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  PREFACE 

 

The topic of our Project “CRYPTOGRAPHY” is the art of concealing information to induce 

secrecy in the communication and transmission of sensitive data is termed cryptography. 

Diving deep into the etymology of the word ‘cryptography’ shows that this word finds its origin 

in ancient Greek. Derived from words kryptos meaning “hidden” or “secret” 

and graphy meaning “writing”, cryptography literally means writing something secretly. 

 

The idea of cryptography is to convey a private message or piece of information from the sender 

party to the intended recipient without getting the message intruded on by a malicious or 

untrusted party. In the world of cryptography, this suspicious third party that is trying to sneak 

into a private communication to extract something sensitive out of it is called 

an adversary.Cryptography protects us from these unwanted adversaries by offering a range of 

algorithms required to hide or protect our message in the best way possible and transmit it 

comfortably over a not-so-secure network. 

 

 

 

 

Chapter  1  presents briefly the idea of What is Cryptography, history of cryptography and 

its types. 

 

Chapter  2  deals with one of the types of cryptography ‘Hashing’ and explains briefly the 

types of Hashing. 

 

Chapter  3  focuses on the most important applications of cryptography that is Encryption 

and Decryption and application of matrices to cryptography. 

 

Chapter  4  deals with the algorithms used in cryptography such as Triple DES, twofish, 

AES, SHA256, how do block chains work,Visual cryptography and elliptic curve 

cryptosystems. 

 

Chapter  5 deals with the ‘Magic of math in Cryptography’. 
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INTRODUCTION  

                                      

 

                                              

                      

 

                Claude E . Shannon is considered by many to be the father of 

mathematical cryptography .  Shannon worked for several years at Bell Labs and 

during his time there ,  he produced an article entitled   “ A mathematical theory 

of cryptography ”. The first recorded use of cryptography for correspondence was 

by the Spartans, who as early as 400 bc employed a cipher device called the 

scytale for secret communication between military commanders. 
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CHAPTER  1 

CRYPTOGRAPHY 

1.1  DEFINITION 

                  Cryptography is the study of secure communications techniques that allow only the 

sender and intended recipient of a message to view its contents. The term is derived from the Greek 

word kryptos, which means hidden. 

1.2  HISTORY OF CRYPTOGRAPHY 

                  As civilizations evolved, human beings got organized in tribes, groups and kingdoms. 

This led to the emergence of ideas such as power, battles, supremacy and politics. These ideas 

further fueled the natural need of people to communicate secretly with selective recipient which 

in turn ensure the continuous evolution of cryptography as well. The roots of cryptography are 

found in Roman and Egyptian civilizations. 

1.2.1  HIEROGLYPH 

                  The first known evidence of cryptography can be traced to the use of ‘Hieroglyph’. 

Some 4000 years ago, the Egyptians used to communicate by messages written in hieroglyph. 

 

                                                            

1.3  CRYPTOGRAPHY IN EVERYDAY LIFE 

                   Today, cryptography is used to protect digital data. It is a division of computer science 

that focuses on transforming data into formats that cannot be recognized by unauthorized users. 

An example of basic cryptography is a encrypted message in which letters are replaced with other 

characters. 

                  ‘ Cryptography in everyday life ’ contains a range of situations where the use of 

cryptography facilitates the provision of a secure service : cash withdrawal from an ATM, Pay TV, 

email and file storage using Pretty Good Privacy (PGP) freeware, secure web browsing and use of 

a GSM mobile phone. 
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1.4  TYPES OF CRYPTOGRAPHY 

Cryptography can be broken down into three different types: 

                           

 

1.4.1  SYMMETRIC-KEY CRYPTOGRAPHY(Secret key cryptography) 

                      Both the sender and  receiver share a single key. The sender uses this key to encrypt 

plaintext and send the cipher text to the receiver. On the other side the receiver applies the same 

key to decrypt the message and recover the plain text. 

 

EXAMPLE OF SYMMETRIC KEY CRYPTOGRAPHY 

Blowfish 

                                 

Blowfish is a symmetric block cipher that can be used as a drop-in replacement for DES or IDEA. 

