzzy ideal of Ā × Ā, then Āµ is an ideal of Ā2
. 

Proof: 

 Let µ be a ÿ-fuzzy ideal of  Ā × Ā . 
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 Let (þ, Ā), (ÿ, ÿ) * Āµ 

  ⇒µ(þ, Ā) g µ(0,0), µ(ÿ, ÿ) g µ(0,0) 

 Now,   

 µ(þ + ÿ, Ā + ÿ) g ÿÿĀ{µ(þ, Ā), µ(ÿ, ÿ)} 

  ⇒µ(þ + ÿ, Ā + ÿ) g µ(0,0) 

  ⇒(þ + ÿ, Ā + ÿ) * Āµ 

 Also, 

 µ(þÿÿ, Āÿÿ) g ÿÿĀ{µ(þ, Ā), µ(ÿ, ÿ)} 

 ⇒µ(þÿÿ, Āÿÿ) g µ(0,0) 

 ⇒(þÿÿ, Āÿÿ) * Āµ 

Now, let (þ, Ā) * Āµ, (ÿ, ÿ) * Ā and ÿ * Г. 

 ⇒µ(þ, Ā) g µ(0,0) 

 ⇒µ(ÿÿþ, ÿÿĀ) g µ(þ, Ā) 

 ⇒µ(ÿÿþ, ÿÿĀ) g µ(0,0)       (Since (þ, Ā) * Āµ, µ(þ, Ā) g µ(0,0)) 

             ⇒(ÿÿþ, ÿÿĀ) * Āµ 

Similarly (þÿÿ, Āÿÿ) * Āµ 

Hence Āµ is an ideal of Ā × Ā. 
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Theorem:2.17 

 Let µ and ɤ be two ÿ-fuzzy ideals of  Ā × Ā, then µ + ɤ is a ÿ-fuzzy ideal of Ā × Ā. 
Proof: 

 Let (þ, Ā), (ÿ, ÿ) * Ā × Ā and ÿ * Г. 

 Now, 

 (µ + ɤ)(þ + ÿ, Ā + ÿ) = ÿÿĀ{µ(þ + ÿ, Ā + ÿ), ɤ(þ + ÿ, Ā + ÿ)}    

                                       g ÿÿĀ{ÿÿĀ{µ(þ, Ā), µ(ÿ, ÿ)}, ÿÿĀ{ɤ(þ, Ā), ɤ(ÿ, ÿ)}} 

      g ÿÿĀ{ÿÿĀ{µ(þ, Ā), ɤ(þ, Ā)}, ÿÿĀ{µ(ÿ, ÿ), ɤ(ÿ, ÿ)}} 

      = ÿÿĀ{(µ + ɤ)(þ, Ā), (µ + ɤ)(ÿ, ÿ)} 

  ⇒ (µ + ɤ)(þ + ÿ, Ā + ÿ) g ÿÿĀ{(µ + ɤ)(þ, Ā), (µ + ɤ)(ÿ, ÿ)} 

 Also, 

            (µ + ɤ)(þÿÿ, Āÿÿ) = ÿÿĀ{µ(þÿÿ, Āÿÿ), ɤ(þÿÿ, Āÿÿ)} 

 g ÿÿĀ{ÿÿþ{µ(þ, Ā), µ(ÿ, ÿ)}, ÿÿþ{ɤ(þ, Ā), ɤ(ÿ, ÿ)}} 

 g ÿÿþ{ÿÿĀ{µ(þ, Ā), ɤ(þ, Ā)}, ÿÿþ{µ(ÿ. ÿ), ɤ(ÿ, ÿ)}} 

 = ÿÿþ{(µ + ɤ)(þ, Ā), (µ + ɤ)(ÿ, ÿ)} 

 ⇒ (µ + ɤ)(þÿÿ, Āÿÿ) g ÿÿþ{(µ + ɤ)(þ, Ā), (µ + ɤ)(ÿ, ÿ)} 

 Hence µ + ɤ is a ÿ-fuzzy ideal of  Ā × Ā. 
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CHAPTER-3 

�-FUZZY � IDEAL AND � 2 � FUZZY IDEAL 

Definition: 3.1 

 A ÿ-fuzzy ideal µ of Г-semiring Ā is called a ÿ-fuzzy ý ideal of Ā if 

 µ(þ) g ÿÿĀ{µ(þ + ÿ), µ(ÿ)}, for all þ, ÿ * Ā. 

Definition: 3.2 

 A ÿ-fuzzy ideal µ of Г-semiring Ā is called a ÿ 2 ý fuzzy ideal of Ā if 

 µ(þ + ÿ) = 0, µ(ÿ) = 0 ⇒ µ(þ) = 0, for all þ, ÿ * Ā. 

Theorem: 3.3 

 Let ÿ and Ā be a ÿ-fuzzy k ideals of Ā. Then ÿ + Ā is a ÿ-fuzzy ý ideal of 

Г-semiring Ā. 

Proof: 

 Let ÿ and Ā be a ÿ-fuzzy ý ideals of Ā. 

 By theorem: 2.9, 

Since ÿ and Ā are ÿ-fuzzy ideals of Г-semiring Ā,  

  ÿ + Ā is a ÿ-fuzzy ideal of Г-semiring Ā. 

 Let þ, ÿ * Ā. 
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  ÿ + Ā(ÿ) = ÿÿĀ{ÿ(þ), Ā(þ)} 

                              g ÿÿĀ{ÿÿĀ{ÿ(þ + ÿ), ÿ(ÿ)}, ÿÿĀ{Ā(þ + ÿ), Ā(ÿ)}} 

                               =  ÿÿĀ{ÿÿĀ{ÿ(þ + ÿ), Ā(þ + ÿ)}, ÿÿĀ{ÿ(ÿ), Ā(ÿ)}} 

                               = ÿÿĀ{ÿ + Ā(þ + ÿ), ÿ + Ā(ÿ)} 

 ⇒ ÿ + Ā(ÿ) g ÿÿĀ{ÿ + Ā(þ + ÿ), ÿ + Ā(ÿ)} 

 Hence ÿ + Ā is a ÿ-fuzzy ý ideal of  Ā. 

Theorem: 3.4 

 A ÿ-fuzzy subset µ of Ā is a ÿ-fuzzy ý ideal of Г-semiring Ā if and only if µþ 

is a ý ideal of Г-semiring Ā for any ā * ÿ, µþ b ɸ. 
Proof: 

 Let µ be a ÿ-fuzzy ý ideal of Г-semiring Ā. 

 If µþ b ɸ then µþ is an ideal of Г-semiring Ā for any ā * ÿ. 

 Suppose ÿ, ÿ + þ * µþ 

  ⇒ µ(ÿ) g ā, µ(ÿ + þ) g ā 

 Since µ is a ÿ-fuzzy ý ideal of Г-semiring Ā, we have 

  µ(þ) g ÿÿĀ{µ(ÿ + þ), µ(ÿ)} 

  ⇒ µ(þ) g ā 

  ⇒ þ * µþ 
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 Hence µþ is a ý ideal of Г-semiring Ā. 

 Conversely, 

 Assume that µþ is a ý ideal of Г-semiring Ā with µþ b ɸ. 
 Let µ(ÿ) = ā1, µ(þ + ÿ) = ā2 

            Let ā = ÿÿĀ{ā1, ā2} 

            Then ÿ * µþ , þ + ÿ * µþ for some þ * Ā. 

  ⇒ þ * µþ   
  ⇒ µ(þ) g ā 

 But ā = ÿÿĀ{ā1, ā2} = ÿÿĀ{µ(þ + ÿ), µ(ÿ)} 

 Therefore µ(þ) g  ÿÿĀ{µ(þ + ÿ), µ(ÿ)} 

 Hence µ is a ÿ-fuzzy ý ideal of Г-semiring Ā. 

Theorem: 3.5 

 Let Ā be a Г-semiring. If µ is a ÿ-fuzzy ý ideal of Ā then µ is a ÿ 2 ý fuzzy 

ideal of Ā. 

Proof: 

 Let µ be a ÿ-fuzzy ý ideal of Ā. 

 Let þ, ÿ * Ā and µ(0) = ā * ÿ 

  µ(þ + ÿ) = µ(0) and µ(ÿ) = µ(0) 

 Now µ(0) = ā 
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  ⇒ µ(þ + ÿ) = ā, µ(ÿ) = ā 

  ⇒ þ + ÿ * µþ , ÿ * µþ . 
 By theorem: 3.4, 

 µþ is a ý ideal of Ā. 

  ⇒ þ * µþ  

  ⇒ µ(þ) g ā = µ(0) 

  ⇒ µ(þ) g µ(0) 

 Also µ(þ) f µ(0), for all þ * Ā. 
 Hence µ(þ) = µ(0). 
 Therefore µ is a ÿ 2 ý fuzzy ideal of Г-semiring Ā. 

Definition: 3.6 

 Let µ be a ÿ-fuzzy subset of � and ÿ, Ā * ÿ. The mapping µÿ�: � → ÿ is called 

fuzzy translation of µ, if µÿ�(þ) = µ(þ)Çÿ for all þ * �. 
Definition: 3.7 

 Let µ be a ÿ-fuzzy subset of � and ÿ, Ā * ÿ. The mapping µĀ�: � → ÿ is called 

fuzzy multiplication of µ, if µĀ�(þ) = ĀÆµ(þ) for all þ * �. 

Definition: 3.8 

 Let µ be a ÿ-fuzzy subset of � and ÿ, Ā * ÿ. The mapping µĀ,ÿ��: � → ÿ is 

called fuzzy magnified translation of µ, if µĀ,ÿ��(þ) = (ĀÆµ(þ))Çÿ for all þ * �. 
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Theorem:3.9 

 Let µ be a ÿ-fuzzy subset of Г-semiring Ā. Then ÿ * ÿ, µ is a ÿ-fuzzy ideal of Г-semiring Ā if any only if µÿ�, the fuzzy translation is a ÿ-fuzzy ideal of Г-semiring Ā. 

Proof: 

 Suppose  µ is a ÿ-fuzzy ideal of Г-semiring Ā. 

 Let þ, ÿ * Ā, ÿ * Г. 

 µÿ�(þ + ÿ) = µ(þ + ÿ)Çÿ 

         g ÿÿĀ{µ(þ), µ(ÿ)}Çÿ 

         = ÿÿĀ{µ(þ)Çÿ, µ(ÿ)Çÿ} 

         = ÿÿĀ{µÿ�(þ), µÿ�(ÿ)} 

 ∴ µÿ�(þ + ÿ) g ÿÿĀ{µÿ�(þ), µÿ�(ÿ)} 

    µÿ�(þÿÿ) = µ(þÿÿ)Çÿ 

      g ÿÿĀ{µ(þ), µ(ÿ)}Çÿ 

      = ÿÿĀ{µ(þ)Çÿ, µ(ÿ)Çÿ} 

                   = ÿÿĀ{µÿ�(þ), µÿ�(ÿ)} 

              ∴ µÿ�(þÿÿ) g ÿÿĀ{µÿ�(þ), µÿ�(ÿ)} 

              Hence µÿ� , the fuzzy translation is a ÿ-fuzzy ideal of Г-semiring Ā. 
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Conversely, 

 Suppose that ÿ * ÿ, µÿ� , the fuzzy translation is a ÿ-fuzzy ideal of   
            Г-semiring Ā.                       

 Let þ, ÿ * Ā, ÿ * Г. 

 Now, 

 µÿ�(þ + ÿ) g ÿÿĀ{µÿ�(þ), µÿ � (ÿ)} 

        = ÿÿĀ{µ(þ)Çÿ, µ(ÿ)Çÿ} 

         = µ(þ + ÿ)Çÿ 

 ∴ µÿ�(þ + ÿ) g µ(þ + ÿ)Çÿ 

  ⇒ µÿ�(þ + ÿ)Çÿ g ÿÿĀ{µ(þ)Çÿ, µ(ÿ)Çÿ}Çÿ 

  ⇒ µÿ�(þ + ÿ) g ÿÿĀ{µ(þ), µ(ÿ)} 

 Also, 

 µÿ�(þÿÿ) g ÿÿþ{µÿ�(þ), µÿ�(ÿ)} 

                     ⇒ µ(þÿÿ)Çÿ g ÿÿþ{µ(þ)Çÿ, µ(ÿ)Çÿ} 

  ⇒ µ(þÿÿ)Çÿ g ÿÿþ{µ(þ), µ(ÿ)}Çÿ 

  ⇒ µ(þÿÿ) g ÿÿþ{µ(þ), µ(ÿ)} 

 Hence µ is a ÿ-fuzzy ideal of Г-semiring Ā. 
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Theorem: 3.10 

 Let µ be a ÿ-fuzzy subset of Г-semiring M and ÿ * ÿ. Then µ is a ÿ-fuzzy ý 

ideal of Г-semiring Ā if and only if µÿ�, the fuzzy translation is a ÿ-fuzzy ý ideal of   Г-semiring Ā. 

Proof: 

 Suppose µ is a ÿ-fuzzy ý ideal of Г-semiring Ā. 

 By theorem: 3.9, 

 µÿ� is a ÿ-fuzzy ideal of Г-semiring Ā. 

 µÿ�(þ) = µ(þ)Çÿ 

            g ÿÿĀ{µ(þ + ÿ), µ(ÿ)}Çÿ 

            = ÿÿĀ{µ(þ + ÿ)Çÿ, µ(ÿ)Çÿ} 

            = ÿÿĀ{µÿ�(þ + ÿ), µÿ�(ÿ)} 

            ⇒ µÿ�(þ) g ÿÿĀ{µÿ�(þ + ÿ), µÿ�(ÿ)}, for all þ, ÿ * Ā 

 Hence µÿ�  is a ÿ-fuzzy ý ideal of  Г-semiring Ā. 

 Conversely, 

 Suppose that ÿ * ÿ, µÿ� is a ÿ-fuzzy ý ideal of Г-semiring Ā. 

 µ(þ)Çÿ = µÿ�(þ) 

                          g ÿÿĀ{µÿ�(þ + ÿ), µÿ�(ÿ)} 
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                          = ÿÿĀ{µ(þ + ÿ)Çÿ, µ(ÿ)Çÿ} 

                          = ÿÿĀ{µ(þ + ÿ), µ(ÿ)}Çÿ 

             ⇒ µ(þ)Çÿ g ÿÿĀ{µ(þ + ÿ), µ(ÿ)}Çÿ 

             ⇒ µ(þ) g ÿÿĀ{µ(þ + ÿ), µ(ÿ)}, for all þ, ÿ * Ā. 
              Therefore µ is a ÿ-fuzzy ý ideal of Г-semiring Ā. 

Theorem: 3.11 

            Let µ be a ÿ-fuzzy subset of Г-semiring Ā. Then µ is a ÿ-fuzzy ideal of       Г-semiring Ā if and only if  Ā * ÿ, µĀ�, fuzzy multiplication is a ÿ-fuzzy ideal of        Г-semiring Ā. 

Proof: 

 Suppose µ is a ÿ-fuzzy ideal of Г-semiring Ā. 

 Let þ, ÿ * Ā, ÿ * Г, Ā * ÿ. 
 µĀ�(þ + ÿ) = µ(þ + ÿ)ÆĀ 

       g ÿÿĀ{µ(þ), µ(ÿ)}ÆĀ 

       = ÿÿĀ{µ(þ)ÆĀ, µ(ÿ)ÆĀ} 

       = ÿÿĀ{µĀ�(þ), µĀ�(ÿ)} 

 ⇒ µĀ�(þ + ÿ) g ÿÿĀ{µĀ�(þ), µĀ�(ÿ)} 

 Now, 

 µĀ�(þÿÿ) = µ(þÿÿ)ÆĀ 
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    g ÿÿþ{µ(þ), µ(ÿ)}ÆĀ 

    = ÿÿþ{µ(þ)ÆĀ, µ(ÿ)ÆĀ} 

    = ÿÿþ{µĀ�(þ), µĀ�(ÿ)} 

 ⇒µĀ�(þÿÿ) g ÿÿþ{µĀ�(þ), µĀ�(ÿ)} 

 Hence µĀ�, fuzzy multiplication is a ÿ-fuzzy ideal of Г-semiring Ā. 

 Conversely, 

 Suppose µĀ�, fuzzy multiplication is a ÿ-fuzzy ideal of Г-semiring Ā. 

 Let þ, ÿ * Ā, ÿ * Г. 

 µĀ�(þ + ÿ) g ÿÿĀ{µĀ�(þ), µĀ�(ÿ)} 

  ⇒ µ(þ + ÿ)ÆĀ g ÿÿĀ{µ(þ)ÆĀ, µ(ÿ)ÆĀ} 

  ⇒ µ(þ + ÿ)ÆĀ g ÿÿĀ{µ(þ), µ(ÿ)}ÆĀ 

  ⇒ µ(þ + ÿ) g ÿÿĀ{µ(þ), µ(ÿ)} 

 Also, 

 µĀ�(þÿÿ) g ÿÿþ{µĀ�(þ), µĀ�(ÿ)} 

  ⇒ µ(þÿÿ)ÆĀ g ÿÿþ{µ(þ)ÆĀ, µ(ÿ)ÆĀ} 

  ⇒ µ(þÿÿ)ÆĀ g ÿÿþ{µ(þ), µ(ÿ)}ÆĀ 

  ⇒ µ(þÿÿ) g ÿÿþ{µ(þ), µ(ÿ)} 

 Hence µ is a ÿ-fuzzy ideal of Г-semiring Ā. 
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Theorem: 3.12 

 Let µ be a ÿ-fuzzy subset of Г-semiring Ā. Then µ is a ÿ-fuzzy ý ideal of  

Г-semiring Ā if and only if Ā * ÿ, µĀ�, fuzzy multiplication is a ÿ-fuzzy ý ideal of      

Г-semiring Ā.  

Proof: 

 Suppose µ is a ÿ-fuzzy ý ideal of Г-semiring Ā. 

 By theorem: 3.11, 

 µĀ� is a L-fuzzy ideal of Г-semiring Ā. 

 Let þ, ÿ * Ā, ÿ * Г, Ā * ÿ. 

  µĀ�(þ) = µ(þ)ÆĀ 

                      g ÿÿĀ{µ(þ + ÿ), µ(ÿ)}ÆĀ 

             = ÿÿĀ{µ(þ + ÿ)ÆĀ, µ(ÿ)ÆĀ} 

             = ÿÿĀ{µĀ�(þ + ÿ), µĀ�(ÿ)} 

            ⇒ µĀ�(þ) g ÿÿĀ{µĀ�(þ + ÿ), µĀ�(ÿ)}, for all þ, ÿ * Ā. 
 Hence µĀ� is a ÿ-fuzzy ý ideal of Г-semiring Ā. 
 Conversely, 

 Suppose that ÿ * ÿ, µĀ� is a ÿ-fuzzy ý ideal of Г-semiring Ā. 
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 µ(þ)ÆĀ = µĀ�(þ) 

                          g ÿÿĀ{µĀ�(þ + ÿ), µĀ�(ÿ)} 

               = ÿÿĀ{µ(þ + ÿ)ÆĀ, µ(ÿ)ÆĀ} 

               = ÿÿĀ{µ(þ + ÿ), µ(ÿ)}ÆĀ 

            ⇒ µ(þ)ÆĀ g ÿÿĀ{µ(þ + ÿ), µ(ÿ)}ÆĀ 

            ⇒ µ(þ) g ÿÿĀ{µ(þ + ÿ), µ(ÿ)}, for all þ, ÿ * Ā. 

            Therefore µ is a ÿ-fuzzy ý ideal of Г-semiring Ā. 
Theorem: 3.13 

          Let µ be a ÿ-fuzzy ý subset of Г-semiring Ā. Then µ is a ÿ-fuzzy ý ideal of    Г-semiring Ā if and only if  µĀ,ÿ��  is a ÿ-fuzzy ý ideal of Г-semiring Ā. 

Proof: 

            Let µ be a ÿ-fuzzy ý ideal of Г-semiring Ā. 

            ⇔ µĀ� is a ÿ-fuzzy ý ideal of Г-semiring Ā. (By theorem: 3.12) 

            ⇔µĀ,ÿ��  is a ÿ-fuzzy ý ideal of Г-semiring Ā. (By theorem: 3.10) 

Definition: 3.14 

Let µ be a ÿ-fuzzy subset of Г-semiring Ā. Then the set Āµ is defined by Āµ = {þ * Ā /  µ(þ) = µ(0)}. 
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Theorem: 3.15 

            If µ is a ÿ-fuzzy ý ideal of Г-semiring Ā then Āµ is a ý ideal of  Г-semiring Ā. 

Proof: 

             Let µ be a ÿ-fuzzy ý ideal of Г-semiring Ā. 

             Let þ, ÿ * Āµ. 
            Then µ(þ) = µ(0) = µ(ÿ) 

             Now µ(þ + ÿ) g ÿÿĀ{µ(þ), µ(ÿ)} 

                                      = ÿÿĀ{µ(0), µ(0)} 

                         = µ(0) 

                      ⇒ µ(þ + ÿ) g µ(0) 

            Also µ(þ + ÿ) f µ(0) 

            Therefore µ(þ + ÿ) = µ(0) 

            Hence þ + ÿ * Āµ. 
            Let þ * Āµ, ÿ * Ā, ÿ * Г. 
        Then µ(þ) = 0 

        µ(þÿÿ) g ÿÿþ{µ(þ), µ(ÿ)} 

                         = ÿÿþ{µ(0), µ(ÿ)} 
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                         = µ(0) 

            ⇒ µ(þÿÿ) g µ(0) 

            Also µ(þÿÿ) f µ(0) 

            Therefore µ(þÿÿ) = µ(0) 

            Hence þÿÿ * Āµ. 

            ∴ Āµ is an ideal of Г-semiring Ā. 

            Let þ + ÿ, þ * Āµ. 

            Then µ(þ + ÿ) = µ(0) = µ(þ). 

            Since µ is a ÿ-fuzzy ý ideal of Г-semiring Ā,  

              µ(ÿ) g ÿÿĀ{µ(þ + ÿ), µ(þ)} 

                                = ÿÿĀ{µ(0), µ(0)} 

                                   = µ(0) 

              ⇒µ(ÿ) g µ(0) 

             Also µ(ÿ) f µ(0) 

             Therefore µ(ÿ) = µ(0) 

             Hence ÿ * Āµ 

             Thus Āµ is a ý ideal of Г-semiring Ā. 
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Theorem: 3.16 

            If ā * ÿ such that µþ b  ɸ, µþ is a ý ideal of Г-semiring Ā then µ is a     ÿ 2ý fuzzy ideal of Ā. 