It takes a variable-length key, from 32 bits to 448 bits, making it ideal for both domestic and 

exportable use. Blowfish is an alternative to DES Encryption Technique. 
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Features 

• Block cipher: 64-bit block 

• Variable key length: 32 bits to 448 bits 

• Much faster than DES and IDEA 

• Unpatented and royalty-free 

• No license required 

Working 

The above diagram shows Blowfish’s F-function. The function splits the 32-bit input into four 

eight-bit quarters, and uses the quarters as input to the S-boxes. The outputs are added modulo232 

and XORed to produce the final 32-bit output. 

 

1.4.2  ASYMMETRIC-KEY CRYPTOGRAPHY(Public key cryptography) 

                    Public key cryptography is a very advanced form of cryptography. This is the most 

revolutionary concept in the last 300-400 years. In Public-Key Cryptography two related keys 

(public and private key) are used. Public key may be freely distributed, while its paired private 

key, remains a secret. The public key is used for encryption and for decryption private key is used. 

EXAMPLE OF ASYMMETRIC KEY CRYPTOGRAPHY 

RSA algorithm  

It is asymmetric cryptography algorithm. Asymmetric actually means that it works on two different 

keys i.e. Public Key and Private Key. As the name describes that the Public Key is given to 

everyone and Private key is kept private. 

 

RSA Component Features 

• Public/private key generation. 

• Encrypt with either public or private key. 

• Decrypt with matching public or private key. 
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• Create digital signatures. 

• Verify digital signatures. 

• Encrypt and decrypt in-memory strings or byte arrays of any size. 

• Encode encrypted output to Base64, Hex, Quoted-Printable, or URL-encoding 

• Export public/private key pairs to XML. 

• Import key pair from .snk file. 

• Import public/private key pairs from XML. 

• Import/Export only public-part or private-part of key pair. 

• PKCS v1.5 padding for encryption and signatures. 

• OAEP Padding Scheme for Encryption/Decryption 

• Create/verify signatures with little-endian or big-endian byte ordering. 

• Supports key sizes ranging from 512 bits to 4096 bits. 

• Supports hash algorithms: MD5, SHA-1, SHA-2 (SHA-256, SHA-384, SHA-512), and             

more…   

• Thread safe. 
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1.4.3  HASH FUNCTIONS 

                    No key is used in this algorithm. A fixed-length hash value is computed as per the 

plain text that makes it impossible for the contents of the plain text to be recovered. Hash 

functions are also used by many operating systems to encrypt passwords. 

Examples of Hash Function 

SHA  

The Secure Hash Algorithm (SHA) hash functions are a set of cryptographic hash functions 

designed by the National Security Agency (NSA) and published by the NIST as a U.S. Federal 

Information Processing Standard . 

• SHA stands for Secure Hash Algorithm. 

• Because of the successful attacks on MD5, SHA – 0 and theoretical attacks on SHA – 1, 

NIST perceived a need for an alternative, dissimilar cryptographic hash, which became SHA 

– 3. 

• In October 2012, the National Institute of Standards and Technology (NIST) chose the 

Keccak algorithm as the new SHA- 3 standard. 

This type is explained briefly in the following chapter. 
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CHAPTER  2 

HASH FUNCTIONS 

2.1  BASICS OF HASH FUNCTIONS  

                          Each key is associated with the values it is mapped to some numbers in the 

range of 0 to table size -1. 

 A Hash function is a key to address transformation 

                                Key % Table size  

Example 

Table size =10 

          Key = 75  

  Hash key = Key % Table size  

                  = 75 % 10 

                  = 5 

 If input keys are random integers then this function is very simple and distribute the keys. If the 

table size is 10 and all the keys end in zero, then this hash function is a wrong choice. 

2.1.1  TYPES OF HASH FUNCTIONS 

1. Division method 

2. Mid square method 

3. Folding method 

4. Multiplication method 

1.  Division Method 

              This is the most simple and easiest method to generate a hash value. The hash function 

divides the value k by M and then uses the remainder obtained. 

Formula 

       h(K) = k mod M 

        Here, 

        K is the key value, and  

        M is the size of the hash table. 

It is best suited that M is a prime numbers as that can make sure the keys are more uniformly 

distributed. The hash function is dependent upon the remainder of a division. 
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Example 

     k = 12345 

     M = 95  

     h(12345) = 12345 mod  95  

                     = 90 

Pros 

1. This method is quit good for any value of M. 

2. The division method is very fast since it requires only a single division operation. 

Cons 

1. This method leads to poor performance since consecutive keys map to consecutive hash 

values in the hash table. 

2. Sometimes extra care should be taken to choose value of M. 

 

2. Mid square method 

                The mid square method is very good hashing method. It involves two steps to compute 

the hash value. 

1. Square the value of the key k i.e. k2 

2. Extract the middle r digits as the hash value. 

Formula 

     h(K) = h(k x k) 

      here, 

      k is the key value. 

The value of r can be decided based on the size of the table. 

Example 

Suppose the hash table has 100 memory locations. So r = 2 because two degits are required to map 

the key to the memory location. 

     k = 60 

     k x k = 60 x 60 

              = 3600 

     h(60) = 60 
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The hash value obtained is 60. 

Pros 

1. The performance of this method is good as most or all digits of the result. This is because 

all digits in the key contribute to generating the middle digits of the squared result. 

2. The result is not dominated by the distribution of the top digit or bottom digit of the original 

key value. 

Cons 

1. The size of the key is one of the limitations of this method, as the key is of big size then its 

squre will double the number of digits. 

2. Another disadvantage is that there will be collisions but we can try to reduce collisions. 

 

3. Digit folding method 

This method involves two steps 

1. Divide the key value k into a number of parts i.e. k1, k2, k3, …, kn, where each part that 

can have lesser digits than the other parts. 

2. Add the individual parts. The hash value is obtained by ignoring the last carry if any. 

Formula 

      k = k1,k2,k3,k4,…,kn 

      s = k1+k2+k3+k4+…kn 

      h(k) = s 

      here, 

      s is obtained by adding the parts of the key k 

 Example 

      k = 12345 

    k1 = 12, k2 = 34, k3 = 5 

      s = k1+k2+k3 

         =12+34+5 

         =51 

h(k) = 51 
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4. Multiplication method 

This method involves the following steps  

1. Choose a constant value A such that 0 < A < 1. 

2. Multiply the key value with A. 

3. Extract the fractional part of kA. 

4. Multiply the result of the above step by the size of the hash table i.e. M. 

5. The resulting hash value is obtained by taking the floor of the result obtained in step 4. 

Formula 

     h(K) = floor (M (kA mod 1)) 

      Here,  

      M is the size of the hash table. 

      K is the key value. 

      A is a constant value. 

Example 

      k = 12345 

       A = 0.357840 

       M = 100 

       h(12345) = floor[ 100 (12345*0.357840 mod 1)] 

                       = floor[ 100 (4417.5348 mod 1)] 

                       = floor[ 100 (0.5348)] 

                       = floor[ 53.48] 

                       = 53 
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Pros 

The advantages of the multiplication method is that it can work with any value of between 0 and 

1, although there are some values that tend to give better results than the rest. 

Cons 

The multiplication method  is generally suitable when the table size is the power of two, then the 

whole process of computing the index by the key using multiplication hashing is very fast. 

2.2  HASHING 

                The implementation of hash table is called as hashing. It can perform insertion, deletion 

and find operations in a constant average time.  

2.2.1  COLLISION RESOLUTION TECHNIQUES  

 1. Open Hashing  

                   a. Separate chaining 

  2. Closed Hashing  

                   a. Linear Probing 

                   b. Quadratic Probing 

                   c. Double Hashing  

1. Open Hashing  

a. Separate chaining 

• Retrieval of an item, r, with hash address, i, is simply retrieval from the 

linked list at position i.   

• Deletion of an item, r, with hash address, i, is simply deleting r from the 

linked list at position i. 

Example 

               Load the keys 23, 13, 21, 14, 7, 8, and 15, in this order, in a hash table of size 7 using 

separate chaining with the hash function:  

                                                       h(key)=key % 7 

                          

                         h(23) = 23 % 7 = 2 
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                         h(13) = 13 % 7 = 6 

                         h(21) = 21 % 7 = 0 

                         h(14) = 14 % 7 = 0   collision    

                         h(7)   = 7 % 7   = 0   collision  

                         h(8)   = 8 % 7   = 1  

                         h(15) = 15 % 7 = 1    collision 

 

0 

1 

2 

3 

4 

5 

6 

 

2. Closed Hashing 

 a. Linear Probing 

             In linear probing, f is a linear function of i, typically f(i) = i. This means to trying cells 

sequentially (with wraparound) in search of an empty cell. 