Proof: 

          Let µþ be a k ideal of Г-semiring Ā. 

            Let ā * ÿ. 

            Let µ(þ + ÿ) = µ(0) and µ(ÿ) = µ(0) 

  ⇒ þ + ÿ * Āµ 

            Since Āµ is a ý ideal of Г-semiring Ā, þ * Āµ. 
            Therefore µ(þ) g µ(0) 

 Also, µ(þ) f µ(0)    (By theorem: 2.4) 

 Hence µ(þ) = µ(0). 
 Therefore µ is a ÿ 2 ý fuzzy ideal of Ā. 

Definition: 3.17 

           Let Ā be a Г-semiring and µ be a ÿ-fuzzy ideal of Ā × Ā. µ is called ÿ-fuzzy ý ideal of Ā2 if µ(þ, Ā) g ÿÿĀ{µ(þ + ÿ, Ā + ÿ), µ(ÿ, ÿ)} for all þ, ÿ, Ā, ÿ * Ā. 

 

 



32 

 

Definition:3.18 

            Let Ā be a Г-semiring and µ be a ÿ-fuzzy ideal of Ā × Ā. µ is called ÿ 2 ý 

fuzzy ideal of Ā × Ā if µ(þ + ÿ, Ā + ÿ) = 0, µ(ÿ, ÿ) = 0 ⇒ µ(þ, Ā) = 0 for all þ, ÿ, Ā, ÿ * Ā. 
 

 

Theorem: 3.19 

          Let Ā be a Г-semiring and let ÿ and Ā be ÿ-fuzzy k ideals of  Ā2. Then ÿ + Ā 

is a ÿ-fuzzy ý ideal of Ā2. 

Proof: 

          Let Ā be a Г-semiring. 

 Let ÿ and Ā be ÿ-fuzzy ý ideals of Ā2. 

            By theorem: 2.17 , 

            ÿ + Ā is a ÿ-fuzzy ideal of Ā2. 

            Let þ, ÿ, Ā, ÿ * Ā. 
 (ÿ + Ā)(þ, Ā) = ÿÿĀ{ÿ(þ, Ā), Ā(þ, Ā)} 

                                   g ÿÿĀ{ÿÿĀ{ÿ(þ + ÿ, Ā + ÿ), ÿ(ÿ, ÿ)}, 
ÿÿĀ{Ā(þ + ÿ, Ā + ÿ), Ā(ÿ, ÿ)}} 

             g ÿÿĀ{ÿÿĀ{ÿ(þ + ÿ, Ā + ÿ), Ā(þ + ÿ, Ā + ÿ)}, 
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ÿÿĀ{ÿ(ÿ, ÿ), Ā(ÿ, ÿ)}} 

                        = ÿÿĀ{(ÿ + Ā)(þ + ÿ, Ā + ÿ), (ÿ + Ā)(ÿ, ÿ)} 

            ⇒ (ÿ + Ā)(þ, Ā) g  ÿÿĀ{(ÿ + Ā)(þ + ÿ, Ā + ÿ), (ÿ + Ā)(ÿ, ÿ)} 

 Hence ÿ + Ā is a ÿ-fuzzy ý ideal of Ā × Ā. 

 

Definition: 3.20 

           Let � be a set and µ be a ÿ-fuzzy subset of � × � and ÿ, Ā * ÿ. The mapping µÿ�: � × � → ÿ, µĀ�: � × � → ÿ, µĀ,ÿ��: � × � → ÿ are called fuzzy type translation, 

fuzzy type multiplication and fuzzy type magnified translation of µ respectively, if for 

all þ, Ā * Ā, 

 µÿ�(þ, Ā) = µ(þ, Ā)Çÿ,  µĀ�(þ, Ā) = ĀÆµ(þ, Ā),  µĀ,ÿ��(þ, Ā) = (ĀÆµ(þ, Ā))Çÿ. 
Theorem: 3.21 

           Let Ā be a Г-semiring and let µ be a ÿ-fuzzy subset of Ā × Ā and let ÿ * ÿ. µ is a ÿ-fuzzy ideal of Ā × Ā iff µÿ� is a ÿ-fuzzy ideal of Ā × Ā. 

Proof: 

 Suppose µ is a ÿ-fuzzy ideal of Ā × Ā. 

 Let þ, ÿ, Ā, ÿ * Ā and ÿ * Г. 

 Now, 

 µÿ�(þ + ÿ, Ā + ÿ) = µ(þ + ÿ, Ā + ÿ)Çÿ 
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                               g ÿÿĀ{µ(þ, Ā), µ(ÿ, ÿ)}Çÿ 

                              = ÿÿĀ{µ(þ, Ā)Çÿ, µ(ÿ, ÿ)Çÿ} 

                               = ÿÿĀ{µÿ�(þ, Ā), µÿ�(ÿ, ÿ)} 

 ⇒ µÿ�(þ + ÿ, Ā + ÿ) g  ÿÿĀ{µÿ�(þ, Ā), µÿ�(ÿ, ÿ)} 

  

 Also, 

 µÿ�(þÿÿ, Āÿÿ) = µ(þÿÿ, Āÿÿ)Çÿ 

                          g ÿÿĀ{µ(þ, Ā), µ(ÿ, ÿ)}Çÿ 

                          = ÿÿĀ{µ(þ, Ā)Çÿ, µ(ÿ, ÿ)Çÿ} 

                          = ÿÿĀ{µÿ�(þ, Ā), µÿ�(ÿ, ÿ)} 

 ⇒µÿ�(þÿÿ, Āÿÿ) g  ÿÿĀ{µÿ�(þ, Ā), µÿ�(ÿ, ÿ)} 

 Hence µÿ� is a ÿ-fuzzy ideal of Ā × Ā. 
 Suppose that ÿ * ÿ, µÿ� is a ÿ-fuzzy ideal of Ā × Ā. 

 Let þ, ÿ, Ā, ÿ * Ā and ÿ * Г. 

 Now, 

 µÿ�(þ + ÿ, Ā + ÿ) g  ÿÿĀ{µÿ�(þ, Ā), µÿ�(ÿ, ÿ)} 

  ⇒µ(þ + ÿ, Ā + ÿ)Çÿ g ÿÿĀ{µ(þ, Ā)Çÿ, µ(ÿ, ÿ)Çÿ} 

   ⇒ µ(þ + ÿ, Ā + ÿ)Çÿ g ÿÿĀ{µ(þ, Ā), µ(ÿ, ÿ)}Çÿ 
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  ⇒ µ(þ + ÿ, Ā + ÿ) g ÿÿĀ{µ(þ, Ā), µ(ÿ, ÿ)} 

 Also, 

 µÿ�(þÿÿ, Āÿÿ) g ÿÿþ{µÿ�(þ, Ā), µÿ�(ÿ, ÿ)} 

              ⇒ µ(þÿÿ, Āÿÿ)Çÿ g ÿÿþ{µ(þ, Ā)Çÿ, µ(ÿ, ÿ)Çÿ} 

  ⇒ µ(þÿÿ, Āÿÿ)Çÿ g ÿÿþ{µ(þ, Ā), µ(ÿ, ÿ)}Çÿ 

   ⇒ µ(þÿÿ, Āÿÿ) g ÿÿþ{µ(þ, Ā), µ(ÿ, ÿ)} 

 Hence µ is a ÿ-fuzzy ideal of Ā × Ā. 
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CHAPTER-4 

NORMAL �-FUZZY IDEAL 

Definition: 4.1 

 A ÿ-fuzzy subset Ā of a Г-semiring Ā is said to be normal if Ā(0) = 1. 

Definition: 4.2 

Let Ā be a L-fuzzy subset of Г-semiring Ā. We define Ā+on S by 

Ā+(þ) = Ā(þ)Ç(Ā(0))′, where (Ā(0))′ is the complement of Ā(0). 

Definition: 4.3 

 Let � be an ideal of Г-semiring Ā. If we define ÿ-fuzzy subset on Ā by 

ÿ�(þ)  = {1, ÿÿ þ *  �0, ÿÿ þ +  � ,. for all þ * Ā. Then ÿ� is a normal ÿ-fuzzy ideal of Ā and 

Āÿ� = �. 

Result: 4.4 

 If Ā and ÿ are normal ÿ-fuzzy ideals of Г-semiring Ā then Ā + ÿ is a normal  ÿ-fuzzy ideal of Г-semiring. 

Theorem: 4.5 

 If Ā is a normal L-fuzzy ideal of Г-semiring Ā then Āÿ� , fuzzy translation is a 

normal ÿ-fuzzy ideal. 
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Proof: 

Let Ā be a normal ÿ-fuzzy ideal of Г-semiring Ā. 

 By theorem: 3.9, 

 Āÿ� , the fuzzy translation is a ÿ-fuzzy ideal of Г-semiring Ā. 

Āÿ�(þ) = Ā(þ)Çÿ, for all þ * Ā. 

 ⇒  Āÿ�(0) = Ā(0)Çÿ 

                                 = 1Çÿ 

                              = 1 

            ∴ Āÿ�(0) = 1 

Hence Āÿ� , fuzzy translation is a normal ÿ-fuzzy ideal. 

Theorem: 4.6 

 Let Ā be a ÿ-fuzzy subset of Г-semiring Ā. Then 

i) Ā+is a normal ÿ-fuzzy subset of Ā containing Ā. 

ii) (Ā+)+ = Ā 

iii) Ā is a normal if and only if  Ā+ = Ā 

iv) If there exists a ÿ-fuzzy subset ɤ of Ā satisfying ɤ+ ⊆ Ā then Ā is a normal. 

Proof: 

i) Let Ā be a ÿ-fuzzy subset of Г-semiring. 
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Then Ā+(þ) = Ā(þ)Ç(Ā(0))′, for all þ * Ā. 

⇒Ā+(0) = Ā(0)Ç(Ā(0))′ = 1, 
              Ā(þ) f  Ā(þ)Ç(Ā(0))′ =  Ā+(þ), for all þ * Ā. 
 ∴ µ(þ) f µ+(þ), for all þ * Ā. 

Hence Ā+ is a normal ÿ-fuzzy subset of Ā containing Ā. 

ii) (Ā+)+(þ) = Ā+(þ)Ç(Ā+(0))′ 
                                            =  Ā+(þ)Ç1′ 
                                         =  Ā+(þ)Ç0 

⇒(Ā+)+(þ) =  Ā+(þ), for all þ * Ā. 

Therefore (Ā+)+ = Ā 

iii) Suppose Ā = Ā+. 

Then Ā+(þ)  = Ā(þ)Ç(Ā(0))′, for all þ * Ā. 

 ⇒  Ā(þ) = Ā(þ)Ç(Ā(0))′ 
 ⇒  Ā(0) = Ā(0)Ç(Ā(0))′  
 ⇒  Ā(0) = 1 

Hence Ā is normal. 

Conversely, 

Suppose that Ā is normal. 

Then Ā+(þ) = Ā(þ)Ç(Ā(0))′
 

                 = Ā(þ)Ç1′  ⇒Ā+(þ) = Ā(þ) 

Therefore Ā+ = Ā 
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iv) Now  ɤ+(þ) = ɤ(þ)Ç(ɤ(0))′
 

⇒ɤ+(0) = ɤ(0)Ç(ɤ(0))′
 

⇒ɤ+(0) = 1 

Also  ɤ+ ⊆  Ā 

 ⇒ ɤ+(0) f Ā(0) 

 ⇒1 f Ā(0)  ⇒Ā(0) = 1. 

 Hence Ā is normal. 

Theorem: 4.7 

 Let Ā be a ÿ-fuzzy subset of Г-semiring Ā. If Ā is a ÿ-fuzzy ideal of Ā then Ā+ is a normal ÿ-fuzzy ideal of Ā containing Ā. 

Proof: 

 Let þ, ÿ * Ā, ÿ * Г. 

 Then Ā+(þ + ÿ)  =  Ā(þ + ÿ)Ç(Ā(0))′ 
       g  ÿÿĀ{Ā(þ), Ā(ÿ)}Ç(Ā(0))′ 
       =  ÿÿĀ{Ā(þ)Ç(Ā(0))′, Ā(ÿ)Ç(Ā(0))′} 

       =  ÿÿĀ {Ā+(þ), Ā+(ÿ)} 

 ⇒ Ā+(þ + ÿ) g ÿÿĀ {Ā+(þ), Ā+(ÿ)} 

 Also, Ā+(þÿÿ) = Ā(þÿÿ)Ç(Ā(0))′ 
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     g  Ā(ÿ)Ç(Ā(0))′ 
     =  Ā+(ÿ) 

 ⇒Ā+(þÿÿ) g Ā+(ÿ) 

 Similarly, Ā+(þÿÿ) g  Ā+(þ). 

 By theorem: 4.6, 

 Ā+ is a normal ÿ-fuzzy ideal containing Ā. 

Corollary: 4.8 

 Let Ā be a ÿ-fuzzy subset of Г-semiring and þ * Ā. If Ā+(þ) = 0 then  

Ā(þ) = 0. 

Proof: 

By theorem: 4.6 i), 

 Ā(þ) f  Ā+(þ) 

  ⇒  Ā(þ) f  Ā+(þ) = 0 

  ⇒  Ā(þ) f 0 

 Therefore Ā(þ) = 0. 

Theorem: 4.9 

 Let Ā be a Г-semiring, Ā: Ā → Ā be an onto homomorphism and Ā be a        ÿ-fuzzy subset of Ā. Define ĀĀ : Ā → ÿ by ĀĀ(þ)  =  Ā(Ā(þ)), for all þ * Ā. If Ā is 

a ÿ-fuzzy ideal of Ā then ĀĀ  is a ÿ-fuzzy ideal of Ā. 
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Proof: 

 Let Ā be a Г-semiring. 

 Let þ, ÿ * Ā, ÿ * Г. 

Now, 

 ĀĀ(þ + ÿ) = Ā(Ā(þ + ÿ)) 

         = Ā(Ā(þ) + Ā(ÿ)) 

         g ÿÿĀ{Ā(Ā(þ)), Ā(Ā(ÿ))} 

         =  ÿÿĀ{ĀĀ(þ), ĀĀ(ÿ)} 

 ⇒ ĀĀ(þ + ÿ) g ÿÿĀ{ĀĀ(þ), ĀĀ(ÿ)} 
 Also, 

 ĀĀ(þÿÿ) = Ā(Ā(þÿÿ)) 

      = Ā(Ā(þ)ÿĀ(ÿ)) 

      g  ÿÿĀ{Ā(Ā(þ)), Ā(Ā(ÿ))} 

      =  ÿÿĀ{ĀĀ(þ), ĀĀ(ÿ)} 

 ⇒ĀĀ(þ + ÿ) g ÿÿĀ{ĀĀ(x), ĀĀ(y)} 

 Therefore ĀĀ  is a ÿ-fuzzy Г-subsemiring of Ā. 

 Now, 
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  ĀĀ(þÿÿ) = Ā(Ā(þÿÿ)) 

       = Ā(Ā(þ)ÿĀ(ÿ)) 

       g Ā(Ā(ÿ)) 

       = ĀĀ(ÿ) 

  ⇒ĀĀ(þÿÿ) g ĀĀ(ÿ) 

 Similarly,  ĀĀ(þÿÿ) g ĀĀ(þ). 

 Hence ĀĀ  is an ideal of Г -semiring Ā. 

Theorem: 4.10 

 Let Ā and ɤ be ÿ-fuzzy ideals of Г-semiring Ā. If Ā ⊆  ɤ and Ā(0)  =  ɤ(0) 

then Ā� ⊆ Āɤ. 

Proof: 

 Let Ā and ɤ be two ÿ-fuzzy ideals of Г-semiring Ā. 

 Suppose that Ā ⊆ ɤ and Ā(0) = ɤ(0). 

 Let þ *  Ā�. 

  ⇒  Ā(þ) =  Ā(0) = ɤ(0) 

  ⇒ ɤ(0) = Ā(þ) f ɤ(þ), for all þ * Ā. 

 Also ɤ(þ) f ɤ(0), for all þ * Ā. 
  ⇒  ɤ(þ) = ɤ(0). 
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 Therefore þ * Āɤ 

 Hence Ā� ⊆ Āɤ. 

Corollary: 4.11 

 Let Ā and ɤ be normal ÿ-fuzzy ideals of Г-semiring Ā. If Ā ⊆  ɤ then Ā� ⊆Āɤ. 

Theorem: 4.12 

If Ā and ɤ be normal ÿ-fuzzy ideals of Г-semiring Ā then Ā�+ɤ = Ā� + Āɤ. 

Proof: 

 Let Ā and ɤ be normal ÿ-fuzzy ideals of Г-semiring Ā. 
 Suppose þ * Ā�+ɤ 

  ⇔Ā + ɤ(þ) = Ā + ɤ(0) 

  ⇔ÿÿĀ{Ā(þ), ɤ(þ)} = ÿÿĀ{Ā(0), ɤ(0)} = 1 

  ⇔ Ā(þ) = 1 ÿĀý ɤ(þ) = 1 

  ⇔ Ā(þ) = Ā(0) ÿĀý ɤ(þ) = ɤ(0) 

  ⇔ þ * Ā� + Āɤ 

Hence Ā�+ɤ = Ā� + Āɤ. 

Definition: 4.13 
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A non-constant ÿ-fuzzy ideal Ā of Г-semiring Ā is said to be a maximal        ÿ-fuzzy ideal if Ā+ is a maximal element of (ā(ā), ⊆).  (ā(Ā), ⊆) denotes the 

partially ordered set of normal ÿ-fuzzy ideals of Г-semiring Ā under set inclusion. 

Theorem: 4.14 

 If Ā be a non-constant maximal normal ÿ-fuzzy ideal of Г-semiring Ā then Ā 

takes the values only 0 and 1. 

Proof: 

 Let ÿ * Ā. 

 Let Ā be a maximal normal ÿ-fuzzy ideal of Г-semiring Ā. 

 0 < Ā(ÿ) < 1 and Ā(ÿ) = ÿ 

 Define ÿ-fuzzy subset ɤ of Ā by ɤ(þ) = Ā(þ)Çÿ for all þ * Ā. 
 Then ɤ(þ) = Āÿ�(þ) and ɤ(þ) g Ā(þ), for all þ * Ā. 
 By theorem: 4.5, 

 ɤ is a normal ÿ-fuzzy ideal of Г-semiring Ā. 

 If  þ b  0, Ā(þ) < ɤ(þ). 

 Therefore Ā is not a maximal, which is a contradiction. 

 Hence the theorem. 

Theorem: 4.15 
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If Ā is a maximal ÿ-fuzzy ideal of Г-semiring Ā then Ā� is a maximal ideal of Г-semiring Ā. 
Proof: 

 Let Ā be a maximal ÿ-fuzzy ideal of Г-semiring Ā. 

 Then Ā+ is a maximal element of (ā(ā), ⊆) 

 By theorem: 4.14 , 

 Ā+ takes only the values 0 and 1. 

 If Ā+ = 1 

  ⇒Ā(þ)Ç(Ā(0))′ = 1 

  ⇒Ā(0) = 1   (Since Ā(0) g Ā(þ), for all þ * Ā) 

 Also Ā(þ) f  Ā+(þ), for all þ * Ā. 

 If Ā+(þ) = 0 

  ⇒Ā(þ)Ç(Ā(0))′ = 0 

  ⇒Ā(þ) = 0 and (Ā(0))′ = 0 

  ⇒Ā(0) = 1. 

 Therefore Ā is a normal ÿ-fuzzy ideal of Г-semiring Ā. 

 Now, Ā� is a proper ideal of Г-semiring Ā, since Ā is a non-constant. 

 Let � be an ideal of Г-semiring Ā such that Ā� ⊆ �. 
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  ⇒ÿ�µ ⊆ ÿ� 

  ⇒Ā = ÿ�µ ⊆ ÿ� 

 Since Ā and  ÿ� are normal ÿ-fuzzy ideals of Ā and Ā = Ā+ 

  ⇒ Ā is a maximal element of ā(Ā). 
  ⇒  Ā = ÿ� or ÿ� = 1 

 where 1: Ā → ÿ, 1(þ)  =  1, for all þ * Ā is a ÿ-fuzzy ideal. 

 If  ÿ� = 1, then � = Ā. 

 If Ā = ÿ�, then Ā� = Āÿ� = � 

 Hence Ā�  is a maximal ideal of Г-semiring Ā. 
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CHAPTER - 1 

PRELIMINARIES 

This chapter provides the basic definit ions and results of algebra which are 

needed to the subsequent chapters.  

Definition : 1.1 

 In three dimensional rectangular space, the coordinates of a point are 

(x, y, z). It is convenient to write (x1,x2,x3) for (x,y,z). The coordinates of point in four 

 dimensional space are given by (x1,x2,x3,x4). In general, the coordinates of a 

 point in n-dimensional space are given by (x1,x2,…,xn) such n-dimensional space is  

denoted by Vn(R). 

Definition :1.2  

 In the symbol Aij
kl, the indices i , j written in the upper position are 

called superscripts and k,l written in the lower position are called subscripts. 

Note : 1.3 

            A superscript is always used to indicate contravariant 

component and a subscript is always used to indicate covariant component. 

Definition: 1.4 

The symbol δi
j, called Krönecker Delta and it is defined by, 

  δi
j ={1 ÿ� ÿ = Ā0 ÿ� ÿ b Ā  

similarly, δij and δij are defined as, 
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 δij ={1 ÿ� ÿ = Ā0 ÿ� ÿ b Ā     and 

 δij ={1 ÿ� ÿ = Ā0 ÿ� ÿ b Ā 

Definition: 1.5 

 A function ϕ(x1,x2,...,xn) is called Scalar or an invariant if its 

original value not change upon transformation action of coordinates from x1,x2,...,xn 

to ͞x 1,͞x 2,…,x͞ n. 

 (i.e)ϕ(x1,x2,…,xn) = ͞ϕ (͞x 1,͞x 2,...,͞x n) 

Scalar is also called tensor of rank zero. 

Example : 1.6 

 AiBi is scalar 

Definition : 1 . 7  

 In three dimensional rectangular space, the coordinate of a point are 

(x,y,z) where x, y, z are real numbers. It is convenient to write (x1,x2,x3) for (x,y,z) or 

simply xi, where i=1,2,3. Similarly in n-dimensional space, the coordinate of  a point 

are n-independent variables (x1,x2,…,xn) in X-coordinate system. Let (͞x 1,͞x 2,...,͞x n) be 

coordinate of the same point in Y-coordinate system. 