Example 

 Table size = 10 

 hash(key)  = key % 10 

f(i) = i 

  Inserted keys: 89, 18, 49, 58, 69 

                          h(89)= 89 % 10 = 9 

                          h(18)= 18 % 10 = 8 

                          h(49)= 49 % 10 = 9 collision 

                                i=1, f(1)= 1 

 

 

 

 

 

 

 

21  14  7  

8  15  

23  

13  
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                          h(58)= 58 % 10 = 8 collision 

                                i=1, f(1)= 1 

                                i=2, f(2)= 2  

                                i=3, f(3)= 3    

                    h(69)= 69 % 10 = 9 collision 

                                i=3, f(3)= 3 

 

 

                            

                  

 

 

 

                    

 

 

b. Quadratic Probing 

                  In quadratic probing, f is a quadratic function of i, typically f(i)= i2. 

Example 

 Table size = 10 

 hash(key) = key % 10 

 f(i) = i2 

 Inserted keys: 89, 18, 49, 58, 69 

                           h(89)= 89 % 10 = 9 

                           h(18)= 18 % 10 = 8 

                           h(49)= 49 % 10 = 9 collision 

                                i=1, f(1)= 12=1 

                           h(58)= 58 % 10 = 8 collision 

 89 18 49  58 69 

0   49  49 49 

1     58 58 

2      69 

3       

4       

5       

6       

7       

8  18 18  18 18 

9 89 89 89  89 89 
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                                i=1, f(1)= 12=1 

                                i=2, f(2)= 22=4 

                           h(69)= 69 % 10 = 9 collision  

                                i=2, f(2)= 22=4 

 

 

 

 

 

 

 

                               

 

 

c. Double Hashing 

  Hash function 

                  hash(key)= key % table size 

  When collision occurs use a second hash function  

                  Hash2(key) = R - (key % R) 

                  R is a greatest prime number smaller than table size  

Example 

Table size = 10 

hash(key) = key  

 f(i)=i 

hash2(key) = R - (key % R) 

 R = 7 

 inserted keys: 89, 18, 49, 58, 69 

                                h(89)= 89 % 10 = 9 

 89 18 49 58 69 

0   49 49 49 

1      

2    58 58 

3     69 

4      

5      

6      

7      

8  18 18 18 18 

9 89 89 89 89 89 
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                                h(18)= 18 % 10 = 8  

                                h(49)= 49 % 10 = 9 collision 

                                          R - (key % R) 

                                          7 - (49 % 7) 

                                          7 - 0 =7 

                                h(58)= 58 % 10 = 8 collision 

                                          7 - (58 % 7) 

                                          7 - 2 = 5 

                               h(69)= 69 % 10 = 9 collision  

                                          7 - (69 % 7) 

                                          7 – 6 = 1 

 

 

 

 89 18 49 58 69 

0     69 

1      

2      

3    58 58 

4      

5      

6   49 49 49 

7      

8  18 18 18 18 

9 89 89 89 89 89 
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CHAPTER  3 

ENCRYPTION AND  DECRYPTION 

3.1  ENCRYPTION 

                    Encryption is a means of securing digital data using one or more mathematical 

techniques, along with a password the encryption process to decrypt the information.  The 

encryption process translates information using an algorithm that makes the original 

information unreadable.  The process for instance can convert an original text, known as 

plaintext into an alternative form known as cipher text.  When an authorized user needs to read 

the data  they may decrypt the data using a binary key.  This will convert cipher text back to 

plaintext so that the authorized user can access the original information. 

3.1.1  HOW DOES  ENCRYPTION WORK? 

 At the beginning of the encryption process, the sender must decide what cipher 

will best disguise the meaning of the message and what variable to use as a key to make the 

encoded message unique. The most widely used types of ciphers fail into two categories: 

Symmetric and Asymmetric ciphers.  

3.1.2  SYMMETRIC CIPHERS 

 Symmetric ciphers, also referred to as secret key encryption, use a single key.  

The key is sometimes referred to as a shared secret because the sender or computing system 

doing the encryption must share the secret key with all entities authorized to decryption is 

usually much faster than asymmetric encryption.  The most widely used symmetric key cipher 

is the Advanced Encryption Standard, which was designed to protect government-classified 

information.             

There are basically two types of symmetric ciphers 

                                1. Substitution cipher 

                                2. Transposition cipher 
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1. SUBSTITUTION CIPHER 

                A substitution is a technique in while each letter or bit of the plaintext is substituted   

or replaced by some other letter number or symbol to produce cipher text. 

For Example:  ABC  →  XYZ 

Types of Substitution cipher 

                         a) Caesar cipher 

                         b) Monoalphabetic cipher 

                         c) Polyalphabetic cipher 

                         d) Playfair cipher 

                         e) One time pad cipher 

                         f) Hill cipher 

a) Caesar cipher  

           1. Letters are replaced by letters or symbols. 

           2. The earlier known and simplest method used be Julius Caesar. 

           3. Replacing each letter of the alphabet with the letter standing three places further down 

alphabet. 

Formula 

           1.For each plaintext letter ‘P’ substitution the cipher letter C. 

           2.C = E(P,K) mod 26 = (P + K) mod 26  and  P = D(C,K) mod 26 = (C – K) mod 26. 

TABLE : 1 

A B C D E F G H I J K L M 

0 1 2 3 4 5 6 7 8 9 10 11 12 

N O P Q R S T U V W X Y Z 

13 14 15 16 17 18 19 20 21 22 23 24 25 
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Example 

Encrypt  ‘NESO ACADEMY’ using Caesar cipher 

Solution 

Encryption 

Plain text : NESO ACADEMY 

N E S O A C A D E M Y 

Q H V R D F D G H P B 

 

C = (P + K) mod 26 

   = (13 + 3) mod 26  

   = 16 mod 26 

   = 16      

C = Q 

Cipher text : QHVRDFDGHPB 

Decryption 

Cipher text : QHVRDFDGHPB 

Q H V R D F D G H P B 

N E S O A C A D E M Y 

 

P = (C – K) mod 26 

   = (16 – 3) mod 26 

   = 13 mod 26 

   = 13 

P = N  

Plain text : NESO ACADEMY 
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b) Monoalphabetic cipher  

                     Monoalphabetic cipher substitution are letter of the alphabet with another letter 

of the alphabet.  However rather than substituting according to a regular pattern any letter can 

be substituted for any other letter as long as each letter has a unique substitute left and vice 

versa. 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

D E A B C U W V F Y Z X G T H S R I J Q P K L O N M 

 

Example 

Encrypt the message “ HELLO” using  Monoalphabetic cipher  

Solution: 

Encryption 

Plain text message   :  HELLO 

Cipher text message: VCXXH 

Decryption 

Cipher text message : VCXXH 

Plain text message    :  HELLO 

c) Polyalphabetic cipher  

               1. Polyalphabetic cipher is any cipher based on substitution alphabets. 

               2. The vignere cipher is probably the best known example of polyalphabetic cipher. 

               3. Vignere cipher is a method of encryption alphabetic text. 

Thus technique used for both encryption and decryption the message. 

Encryption formula 

 Converging (A – Z) into number (0-25). The plaintext (p) and key are called modulo 26. 

               Eⱼ = (Pⱼ + Kⱼ) mod 26      
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Decryption formula 

              Dⱼ = (Eⱼ - Kⱼ + 26) mod 26 

Example 

The plaintext is “JAVATPOINT’’, and the key “BEST” 

Solution 

Encryption 

Eⱼ = (Pⱼ  + Kⱼ) mod 26 

Plain text : JAVATPOINT 

KEY  = BESTBESTBE 

J = 9  and B = 1  

E₁   = (P₁+ K₁) mod 26 

     = (J + B) mod 26        ( using  table:1) 

      = (9 + 1) mod 26   = 10 mod 26     

E₁   =  10 

Plaintext  J A V A T P O I N T 

Plaintext 

value(P) 

9 0 21 0 19 15 14 8 13 19 

Key B E S T B E S T B E 

Key 

value(K) 

1 4 18 19 1 4 18 19 1 4 

Cipher 

text 

value(E) 

10 4 13 19 20 19 6 1 14 23 

Cipher 

text  

K E N T U T G B O X 

 

Cipher text : KENTUTGBOX 
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Decryption 

If any case(Dⱼ) value becomes negative (-ve), in this case, we will add 26 in the negative 

value. 

K = 10 and  B = 1  

Dⱼ  = (Eⱼ - Kⱼ + 26) mod 26 

      =(E₁ - K₁ + 26) mod 26  = (K – B +26) mod 26    (by using Table : 1) 

     = (10 – 1 + 26) mod 26   = (35) mod 26 

     = 9  

     = J 

Cipher 

text  

K E N T U T G B O X 

Ciphertext 

value (E) 

10 4 13 19 20 19 6 1 14 23 

Key B E S T B E S T B E 

Key 

value(k) 

1 4 18 19 1 4 18 19 1 4 

Plaintext 

value (P) 

9 0 21 0 19 15 14 8 13 19 

Plaintext J A V A T P O I N T 

 

Plaintext : JAVATPOINT 

d) Playfair cipher 

              Playfair cipher is a digraph substitution cipher.  It employs a table where one letter is 

omitted and the letter are arranged is 5 x 5 grid. 