 Let ͞x 1,͞x 2,…͞,xn be independent single valued function of x1,x2,…,xn, so that, 

  ͞x 1 = x͞ 1 (x1,x2,...,xn) 

  ͞x 2 = x͞ 2 (x1,x2,...,xn) 
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  ͞x  3= x͞ 3(x1,x2,...,xn) 

                      ……………….  

  ͞x  n = ͞x  n(x1,x2,….,xn)    ( or ) 

  ͞x  i = x͞  i(x1,x2,….,xn) ;      i= 1,2,3,…,n  …..(1) 

Solving these equations and expressing xias functions of �̅1,͞x 2,....,x͞  n, so that, 

  xi = xi (͞x 1,x͞ 2,....,͞x n) ; i=1,2,….,n   …..(2) 

The equations (1) and (2) are said to be a transformation of the coordinates from 

one coordinate system to another. 

Definition : 1.8 

  Consider the sum of the series S = a1x
1+ a2x

2+ …+an x
n= ∑ ÿÿ  Ąÿ=1 �ÿ. 

By using summation convention, drop the sigma sign and write convention as 

   ∑ ÿÿ  Ąÿ=1 �ÿ =  ÿÿ  �ÿ 
This convention is called Einstein’s summation convention  

Definition : 1.9 

 Any index which is repeated in a given term is called a dummy index 

or dummy suffix. This is also called Umbral or Dextral Index. 

 For example, Consider the expression ai x
i where i is dummy index; 

then, 

                        ai x
i = a1x

1 + a2x
2 +…+anx

n  
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and 

                        ajx
j = a1x

1 + a2x
2 +…+anx

n  

 

These two equations prove that 

 ai x
i = ajx

j 

So, any dummy index can be replaced by any other index ranging the same numbers. 

Definition : 1.10 

 Any index occurring only once in a given term is called a Free Index. 

 e.g. Consider the expression ai 
jxi where j is free index. 

Definition : 1.11 

                    If V1, V2,……, Vk and W are vector spaces. A function  

f : V1  × V2 ×,….., × VK  → W is called Multilinear if it is linear in each of its 

variables.   

f(v1,……., vi-1, avi+ �ÿ′ , �ÿ+1,….., vk) 

= ÿ�(�1,&&.,�ÿ21, �ÿ , �ÿ+1, & . , �ā) + Ā�(�1,&&.,�ÿ21, �ÿ′, �ÿ+1, & . , �ā) 

for all a,b ∈R, �Ā ∈ �Ā for j=1,…..k and �ÿ′ ∈ �ÿ for i=1,…..,k 
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Definition : 1.12 

                Multilinear algebra is a generalization of linear algebra since a linear 

function is also multilinear in one variable. Multilinear algebra are tensor of rank 

one. 

If �1,�2,……., �ā  and W are vector spaces then multilinear maps 

g : V1  × V2 ×,….., × VK  → W 

Definition : 1.13 

The definition of tensors is based on multilinear algebra with a 

multilinear map. Consider the real vector spaces U1,-..,Un and their respective dual 

vector spaces V1,...,Vm. Each of their vector spaces belongs to the finite 

N-dimensional space RN, the image vector space W, to the real space R. 

A mixed tensor of type (m, n) can be defined as a multilinear functional T that maps 

an (m+ n) tuple of vectors of the vector spaces U and V into W 

T:(U1×...×Un,) ×(V1×...×Vm)→ W 

           RN×...× RN×RN×...×RN→R ..... (1) 

 

   n copies      m copies 

          (u1,…,un;v1,…,vm) → T(u1,…,un;v1,…,vm)∈ R.  

Mapping the multilinear functional T of the tensor type (m, n) to the contra 

variant basis {gim} of U and covariant basis {gjn} of V, one obtains its images in W⊂ R. These images are called the components of the (m + n) order mixed tensor 

T with respect to the relating bases: �Ā1&ĀĄÿ1&ÿă ≡ �(�ÿ1, & , �ÿÿ; �ÿ1, & , �ÿă) ∈ R   …..(2) 
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Multilinear functional T 

Thus, the (m + n)-order mixed tensor T can be expressed in the covariant 

and contravariant bases of the respective vector spaces V and U. In total, the (m + n) 

order tensorT has N(m+n) components, as shown in Equation (3). 

 � = �Ā1&Āăÿ1&ÿăgi1…gim�Ā1 & �ĀĄ ; 

 T∈RN x…x RN x RN x…x RN   ….(3) 

 

  n copies    m copies 

          In the case of covariant and contravariant tensors T, the dual vector spaces 

Vand real vector spaces Uare omitted in Eqution (1), respectively. 

i) n-order covariant tensors: 

T= Tj1…jngj1….gjn ∈(U1 x...x Un) 

(ii) m-order contravariant tensors: 

T =Ti1…imgi1...gim∈(V1 x...x Vm) 

 

 

(u1,…,un;v1,…,vm) 

RN×…×RN×RN×…×RN→R 

 

    n copies     m copies 

T(u1,…,un; 

v1,…,vm) 

R 
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CHAPTER - 2 

RANKS OF TENSORS 

In this section, I have  discussing about contravariant vector, covariant vector, 

contravariant tensor of rank two, covariant tensor of rank two, mixed tensor of rank 

two, contravariant tensor of rank r and covariant tensor of rank s. 

2.1.Tensor of rank one :  

Definition : 2.1.1 

Let (�1, �2, & , �Ą) or �ÿ be coordinate of a point in �- coordinate system and 

(�̅1, �̅2, & , �̅Ą) or �̅ÿbe coordinates of the same point in the Y - coordinate system. 

 Let ýÿ, ÿ = 1, 2, & , ÿ (or ý1, ý2, & , ýĄ)be ÿ functions of coordinates �1, �2, & , �Ą,  in X - coordinate system. If the quantities Ai are transformed to ý̅ÿin  

Y - coordinate system then according to the law of transformation.  

ý̅ÿ =  ��̅ÿ��Ā ýĀ         or           ýĀ =  ��Ā��̅ÿ ý̅ÿ  
 Then Ai called components of contra variant vector. 

Example : 2.1.2 

 If �ÿ be the coordinate of a point in n-dimensional space show that ��ÿ are 

component of a contravariant vector. 

 

 



 

8 

 

Solution : 

 Let �1, �2, & , �Ą or �ÿ are coordinates in X - coordinate system and �̅1, �̅2, & , �̅Ą or �̅ÿ are coordinates in Y-coordinate system. 

If 

 �̅ÿ =  �̅ÿ (�1, �2, & , �Ą) 

 ��̅ÿ =  ��̅ÿ��1 ��1 +  ��̅ÿ��2 ��2 + ⋯ +  ��̅ÿ��Ą ��Ą 

 ��̅ÿ =  ��̅ÿ��Ā ��Ā 

It is law of transformation of contra variant vector. So, ��ÿ are components of 

a contravariant vector. 

Definition : 2.1.3 

Let, ýÿ , ÿ = 1, 2, & , ÿ (or ý1 , ý2, & , ýĄ ) be n functions of the coordinates �1, �2, & , �Ą,  in X - coordinate system. If the quantities ýÿ are transformed to ý̅ÿin  

Y - coordinate system then according to the law of transformation. 

ý̅ÿ =  ��Ā��̅ÿ ýĀ       or        ýĀ =  ��̅ÿ��Ā ý̅ÿ 
Then  ýÿ are called components of covariant vector. 

Note : 2.1.4 

The contravariant (or covariant) vector is also called contravariant or 

covariant) tensor of rank one. 
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Example : 2.1.5 

�ö��ÿ is a covariant vector where ö is a scalar function. 

Solution : 

Let �1, �2, & , �Ą or �ÿ are coordinates in X - coordinate system and �̅1, �̅2, & , �̅Ą or �̅ÿ are coordinates in Y - coordinates system. 

Consider  ö (�̅1, �̅2, & , �̅Ą)  =  ö (�1, �2, & , �Ą) 

  �ö=  
�ö��1 ��1 +  �ö��2 ��2 + ⋯ +  �ö��Ą ��Ą 

  
�ö��̅ÿ = 

�ö��1 ��1��̅ÿ +  �ö��2 ��2��̅ÿ + ⋯ +  �ö��Ą ��Ą������  

  
�ö��̅ÿ = 

�ö��Ā ��Ā��̅ÿ 
              (or)   

�ö��̅ÿ  =  
��Ā��̅ÿ �ö��Ā 

It is law of transformation of component of covariant vector. So, 
�ö��ÿ is 

component of covariant vector. 

2.2 Tensor of rank two : 

Definition : 2.2.1 

Let ýÿĀ   (ÿ, Ā = 1, 2, & , ÿ) be ÿ2,  functions of coordinates �1, �2, & , �Ą in  

X - coordinates system. If the quantities ýÿĀ are transformed to ý̅ÿĀin Y - coordinate 

system having coordinates �̅1, �̅2, & , �̅Ą. Then according to the law of transformation. 
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   ý̅ÿĀ =  ��̅ÿ��ā ��̅Ā��Ă ýāĂ 
Then ýÿĀ are called components of contravariant Tensor of rank two. 

Definition: 2.2.2 

Let ýÿĀ  (ÿ, Ā = 1, 2, & , ÿ) be ÿ2 functions of coordinates �1, �2, & , �Ą in  

X - coordinates system. If the quantities ýÿĀ are transformed to ý̅ÿĀ in Y - coordinate 

system having coordinates �̅1, �̅2, & , �̅Ą then according to the law of transformation. 

ý̅ÿĀ =  ��ā��̅ÿ ��Ă��̅Ā ýāĂ 
Then ýÿĀ called components of covariant tensor of rank two. 

Definition: 2.2.3 

Let ýĀÿ(ÿ, Ā = 1, 2, & , ÿ) be ÿ2 functions of coordinates �1, �2, & , �Ą in  

X - coordinates system. If the quantities ýĀÿ are transformed to ý̅Āÿ in Y - coordinates 

system having coordinates �̅1, �̅2, & , �̅Ąthen according to the law of transformation. 

ý̅Āÿ =  ��̅ÿ��ā ��Ă��̅Ā ýĂā  

Then ýĀÿ are called components of mixed tensor of rank two. 

Theorem : 2.2.4 

 The kronecker delta is a mixed tensor of rank two. 
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Proof : 

 Let X and Y be two coordinate systems. Let the component of Kronecker delta 

in X - coordinate system �Āÿ and component of Kronecker delta in Y - coordinate be �Ā̅ÿ, then according to the law of transformation. 

= 
��̅ÿ��̅Ā = 

��̅ÿ��ā ��Ă��̅Ā ��ā��Ă  

�Ā̅ÿ = ��̅ÿ��ā ��Ă��̅Ā �Ăā 

This shows that Kronecker �Āÿ is mixed tensor of rank two. 

Theorem : 2.2.5 

 �Āÿ is an invariant i.e., it has same components in every coordinate system. 

Proof  : 

Since �Āÿ is a mixed tensor of rank two, then 

�Ā̅ÿ = ��̅ÿ��ā ��Ă��̅Ā �Ăā 

 = 
��̅ÿ��ā  ( ��Ă��̅Ā �Ăā) 

 = 
��̅ÿ��ā ��ā��̅Ā  as   

��Ă��̅Ā �Ăā= 
��ā��̅Ā  

 �Ā̅ÿ = 
��̅ÿ��̅Ā =�Āÿ ,  as   

��̅ÿ��̅Ā = �Āÿ 
So, �Āÿ is an invariant  
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Theorem : 2.2.6 

 The transformation of a contravariant vector is transitive   

                                 (or) 

The transformation of a contravariant vector form a group 

Proof  : 

          Let ýÿ be a contravariant vector in a coordinate system �ÿ (ÿ = 1, 2, & , ÿ).  

 

Let the coordinates �ÿ be transformed to the coordinate system �̅ÿ and �̅ÿ be 

transformed to �̿ÿ. 
 When coordinate �ÿ be transformed to �̅ÿ, the law transformation of a 

contravariant vector is 

ý̅Ć = 
��̅ý��þ ýć                                              …. (1) 

When coordinate �̅ÿ be transformed to �̿ÿ, the law of transformation of contravariant 

vector is  

   ý̿ÿ  = 
��̿ÿ��̅ý ý̅Ć 

   ý̿ÿ  = 
��̿ÿ��̅ý ��̅ý��þ ýć  from (1) 

   ý̿ÿ  = 
��̿ÿ��þ ýć  
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This shows that the direct transformation from �ÿ to �̿ÿ,  gives the same law of 

transformation. This property is called that transformation of contravariant vectors is 

transitive or form a group. 

Theorem : 2.2.7 

The transformation of a covariant vector is transitive.   

                                               (or) 

The transformation of a covariant vector form a group 

Proof : 

Let, ýÿ be a covariant vector in a coordinate system �ÿ (ÿ = 1, 2, & , ÿ). Let the 

coordinates �ÿ be transformed to the coordinate system �̅ÿ and �̅ÿ, be transformed  

to �̿ÿ. 
When coordinate �ÿ be transformed to �̅ÿ , the law of transformation of a 

covariant vector is  

   ý̅Ć = 
��þ��̅ý ýć                                             …. (1) 

When coordinate �̅ÿ be transformed to �̿ÿ, the law of transformation of a 

convariant vector is 

ý̿ÿ = 
��̅ý��̿ÿ ý̅Ć 

ý̿ÿ = 
��̅ý��̿ÿ ��þ��̅ý ýć 

ý̿ÿ = 
��þ��̿ÿ ýć  
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This shows that the  direct transformation from �ÿ to �̿ÿ, gives the same law of 

transformation. This property is called that transformation of covariant vectors is 

transitive or form a group. 

Theorem : 2.2.8 

 The transformation of tensors form a group      

                                                (or) 

The equation of transformation a tensor (Mixed tensor) posses the group 

property. 

Proof  : 

Let ýĀÿ be a mixed tensor of rank two in a coordinate system  �ÿ (ÿ = 1, 2, & , ÿ). Let the coordinates �ÿbe transformed to the coordinate system �̅ÿand �̅ÿ be transformed to �̿ÿ 
 When coordinate �ÿ be transformed to �̅ÿ , the transformation of mixed tensor 

of rank two is 

ý̅ćĆ = 
��̅ý��ÿ ��Ā��̅þ ýĉĈ    ….. (1) 

When coordinate �̅ÿbe transformed to �̿ÿ,the law of transformation of a mixed tensor 

of rank two is 

 ý̿Āÿ = 
��̿ÿ��̅ý ��̅þ��̿Ā ý̅ćĆ 

  = 
��̿ÿ��̅ý ��̅þ��̿Ā ��̅ý��ÿ ��Ā��̅þ ýĉĈ from (1) 
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 ý̿Āÿ = 
��̿ÿ��ÿ ��Ā��̿Ā ýĉĈ 

 This shows that the direct transformation from �ÿ to �̿ÿ, gives the same law of 

transformation. This property is called that transformation of tensors form a group. 

 

2.3 Tensors of higher order 

Definition : 2.3.1 

Let ýÿ1,ÿ2,&,ÿÿbe ÿĈ function of coordinates �1, �2, & , �Ą in X - coordinate 

system. If the quantities ýÿ1,ÿ2,&,ÿÿ, are transformed to ý̅ÿ1,ÿ2,&,ÿÿin Y - coordinate system 

having coordinates �̅1, �̅2, & , �̅Ą. Then according to the law of transformation 

 ý̅ÿ1,ÿ2,&,ÿÿ =  ��̅ÿ1��ý1 ��̅ÿ2��ý2 &  ��̅ÿÿ��ýÿ ýĆ1Ć2&Ćÿ 

Then ýÿ1,ÿ2,&,ÿÿ are called components of contravariant tensor of rank r 

Definition : 2.3.2 

Let ýĀ1,Ā2,&,ĀĀ be ÿĉ functions of coordinates �1, �2, & , �Ą in X - coordinate 

system. If the quantities ýĀ1,Ā2,&,ĀĀ are transformed to ý̅Ā1,Ā2,&,ĀĀin Y - coordinate system 

having coordinates �̅1, �̅2, & , �̅Ą. Then according to the law of transformation. 

ý̅Ā1,Ā2,&,ĀĀ =  ��ć1��̅Ā1 ��ć2��̅Ā2 & ��ćĀ��̅ĀĀ  ýć1,ć2,&,ćĀ 

Then ýĀ1,Ā2,&,ĀĀare called the components of covariant tensor of rank s. 
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Definition : 2.3.3 

LetýĀ1Ā2&ĀĀÿ1ÿ2&ÿÿ  be ÿĈ+ĉ functions of coordinates �1, �2, & , �Ą in X - coordinate 

system. If the quantities ýĀ1Ā2 &ĀĀÿ1ÿ2&ÿÿ  are transformed to ý̅Ā1Ā2&ĀĀÿ1ÿ2&ÿÿ   in Y – coordinate system 

having coordinate �̅1, �̅2, & , �̅Ą. Then according to the law of transformation. 

ý̅Ā1Ā2...ĀĀÿ1ÿ2&ÿÿ =  ��̅ÿ1��Ć1 ��̅ÿ2��Ć2 ��̅ÿÿ��Ćÿ ��ć1��̅Ā1 ��ć2��̅Ā2 & ��ćĀ��̅ĀĀ  ýć1ć2...ćĀĆ1Ć2 ...Ćÿ 

Then ýĀ1Ā2...ĀĀÿ1ÿ2&ÿÿ are called component of mixed tensor of rank r + s 

A tensor of type ýĀ1Ā2...ĀĀÿ1ÿ2&ÿÿ is known as tensor of type (r, s). In (r, s) the first 

component r indicates the rank of contravariant tensor and the second components 

indicates the rank of covariant tensor. 

Thus the tensors ýÿĀ and ýÿĀ are type (0, 2) and (2, 0) respectively while tensor ýĀÿ is type (1, 1) 
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CHAPTER – 3 

OPERATIONS IN TENSOR 

In this chapter, I have discussing about the Addition and subtraction of tensors, 

multiplication of tensors, contraction of a tensor and  inner product of the given 

tensors. 

3.1 Addition and subtraction of tensors  

Theorem : 3.1.1  

The sum (or difference) of two tensors which have same number of covariant 

and the same contravariant indices is again a tensor of the same rank and type as the 

given tensors. 

Proof  : 

Consider two tensorsýĀ1Ā2&ĀĀÿ1ÿ2&ÿÿ  and þĀ1Ā2&ĀĀÿ1ÿ2...ÿÿ  of the same rank and type  

(i.e., covariant tensor of rank s and contravariant tensor of rank r).  Then 

according to the law of transformation 

ý̅Ā1Ā2&ĀĀÿ1ÿ2&ÿÿ = ��̅ÿ1��ý1 ��̅ÿ2��ý2 ...
��̅ÿÿ��ýÿ ��þ1��̅Ā1 ��þ2��̅Ā2 ...

��þĀ��̅ĀĀ ýć1ć2&ćĀĆ1Ć2&Ćÿ  

and  

þ�Ā1Ā2&ĀĀÿ1ÿ2 ...ÿÿ = ��̅ÿ1��ý1 ��̅ÿ2��ý2 ...
��̅ÿÿ��ýÿ ��þ1��̅Ā1 ��þ2��̅Ā2  ... 

��þĀ��̅ĀĀ þć1ć2...ćĀĆ1Ć2&Ćÿ 

Then 

ý̅Ā1Ā2&ĀĀÿ1ÿ2 ...ÿÿ  ±   þ�Ā1Ā2&ĀĀÿ1ÿ2 ...ÿÿ = ��̅ÿ1��ý1 ��̅ÿ2��ý2...
��̅ÿÿ��ýÿ ��þ1��̅Ā1 ��þ2��̅Ā2  ...

��þĀ��̅ĀĀ (ýć1ć2&ćĀĆ1Ć2...Ćÿ ± þć1ć2&ćĀĆ1Ć2&Ćÿ) 
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If, 

ý̅Ā1Ā2&ĀĀÿ1ÿ2 ...ÿÿ  ±  þ�Ā1Ā2&ĀĀÿ1ÿ2 ...ÿÿ = ÿĀ̅1Ā2&ĀĀÿ1ÿ2...ÿÿ  

and 

ýć1ć2&ćĀĆ1Ć2&Ćÿ ± þć1ć2&ćĀĆ1Ć2...Ćÿ = ÿć1ć2 ...ćĀĆ1Ć2...Ćÿ  

So, 

ÿĀ̅1Ā2&ĀĀÿ1ÿ2...ÿÿ = ��̅ÿ1��ý1 ��̅ÿ2��ý2 ...
��̅ÿÿ��ýÿ ��þ1��̅Ā1 ��þ2��̅Ā2  ...

��þĀ��̅ĀĀ ÿć1ć2&ćĀĆ1Ć2 ...Ćÿ  

This is law of transformation of a mixed tensor r+s.  So, ÿĀ̅1Ā2&ĀĀÿ1ÿ2...ÿÿ  is a mixed 

tensor of rank r+s or of type (r, s). 

Example : 3.1.2 

 If ýāÿĀ
 and  þāÿĀ

 are tensors then their sum and difference are tensors of the 

same rank and type. 

Solution : 

 As given ýāÿĀ
 and þāÿĀ

 are tensors.  Then according to the law of transformation. 

ý̅āÿĀ =  ��̅ÿ��Ć ��̅Ā��ć ��Ĉ��̅ā ýĈĆć
 

and  

þ�āÿĀ =  ��̅ÿ��Ć ��̅Ā��ć ��Ĉ��̅ā þĈĆć
 

then 



 

19 

 

ý̅āÿĀ ± þ�āÿĀ =  ��̅ÿ��Ć ��̅Ā��ć ��Ĉ��̅ā  (ýĈĆć ± þĈĆć) 

 

If 

ý̅āÿĀ ± þ�āÿĀ = ÿā̅ÿĀ
 and ýĈĆć ± þĈĆć = ÿĈĆć

 

So, 

ÿā̅ÿĀ = ��̅ÿ��Ć ��̅Ā��ć ��Ĉ��̅ā ÿĈĆć
 

This shows that ÿā̅ÿĀ
 is a tensor of same rank and type as ýāÿĀ

 and þāÿĀ
 

3.2 Multiplication of tensors 

Theorem : 3.2.1 

The multiplication of two tensors is a tensor whose rank is the sum of the 

ranks of two tensors. 