Rules 

1. Diagrams 

2. Repeating letters – Filler letter 



 
 
 

30 
 

3. Same column |↓| wrap around 

4. Same row  |→| wrap around 

5. Rectangle |↔| swap 

Example  

 The  Plaintext “ATTACK “ and the Key MONARCHY 

Solution 

Encryption     

           Plain text     : AT TA CK  

           Cipher text  : RS SR DE  

    

  

Cipher text : RSSRCE 

DECRYPTION  

Cipher  text :   RS SR DE 

Plain text     :  AT TA CK 

 

 

Plain text : ATTACK 

e) One time pad cipher 

          1. One time pad (OTP) also called Vernamcipher or the perfect cipher is a crypto 

algorithm where plaintext is combined with a random key.  

         2. They key is at least as long as the message or data that must be encrypted. 

         3. Each key is used only one and both sender and receiver must destroy their key after 

use. 

M O N A R 

C H Y B D 

E F G I/J K 

L P Q S T 

U V W X Z 

M O N A R 

C H Y B D 

E F G I/J K 

L P Q S T 

U V W X Z 
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         4. There should only two copies of the key: one for sender and one for receiver. 

Example 

The Plain text “ACTIVE” and key “CELOAI” 

Solution 

ENCRYPTION (+) 

Plain text → A C T I V E                                      

 key   → C E L O A I                                

                                                0  2   19   8   21     4           ( using Table : 1) 

                                                2  4   11  14     0    8  

                                     ─────────────── 

                                                2   6  30  22   21  12 

                                                        -26 

                                                       ─── 

                                                           4  

 Cipher text     →                  C    G   E   W   V   M 

DECRYPTION ( - ) 

Cipher text   →  C   G  E W  V  M       ,        key     →  C   E   L  O  A   I             

                                               2   6    4    22  21  12        (using Table:1)            

                                               2   4   11   14    0    8 

                                               ──────────── 

                                               0    2   -7   8     21   4 

                                                        +26 

                                                ─── 

                                                  19 
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             Plain  text    →         A   C    T     I      V    E  

f) Hill cipher 

              In  classical cryptography the Hill cipher is  a polygraphic substitution cipher based 

on linear algebra.  Invented by Lester S. Hill in 1929, it was the first polygraphic cipher in 

which it was practical to operate on more than three symbols at once. 

Encryption formula 

              C = KP mod 26 

Decryption formula 

            P = K¯¹C mod 26   where K¯¹ =  
1

|𝐾|
 adj K 

Example 

Plain text  is CD. Find out Cipher text of given plain text using cipher text. Key matrix = [
2 3
3 4

] 

Solution 

Encryption  

     Plain text   = CD (C = 2,D = 3)              (using  Table : 1) 

     Key matrix = [
2 3
3 4

] 

        C  = KP mod 26  

               C  = [
2 3
3 4

] [
2
3

] mod 26 

                   = [
13
18

] mod 26  

                  =  [
13
18

] 

                   = [
𝑁 
𝑆

] 

Cipher text = NS 
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Decryption 

Find out inverse matrix of given key matrix.  

      P  = K¯¹C mod 26 

  K¯¹   = 
1

|𝐾|
𝑎𝑑𝑗𝐾 

  |k|  = |
2 3
3 4

| = 8 – 9 = -1 

 Adj K =[
4 −3

−3 2
] 

  K¯¹   = 
1

−1
[

4 −3
−3 2

]   

          = [
−4 3
3 −2

] 

Cipher text = (N = 13 , S = 18)             (using  table : 1) 

Key inverse matrix = [
−4 3
3 −2

] 

P =  [
−4 3
3 −2

] [
13
18

] mod 26 

   = [
2
3

] mod 26  

  =  [
2
3

] 

   = [
𝐶
𝐷

] 

Plain text = CD 

2. TRANSPOSITION CIPHER 

             In transposition technique, there is no replacement of alphabets or numbers occurs 

instead their position are changed or reordering of position of plain text is done to produce 

cipher text. 