Proof  : 

Consider two tensors ýĀ1Ā2&ĀĀÿ1ÿ2...ÿÿ  (which is covariant tensor of rank s and 

contravariant tensor of rank r) and þĂ1Ă2&ĂĄā1ā2 ...āă  (which is covariant tensor of rank m and 

contravariant tensor of rank n).  Then according to the law of transformation. 

ý̅Ā1Ā2&ĀĀÿ1ÿ2 ...ÿÿ = ��̅ÿ1��ý1 ��̅ÿ2��ý2 ...
��̅ÿÿ��ýÿ ��þ1��̅Ā1 ��þ2��̅Ā2 ... 

��þĀ��̅ĀĀ  ýć1ć2&ćĀĆ1Ć2...Ćÿ  

and  



 

20 

 

þ�Ă1Ă2&ĂĄā1ā2 ...āă = ��̅ā1��ÿ1 ��̅ā2��ÿ2 ...
��̅āă��ÿă ��Ā1��̅Ă1 ��Ā2��̅Ă2  ... 

��ĀĄ��̅ĂĄ þĀ1Ā2&ĀĄÿ1ÿ2...ÿă  

 

 

Then their product is 

ý̅Ā1Ā2&ĀĀÿ1ÿ2 ...ÿÿ þ�Ă1Ă2&ĂĄā1ā2...āă = ��̅ÿ1��ý1 & ��̅ÿÿ��ýÿ ��þ1��̅Ā1 & ��þĀ��̅ĀĀ ��̅ā1��ÿ1...
��̅āă��ÿă ��Ā1��̅Ă1 & ��ĀĄ��̅ĂĄ ýć1ć2 ...ćĀĆ1Ć2...ĆÿþĀ1Ā2&ĀĄÿ1ÿ2...ÿă  

If 

ÿĀ̅1Ā2&ĀĀĂ1Ă2&ĂĄÿ1ÿ2&ÿÿā1ā2&āă = ý̅Ā1Ā2&ĀĀÿ1ÿ2...ÿÿ þ�Ă1Ă2&ĂĄā1ā2&āă  

and 

ÿć1ć2&ćĀĀ1Ā2&ĀĄ�1�2&Ćÿÿ1ÿ2&ÿă = ýć1ć2...ćĀĆ1Ć2...ĆÿþĀ1Ā2&ĀĄÿ1ÿ2&ÿă  

So, 

ÿĀ̅1Ā2&ĀĀĂ1Ă2&ĂĄÿ1ÿ2&ÿÿā1ā2&āă = ��̅ÿ1��ý1 & ��̅ÿÿ��ýÿ ��þ1��̅Ā1 & ��þĀ��̅ĀĀ ��̅ā1��ÿ1...
��̅āă��ÿă ��Ā1��̅Ă1 & ��ĀĄ��̅ĂĄ  

ÿć1ć2&ćĀĀ1Ā2&ĀĄ�1�2&Ćÿÿ1ÿ2&ÿă  

This is law of transformation of a mixed tensor of rank r+m+s+n. So, ÿĀ̅1Ā2&ĀĀĂ1Ă2&ĂĄÿ1ÿ2&ÿÿā1ā2&āă  is a mixed tensor of rank r+m+s+n. or of type (r+m, s+n). Such 

product is called outer product or open product of two tensors. 

Theorem : 3.2.2 

If ýÿ and þĀ are the components of a contravariant and covariant tensors of 

rank one then prove that ýÿþĀ are components of a mixed tensor of rank two. 
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Proof :  

As ýÿ is contravariant tensor of rank one and þĀ is convariant tensor of rank 

one.  Then according to the law of transformation 

ý̅ÿ = ��̅ÿ��ā ýā                                                               ... (1) 

and 

þ�Ā = ��Ă��̅Ā þĂ                                                              ... (2) 

Multiply (1) and (2), we get 

ý̅ÿþ�Ā = ��̅ÿ��ā ��Ă��̅Ā ýāþĂ 
This is law of transformation of tensor of rank two.  So, ýÿþĀ are mixed tensor 

of rank two.  Such product is called outer product of two tensors. 

Example: 3.2.3 

The product of two tensors ýĀÿ and þăāĂ is a tensor of rank five. 

Solution : 

As ýĀÿ and þăāĂ  are tensors.  Then by law of transformation. 

ý̅Āÿ = ��̅ÿ��ý ��þ��̅Ā ýćĆ and   þ�ăāĂ = ��̅ā��ÿ ��̅Ă��Ā ��ā��̅ă    þĊĈĉ 

Multiplying these, we get 

ý̅Āÿþ�ăāĂ = ��̅ÿ��Ć ��ć��̅Ā ��̅ā��Ĉ ��̅Ă��ĉ ��Ċ��̅ă ýćĆ þĊĈĉ 
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This is law of transformation of tensor of rank five.  So, ýĀÿ þăāĂ is a tensor of rank five. 

Definition: 3.2.4 

The process of getting a tensor of lower order (reduced by 2) by putting a 

covariant index equal to a contravariant index and performing the summation 

indicated is known contraction. 

In other words, if in a tensor we put one contravariant and one covariant 

indices equal, the process is called contraction of a tensor. 

Example  : 3.2.5 

consider a mixed tensor ýĂăÿĀā
 of order five.  Then by law of transformation, 

ý̅ĂăÿĀā = ��̅ÿ��Ć ��̅Ā��ć ��̅ā��Ĉ ��ĉ��̅Ă ��Ċ��̅ă ýĉĊĆćĈ
 

Put the covariant index l = contravariant index i, so that 

ý̅ÿăÿĀā = ��̅ÿ��Ć ��̅Ā��ć ��̅ā��Ĉ ��ĉ��̅ÿ ��Ċ��̅ă ýĉĊĆćĈ
 

  = ��̅Ā��ć ��̅ā��Ĉ ��ĉ��Ć ��Ċ��̅ă ýĉĊĆćĈ
 

= ��̅Ā��þ ��̅ā��ÿ ��ā��̅ă �ĆĉýĉĊĆćĈ
      Since 

��Ā��ý =  �Ćĉ 

 ý� ÿăÿĀā = ��̅Ā��ć ��̅ā��Ĉ ��Ċ��̅ă ýĉĊĆćĈ
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This is law of transformation of tensor of rank 3.  So, ýĂăÿĀā
 is a tensor of rank 3 

and type (1, 2) while ýĂăÿĀā
 is a tensor of rank 5 and type (2,3).  It means that 

contraction reduces rank of tensor by two. 

Definition: 3.2.6 

Consider the tensors ýāÿĀ
 and þăĄĂ  if we first form their outer product ýāÿĀþăĄĂ  

and contract this by putting l = k  then the result is ýāÿĀþăĄā  which is also to tensor, 

called the inner product of the given tensors. 

Hence the inner product of two tensors is obtained by first taking outer 

product and then contracting it. 

Example : 3.2.7 

If ýÿ and þÿ are the components of a contravariant and covariant tensors of 

rank are respectively then prove that ýÿþÿ is scalar or invariant. 

Solution : 

As ýÿ and þÿ are the components of a contravariant and covariant tensor of 

rank one respectively, then according to the law of the transformation. 

ý̅ÿ = ��̅ÿ��ý ýĆ  and þ�ÿ = ��þ��̅ÿ þć 

Multiplying these, we get 

ý̅ÿþ� ÿ = ��̅ÿ��Ć ��ć��̅ÿ ýĆþć 

= ��þ��ý ýĆþć,  Since
��þ��ý = �Ćć  
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= �ĆćýĆþć 

 ý� ÿþ�ÿ = ýĆþĆ  This shows that ýÿþÿ is scalar or Invariant. 

Example : 3.2.8 

 If ýĀÿ is mixed tensor of rank 2 and þăāĂ is mixed tensor of rank 3. Prove that ýĀÿþăĀĂ
 is mixed tensor of rank 3. 

Solution : 

As ýĀÿ is mixed tensor of rank 2 and þăāĂ is mixed tensor of rank 3.  Then by 

law of transformation  

ý̅Āÿ = ��̅ÿ��ý ��þ��̅Ā ýćĆ and þ�ăāĂ = ��̅ā��ÿ ��̅Ă��Ā ��ā��̅ă þĊĈĉ                           ... (1) 

Put k = j then 

þ�ăĀĂ = ��̅Ā��ÿ ��̅Ă��Ā ��ā��̅ă þĊĈĉ                                         ... (2)  

Multiplying (1) & (2) we get 

ý̅Āÿþ�ăĀĂ = ��̅ÿ��Ć ��ć��̅Ā ��̅Ā��Ĉ ��̅Ă��ĉ ��Ċ��̅ă ýćĆþĊĈĉ 

= ��̅ÿ��ý ��̅Ă��Ā ��ā��̅ă �ĈćýćĆþĊĈĉ       Since  
��þ��̅Ā ��̅Ā��ÿ = ��þ��ÿ = �Ĉć 

 ý̅ĀĀþ�ăĀĂ = ��̅ÿ��ý ��̅Ă��Ā ��ā��̅ă ýćĆþĊćĉ
                 Since �ĈćþĊĈĉ = þĊćĉ

 

This is the law of transformation of a mixed tensor of rank three.  Hence ýĀÿþăĀĂ
 

is a mixed tensor of rank three.  
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CHAPTER - 4 

TYPES OF TENSORS AND THE EINSTEIN SUMMATION  

CONVENTION 

In this chapter, I have discussing about symmetric, skew-symmetric, conjugate tensor, 

relative tensor, tensor density, tensor absolute and  the Einstein summation 

convention. 

Definition : 4.1 

A tensor is said to be symmetric with respect to two contravariant (or two 

covariant) indices if its components remain unchanged on an interchange of the two 

indices. 

Example : 4.2 

(1) The tensorAijis symmetric if Aij = Aji 

(2) The tensor ijk

lmA  is symmetric if ijk

lmA = jik

lmA  

Theorem : 4.3 

A symmetric tensor of rank two has only )( 1
2

1
nn  different components in 

 n-dimensional space. 

Proof : 

Let Aij be a symmetric tensor of rank two. So that Aij = Aji.  



 

26 

 

            The component of Aijare 

ú
ú
ú
ú
ú
ú

û

ù

ú
ú
ú
ú
ú
ú

û

ù

nnnnn

n

n

n

AAAA

AAAA

AAAA

AAAA

...

...

...

...

...

321

3333231

2232221

1131211



 

i.e., Aij will have n2 components. Out of these n2 components, n components 

A11, A22, A33, …., Ann  are different. Thus remaining components are n2 – n. In which  

A12 = A21, A23 = A32 etc. due to symmetry. 

So, the remaining different components are )( nn 2

2

1
. Hence the total number 

of different components, 

 = n+ )( nn 2

2

1
 = )1(

2

1
nn  

Definition : 4.4 

A tensor is said to be skew- symmetric with respect to two contravariant (or 

two covariant) indices if its components change sign on interchange of the two 

indices. 

Example : 4.5 

(1) The tensor Aij  is Skew-symmetric if Aij = Aji 

(2) The tensor ijk

lmA  is Skew-symmetric if ijk

lmA =  jik

lmA  

Theorem:  4.6 

A Skew symmetric tensor of second order has only )( 1
2

1
nn  different non-

zero components. 
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Proof  : 

Let Aij be a skew-symmetric tensor of order two. Then Aij = Aji. 

The component of Aij are

ú
ú
ú
ú
ú
ú

û

ù

ú
ú
ú
ú
ú
ú

û

ù

0

0

0

0

321

33231

22321

11312

...

...

...

...

...

nnn

n

n

n

AAA

AAA

AAA

AAA



 

[Since Aii = Aii 2Aii = 0 Aii = 0 A11 = A22 = …. = Ann = 0]

 i.e., Aij will have n2 components. Out of these n2 components, n components 

A11, A22, A33, …., Ann are zero. Omitting there, then the remaining components are  

(n2 – n). In which A12 = A21, A13 = A31 etc. Ignoring the sign. Their remaining the 

different components are )( nn 2

2

1
. 

Hence the total number of different non-zero components = )( nn 2

2

1
. 

Note : 4.7  

Skew-symmetric tensor is also called anti-symmetric tensor. 

Theorem : 4.8 

A covariant or contravariant tensor of rank two say Aij can always be written as 

the sum of a symmetric and skew- symmetric tensor. 

Proof  : 

Consider a covariant tensor Aij. We can write Aij as 
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    Aij
 = )( jiij AA 

2

1
+ )( jiij AA 

2

1
 

    Aij
 = Sij+ Tij 

Where    Sij = )( jiij AA 
2

1
 and   Tij = )( jiij AA 

2

1
 

Now,  

    Sji = )( ijji AA 
2

1
 

    Sji =  Sij 

So, Sij is symmetric tensor, 

And 

    Tij = )( jiij AA 
2

1

 

    Tij = )( ijji AA 
2

1

 

     
= )(

2

1
jiij AA 

 

    
Tji =  Tij   (or) 

    
Tij =  Tji 

So, Tij  is Skew-symmetric Tensor, 

Example : 4.9 

 If  ö = ajkA
jAk. Show that we can always write ö = bjkA

jAk where bjk is 

symmetric. 
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Solution : 

 As given   

    ö = ajkA
jAk    …… (1)  

 Interchange the indices i and j 

    ö = ajkA
k Aj    …… (2) 

 Adding (1) and (2)  

    2ö = (ajk+ akj) A
jAk 

    ö= )( kjjk aa 
2

1
AjAk 

    ö = bjkA
jAk 

 Where bjk  = )( kjjk aa 
2

1  

 To show that bjk is symmetric 

 Since  

    bjk  = )( kjjk aa 
2

1  

    bkj  = )( jkkj aa 
2

1

 

    
= )( kjjk aa 

2

1

 

    
bjk  =bkj    So, bjk is Symmetric. 
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Example : 4.10 

 If Ti be the component of a covariant vector show that (��ÿ��Ā 2 ��Ā��ÿ)are 

component of a Skew-symmetric covariant tensor of rank two. 

Solution : 

 As Ti is covariant vector. Then by the law of transformation 

    ki

k

i T
x

x
T




  

 Differentiating it w.r.t. to 
j

x partially 

 
j

i

x

T





 
= 

j

x


÷÷
ø

ö
÷÷
ø

ö




ki

k

T
x

x
 

  = kij

k

T
xx

x



2

+ 
j

k

i

k

x

T

x

x








 

 
j

j

x

T





 
= kij

k

T
xx

x



2

+ 
l

k

j

l

i

k

x

T

x

x

x

x












   ... (1) 

Similarly, 

 
i

j

x

T





 
= kji

k

T
xx

x



2

+ 
l

k

i

l

j

k

x

T

x

x

x

x











 

Interchanging the dummy indices k &l, 

 
i

j

x

T





 
= kji

k

T
xx

x



2

+ 
k

l

j

l

i

k

x

T

x

x

x

x











  ... (2) 

Substituting (1) and (2), we get 
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j

i

x

T






i

j

x

T





 
= 

j

l

i

k

x

T

x

x








÷
ø
ö

÷
ø
ö








k

l

l

k

x

T

x

T
 

 This is law of transformation of covariant tensor of rank two. So, 
j

i

x

T





i

j

x

T





are component of a covariant tensor of rank two. 

 To show that 
j

i

x

T





i

j

x

T




 is Skew-symmetric tensor. 

 Let 

 Aij = 
j

i

x

T





i

j

x

T





 

 
Aji = 

i

j

x

T






j

i

x

T




 

  
=  ÷÷

ø

ö
÷÷
ø

ö








i

j

j

i

x

T

x

T
 

 Aji =  Aij  

 or Aij =  Aji 

 So, Aij = 
j

i

x

T





i

j

x

T




 is Skew-symmetric 

 So, 
j

i

x

T





i

j

x

T




are component of a Skew-symmetric covariant tensor of rank 

two. 
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Definition : 4.11 

Consider a covariant symmetric tensor Aij of rank two. Let d denote the 

determinant 
ijA with the elements Aij 

i.e., d = 
ijA and d 0.  

 Now, define Aij by 

    Aij= 
�ąĀ�ýĊąĈ ąĀ �ÿĀ  ÿĉ Ċ/ÿ þÿĊ ÿĈ ăÿĄ �ĄĊ|�ÿĀ|þ  

Aijis a contravariant symmetric tensor of rank two which is called conjugate 

(or Reciprocal)tensor of Aij. 

Theorem : 4.12 

If Bijis the cofactor ofAijin the determinant d = ijA  0 and Aij defined as 

 Then prove thatAijA
kj=  k

i  

Proof  : 

From the properties of the determinants, we have two results. 

(i) AijBij = d 

   
d

B
A

ij

ij
= 1 

    AijA
ij=  1, given 

d

B
A

ijij 
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(ii) AijBkj = 0 

    
d

B
A

kj

ij
= 0,  d 0 

    AijA
kj=  0 if i k 

 From (i) & (ii) 

    AijA
kj=     

ki

ki





if1

if1
 

    AijA
kj=  k

i  

Definition : 4.13 

If the components of a tensor r

s

iii

jjjA
...

...
21

21
 transform according to the equation  

r

s

kkk

lllA
...

...
21

21
= 



x

x




r

s

iii

jjjA
...

...
21

21 1

1

i

k

x

x




2

2

i

k

x

x




…
r

r

i

k

x

x




.
1

1

l

j

x

x




2

2

l

j

x

x




...

s

s

l

j

x

x




 

 Hence r

s

iii

jjjA
...

...
21

21
 is called a relative tensor of weight , where 

x

x




 is the 

Jacobian of transformation. If  = 1, the relative tensor is called a tensor density. If   

w = 0 tensor is said to be absolute. 

Example : 4.14 

 If A (i, j, k)is a scalar for  arbitrary vectors Ai, Bj, Ck . Show that A (i, j, k)is a 

tensor of type (1, 2) 
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Solution : 

Let X and Y be two coordinate systems. As given A (i, j, k)AiBjCk is scalar. 

Then 

 A  (i, j, k) k

ji

CBA = A(p,q,r)ApBqCr    ...... (1) 

Since Ai,Bj and Ck are vectors. Then 

 
i

A
 

=
p

i

x

x




AP or AP  =
i

p

x

x



 i

A
 

 

j

B
 

=
q

j

x

x




Bq or Bq=
j

q

x

x



 j

B
 

 

k

C
 

=
r

k

x

x




Cr or Cr  =
k

r

x

x



 k

C  

So, from (1) 

 
A  (i, j, k) k

ji

CBA
 

= A (p, q, r) 
i

p

x

x




j

q

x

x




r

k

x

x


 i

A
j

B kC  

As 
i

A
j

B kC are arbitrary 

Then 

 A  (i, j, k) = 
i

p

x

x




j

q

x

x




r

k

x

x




 A (p, q, r) 

So, A (i, j, k)is tensor of type (1, 2).  
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The Einstein summation convention 

Definition : 4.15 

The rule that Einstein invented  is to allow the repeated index to become itself 

the designation for the summation over that particular index. This rule is what is 

referred to as the Einstein summation convention in the literature. For example, the 

expression 

a1 x1 + a2 x2 + ... + aNxN ,     (1) 

which traditionally is denoted by 

õ


N

i

ii xa
1      

  (2)

 

 

is now simply written as 

aixi .        (3) 

Repeated index i indicates the sum over i making it unnecessary to write the 

symbol i explicitly. The only ambiguity in the the expression above is that the range 

of the index i is not clear. More rigorously, one should write: 

aixi , (1 iN) ,       (4) 

but this is almost never necessary, since all the indices run from one till, a priori, 

specified number. In these notes, I reserve letter N to denote this maximum value that 

indices can take on and I refer to the set {1, 2, …,N} as the index range. I also refer to 

expression (1) as the full form of the expression (4). 
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The letter i used in expression (3) to indicate the sum over i, which is repeated 

exactly twice, can be equally interchanged by any other letter such as j, k, … to 

address the same sum. That is, expressions ajxj, akxk, … all refer to precisely the same 

expression (1). This is why index iin (3) is called a dummy index. Changing a dummy 

index to a new letter is called relabeling.  

As the rule of the game, repetition of an index more than twice is forbidden 

provided that you are counting the repetitions in a single-term expression. For 

example, an expression like aii xi is not allowed and, in fact, it does not occur in any 

consistent calculations, but the expression aijxj+aijyi is allowed, since although, say i, 

appears in three places, but no index is repeated more than two times in each 

individual term. 

Example : 4.16 

Express the expression aijxj in its full form for N = 3.  

Solution : 

Here we have two letters i and j as indices, i is not repeated but j is repeated 

(precisely) twice. Hence, we have a meaningful expression and a sum over index j is 

to be understood. Therefore, 

aijxj = ai1 x1 + ai2 x2 + ai3 x3 . 

Here i can be 1, 2, or 3. 

An index such as i in the expression which can take on freely any number in 

the index range, is called a free index. The characteristic of a free index is that it is not 

repeated in any single term expression. In contrast to the case of a dummy index, one 
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cannot change the letter used for a free index in a given expression . For instance, two 

expressions aijxj and akjxj are not in general equal, unless i = k. 

Example : 4.17 

Write down the full form of aiibjkcj, when N = 2. 

Solution : 

Here i and j are dummy indices and k is the free index. Thus, a sum over i and 

another sum over j is to be understood and we are confronted with a double sum for 

any value of the free index k. Hence, 

 aiibjkcj = õ


2

1i

õ


2

1j

jjkii cba

 

  = õ


2

1

11

j

jjkcba + õ


2

1

22

j

jjkcba  

  =  a11b1kc1 + a11b2kc2 + a22b1kc1 + a22b2kc2. 

I did the sum over i first followed by the sum over j. Of course, it could have 

been done the other way around with the same result. 

One point that is good to note and it is clearly seen in the last two examples is 

that after writing an expression in its full form, no dummy index would be present in 

the outcome anymore and we get an expression that depends only on free index or 

indices. This point could be very helpful to detect blunders in our calculations, 

somewhat similar to dimensional analysis of physical equations. Based on this 

similarity, let us call this rule the free index analysis rule. For instance, employing this 

rule, it is readily seen that the equation xnyn = aijkbicj is not a consistent one and, if this 
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equation is a product of our calculations, we realize that there should be some mistake 

somewhere. The reason is as follows. On the left hand side n is the dummy index and 

after being summed over we get an expression that is not dependent on any index, 

while on the right hand side after the expression is summed over two dummy indices i 

and j, we are left with an expression that depends on the free index k. Thus, from free 

indices point of view this equation is not consistent. 