                  For example  ABCDE → BADEC 
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Types of  Transposition cipher  

a) Rail fence 

b) Row Transposition cipher  

a) Rail fence 

            The plaintext is written down as a sequence of diagonals and then read off as a sequence 

of rows. 

Example 

Encrypt  the message “PLEASE  SAVE  ME” with a rail fence of depth 2 

Solution 

Encryption 

 Plain text : PLEASE SAVE ME  

 Depth : 2  

           P    E    S     S    V    M 

              L     A    E    A    E     E 

Cipher text : PESSVMLAEAEE 

Decryption 

Cipher text : PESSVMLAEAEE 

          P    E    S     S     V    M 

            L      A    E      E     E 

Plaintext : PLEASESAVEME 

Plain text : PLEASE  SAVE  ME  

b) Row Transposition cipher  

               We write the message is a rectangle, row by row and read the message off, column 

by column but permute the order of column. 

 



 
 
 

35 
 

Example 

Encrypt  the message “ATTACK POSTPONED UNTILL TWO AM”  

Solution 

Encryption   

Plain text : ATTACK POSTPONED UNTILL TWO AM 

   3        2      1        6        5       4 

 

 

 

 

Cipher text : TSDTWTOELVAPNIMKOTAZCPNOYATUWX 

Decryption 

Cipher text :TSDTWTOELVAPNIMKOTAZCPNOYATUWX 

   3     2        1     6       5     4 

T T A K C A 

S O P O P T 

D E N T N U 

T L I A O W 

W V M Z Y X 

 

Plain text : ATTACKPOSTPONEDUNTILTWOAMVWXYZ 

Plain text : ATTACK POSTPONED UNTIL TWO AM 

3.1.3  ASYMMETRIC CIPHER                

                  Asymmetric ciphers also known as public key, encryption use two different – but 

logically linked keys. This type of cryptography often uses prime numbers to create keys since 

A T T  A C K 

P O S T P O 

N E D U N T 

I L T W O A 

M V W X Y Z 



 
 
 

36 
 

it is computationally different to factor large number and reverse engineer the encryption. The 

Shamir Adelman (RSA) encryption algorithm currently the most widely used the public key 

algorithm. With RSA, the public or the private key can be used to encrypt a message whichever 

key is not used for encryption becomes the decryption key. 

3.2  DECRYPTION  

                   The conversion of encrypted data its original form is called decryption.  It is 

generally a reverse process of encryption.  It decodes the encrypted information so that 

authorized user can only decrypt the data because decryption requires a secret key or password. 

3.2.1  HOW DOES DECRYPTION WORK? 

                    To understand how decryption typically works, let’s consider the case of a veeam 

backup. When typing to recover information from a Veeam backup, an encrypted backup file 

and Replication will perform decryption automically in the backdrop or will require a key.  

                  In case an encryption password  is required to gain access to the backup file, if the 

replication configuration database and Veeam backup is accessible, the key is no longer 

necessary. The passwords from the database  are required to open the backup file. The 

information is accessible in the backdrop, and data  recovery is not much different from that of 

the unencrypted data. 

 

3.3  APPLICATION OF MATRICES TO CRYPTOGRAPHY 

One of the important applications of inverse of a non-singular square matrix is in cryptography. 

Cryptography is an art of communication between two people by keeping the information not 

known to others. It is based upon two factors, namely encryption and decryption. Encryption 

means the process of transformation of an information (plain form) into an unreadable form 

(coded form). On the other hand, Decryption means the transformation of the coded message 

back into original form. Encryption and decryption require a secret technique which is known 

only to the sender and the receiver. 

This secret is called a key. One way of generating a key is by using a non-singular matrix to 

encrypt a message by the sender. The receiver decodes (decrypts) the message to retrieve the 

original message by using the inverse of the matrix. The matrix used for encryption is called 
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encryption matrix (encoding matrix) and that used for decoding is called decryption matrix 

(decoding matrix). 

We explain the process of encryption and decryption by means of an example. 

3.3.1  EXAMPLE 

Suppose that the sender and receiver consider messages in alphabets A − Z  only, both assign 

the numbers 1-26 to the letters A − Z respectively, and the number 0 to a blank space. For 

simplicity, the sender employs a key as post-multiplication by a non-singular matrix of order 3 

of his own choice. The receiver uses post-multiplication by the inverse of the matrix which has 

been chosen by the sender. 