Example : 4.18 

Let A with entries aij, B with entries bij, and C with entries cij be m  n, n  p, 

and m  p matrices, respectively, such that C = AB. From elementary linear algebra 

we know that for any 1 i m and any 1 j  p, we have 

cij= õ


n

k

kjikba
1  

Using summation convention, the formula above is written simply as 

cij= aikbkj       
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CHAPTER - 5 

THE e-SYSTEMS AND THE GENERALIZED KRÖNECKER 

DELTAS 

In this chapter, I have  discussing about completely symmetric, completely  

skew-symmetric and the generalized krĀ̈necker deltas. 

Definition : 5.1 

The system of quantities Ai1...ik (or Ai1...ik) depending on k indices, is said to be 

completely symmetric if the value of the symbol A is unchanged by any permutation 

of the indices. 

Definition :  5.2 

The systems Ai1...ik or (Ai1...ik) depending on k indices, is said to be completely 

skew-symmetric if the value of the symbol A is unchanged by any even permutation 

of the indices and A merely changes the sign after an odd permutation of the indices. 

Any permutation of n distinct objects say a permutation of n distinct integers, 

can be accomplished by a finite number of interchanges of pairs of these objects and 

that the number of interchanges required to bring about a given permutation form a 

perscribed order is always even or always odd. 

In any skew-symmetric system, the term containing two like indices is necessarily 

zero. Thus if one has a skew-symmetric system of quantities Aijkwhere i, j, k assume 

value 1, 2, 3. Then 

A122 = A112= 0 
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A123 = A213, A312 = A123 etc. 

In general, the components Aijkof a skew-symmetric system satisfy the 

relations. 

Aijk= Aikj= Ajik 

Aijk= Ajki= Akij  

Definition : 5.3 

Consider a skew-symmetric system of quantities ei1...in(or ei1...in) in which the 

indices ei1...in assume values 1,2,...,n. The system ei1...in (or ei1...in) is said to be the          

e-system if 

 = +1;  when i1, i2, ..., in 

 an even permutation of number 1, 2, ..., n 

ei1...in (or ei1...in) = 1;  when i1, i2, ..., in 

 an odd permutation of number 1, 2, ..., n 

= 0; in all other cases 

Example : 5.4  

Find the components of system eijwhen i, j takes the value 1,2. 

Solution : 

The components of system eijare 

e11, e12, e21, e22. 

By definition of e-system, we have 
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e11= 0,  indices are same 

e12= 1,  since i j has even permutation of 12 

e21= e21= 1 since i j has odd permutation of 12 

e22= 0,  indices are same 

Example : 5.5 

Find the components of the system eijk. 

Solution : 

By the definition of e-system, 

e123  =    e231 = e321 =1 

e213  =    e132 = e321 = 1 

eijk =  0 if any two indices are same. 

Definition : 5.6 

A symbol 
 ...ii

...jj
k

k

1

1
  depending on k superscripts and k subscripts each of which 

take values from 1 to n, is called a generalized Krönecker delta provided that 

(a) it is completely skew-symmetric in superscripts and subscripts 

(b) if the superscripts are distinct from each other and the subscripts are the 

same set of numbers as the superscripts. 
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The value of symbol,    �Ā1&.Āāÿ1&ÿā   is  

                                                    

                                       = 1; an even number of transposition is required to 

                                               arrange superscripts in the superscripts in the same  

                                               order as subscripts.  

                                        = 1; where odd number of transpositions arrange the 

                                                  superscripts in the same order as subscripts  

                                        = 0;  in all other cases the value of the symbolis zero 

Example : 5.7 

Find the values of 
ij 

kl . 

Solution : 

By definition of generalised Kronecker Delta, 
ij 

kl = 0 if i = j or k = l or if the 

set ijis not the set kl. 

i.e.,  
 

pq

11 = 
 2

pq

2 = 
 23

13 = ∙∙∙ = 0 

ij 

kl  = 1 if kl is an even permutation of ij 

i.e.,   
 12

12  = 
 21

21  = 
 13

13  = 
 31

31  = 
 23

23  = ∙∙∙ = 1 
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and 
ij 

kl = 1 if kl is an odd permutation of ij. 

i.e.,   
 12

21  = 
 31

13  = 
 13

31  = 
 21

12  = ∙∙∙ = -1 

Theorem : 5.8  

To prove that the direct product ei1i2...inej1 j2...jnof two systems ei1...inand ej1 j2...jn  

is the generalized Krönecker delta. 

Proof : 

By definition of generalized Krönecker delta, the product ei1i2...inej1 j2...jn has the 

following values. 

(i) Zero if two or more subscripts or superscripts are same. 

(ii) +1, if the difference in the number of transpositions of i1, i2,…, in and  

j1, j2, …, jn from 1,2,...,n is an even number. 

(iii) –1, if the difference in the number of transpositions of i1, i2, …, in and 

j1, j2, …, jn from 1, 2,...,n an odd number. 

Thus  

ei1i2...inej1 j2...jn =
 ...iii

...jjj
n

n

21

21
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Theorem : 5.9 

To prove that 

(i)  ei1i2...in =
 ...iii

...jjj
n

n

21

21
  

(ii) ei1i2...in =
 ...iii

...jjj
n

n

21

21
  

Proof : 

By Definition of e-system, ei1i2...in(or ei1i2...in) has the following values. 

(i) +1; if i1, i2, …, in is an even permutation of numbers 1,2,...,n. 

(ii) 1; if i1, i2, ..., in is an odd permutation of numbers 1,2,...,n 

(iii) 0; in all other cases 

Hence by Definition of generalized krönecker delta, we can write 

(1) ei1i2...in=  ...iii

n
n21

,...,2,1  

and 

(2) ei1i2...in=
 n

...iii n

,...,2,1

21
  

Contraction of  �ÿĀāÿĀā  : 5.10  
Let us contract 

ijk

ñò÷ on k and ÷. For n = 3, the result is 

   
ijk

ñò÷ = 
1

1

ij

ñò + 
2

2

ij

ñò + 
3

3

ij

ñò = 
ij

ñò  

This expression vanishes if i and j are equal or if ñ and ò are equal. 
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If i = 1, and j = 2, we get 
123

3ñò  

Hence 

 +1;  if ñò is an even permutation of 12 

 
12

ñò =  1;  if ñò is an odd permutation of 12 

 0;  if ñò is not permutation of 12 

Similarly results hold for all values of ñ and ò  selected from the set of 

numbers 1, 2, 3. 

Hence 

 +1;  if ij is an even permutation of ñò 

 1;  if ij is an odd permutation of ñò 

 
ij

ñò =    0;  if two of the subscripts or superscripts are equal or when the 

  subscripts and superscripts are not formed from the same numbers. 

If we contract 
ij

ñò . To contract 
ij

ñò  first contract it and the multiply 

the result by 
2

1

. 
We obtain a system depending on two indices 

i

ñ = 
2

1 ij

jñ = 
2

1
 (

1

1

i

ñ +
2

2

i

ñ +
3

3

i

ñ ) 

It i = 1 in 
i

ñ  then we get 
1

ñ = 
2

1
 (

12

2ñ +
13

3ñ )     

This vanishes unless ñ = 1 and if ñ = 1 then 
1

1  = 1. 

Similar result can be obtained by setting i = 2 or i = 3. Thus 
i

ñ  has the values. 
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(i) 0 if i ñ, (ñ,i =1,2,3) 

(ii) 1 if i = ñ. 

By counting the number of terms appearing in the sums. In general we have 

  
i

ñ = 
1

1

n

ij

jñ and 
ij

ij  = n(n1)     ….. (1) 

We can also deduce that 

  
 ...iii

...jjj
r

r

21

21
 =

)!(

)!(

rn

kn


  i ...i...iii

jj...jjj
k1-rr

k1-rr

21

21 ...
 

    ….. (2) 

and 

  
 ...iii

...jjj
r

r

21

21
 = n(n1) (n2) … (n r+1) = 

!

!

rn

n


   ….(3) 

or 

 ei1i2...inei1 i2... in = n!       ….. (4) 

and from (2) we deduce the relation 

   e i1i2...irir+1...inej1j2...jr jr+1... jn = n! 
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CHAPTER 1 

PRELIMINARIES 

Definition 1.1: 

A graph ÿ is an ordered triple (�(ÿ), ā(ÿ), �ÿ), where  

(i) �(ÿ) is a non- empty set of vertices 

(ii) ā(ÿ) is the set of edges disjoint from �(ÿ)                                                                                                               

(iii) G is a function from ā(ÿ) to the set of all unordered pairs of elements of  �. 

Note 1.2: 

An edge starting and ending with the same vertex is called a loop. An edge 

with distinct ends is called a link. 

Definition 1.3: 

A graph ÿ is called a simple graph if 

(i) it has no loops  

(ii) no two of links join the same pair of vertices. 

Definition 1.4: 

Let ÿ = (�, ā, �ÿ) be a graph. A graph  Ā = (� ′, ā′, �Ā) is a subgraph of ÿ if  

i) � ′ ⊆ � 

ii) ā′ ⊆ ā 

iii) �Ā is a restriction of �ÿ  to ā′. 
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Definition 1.5: 

      A subgraph Ā = (� ′, ā′, �Ā) is called a spanning subgraph of ÿ = (�, ā, �ÿ) 

if � ′ = �. 

Definition 1.6: 

The degree or valency of a vertex v in a graph ÿ is the number of edges of ÿ 

incident with v, counting each loop twice. 

Remark 1.7: 

(i) A vertex of degree 0 is called an isolated vertex. 

(ii) A vertex of degree 1 is called a end vertex (or) an pendant vertex (or) leaf. 

Note 1.8: 

      A graph ÿ is regular if degree of each vertex is the same.  

Definition 1.9:  

      A simple graph ÿ is said to be a complete graph if every vertex is adjacent to 

all other vertices. A complete graph with Ā vertices is denoted by �Ā. 

Definition 1.10: 

      A graph ÿ is said to be bipartite graph if �(ÿ) is partitioned into two sets X 

and Y such that every edge of ÿ has one end in X and another end in Y. The pair (ÿ, Ā)is called a bipartition of V. 
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Definition 1.11: 

If (ÿ, Ā) is a bipartition of a graph ÿ such that every vertex in X is adjacent to 

every vertex in Y. Then the graph ÿ is called a complete bipartite graph. 

      If |ÿ| = ÿ and |Ā| = Ā, then the complete bipartite graph is denoted by �ÿ ,Ā . 
Definition 1.12: 

Two vertices u and v in a graph ÿ  are said to be connected if there is a (ÿ, Ā) 2 path in ÿ. A graph ÿ is connected if any two vertices are connected. A graph 

which is not connected is said to be disconnected. 

Definition 1.13: 

      A subdivision of an edge þ  of a graph ÿ  is the subdivision of edge by 

introducing new vertices.  

      A subdivision of a graph ÿ denoted by �(ÿ) is a graph resulting from the 

subdivision of edges in ÿ. The subdivision of some edge with end points ÿ and Ā 

yields a graph containing one new vertex ā and with the edge set replacing þ by two 

edges ÿā and āĀ. 

Definition 1.14: 

      Let ÿ1 = (�1, ÿ1)  and ÿ2 = (�2, ÿ2)  be two graphs with �1 + �2 = ∅ .                      

We define 

(i) The union of ÿ1 , ÿ2 to be (�, ÿ) where � = �1 , �2 and ÿ = ÿ1 , ÿ2 

(ii) The sum ÿ1 + ÿ2 as ÿ1 , ÿ2 togather with all lines joining points of  �1 to 

points of �2. 
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(iii) The product ÿ1 × ÿ2 as a graph having � = �1 × �2 and ÿ = (ÿ1, ÿ2) and Ā = (Ā1, Ā2) are adjacent if ÿ1 = Ā1 and ÿ2 is adjacent to Ā2 in ÿ2 or ÿ1 is 

adjacent to Ā1 in ÿ1 and ÿ2 = Ā2 

Definition 1.15: 

     A finite sequence in which vertices and edges occur alternatively and which 

begins and ends with vertices is called a walk. 

      The starting point is called origin and end point is called terminus. The 

vertices in between the origin and the terminus are called internal vertices. 

Note 1.16: 

(i) If the origin and terminus coincide in a walk, then it is called closed walk. 

(ii) A walk in which edges are not repeated is called a trail.   

(iii) A walk in which vertices are not repeated is called a path. 

Definition 1.17: 

      A closed trail in which the origin and internal vertices are distinct is called a 

cycle. A cycle of length n is called a n-cycle and is denoted by ÿĀ. 

Definition 1.18: 

       A directed graph (or) digraph Ā is a pair (�, ý) where � is a finite non-empty 

set and ý is a subset of � × � 2 {(Ă, Ă)/Ă ∈ �}. The elements of � and ý are called 

vertices and arcs respectively. If (ÿ, Ā) ∈ ý, the the arc  (ÿ, Ā) is said to have ÿ as its 

initial vertex and Ā as its terminal vertex. The arc is represented by means of an arrow 

from u to v. 

      An undirected graph is a graph whose edges are not directed. 
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Definition 1.19: 

      A complete bipartite graph �1,Ā21 is called a star graph with n vertices. It is 

denoted by �Ā. 

Example 1.20: 

 

     

 

                                �7 

 

Definition 1.21: 

      The bistar þĀ,Ā is a graph obtained by joining the centre vertices of two copies 

of �1,Ā by an edge. 

Example 1.22: 

 

 

 

                                                      þ3,3 

 

 

Figure 1.1 

Figure 1.2 
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Definition 1.23: 

      Corona of two graphs ÿ1 ⊙ ÿ2, where ÿ1 with (ÿ1 edges, Ā1 vertices) and ÿ2 with (ÿ2 edges, Ā2 vertices) is defined as the graph obtained by taking one copy of ÿ1 and Ā1 copies of ÿ2 and joining the ÿþ/ vertex of  ÿ1 with an edge to every vertex 

in the  ÿþ/ copy of ÿ2. 

Example 1.24: 

 

 

 

 

                                    ÿ3 ⊙ �2̅̅ ̅ 

 

                     

  

 

 

 

 

 

Figure 1.3 
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CHAPTER 2 

MEAN CORDIAL LABELING OF GRAPHS 

2.1 INTRODUCTION 

      The graphs considered here are finite, undirected and simple. The vertex set 

and edge set of a graph ÿ are denoted by �(ÿ) and ā(ÿ) respectively. The concept of 

cordial labeling was introduced by Cahit in the year 1987. Let ÿ be a function from �(ÿ) to {0,1,2}. For each edge ÿĀ of ÿ, assign the label |ÿ(ÿ) 2 ÿ(Ā)|. ÿ is called a  

cordial labeling of ÿ  if |Ā�(ÿ) 2 Ā�(Ā)| f 1 and  |þ�(ÿ) 2 þ�(Ā)| f 1 , ÿ, Ā ∈ {0, 1}     

where, Ā�(Ă) and þ�(Ă) denote the number of vertices and edges labeled with Ă 

respectively. A graph which admits a cordial labeling is called a cordial graph.  

      In this chapter, we study the concept of mean cordial labeling and the mean 

cordial labeling behaviour of some graphs. The symbol +Ă, stands for smallest integer 

greater than or equal to Ă. 
2.2 MEAN CORDIAL LABELING OF SOME STANDARD GRAPHS    

Definition 2.2.1: 

Let ÿ be a function from �(ÿ) to {0,1,2}. For each edge ÿĀ of ÿ, assign the 

label úú
ù

úú
ù +

2

)()( vfuf
. Then,  ÿ  is called a mean cordial labeling of ÿ  if                       

|Ā�(ÿ) 2 Ā�(Ā)| f 1 and   |þ�(ÿ) 2 þ�(Ā)| f 1 , ÿ, Ā є {0, 1,2}  where, Ā�(Ă) and þ�(Ă) 

denote the number of vertices and edges labeled with Ă respectively. 

      A graph with a mean cordial labeling is called a mean cordial graph. 
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Example 2.2.2: 

                                                                        

 

 

 

 Ā�(0) = 2, Ā�(1) = 1, Ā�(2) = 1   þ�(0) = 1, þ�(1) = 2, þ�(2) = 1                                                                                                                             

Here , |Ā�(ÿ) 2 Ā�(Ā)| f 1 and |þ�(ÿ) 2 þ�(Ā)| f 1  , ÿ, Ā ∈ {0, 1,2}                                                                      

Hence ÿ is a mean cordial labeling and ÿ is a mean cordial graph. 

Remark 2.2.3: 

If we try to extend the range set of ÿ to {0,1,2, & , ā} (ā > 2), the definition 

shall not workout since Ā�(0) becomes very small. 

Theorem 2.2.4: 

Any Path nP  is mean cordial. 

Proof: 

Let nP  be the path nuuu ...21 .                                                                                                                            

Case (i): Ā ≡ 0(ÿāý 3) 

Let Ā = 3þ 

Define ÿ ( iu )    = 2 , 1 f i f t 

0 0 

2 1 

1 1 

0 

2 

Figure 2.1  
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            ÿ ( itu + ) = 1 , 1 f i f t    
           ÿ ( itu +2 ) = 0, 1 f i f t 
Then, Ā�(0) = Ā�(1) = Ā�(2) = þ and  þ�(0) = þ 2 1, þ�(1) = þ�(2) = þ 

Hence ÿ is mean cordial labeling. 

Case (ii): Ā ≡ 1(ÿāý 3) 

Let Ā =  3þ +  1 . Assign labels to the vertices iu  (1 f ÿ f Ā 2 1) as in            

case (i). Then assign the label 0 to the vertex ÿĀ. 

Here, Ā�(0) = þ + 1, Ā�(1) = Ā�(2) = þ  and  þ�(0) =  þ�(1) = þ�(2) = þ                                                  

Hence ÿ is mean cordial labeling. 

Case (iii):  Ā ≡ 2(ÿāý 3) 

Let Ā =  3þ +  2 . Assign labels to the vertices iu  (1 f ÿ f Ā 2 1) as in               

case (ii). Then assign the label 1 to the vertex .
 
 

Here, Ā�(0) = Ā�(1) = þ + 1, Ā�(2) = þ  and  þ�(0) =  þ�(2) = þ, þ�(1) = þ + 1 

Hence f is mean cordial labeling. 

Theorem 2.2.5: 

The Star nK ,1  
is a mean cordial iff  Ā f 2. 

Proof: 

Let  �(�1,Ā) = {ÿ, iu / 1 f i f Ā}  and  

        ā(�1,Ā) = {ÿÿi/ 1 f i f Ā} 

nu
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For Ā f 2,  the result follows from theorem 2.2.4. 

Assume Ā > 2. If possible let there be a mean cordial labeling ÿ. 

Case (i):  ÿ(ÿ)  =  0 

Then ÿ(ÿ)  +  ÿ(Ā)  f 2 for all edge  uv 

Hence þ�(2) = 0 which is a contradiction. 

Case (ii):  ÿ(ÿ)  =  2 

In this case, þ�(0) = 0 which is a contradiction. 

Case (iii):  ÿ(ÿ)  =  1 

In this case, þ�(0) = 0 which is again a contradiction. 

Hence ÿ is not a mean cordial labeling.      

�1,Ā  is not a mean cordial for all Ā > 2. 

Theorem 2.2.6: 

The cycle nC is mean cordial iff  Ā ≡ 1,2(ÿāý 3) 

Proof: 

Let nC be the cycle 
21uu … 1uun  

Case (i): Ā ≡ 0(ÿāý 3) 

Let Ā =  3þ. Then, Ā�(0) = Ā�(1) = Ā�(2) = þ                                                                                                                   

Here, þ�(0) f þ 2 1. This is a contradiction. 
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Case (ii): Ā ≡ 1(ÿāý 3) 

Let Ā =  3þ +  1 

Define ÿ ( iu )      =  0,     1 f ÿ f þ + 1 

           ÿ ( itu ++1 ) =  1,     1 f ÿ f þ 

          ÿ ( itu ++12 ) =  2,     1 f ÿ f þ 

Then, Ā�(0) = þ + 1, Ā�(1) = Ā�(2) = þ and þ�(0) =  þ�(2) = þ, þ�(1) = þ + 1 

Hence ÿ is a mean cordial labeling. 

Case (iii): Ā ≡ 2(ÿāý 3) 

Let Ā =  3þ +  2 

Define   ÿ ( iu )        =  0,   1 f ÿ f þ + 1 

             ÿ ( itu ++1 )    =  1, 1 f ÿ f þ 

             ÿ ( itu ++12 )  =  2,   1 f ÿ f þ + 1  

Then, Ā�(1) = þ, Ā�(0) = Ā�(2) = þ + 1 and þ�(1) =  þ�(2) = þ + 1, þ�(0) = þ 

Hence ÿ is a mean cordial labeling. 

Theorem 2.2.7: 

The complete graph nK is mean cordial iff Ā f 2. 

 Proof: 

Clearly,
1K  and 

2K  are mean cordial by theorem 2.2.4 

Assume Ā >  2. If  possible let there be  a mean cordial labeling ÿ. 
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Case (i): Ā ≡ 0(ÿāý 3) 

Let Ā =  3þ , þ g 1 

Then, Ā�(0) = Ā�(1) = Ā�(2) = þ 

þ�(0) = ÷÷
ø

ö
÷÷
ø

ö
2

t
 ,  þ�(1) = 

22

2
tt

t
++÷÷

ø

ö
÷÷
ø

ö
 , þ�(2) = 

2

2
t

t
+÷÷

ø

ö
÷÷
ø

ö
 

Then,  þ�(1) 2 þ�(0) = 
22t > 1                                                                                                                          

which is a contradiction. 

Case (ii): Ā ≡ 1(ÿāý 3) 

Let Ā =  3þ +  1 

Subcase 1:  Ā�(0) = þ + 1, Ā�(1) = Ā�(2) = þ 

þ�(0) = ÷÷
ø

ö
÷÷
ø

ö +
2

1t
 ,  þ�(1) = )1()1(

2
++++÷÷

ø

ö
÷÷
ø

ö
tttt

t
 , þ�(2) = 

2

2
t

t
+÷÷

ø

ö
÷÷
ø

ö
 

Here, þ�(1) 2 þ�(2) = tt 22 + > 1                                                                                                    

which is a contradiction. 

Subcase 2:  Ā�(1) = þ + 1, Ā�(0) = Ā�(2) = þ
 
 

þ�(0) = ÷÷
ø

ö
÷÷
ø

ö
2

t
 ,  þ�(1) = 

2)1(
2

1
ttt

t
+++÷÷

ø

ö
÷÷
ø

ö +
 , þ�(2) = )1(

2
++÷÷

ø

ö
÷÷
ø

ö
tt

t
 

Here, þ�(2) 2 þ�(0) = tt +2 > 1                                                                                                      

which is a contradiction. 
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Subcase 3:  Ā�(2) = þ + 1, Ā�(1) = Ā�(0) = þ 

þ�(0) = ÷÷
ø

ö
÷÷
ø

ö
2

t
 ,  þ�(1) = 

2)1(
2

ttt
t

+++÷÷
ø

ö
÷÷
ø

ö
 , þ�(2) = )1(

2

1
++÷÷

ø

ö
÷÷
ø

ö +
tt

t
 

Here, þ�(1) 2 þ�(0) = tt +22 > 1                                                                                                      

which is a contradiction. 

Case (iii): Ā ≡ 2(ÿāý 3) 

Let Ā =  3þ +  2 

Subcase 1: Ā�(0) = þ, Ā�(1) = Ā�(2) = þ + 1 

þ�(0) = ÷÷
ø

ö
÷÷
ø

ö
2

t
 ,  þ�(1) = )1()1(

2

1
++++÷÷

ø

ö
÷÷
ø

ö +
tttt

t
 , þ�(2) = 

2)1(
2

1
++÷÷

ø

ö
÷÷
ø

ö +
t

t
 

Here, þ�(1) 2 þ�(0) = tt 32 2 + > 1                                                                                                    

which is a contradiction. 

Subcase 2:  Ā�(1) = þ, Ā�(0) = Ā�(2) = þ + 1
 
 

þ�(0) = ÷÷
ø

ö
÷÷
ø

ö +
2

1t
 ,  þ�(1) = 

2)1()1(
2

++++÷÷
ø

ö
÷÷
ø

ö
ttt

t
 , þ�(2) = )1(

2

1
++÷÷

ø

ö
÷÷
ø

ö +
tt

t
 

Here, þ�(2) 2 þ�(0) = tt +2 > 1                                                                                                      

which is a contradiction. 

Subcase 3: Ā�(2) = þ, Ā�(1) = Ā�(0) = þ + 1                                                                                    

þ�(0) = ÷÷
ø

ö
÷÷
ø

ö +
2

1t
 ,  þ�(1) = 

2)1()1(
2

1
++++÷÷

ø

ö
÷÷
ø

ö +
ttt

t
 , þ�(2) = )1(

2
++÷÷

ø

ö
÷÷
ø

ö
tt

t
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Here, þ�(1) 2 þ�(0) = ttt +++ 22)1( > 1                                                                                                      

which is a contradiction.

 

Theorem 2.2.8: 

)( ,1 nKS is mean cordial, where )(GS  denotes subdivision of G. 

Proof: 

Let    ))(( ,1 nKSV  = {ÿ, ii vu , /1 f ÿ f Ā} and                                                                                                                    

        ))(( ,1 nKSE  = {ÿ iu , iivu /1 f ÿ f Ā} 

Case(i): Ā ≡ 0(ÿāý 3) 

Let Ā =  3þ 

Define ÿ(ÿ)  =  0, ÿ ( iu ) =  0, 1 f ÿ f þ, ÿ( itu + )  =  1, 1 f ÿ f 2þ 

            ÿ ( iv ) =  0,   1 f ÿ f þ, ÿ( itv + )  =  2, 1 f ÿ f 2þ                                                                                       
Then, Ā�(0) =  2t +  1, Ā�(1) = Ā�(2) =  2þ                                                                                                             

and  þ�(0) = þ�(1) = þ�(2) = 2þ.                                                                                                              

Hence ÿ is mean cordial labeling. 

Case (ii): Ā ≡ 1(ÿāý 3) 

Let Ā =  3þ +  1. Assign lables to vertices iuu, and iv (1 f ÿ f Ā 2 1) as in case (i). 

Then assign the label 1 and 2 to the vertices nu and nv respectively.                                           

Here , Ā�(0) =  Ā�(1) = Ā�(2) =  2þ + 1 and þ�(0) = 2þ, þ�(1) = þ�(2) = 2þ + 1                                                               

Hence ÿ is mean cordial labeling. 
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Case (iii): Ā ≡ 2(ÿāý 3) 

Let Ā =  3þ +  2. Assign labels to vertices iuu, and iv (1 f ÿ f Ā 2 1) as in case (ii). 

Then assign the label 0 and 2 to the vertices nu
 
and nv respectively. 

Here , Ā�(0) = Ā�(2) = 2þ + 2, Ā�(1) = 2þ + 1                                                                                                                 

and þ�(0) = þ�(2) = 2þ + 1, þ�(1) = 2þ + 2 

Hence ÿ is mean cordial labeling. 

2.3 MEAN CORDIAL LABELING OF CERTAIN GRAPHS 

Theorem 2.3.1: 

The graph S nP( ʘ )1K  is a mean cordial graph. 

Proof: 

Let |�( nP ʘ )1K |  =  2Ā. 
Subdividing the edges of nP( ʘ )1K , we get  |�(�( nP ʘ )1K )|  =  4Ā 3  1 =  ÿ. 
Let  Ā1, Ā2, & , Āÿ be the vertices of �(�( nP ʘ )1K ). 

Label the vertices of S nP( ʘ )1K  as it is shown the figure 2.2. 

 

 

 

                                                           Figure 2.2 

Ā1 

Ā2 

Ā3 

Ā4 Ā5 

Ā6 

Ā7 

Ā8 Ā9  

Ā10 

Ā11 

Ā12 Ā13 

Ā14 

Ā15 
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Case (i): ÿ ≡ 0(ÿāý 3) 

Let ÿ =  3þ 

Define ÿ: �(�( nP ʘ )1K ) →  {0,1,2} by  ÿ(Āÿ) = 0,  1 f ÿ f þ, ÿ(Āÿ) = 1,  þ + 1 f ÿ f 2þ,  ÿ(Āÿ) = 2,  2þ + 1 f ÿ f 3þ. 

Then, Ā�(0) =  Ā�(1) = Ā�(2) = þ                                                                                                           

and  þ�(0) = þ 2 1, þ�(1) = þ�(2) = þ                                                                                                

Hence ÿ is a mean cordial labeling. 

Case (ii): ÿ ≡ 1(ÿāý 3) 

Let ÿ =  3þ 2  2 

Define ÿ: �(�( nP ʘ )1K ) →  {0,1,2} by  

ÿ(Āÿ) = 0,   1 f ÿ f þ ÿ(Āÿ) = 1,   þ + 1 f ÿ f 2þ 2 1 ÿ(Āÿ) = 2,  2þ f ÿ f 3þ 2 2 

Then, Ā�(0) = þ, Ā�(1) = Ā�(2) = þ 2 1                                                                                                             

and þ�(0) = þ�(1) = þ�(2) = þ 

Hence ÿ is a mean cordial labeling. 
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Case (iii):  ÿ ≡ 2(ÿāý 3) 

Let ÿ =  3þ 2  1 

Define ÿ: �(�( nP ʘ )1K ) →  {0,1,2} by  ÿ(Āÿ) = 0,  1 f ÿ f þ ÿ(Āÿ) = 1,  þ + 1 f ÿ f 2þ ÿ(Āÿ) = 2,  2þ + 1 f ÿ f 3þ 2 1   

Then, Ā�(0) =  Ā�(1) = þ, Ā�(2) = þ 2 1                                                                                                             

and þ�(0) = þ 2 1, þ�(1) = þ, þ�(2) = þ 2 1 

Hence ÿ is a mean cordial labeling. 

Theorem 2.3.2: 

The graph )( ,nnBS  is a mean cordial graph. 

Proof: 

Let )( ,nnBV = 2Ā + 2.                                                                                                                       

Subdividing the edges of nnB , , we get ))(( ,nnBSV =  4Ā +  3 =  ÿ.                                                       
Let Ā1, Ā2, & , Āÿ  be the vertices of  )( ,nnBS .                                                                          

Label the vertices of )( ,nnBS  as shown in the figure 2.3. 

 

 

 

 

Ā1 

Ā5 

Ā7 

Ā2 

Ā3 Ā4 Ā6 

Ā8 Ā9 

Ā10 

Ā11 

Ā12 
Ā13 

Ā14 Ā15 
   )( 3,3BS            

Figure 2.3 
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Case (i) : ÿ ≡ 0(ÿāý 3) 

Let ÿ =  3þ 

Define ÿ: ))(( ,nnBSV → {0,1,2} by  ÿ(Āÿ) = 0,  1 f ÿ f þ, ÿ(Āÿ) = 1,  þ + 1 f ÿ f 2þ,  ÿ(Āÿ) = 2,  2þ + 1 f ÿ f 3þ. 

Then, Ā�(0) =  Ā�(1) = Ā�(2) = þ                                                                                                               

and þ�(0) = þ 2 1, þ�(1) = þ�(2) = þ                                                                                       

Hence ÿ is a mean cordial labeling. 

Case (ii) : ÿ ≡ 1(ÿāý 3) 

Let ÿ =  3þ 2  2 

Define ÿ: ))(( ,nnBSV → {0,1,2} by  

ÿ(Āÿ) = 0,  1 f ÿ f þ ÿ(Āÿ) =1, þ + 1 f ÿ f 2þ 2 1 ÿ(Āÿ) = 2,  2þ f ÿ f 3þ 2 2 

Then, Ā�(0) = þ, Ā�(1) = Ā�(2) = þ 2 1                                                                                                 

and þ�(0) = þ�(1) = þ�(2) = þ   

Hence ÿ is a mean cordial labeling. 
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Case (iii) : ÿ ≡ 2(ÿāý 3) 

Let ÿ =  3þ 3  1                                                                                                                            

Define ÿ: ))(( ,nnBSV → {0,1,2} by  

ÿ(Āÿ) = 0,   1 f ÿ f þ ÿ(Āÿ) = 1,   þ + 1 f ÿ f 2þ ÿ(Āÿ) = 2,  2þ + 1 f ÿ f 3þ 2 1   

Then, Ā�(0) =  Ā�(1) = þ, Ā�(2) = þ 2 1                                                                                         

and þ�(0) = þ 2 1, þ�(1) = þ, þ�(2) = þ 2 1                                                                                                 

Hence ÿ is a mean cordial labeling. 

Theorem 2.3.3: 

The graph )( 2 nPPS  , Ā g 3 is mean cordial if  ÿ ≡ 1(ÿāý 3) and                        

ÿ ≡ 2(ÿāý 3) where |�( )( 2 nPPS  )|  =  5Ā 3  2 =  ÿ. 

Proof: 

Let |� )( 2 nPP  | = 2Ā. 
Subdividing the edges of )( 2 nPP  , we get |� ( )( 2 nPPS  )| =  5Ā 3  2 =  ÿ and 

|ā ( )( 2 nPPS  )| =  6Ā 2 4. 

Label the vertices of )( 2 nPPS  as it is in the figure2.4. 
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Let Ā1, Ā2, & , Āÿ  be the vertices of )( 2 nPPS   

Case 1: ÿ ≡ 1(ÿāý 3) 

Let ÿ =  3þ 2  2 

Define ÿ: ))(( 2 nPPSV  → {0,1,2} by  ÿ(Āÿ) = 0,  1 f ÿ f þ ÿ(Āÿ) = 1,  þ + 1 f ÿ f 2þ 2 1 ÿ(Āÿ) = 2,  2þ f ÿ f 3þ 2 2 

Then, Ā�(0) = þ, Ā�(1) = Ā�(2) = þ 2 1                                                                                                              

and þ�(0) = þ 2 1, þ�(1) = þ�(2) = þ 

Hence ÿ is a mean cordial labeling. 

Case (2) : ÿ ≡ 2(ÿāý 3) 

Let ÿ =  3þ 2  1 

Define ÿ: ))(( 2 nPPSV  → {0,1,2} by ÿ(Āÿ) = 0,  1 f ÿ f þ ÿ(Āÿ) = 1,  þ + 1 f ÿ f 2þ ÿ(Āÿ) = 2,  2þ + 1 f ÿ f 3þ 2 1   

Ā6 

Ā3 Ā2 

Ā1 

Ā4 Ā5 

Ā7 Ā8 

Ā9 Ā10 

Ā11 

Ā12 Ā13 

 �(�2 × �3)                   

 Figure 2.4 
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Then, Ā�(0) =  Ā�(1) = þ, Ā�(2) = þ 2 1                                                                                                             

and þ�(0) = þ, þ�(1) = þ�(2) = þ + 1  

Hence ÿ is a mean cordial labeling. 

Theorem 2.3.4: 

The graph )( 2 nPPS  , Ā g 3 is not mean cordial if  ÿ ≡ 0(ÿāý 3) where           

|� ( )( 2 nPPS  )| =  5Ā 3  2 =  ÿ. 

Proof: 

Let |� ( )( 2 nPPS  )| = 5Ā 3  2 =  ÿ and |ā ( )( 2 nPPS  )| =  6Ā 2 4. 

Let ÿ = 3þ.  

Labeling þ = ÿ3  vertices of )( 2 nPPS   with 0, we get )0(fe = t – 1. 

Since |ā ( )( 2 nPPS  )| =  6Ā 2 4 g 3þ, it is a contradiction. 

Thus, the graph is not a mean cordial graph. 
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CHAPTER 3 

GEOMETRIC MEAN CORDIAL LABELING OF GRAPHS 

3.1 INTRODUCTION 

      In this chapter, we study the concept of geometric mean cordial labeling and 

the geometric mean cordial labeling behaviour of some standard graphs. The graphs 

considered here are finite, undirected and simple.  

3.2 GEOMETRIC MEAN CORDIAL LABELING OF GRAPHS  

Definition 3.2.1: 

      Let ÿ = (�, ā) be a (p, q) graph. Let ÿ be a function from �(ÿ) to {0,1,2}. 

For each edge ÿĀ of ÿ, assign the label ⌈√ÿ(ÿ)ÿ(Ā) ⌉,  ÿ is called a geometric mean 

cordial labeling of ÿ  if |Ā�(ÿ) 2 Ā�(Ā)| f 1 and  |þ�(ÿ) 2 þ�(Ā)| f 1   , ÿ, Ā є {0, 1,2} 

where, Ā�(Ă) and þ�(Ă) denote the number of vertices and edges labeled with Ă, Ă ∈{0, 1, 2} respectively. A graph which admits a geometric mean cordial labeling is 

called a geometric mean cordial graph. 

Example 3.2.2: 

   

 

 

 

1 

2 

0 

0 

2 

1 

0 

2 

0 

0 

1 

1 

1 

2 

2 

0 

Figure 3.1 
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Here Ā�(0) = Ā�(1) = 3, Ā�(2) 2 and þ�(0) = þ�(2) = 3, þ�(1) = 2                                                                                                                            ∴ |Ā�(ÿ) 2 Ā�(Ā)| f 1 and |þ�(ÿ) 2 þ�(Ā)| f 1  , ÿ, Ā ∈ {0, 1,2}                                                                      

Hence ÿ is a geometric mean cordial labeling and  the above graph is a geometric 

mean cordial graph. 

Theorem 3.2.3: 

 Any Path nP  is geometric mean cordial. 

Proof: 

Let nP  be the path nuuu ...21 . 

Define ÿ: �(�Ā) ⟶ {0, 1,2 } as follows 

Case (i): Ā ≡ 0(ÿāý 3)                                                                                                                             

Let Ā = 3þ                                                                                                                                                     

Define  ÿ ( iu )      = 0,   1 f i f t, 
            ÿ ( itu + )    = 1 , 1 f i f t,   
             ÿ ( itu +2 )  = 2,   1 f i f t. 
Then Ā�(0) = Ā�(1) = Ā�(2) = þ  and  þ�(0) =  þ�(2) = þ, þ�(1) = þ 2 1                                                 

Case (ii): Ā ≡ 1(ÿāý 3)                                                                                                                            

Let Ā =  3þ +  1.                                                                                                                                                
Define  ÿ ( iu )      = 2,   1 f i f t, 
            ÿ ( itu + )    = 1 , 1 f i f t + 1,   

           ÿ ( itu ++12 )  = 0,   1 f i f t + 1.                                                                                                                             
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Then Ā�(0) = Ā�(2) = þ, Ā�(1) = þ + 1   and  þ�(0) =  þ�(1) =  þ�(2) = þ                                                    

Case (iii):  Ā ≡ 2(ÿāý 3)                                                                                            

Let Ā =  3þ +  2                                                                                                                                          

Define  ÿ ( iu )          = 2,   1 f i f t, 
            ÿ ( itu + )        = 1 , 1 f i f t + 1,   

            ÿ ( itu ++12 )    = 0,   1 f i f t + 1.                                                                                                                            

Then Ā�(0) = Ā�(1) = þ + 1, Ā�(2) = þ   and  þ�(0) = þ + 1, þ�(1) =  þ�(2) = þ                                               

From all the above cases, we see that |Ā�(ÿ) 2 Ā�(Ā)| f 1 and |þ�(ÿ) 2 þ�(Ā)| f 1  , 

for all ÿ, Ā є {0, 1,2} and hence ÿ is a geometric mean cordial labeling. 

Example 3.2.4: 

Geometric mean cordial labeling of �6 is given below 

 

 

Here Ā�(0) =  Ā�(1) =  Ā�(2) = 2 and  þ�(0) =  þ�(2) = 2, þ�(1) = 1 

Theorem 3.2.5: 

The Star �1,Ā is geometric mean cordial. 

Proof: 

Let  �(�1,Ā) = {ÿ, iu / 1 f i f Ā}  and                                                                                       ā(�1,Ā) = {ÿÿi/ 1 f i f Ā} 

�1,Ā has Ā + 1 vertices and n edges.  

2 2 

2 2 

1 1 

1 

0 0 

0 0 

Figure  3.2 
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Let ÿ be the centre of �1,Ā. 

Define ÿ: �(�1,Ā) → {0, 1, 2} as follows: Let ÿ(ÿ) = 1. 

Case (i): Ā ≡ 0(ÿāý 3)                                                                                                                             

Let  Ā = 3þ . Assign the labels 0, 1, 2 to each of the þ vertices respectively.                                        

Then, Ā�(0) = Ā�(2) = þ, Ā�(1) = þ + 1   and  þ�(0) = þ�(1) =  þ�(2) = þ. 

Case (ii): Ā ≡ 1(ÿāý 3)                                                                                                                      

Let Ā = 3þ + 1. Assign the labels 0 to þ + 1 vertices and the labels 1 and 2 to the 

remaining each of  þ vertices respectively.                                                                                                  

Then, Ā�(0) = Ā�(1) = þ + 1, Ā�(2) = þ   and  þ�(0) = þ + 1, þ�(1) =  þ�(2) = þ. 

Case (iii): Ā ≡ 2(ÿāý 3) 

Let  Ā = 3þ + 2 . Assign the labels 1 to þ vertices and the labels 0 and 2 to the 

remaining each of the þ + 1 vertices respectively.                                                                                                       

Then, Ā�(0) = Ā�(1) = Ā�(2) = þ + 1   and  þ�(0) = þ�(2) = þ + 1, þ�(1) = þ.                                  

From all the above three cases,  |Ā�(ÿ) 2 Ā�(Ā)| f 1 and |þ�(ÿ) 2 þ�(Ā)| f 1  , for all ÿ, Ā є {0, 1,2} and hence ÿ is a geometric mean cordial labeling. 

Example 3.2.6: 

Geometric mean cordial labeling of the star �1,8 is given below 
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Here  Ā�(0) = Ā�(1) = Ā�(2) = 3   and  þ�(0) = þ�(2) = 3, þ�(1) = 2. 

Theorem 3.2.7: 

The cycle ÿĀ is geometric mean cordial if Ā ≡ 1,2(ÿāý 3). 

Proof: 

Let ÿĀ be the cycle ÿ1ÿ2 & ÿĀÿ1. It has n vertices and n edges. 

Case (i): Ā ≡ 0(ÿāý 3)                                                                                                                             

Let Ā = 3þ. 

If ÿĀ admits geometric mean cordial labeling f, then the only possibility is                           Ā�(0) = Ā�(1) = Ā�(2) = þ  and  þ�(0) =  þ�(1) = þ�(2) = þ.                                                                          

If we assign 0’s to t number of vertices in ÿĀ, then we get þ�(0) > þ.                                           

Hence f  is not a geometric mean cordial labeling. 

For remaining two cases, define ÿ: �(�1,Ā) → {0, 1, 2} as follows: 

Case (ii): Ā ≡ 1(ÿāý 3) 

Let Ā = 3þ + 1. Assign the label 1 to þ + 1 vertices and the labels 0 and 2 to the 

remaining each of t vertices.                                                                                                                               

Then Ā�(0) = Ā�(2) = þ, Ā�(1) = þ + 1  and  þ�(0) = þ + 1, þ�(1) = þ�(2) = þ.                                    

Hence f  is a geometric mean cordial labeling. 

Case (iii): Ā ≡ 2(ÿāý 3) 

Let Ā = 3þ + 2. Assign the label 0 to þ vertices and the labels 1 and 2 to the 

remaining each of þ + 1 vertices.                                                                                                                           
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Then Ā�(0) = þ, Ā�(1) = Ā�(2) = þ + 1  and  þ�(0) = þ�(2) = þ + 1, þ�(1) = þ.                            

Hence f  is a geometric mean cordial labeling. 

Theorem 3.2.8: 

The complete graph �Ā is geometric mean cordial if Ā f 2. 

Proof: 

By theorem 3.2.3, it is clear that �1 and �2 are geometric mean cordial. 

Assume Ā > 2.                                                                                                                                                           

If possible let there be a geometric mean cordial labeling  ÿ: �(�1,Ā) → {0, 1, 2}. 

Case (i): Ā ≡ 0(ÿāý 3)                                                                                                                             

Let Ā = 3þ, þ g 1.                                                                                                                                                
Then, Ā�(0) = Ā�(1) = Ā�(2) = þ. 

      Consider the edges having end vertices with label 0 only. These edges 

contribute 1 to þ�(0) and clearly there are (þ2) edges having label 0.                                                     

Now consider the vertices having label 1, which are adjacent to t vertices 

having label 0. Each of these edges contributes 1 to þ�(0) and clearly þ2 edges are 

having the label 0. The same is true for the vertices having label 2 only.                             

Then, þ�(0) =  (þ2) + þ2 + þ2 

     Consider the edges having end vertices with label 1 only. These edges contribute 1 

to þ�(1) and clearly there are (þ2) edges having label 1. The edges incident with the 

vertices having the label 2 have no contribution to þ�(1) and clearly þ�(1) = 0.The 
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same is true for edges incident with the vertices having the labels 0 and þ�(1) = 0.                                  

Then, þ�(1) =  (þ2) 

     Consider the edges having end vertices with label 2 only. These edges contribute 1 

to þ�(2)  and there are (þ2)  edges having label 2. Consider the edges having end 

vertices with labels 1 and 2. These edges contribute þ2 1’s to þ�(2). The edges having 

ends with label 0 contribute 0 to þ�(2). Then þ�(2) =  (þ2) + þ2 

Hence þ�(0) 2 þ�(1) = 2þ2 > 1. 

Case (ii): Ā ≡ 1(ÿāý 3)                                                                                                                             

Let Ā = 3þ + 1.                                                                                                                                          
Subcase (i): Ā�(0) = Ā�(2) = þ, Ā�(1) = þ + 1                                                                                                   

Then by the argument as in case (i), we have                                                                                                  þ�(0) =  (þ2) + þ2 + þ2, þ�(1) =  (þ+12 ), þ�(2) =  þ2 + þ(þ2).                                                                         

Hence þ�(0) 2 þ�(2) = þ2 > 1. 

Subcase (ii): Ā�(0) = þ + 1, Ā�(1) = Ā�(2) = þ                                                                                          

Then, we have þ�(0) =  (þ+12 ) + (þ2 + þ) + (þ2 + þ), þ�(1) =  (þ2), þ�(2) =  þ2 + (þ2)                         

Hence þ�(1) 2 þ�(2) = þ2 > 1. 

Subcase (iii): Ā�(0) = Ā�(1) = þ, Ā�(2) = þ + 1                                                                                        

Then, we have þ�(0) =  (þ2) + þ2 + (þ2 + þ), þ�(1) =  (þ2), þ�(2) = (þ2 + þ) + (þ+12 )                         

Hence þ�(0) 2 þ�(1) = 2þ2 + þ > 1. 
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Case (iii): Ā ≡ 2(ÿāý 3)                                                                                                                             

Let Ā = 3þ + 2.                                                                                                                                             
Subcase (i): Ā�(0) = þ, Ā�(1) = Ā�(2) = þ + 1.                                                                                               þ�(0) =  (þ2) + (þ2 + þ) + (þ2 + þ),  þ�(1) =  (þ+12 ), þ�(2) =  (þ + 1)2 + (þ+12 ). 

Hence þ�(1) 2 þ�(2) = (þ + 1)2 > 1. 

Subcase (ii): Ā�(0) = Ā�(2) = þ + 1, Ā�(1) = þ.                                                                                   þ�(0) =  (þ+12 ) + (þ2 + þ) + (þ + 1)2,  þ�(1) =  (þ2),  þ�(2) = (þ2 + þ) + (þ+12 )                                                           

Hence þ�(0) 2 þ�(2) = (þ + 1)2 > 1. 

Subcase (iii): Ā�(0) = Ā�(1) = þ + 1, Ā�(2) = þ.                                                                                            þ�(0) =  (þ+12 ) + (þ + 1)2 + (þ2 + þ),  þ�(1) =  (þ+12 ),  þ�(2) = (þ2 + þ) + (þ2)                                                 

Hence þ�(0) 2 þ�(1) = (þ + 1)2 + þ2 + þ > 1. 

In all the above cases, we see that �Ā is not geometric mean cordial 

Theorem 3.2.9: 

The complete bipartite graph �2,Ā is not geometric mean cordial for Ā > 2. 

Proof: 

Let �(�2,Ā) = ý , þ, where ý = {ÿ, Ā} and  þ = {ÿ1, ÿ2, ÿ3, & , ÿĀ}.                                                                      

Then ā(�2,Ā) = {ÿÿÿ , Āÿÿ: 1 f ÿ f Ā}. 

From theorem 3.2.3 and theorem 3.2.7,  it follows that �2,1 and �2,2 are geometric 

mean cordial.                                                                                                                                              

Assume Ā > 2.  
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Then �2,Ā has 2 + Ā = ÿ (say) vertices and 2Ā = 2(ÿ 2 2) edges. 

Case (i): ÿ ≡ 0(ÿāý 3)                                                                                                                             

Let ÿ = 3þ.                                                                                                                                             

Then �2,Ā has 6þ 2 4 edges.                                                                                                  

The only possibility of assigning labels to the vertices without violating the vertex 

label difference is Ā�(0) = Ā�(1) = Ā�(2) = þ. 

Subcase (i): ÿ(ÿ) = ÿ(Ā) = 0                                                                                                           

Then, þ�(0) = (þ 2 2) + þ + þ + (þ 2 2) + þ + þ = 6þ 2 4, þ�(1) = þ�(2) = 0  

Subcase (ii): ÿ(ÿ) = 0, ÿ(Ā) = 1                                                                                                          

Then, þ�(0) = (þ 2 1) + (2þ 2 2) + þ = 4þ 2 3, þ�(1) = þ 2 1, þ�(2) = þ 

Subcase (iii): ÿ(ÿ) = 1, ÿ(Ā) = 0. This is similar to subcase (ii). 

Subcase (iv): ÿ(ÿ) = 0, ÿ(Ā) = 2                                                                                                          

Then, þ�(0) = (þ 2 1) + (2þ 2 2) + þ = 4þ 2 3, þ�(1) = 0, þ�(2) = 2þ 2 1. 
Subcase (v): ÿ(ÿ) = 2, ÿ(Ā) = 0. This is similar to subcase (iv). 

Subcase (vi): ÿ(ÿ) = 1, ÿ(Ā) = 1                                                                                                          

Then, þ�(0) = þ + þ = 2þ, þ�(1) = (þ 2 2) + (þ 2 2) = 2þ 2 4, þ�(2) = þ + þ = 2þ.                         
Subcase (vii): ÿ(ÿ) = 1, ÿ(Ā) = 2                                                                                                        

Then,þ�(0) = þ + þ = 2þ, þ�(1) = þ 2 1, þ�(2) = (þ 2 1) + (þ 2 1) + (þ 2 1) =3þ 2 3. 
Subcase (viii): ÿ(ÿ) = 2, ÿ(Ā) = 1. This is similar to subcase (vii). 

Subcase (ix): ÿ(ÿ) = 2, ÿ(Ā) = 2                                                                                                          

Then, þ�(0) = þ + þ = 2þ, þ�(1) = 0, þ�(2) = þ + (þ 2 2) + þ + (þ 2 2) = 4þ 2 4. 
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      In all the above subcases, we observe that if atleast any one of the labeling of 

the vertices ÿ and Ā is zero, then þ�(0) g 3þ 2 2. Also if either or both of the vertices ÿ and Ā are having the label 2, then þ�(2) g 3þ 2 3. 
  Hence, in all the subcases, we see that �2,Ā  is not geometric mean cordial. 

Thus in the following cases, we consider only the subcases  in which both the vertices ÿ and Ā are having label 1. 

Case (ii): ÿ ≡ 1(ÿāý 3)                                                                                                                            

Let ÿ = 3þ + 1. Then  �2,Ā has 6þ 2 2 edges.                                                                                                 

Suppose ÿ(ÿ) = ÿ(Ā) = 1.                                                                                                                           
Subcase (a): Ā�(0) = þ + 1, Ā�(1) =  Ā�(2) = þ.                                                                                                          
Then, þ�(0) = (þ + 1) + (þ + 1) = 2þ + 2, þ�(1) = (þ 2 2) + (þ 2 2) = 2þ 2 4,                                                          þ�(2) = 2þ                                                                                                                                     

Subcase (b): Ā�(0) =  Ā�(2) = þ, Ā�(1) =  t + 1.                                                                                                       
Then, þ�(0) = þ + þ = 2þ, þ�(1) = (þ 2 1) + (þ 2 1) = 2þ 2 2, þ�(2) = þ + þ = 2þ 

Subcase (c): Ā�(0) =  Ā�(1) = þ, Ā�(2) =  t + 1.                                                                                                          
Then, þ�(0) = þ + þ = 2þ, þ�(1) = (þ 2 2) + (þ 2 2) = 2þ 2 4,                                                             þ�(2) = (þ + 1) + (þ + 1) = 2þ + 2. 

Case (iii): ÿ ≡ 2(ÿāý 3)                                                                                                                            

Let ÿ = 3þ + 2. Then  �2,Ā has 6þ edges.                                                                                                 

Suppose ÿ(ÿ) = ÿ(Ā) = 1.                                                                                                                       
Subcase (a): Ā�(0) = Ā�(1) = þ + 1, Ā�(2) = þ.                                                                                                          
Then, þ�(0) = (þ + 1) + (þ + 1) = 2þ + 2, þ�(1) = (þ 2 1) + (þ 2 1) = 2þ 2 2,                          þ�(2) = 2þ.                                                                                                                                           
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Subcase (b): Ā�(0) = þ, Ā�(1) = Ā�(2) = t + 1.                                                                                                 
Then, þ�(0) = þ + þ = 2þ, þ�(1) = (þ 2 1) + (þ 2 1) = 2þ 2 2,                                                    þ�(2) = (þ + 1) + (þ + 1) = 2þ + 2.                                                                                                        

From all the above cases, �2,Ā is not a geometric mean cordial graph for Ā > 2.  

Theorem 3.2.10: 

 The graph �Ā,Ā is not geometric mean cordial for Ā g 3. 

Proof: 

Let �(�Ā,Ā) = �1 , �2 where �1 = {ÿ1, ÿ2, & , ÿĀ} and �2 = {Ā1, Ā2, & , ĀĀ}. Then , �Ā,Ā has 2Ā vertices and Ā2 edges. 

Case (i): Ā ≡ 0(ÿāý 3).                                                                                                                            

Let Ā = 3þ, where þ g 1. Then �Ā,Ā has 6þ vertices and 9þ2 edges. If  �Ā,Ā admits a 

geometric mean cordial labeling, then we must have 

                      Ā�(0) = Ā�(1) = Ā�(2) = 2þ                                                …(1) 

                      þ�(0) = þ�(1) = þ�(2) = 3þ2                                               …(2) 

Suppose (1) holds.  

Since Ā�(0) = 2þ , 2þ vertices of �(�Ā,Ā)  are labeled with 0. If these 2þ 

vertices are in �1 , then they are adjacent with 3þ  vertices in �2  and hence                               2þ × 3þ = 6þ2 edges have the label 0. Similar case arises when these 2þ vertices are 

in �2. 

      If t vertices are in �1  and the remaining þ  vertices are in �2 , then                                              

(þ × 3þ) + (þ × 2þ) = 5þ2 edges have the label 0. 
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      In general, if 2þ 2 ÿ  vertices are in �1  and ÿ  vertices are in �2 , where                           0 f ÿ f 2þ , then  þ�(0) = (2þ 2 ÿ)3þ + ÿ{3þ 2 (2þ 2 ÿ)} = 6þ2 2 2ÿþ + ÿ2 . The 

maximum value for þ�(0) = 6þ2 is obtained by putting ÿ = 0 or 2þ and the minimum 

value for  þ�(0) = 5þ2 is obtained by putting ÿ = þ. Thus  5þ2 f  þ�(0) f  6þ2. This 

is a contradiction to  þ�(0) = 3þ2 from (2). Thus �Ā,Ā is not a geometric mean cordial 

graph. 

Case (ii): Ā ≡ 1(ÿāý 3).                                                                                                                            

Let Ā = 3þ + 1, where þ g 1. Then �Ā,Ā has 6þ + 2 vertices and 9þ2 + 6þ + 1 edges. 

If  �Ā,Ā admits a geometric mean cordial labeling, then we must have 

(i) Ā�(0) = 2þ, Ā�(1) =  Ā�(2) = 2þ + 1 and                                                                                    þ�(0) = þ�(1) = 3þ2 + 2þ, þ�(2) = 3þ2 + 2þ + 1 

(ii) Ā�(0) = Ā�(2) = 2þ + 1, Ā�(1) = 2t  and                                                                                þ�(0) = 3þ2 + 2þ + 1, þ�(1) = þ�(2) = 3þ2 + 2þ 

(iii) Ā�(0) = Ā�(1) = 2þ + 1, Ā�(2) = 2t and                                                                                       þ�(0) = þ�(2) = 3þ2 + 2þ, þ�(1) = 3þ2 + 2þ + 1 

Suppose (i) holds.  

Since Ā�(0) = 2þ , 2þ vertices of �(�Ā,Ā)  are labeled with 0.                                                       

If these 2þ vertices are in �1, then they are adjacent with 3þ + 1 vertices in �2 and 

hence 2þ × (3þ + 1) = 6þ2 + 2þ  edges have the label 0. Similar case arises when 

these 2þ vertices are in �2.  

       If þ vertices are in �1 and the remaining þ vertices are in �2, then                                                                  þ × (3þ + 1) + þ × (2þ + 1) = 5þ2 + 2þ edges have the label 0. 
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      In general, if 2þ 2 ÿ  vertices are in �1  and ÿ  vertices are in �2 ,                                 

where 0 f ÿ f 2þ , then þ�(0) = (2þ 2 ÿ)(3þ + 1) + ÿ{3þ + 1 2 (2þ 2 ÿ)} = 6þ2 +2þ 2 2ÿþ + ÿ2. The maximum value for þ�(0) = 6þ2 + 2þ is obtained by putting ÿ = 0 

or 2þ  and the minimum value for þ�(0) = 5þ2 + 2þ  is obtained by putting ÿ = þ .                                                          

Thus  5þ2 + 2þ f  þ�(0) f  6þ2 + 2þ.  

This is a contradiction to  þ�(0) = 3þ2 + 2þ from (i).  

Suppose (ii) holds.  

Since Ā�(0) = 2þ + 1, 2þ + 1 vertices of �(�Ā,Ā) are labeled with 0. If these 2þ + 1 vertices are in �1, then they are adjacent with 3þ + 1 vertices in �2 and hence (2þ + 1) × (3þ + 1) = 6þ2 + 5þ + 1 edges have the label 0. Similar case arises when 

these 2þ + 1 vertices are in �2.  

If 2þ  vertices are in �1  and the remaining 1  vertex is in �2 , then                             2þ × (3þ + 1) + 1 × (þ + 1) = 6þ2 + 3þ + 1 edges have the label 0. 

      In general, if 2þ + 1 2 ÿ  vertices are in �1  and ÿ  vertices are in �2 , where                                     0 f ÿ f 2þ + 1 ,then þ�(0) = (2þ + 1 2 ÿ)(3þ + 1) + ÿ{(3þ + 1) 2 ((2þ + 1) 2 ÿ)} = 6þ2 + 5þ + 1 2 2ÿþ 2 ÿ + ÿ2 .The maximum value for þ�(0) = 6þ2 + 5þ + 1  is 

obtained by putting ÿ = 0 or 2þ + 1 and the minimum value for þ�(0) = 6þ2 + 3þ +1 is obtained by putting ÿ = 1. Thus  6þ2 + 3þ + 1 f  þ�(0) f  6þ2 + 5þ + 1. This is 

a contradiction to  þ�(0) = 3þ2 + 2þ + 1 from (ii).  

Suppose (iii) holds.  

Since Ā�(1) = 2þ + 1 , 2þ + 1 vertices of �(�Ā,Ā)  are labeled with 1. If þ 

vertices are in �1 and the remaining þ + 1 vertices are in �2, then þ × (þ + 1) = þ2 + þ 
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edges have the label 1. If þ 2 1 vertices are in �1 and the remaining þ + 2 vertices are 

in �2, then (þ 2 1) × (þ + 2) = þ2 + þ 2 2 edges having the label 1. 

      In general, if 2þ + 1 2 ÿ  vertices are in �1  and ÿ  vertices are in �2 , where                           0 f ÿ f þ + 2, then  þ�(0) = (2þ + 1 2 ÿ) × ÿ = 2ÿþ + ÿ 2 ÿ2 . The maximum value 

for þ�(0) = þ2 + þ is obtained by putting ÿ = 0 or þ + 2 and the minimum value for þ�(0) = þ2 + þ 2 2 is obtained by putting ÿ = þ 2 1.                                                            

Thus  þ2 + þ 2 2 f  þ�(0) f  þ2 + þ. This is a contradiction to  þ�(0) = 3þ2 + 2þ + 1 

from (i).  

Then �Ā,Ā  is not a geometric mean cordial labeling. 

Case (iii): Ā ≡ 2(ÿāý 3).                                                                                                                            

Let Ā = 3þ + 2, where þ g 1.  

Then �Ā,Ā has 6þ + 4 vertices and 9þ2 + 12þ + 4 edges. If  �Ā,Ā admits a geometric 

mean cordial labeling, then we must have 

(i) Ā�(0) = Ā�(1) = 2þ + 1, Ā�(2) = 2þ + 2 and                                                                           þ�(0) = þ�(1) = 3þ2 + 4þ + 1, þ�(2) = 3þ2 + 2þ + 1 

(ii) Ā�(0) = Ā�(2) = 2þ + 1, Ā�(1) = 2t + 2 and                                                                        þ�(0) = 3þ2 + 4þ + 2, þ�(1) = þ�(2) = 3þ2 + 4þ + 1 

(iii) Ā�(0) = 2þ + 2, Ā�(1) = Ā�(2) = 2þ + 1, and                                                                                              þ�(0) = þ�(2) = 3þ2 + 4þ + 1, þ�(1) = 3þ2 + 4þ + 2 
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Suppose (i) holds. 

Since Ā�(0) = 2þ + 1, 2þ + 1 vertices of �(�Ā,Ā) are labeled with 0. If these 2þ + 1 vertices are in �1, then they are adjacent with 3þ + 2 vertices in �2 and hence (2þ + 1) × (3þ + 2) = 6þ2 + 7þ + 2 edges have the label 0. Similar case arises when 

these 2þ + 1 vertices are in �2.  

If 2þ  vertices are in �1  and the remaining one vertex is in �2 ,                                    

then  2t × (3t + 2) + 1 × (t + 2) = 6t2 + 5t + 2 edges have the label 0. 

In general, if 2þ + 1 2 ÿ  vertices are in �1  and ÿ  vertices are in �2 ,                              

where 0 f ÿ f 2þ + 1 , then  þ�(0) = ((2þ + 1) 2 ÿ)(3þ + 2) + ÿ{(3þ + 2) 2((2þ + 1) 2 ÿ)} = 6þ2 + 7þ + 2 2 2ÿþ 2 ÿ + ÿ2 .                                                                                                             

The maximum value for  þ�(0) = 6þ2 + 7þ + 2 is obtained by putting ÿ = 0 or 2þ + 1 

and the minimum value for þ�(0) = 6þ2 + 5þ + 2  is obtained by putting ÿ = 1 .                                                        

Thus  6þ2 + 5þ + 2 f  þ�(0) f  6þ2 + 7þ + 2.                                                                                    

This is a contradiction to  þ�(0) = 3þ2 + 4þ + 1 from (i).  

Suppose (ii) holds. 

 Since Ā�(1) = 2þ + 2, 2þ + 2 vertices of �(�Ā,Ā) are labeled with 1.If these 2þ + 2 vertices are in �1, then there is no vertex labeled 1 in �2 and hence (2þ + 1) ×0 = 0 edges have the label 1. Similar case arises when these 2þ + 2 vertices are in �2. 

If þ + 2 vertices are in �1 and the remaining þ vertices are in �2, then (þ + 2) × þ =þ2 + 2þ edges have the label 1. 

In general, if 2þ + 2 2 ÿ vertices are in �1 and ÿ vertices are in �2, where 0 fÿ f 2þ + 2, then  þ�(1) = (2þ + 2 2 ÿ) × ÿ = 2ÿþ + 2ÿ 2 ÿ2. The maximum value for 
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þ�(1) = þ2 + 2þ is obtained by putting ÿ = 0 or 2þ + 2 and the minimum value for þ�(1) = 0  is obtained by putting ÿ = þ .Thus  0 f  þ�(1) f  þ2 + 2þ . This is a 

contradiction to  þ�(1) = 3þ2 + 4þ + 1 from (ii).  

Suppose (iii) holds.  

Since Ā�(0) = 2þ + 2, 2þ + 2 vertices of �(�Ā,Ā) are labeled with 0. If these 2þ + 2 vertices are in �1, then they are adjacent with 3þ + 2 vertices in �2 and hence (2þ + 2) × (3þ + 2) = 6þ2 + 10þ + 4  edges have the label 0. Similar case arises 

when these 2þ + 2 vertices are in �2. If þ vertices are in �1 and the remaining þ + 2 

vertices are in �2, then t × (3t + 2) + (t + 2)(2t + 2) = 5t2 + 8t + 4 edges have the 

label 0. 

In general, if 2þ 2 ÿ  vertices are in �1  and ÿ  vertices are in �2 , where                         0 f ÿ f 2þ + 1 , then  þ�(0) = (2þ + 2 2 ÿ)(3þ + 2) + ÿ{(3þ + 2) 2 ((2þ + 2) 2ÿ)} = 6þ2 + 10þ + 4 2 2ÿþ 2 2ÿ+ÿ2. The maximum value for þ�(0) = 6þ2 + 10þ + 4 

is obtained by putting ÿ = 0 or 2þ + 2  and the minimum value for þ�(0) = 5þ2 +8þ + 4  is obtained by putting ÿ = þ .Thus  5þ2 + 8þ + 4 f  þ�(0) f  6þ2 + 10þ + 4 . 

This is a contradiction to  þ�(0) = 3þ2 + 4þ + 1  from (iii). Thus �Ā,Ā  is not a 

geometric mean cordial graph. 
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CHAPTER 4 

GEOMETRIC MEAN CORDIAL LABELING OF                                     

m2SUBDIVISION OF GRAPHS 

4.1 INTRODUCTION 

     In this chapter, we study the concept of Geometric Mean Cordial Labeling of 

m2Subdivision of Graphs. We construct m 2 subdivision of graphs for standard 

graphs such as path and cycle and check whether the m2subdivision of graphs are 

geometric mean cordial or not. 

4.2 m2SUBDIVISION OF GRAPHS 

Definition 4.2.1: 

     The operation �ÿ(ÿ) of a graph ÿ is a graph ÿ resulting from the subdivision 

of edges by ÿ vertices in ÿ. This is called m2subdivision of a graph ÿ.                                                                                                                            

For ÿ = 1, �1(ÿ) = �(ÿ) where �(ÿ) denotes subdivision of ÿ.                                                         

For ÿ g 2, �ÿ(ÿ) = �(�ÿ21(ÿ))  

Result 4.2.2: 

The subdivision of the graph �Ā is �(�Ā) ≅ �2Ā21 where �2Ā21 is a path of 2Ā 2 1 vertices and 2Ā 2 2edges. 

Remark 4.2.3: 

From the result 4.2.2, it follows that                                                                                                        �1(�ÿ+1) = �(�ÿ+1) = �2(ÿ+1)21 = �2ÿ+1                                                                                          �2(�ÿ+1) = �(�1(�ÿ+1)) = �(�2ÿ+1) = �2(2ÿ+1)21 = �4ÿ+1                                                                        
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�3(�ÿ+1) = �(�2(�ÿ+1)) = �(�4ÿ+1) = �2(4ÿ+1)21 = �8ÿ+1                                                        

In general, we have                                                                                                                   �ÿ(�ÿ+1) = �(�ÿ21(�ÿ+1)) = �(�(2�21ÿ)+1) = �2(2�21ÿ+1)21 = �2�ÿ+1                                                   

Then �ÿ(�ÿ+1) is a path of (2ÿÿ) + 1 vertices and 2ÿÿ edges. 

Result 4.2.4: 

The subdivision of the graph ÿĀ is �(ÿĀ) ≅ ÿ2Ā where ÿ2Ā is a cycle of 2Ā 

vertices and 2Ā edges. 

Remark 4.2.5: 

From the result 4.2.4, it follows that                                                                                                            �1(ÿĀ) = �(ÿĀ) = ÿ2Ā                                                                                                                                        �2(ÿĀ) = �(�1(ÿĀ)) = �(ÿ2Ā) = ÿ4Ā                                                                                                 �3(ÿĀ) = �(�2(ÿĀ)) = �(ÿ4Ā) = ÿ8Ā                                                                                          �ÿ21(ÿĀ) = �(�ÿ22(ÿĀ)) = �(ÿ2�22Ā) = ÿ2�21Ā                                                                                             

In general, we have, �ÿ(ÿĀ) = ÿ2�Ā                                                                                           

Then �ÿ(ÿĀ) is a cycle of 2ÿĀ vertices and 2ÿĀ edges.  

4.3 GEOMETRIC MEAN CORDIAL LABELING OF m2SUBDIVISION OF 

GRAPHS 

Theorem 4.3.1: 

 �(�Ā) is geometric mean cordial. 

Proof:                                                                                                                          

Let �Ā: ÿ1, ÿ2, & , ÿĀ be the path of Ā vertices and Ā 2 1 edges.                                                                            
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We subdivide the Ā 2 1 edges of �Ā. Now, we get Ā 2 1 subdivisional vertices.                         

Let ý1, ý2, & , ýĀ21 be the subdivisional vertices of �Ā.                                                                    

From the result 4.2.2, it follows that �(�Ā) ≅ �2Ā21 where �2Ā21 is a path of 2Ā 2 1 

vertices and 2Ā 2 2 edges. From the theorem 3.2.3, it follows that �(�1) ≅ �1 and �(�2) ≅ �3 which are geometric mean cordial. 

Case (i): Ā ≡ 0(ÿāý 3).                                                                                                                          

Let Ā = 3þ, þ g 1                                                                                                                              

Now the path �2Ā21 has 6þ 2 1 vertices and 6þ 2 2 edges.                                                                                  

Let �(�2Ā21) = �1 , �2 where �1 = {ÿ1, ÿ2, & , ÿĀ} and �2 = {ý1, ý2, & , ýĀ21}                                       

Define the function ÿ: �1 ⟶ {0,1,2} for 3þ vertices of �Ā by 

              ÿ(ÿÿ)        = 2,    1 f ÿ f þ, 
              ÿ(ÿÿ+þ)    = 1,    1 f ÿ f þ,  
              ÿ(ÿÿ+2þ)  = 0,    1 f ÿ f þ, 
      Consider vertices of �2. If þ = 1, then there exists 2 subdivisional vertices. 

The possible labeling of these two subdivisional vertices namely ý1 and ý2 are 1 and 0, or 1 and 2 or 2 and 1. In these three combinations, we get geometric mean cordial. 

If þ > 1, 3þ 2 1 subdivisional vertices are labeled according to the following function                         

                              2,    1 f ÿ f þ 2 1, 
            ÿ(ýÿ)  =    1,    þ f ÿ f 2þ 2 1, 
                              0,   2þ f ÿ f 3þ 2 1. 

Then  Ā�(0) = 2þ, Ā�(1) = 2þ, Ā�(2) = 2þ 2 1. 
          þ�(0) = 2þ, þ�(1) = 2þ 2 1, þ�(2) = 2þ 2 1. 
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Case(ii): Ā ≡ 1(ÿāý 3).                                                                                                                          

Let Ā = 3þ + 1, þ g 1.  

Now the path �2Ā21 has 6þ + 1 vertices and 6þ edges.                                                                                                                       

Let �(�2Ā21) = �1 , �2 where �1 = {ÿ1, ÿ2, & , ÿĀ} and �2 = {ý1, ý2, & , ýĀ21}                                              

Define the function ÿ: �1 ⟶ {0,1,2}  for 3þ + 1 vertices of �Ā by 

              ÿ(ÿÿ)            = 2,    1 f ÿ f þ, 
              ÿ(ÿÿ+þ)        = 1,    1 f ÿ f þ + 1,  
              ÿ(ÿ1+ÿ+2þ)  = 0,    1 f ÿ f þ, 
Consider the vertices of �2     

                            2,    1 f ÿ f þ, 
          ÿ(ýÿ)  =    1,    þ + 1 f ÿ f 2þ, 

                            0,   2þ + 1 f ÿ f 3þ. 

Then  Ā�(0) = 2þ, Ā�(1) = 2þ + 1, Ā�(2) = 2þ. 
          þ�(0) = 2þ, þ�(1) = 2þ, þ�(2) = 2þ. 
Case(iii): Ā ≡ 2(ÿāý 3).                                                                                                                          

Let Ā = 3þ + 2. 

Now the path �2Ā21 has 6þ + 3 vertices and 6þ + 2 edges.                                                                                  

Let �(�2Ā21) = �1 , �2 where �1 = {ÿ1, ÿ2, & , ÿĀ} and �2 = {ý1, ý2, & , ýĀ21}                                              

Define the function ÿ: �1 ⟶ {0,1,2} for 3þ + 2 vertices of �Ā by 

              ÿ(ÿÿ)            = 2,    1 f ÿ f þ, 
              ÿ(ÿÿ+þ)        = 1,    1 f ÿ f þ + 1,  
              ÿ(ÿ1+ÿ+2þ)  = 0,    1 f ÿ f þ + 1, 
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Consider the vertices of �2     

                            2,    1 f ÿ f þ, 
          ÿ(ýÿ)  =    1,    þ + 1 f ÿ f 2þ, 
                            0,   2þ + 1 f ÿ f 3þ + 1. 

Then  Ā�(0) = 2þ + 2, Ā�(1) = 2þ + 1, Ā�(2) = 2þ. 
          þ�(0) = 2þ + 2, þ�(1) = 2þ, þ�(2) = 2þ. 

The labeling defined does not satisfy the vertex and edge condition. To get a 

geometric mean cordial labeling, we change the vertex labeled 0 which is adjacent to 1 by the labeling 2.                                                                                                                                            

Then, we get Ā�(0) = 2þ + 1, Ā�(1) = 2þ + 1, Ā�(2) = 2þ + 1. 
                      þ�(0) = 2þ + 1, þ�(1) = 2þ, þ�(2) = 2þ + 1. 
Now, it satisfies both the vertex and edge condition.                                                                          

In all the three cases, we see that |Ā�(ÿ) 2 Ā�(Ā)| f 1 and |þ�(ÿ) 2 þ�(Ā)| f 1  

for all  ÿ, Ā ∈ {0,1,2}, ÿ is a geometric mean cordial labeling and hence the subdivision 

of a graph �(�Ā) is geometric mean cordial. 

Example 4.3.2: 

Geometric mean cordial labeling of �(�6) is given below 

 

 

 

In �(�6), Ā�(0) = 4, Ā�(1) = 4, Ā�(2) = 3 and  þ�(0) = 4, þ�(1) = 3, þ�(2) = 3 

�(�6) ≅ �11 

2 2 2 1 1 1 1 0 0 0 0 

2 2 2 1 1 1 0 0 0 0  

Figure 4.1 
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Theorem 4.3.3: 

  �ÿ(�ÿ+1) is geometric mean cordial. 

Proof:                                                                                                                                              

We know that �ÿ(�ÿ+1) is a graph of 2ÿ(ÿ + 1) vertices and 2ÿÿ edges.                   

The theorem is easily verified for ÿ = 0,1,2.                                                                                                                            

If ÿ = 0, we get a graph �1 of 1 vertex and no edge. Now the graph has no 

subdivision.                                                                                                                                               

If ÿ = 1, we get subdivision of a graph �1(�2) = �(�2) ≅ �3.                                                      
From the theorem 3.2.3, it follows �3 is geometric mean cordial, �1(�2) is geometric 

mean cordial.                                                                                                                                           

If ÿ = 2, we get a subdivision of a graph �2(�3) = �(�1(�3)) = �(�3) ≅ �5. From 

the theorem 3.2.3, it follows �5 is geometric mean cordial, �2(�3) is geometric mean 

cordial and hence �(�Ā) is geometric mean cordial.                                                                                                                                    

Case(i): ÿ ≡ 0(ÿāý 3).                                                                                                                          

Let ÿ = 3þ, þ g 1.                                                                                                                                                     

Now the path has (23þ. 3þ) + 1 vertices and 23þ . 3þ edges. The labeling is as follows.                                                                                                

If we assign 0′ý to 23þ . þ vertices, 1′ý to 23þ . þ + 1 vertices and  2′ý to 23þ . þ vertices, 

then  

         Ā�(0) = 23þ. þ, Ā�(1) = 23þ . þ + 1, Ā�(2) = 23þ . þ  and       

         þ�(0) = 23þ . þ, þ�(1) = 23þ. þ, þ�(2) = 23þ. þ                                                                                                                             

In this case, |Ā�(ÿ) 2 Ā�(Ā)| f 1 and |þ�(ÿ) 2 þ�(Ā)| f 1  for all  ÿ, Ā ∈ {0,1,2},  ÿ is a 

geometric mean cordial labeling and hence the ÿ 2 subdivision of a graph �ÿ(�ÿ+1) 

is a geometric mean cordial graph. 
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Case(ii): ÿ ≡ 1(ÿāý 3)                                                                                                                                 

Let ÿ = 3þ + 1, þ g 1.                                                                                                                                                     

Now the path has (23þ+1(3þ + 1)) + 1 vertices and 23þ+1(3þ + 1) edges. The 

labeling is as follows. There are two subcases.                                                                                                        

Subcase(i): Ā�(0) = (23�+1(3þ+1))213 + 1, Ā�(1) = (23�+1(3þ+1))213 + 1,  

                  Ā�(2) = (23�+1(3þ+1))213  , þ = 1, 3, 5, & 

In this subcase, we get                                                                                                                                    þ�(0) = (23�+1(3þ+1))213 + 1, þ�(1) = (23�+1(3þ+1))213  , þ�(2) = (23�+1(3þ+1))213                                                                                                                              

Subcase(ii): Ā�(0) = (23�+1(3þ+1))223 + 1, Ā�(1) = (23�+1(3þ+1))223 + 1,  

                  Ā�(2) = (23�+1(3þ+1))223 + 1 , þ = 2, 4, 6, & 

In this subcase, we get                                                                                                                                    þ�(0) = (23�+1(3þ+1))223 + 1, þ�(1) = (23�+1(3þ+1))223  , þ�(2) = (23�+1(3þ+1))223 + 1. 
 In all the subcases, |Ā�(ÿ) 2 Ā�(Ā)| f 1 and |þ�(ÿ) 2 þ�(Ā)| f 1  for all ÿ, Ā ∈ {0,1,2},                                   ÿ is a geometric mean cordial labeling and hence the ÿ 2 subdivision of a graph �ÿ(�ÿ+1) is a geometric mean cordial graph.                                                                                           

Case(iii): ÿ ≡ 2(ÿāý 3)                                                                                                                             

Let ÿ = 3þ + 2.                                                                                                                                                     

Now the path has (23þ+2(3þ + 2)) + 1 vertices and 23þ+2(3þ + 2) edges. The 

labeling is as follows. There are two subcases.                                                                                                       
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Subcase(i): Ā�(0) = (23�+2(3þ+2))213 + 1, Ā�(1) = (23�+2(3þ+2))213 + 1,  

                   Ā�(2) = (23�+2(3þ+2))213  , þ = 1, 3, 5, & 

In this subcase, we get                                                                                                                                    þ�(0) = (23�+2(3þ+2))213 + 1, þ�(1) = (23�+2(3þ+2))213  , þ�(2) = (23�+2(3þ+2))213                                                                                                                              

Subcase(ii): Ā�(0) = (23�+2(3þ+2))223 + 1, Ā�(1) = (23�+2(3þ+2))223 + 1,  

                    Ā�(2) = (23�+2(3þ+2))223 + 1 , þ = 2, 4, 6, & 

In this subcase, we get                                                                                                                                    þ�(0) = (23�+2(3þ+2))223 + 1, þ�(1) = (23�+2(3þ+2))223  , þ�(2) = (23�+2(3þ+2))223 + 1. 
In all the subcases, |Ā�(ÿ) 2 Ā�(Ā)| f 1 and |þ�(ÿ) 2 þ�(Ā)| f 1  for all ÿ, Ā ∈ {0,1,2},                                        ÿ is a geometric mean cordial labeling and hence the ÿ 2 subdivision of a graph �ÿ(�ÿ+1) is a geometric mean cordial graph. 

Example 4.3.4: 

Geometric mean cordial labeling of �3(�4) is given below 

 

 

                                                             �3(�4) ≅ �25 

 

Here Ā�(0) = 8, Ā�(1) = 9, Ā�(2) = 8 and  þ�(0) = 8, þ�(1) = 8, þ�(2) = 8 

2 2 2 2 2 2 2 2 1 1 1 

2 2 2 2 2 2 2 2 1 1  

1 1 1 1 1 1 0 0 0 0  

1 1 1 1 1 1 0 0 0 0  

0 0 0 

0 0 0 

Figure 4.2 
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Theorem 4.3.5: 

  �(ÿĀ) is geometric mean cordial iff Ā ≡ 1,2(ÿāý 3) 

Proof: 

Let ÿĀ: ÿ1, ÿ2, & , ÿĀ be the cycle of Ā vertices and Ā edges.                                                  

Let ý1, ý2, & , ýĀ be the subdivisional vertices of ÿĀ.                                                                                      

From the result 4.2.4, it follows that �(ÿĀ) is ÿ2Ā and has 2Ā vertices and 2Ā edges.                        

Case (i): Ā ≡ 0(ÿāý 3).                                                                                                                            

Let Ā = 3þ.                                                                                                                                    

Now the cycle ÿ2Ā has 6þ vertices and 6þ edges. Here ÿ2Ā consists of 3þ vertices of ÿĀ and 3þ subdivisional vertices. If �(ÿĀ) admits a geometric mean cordial labeling ÿ, 

then we should have 

 Ā�(0) = Ā�(1) = Ā�(2) = 2þ and þ�(0) =  þ�(1) =  þ�(2) = 2þ     …(1)                    

Consider Ā�(0) = 2þ. If we assign 0′ý to 2þ number of vertices in �(ÿĀ), then we get þ�(0) > 2þ a contradiction to (1). Hence ÿ is not a geometric mean cordial labeling. 

Case (ii): Ā ≡ 1(ÿāý 3)                                                                                                                          

Let Ā = 3þ + 1.                                                                                                                    

Now the cycle ÿ2Ā has 6þ + 2 vertices and 6þ + 2 edges. Here ÿ2Ā consists of 3þ + 1 

vertices of ÿĀ and 3þ + 1 subdivisional vertices.  

Assign the label 1 to þ + 1 vertices, and the labels 0 and 2 to remaining each 

of the þ vertices in ÿĀ and orderly we assign the same labeling to 3þ + 1 subdivisional 

vertices such that 0 to 1ýþ þ subdivisional vertices ý1, ý2, & , ýþ and 1 and 2 to 

remaining ýþ+1, ýþ+2, & , ý2þ+1 and ý2þ+2, ý2þ+3, & , ý3þ+1 respectively.                                                  
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Then, we get                                                                                                                                                             Ā�(0) = 2þ, Ā�(1) = 2þ + 2, Ā�(2) = 2þ and                                                                                               þ�(0) = 2þ + 1, þ�(1) = 2þ + 1, þ�(2) = 2þ                                                                                                            

It does not satisfy vertex labeling. To get geometric mean cordial labeling, we change 

the one vertex labeled 1 adjacent to 2 by the labeling 2, then we get                                                        Ā�(0) = 2þ, Ā�(1) = 2þ + 1, Ā�(2) = 2þ + 1 and                                                                                              þ�(0) = 2þ + 1, þ�(1) = 2þ, þ�(2) = 2þ + 1                                                                                       

If we change the one vertex labeled 1 adjacent to 0 by the labeling 2, then it would 

not affect the previous edge labeling, it would give the same result. 

Case (iii): Ā ≡ 2(ÿāý 3)                                                                                                                         

Let Ā = 3þ + 2.                                                                                                                      

Now the cycle ÿ2Ā has 6þ + 4 vertices and 6þ + 4 edges. Here ÿ2Ā consists of 3þ + 2 

vertices of ÿĀ and 3þ + 2 subdivisional vertices.  

Assign the label 0 to þ vertices, and the labels 1 and 2 to remaining each of the þ + 1 vertices in ÿĀ and orderly we assign the same labeling to 3þ + 2 subdivisional 

vertices such that 0 to 1ýþ þ subdivisional vertices ý1, ý2, & , ýþ and 1 and 2 to 

remaining ýþ+1, ýþ+2, & , ý2þ+1 and ý2þ+2, ý2þ+3, & , ý3þ+2 respectively.                     

Then, we get                                                                                                                                                             Ā�(0) = 2þ, Ā�(1) = Ā�(2) = 2þ + 2 and                                                                                         þ�(0) = 2þ + 1, þ�(1) = 2þ + 1, þ�(2) = 2þ + 2                                                                                   

It does not satisfy vertex labeling.  

To get geometric mean cordial labeling, we change the one vertex labeled 1 adjacent 

to a vertex labeled 0 by the labeling 0 and one vertex labeled 2 adjacent to a vertex 
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labeled 1 by the labeling 1, then we get                                                                              Ā�(0) = 2þ + 1, Ā�(1) = 2þ + 2, Ā�(2) = 2þ + 1 and                                                                þ�(0) = 2þ + 2, þ�(1) =  þ�(2) = 2þ + 1             

In all cases, we see that |Ā�(ÿ) 2 Ā�(Ā)| f 1 and |þ�(ÿ) 2 þ�(Ā)| f 1  for all                                        ÿ, Ā ∈ {0,1,2}, ÿ is a geometric mean cordial labeling and hence the subdivision of a 

graph �(ÿĀ) is geometric mean cordial graph. 

Theorem 4.3.6:                                                                                                                                          

 �ÿ(ÿĀ) is geometric mean cordial iff Ā ≡ 1,2(ÿāý 3)                                                                                

Proof:                                                                                                                                                                          

We know that �ÿ(ÿĀ) is the graph of 2ÿĀ vertices and 2ÿĀ edges.                                              

Case (i): Ā ≡ 0(ÿāý 3)                                                                                                                                              

Let Ā = 3þ, þ g 1.                                                                                                                             

Now the graph consists of 2ÿ3þ vertices and 2ÿ3þ edges. If ÿ admits a geometric 

mean cordial labeling, then it should be                                                                             Ā�(0) = Ā�(1) = Ā�(2) = 2ÿþ and þ�(0) = þ�(1) = þ�(2) = 2ÿþ                                                                

When we assign 0′ý to 2ÿþ vertices, we get þ�(0) > 2ÿþ.                                                          

Hence ÿ is not geometric mean cordial labeling.                                                                                      

Case (ii): Ā ≡ 1(ÿāý 3)                                                                                                                             

Let Ā = 3þ + 1, þ g 1.                                                                                                                                    

Now the graph �ÿ(ÿĀ) consists of 2ÿ(3þ + 1) vertices and 2ÿ(3þ + 1) edges.                                       
In this case, �ÿ(ÿ3þ+1) ≅ ÿ2�(3þ+1) is a cycle that is geometric mean cordial.                                                                                                                     
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Case (iii): Ā ≡ 2(ÿāý 3)                                                                                                                                              

Let Ā = 3þ + 2, þ g 1.                                                                                                                                     

Now the graph �ÿ(ÿĀ) consists of 2ÿ(3þ + 2) vertices and 2ÿ(3þ + 2) edges.                                          
In this case, �ÿ(ÿ3þ+2) ≅ ÿ2�(3þ+2) is a cycle that is geometric mean cordial.                      

In all the cases, we see that |Ā�(ÿ) 2 Ā�(Ā)| f 1 and |þ�(ÿ) 2 þ�(Ā)| f 1  for all                                        ÿ, Ā ∈ {0,1,2},  ÿ is a geometric mean cordial labeling and hence the ÿ 2 subdivision 

of a graph �ÿ(ÿĀ) is a geometric mean cordial graph.                                                                               

 Example 4.3.7: 

Geometric mean cordial labeling of �(ÿ7) is given below 

 

 

 

 

 

 

 

 

Here Ā�(0) = 4, Ā�(1) = 6, Ā�(2) = 4 and  þ�(0) = 5, þ�(1) = 5, þ�(2) = 4                   

The above labeling is not geometric mean cordial labeling. To make the geometric 

mean cordiality, we make the following changes as in figure 4.4 

 

1 
1 

1 

1 

1 

1 

2 

2 

2 2 

0 

0 

0 

0 

�(ÿ7) ≅ ÿ14 

Figure 4.3 
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Here Ā�(0) = 4, Ā�(1) = 5, Ā�(2) = 5 and  þ�(0) = 5, þ�(1) = 4, þ�(2) = 5   
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1 

2 
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2 2 

0 

0 

0 

0 

Figure 4.4 
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