Let the encoding matrix be       

 

Let the message to be sent by the sender be “WELCOME”. 

Since the key is taken as the operation of post-multiplication by a square matrix of order 3, the 

message is cut into pieces (WEL), (COM), (E), each of length 3, and converted into a sequence 

of row matrices of numbers: 

[23 5 12] , [3 15 13] , [5 0 0]. 

Note that, we have included two zeros in the last row matrix. 

 The reason is to get a row matrix with 5 as the first entry. 

Next, we encode the message by post-multiplying each row matrix as given below: 
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So the encoded message is [45 − 28 −23] [46 -18 3] [ 5  −5 5] 

The receiver will decode the message by the reverse key, post-multiplying by the inverse of A.  

So the decoding matrix is  

 

The receiver decodes the coded message as follows: 
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 So, the sequence of decoded row matrices is [23 5 12] ,  [3 15 13], [5 0 0]. 

Thus, the receiver reads the message as “WELCOME”. 
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CHAPTER  4 

ALGORITHMS USED IN CRYPTOGRAPHY 

4.1  TRIPLE DES 

Triple DES is an encryption technique which uses three instance of DES on same plain text. It uses 

there different types of key choosing technique in first all used keys are different and in second two 

keys are same and one is different and in third all keys are same. 3DES is an improvement over des, 

but each has their benefits and opportunities for improvements. 

4.1.1  The encryption-decryption process is as follows 

• Encrypt the plaintext blocks using single DES with key K1. 

• Now decrypt the output of step 1 using single DES with key K2. 

• Finally, encrypt the output of step 2 using single DES with key K3. 

• The output of step 3 is the ciphertext. 

• Decryption of a ciphertext is a reverse process. User first decrypt using K3, then encrypt 

with K2, and finally decrypt with K1. 

4.2  TWOFISH 

Twofish is a symmetric block cipher; a single key is used for encryption and decryption. It has a 

block size of 128 bits, and accepts a key of any length up to 256 bits. 

4.2.1  Features 

• 128 bit block cipher 

• Uses 16 rounds of Feistel network 

• Key length of 128 bit,192 bits and 256 bits 

• No weak keys 
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4.3  AES 

The Advanced Encryption Standard (AES) is a specification for the encryption of electronic data 

AES is six times faster than Triple DES.AES is much faster than RSA. 

4.3.1  Features 

• Symmetric key symmetric block cipher 

• 128-bit data, 128/192/256-bit keys 

• Stronger and faster than Triple-DES 

• Provide full specification and design details 

• Software implementable in C and Java 

AES performs all its computations on bytes rather than bits. Hence, AES treats the 128 bits of a 

plaintext block as 16 bytes. These 16 bytes are arranged in four columns and four rows for 

processing as a matrix he number of rounds in AES is variable and depends on the length of the 

key. AES uses 10 rounds for 128-bit keys, 12 rounds for 192-bit keys and 14 rounds for 256-bit 

keys. Each of these rounds uses a different 128-bit round key, which is calculated from the original 

AES key. 

4.4  SHA-256 

SHA-256 is a one-way function that converts a text of any length into a string of 256 bits. This is 

known as a hashing function. SHA256 stands for Secure Hash Algorithm 256-bit and it’s used for 

cryptographic security. 

SHA-256 generates an almost-unique 256-bit (32-byte) signature for a text. SHA-256 is one of the 

successor hash functions to SHA-1. It is one of the strongest hash functions available. SHA-256 is 

not much more complex to code than SHA-1, and has not yet been compromised in any way. The 

256-bit key makes it a good partner-function for AES. 
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4.5  BLOCKCHAIN 

It’s decentralized nature and cryptographic algorithm make it immune to attack. In 

fact, hacking a Blockchain is close to impossible. In a world where cyber security has become a 

key issue for personal, corporate, and national security, Blockchain is a potentially revolutionary 

technology. 

4.5.1  Features 

1. Cannot be Corrupted 

2. Decentralized Technology 

3. Enhanced Security 

4. Distributed Ledgers 

5. Consensus 

6. Faster Settlement 

One of the application of blockchain is bitcoin. 
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4.6  VISUAL CRYPTOGRAPHY 

Visual cryptography is a cryptographic technique which allows visual information (pictures, text, 

etc.) to be encrypted in such a way that decryption can be done just by sight reading. 

4.6.1  Features 

1) The independence of pixel’s encryption. 

2) Easy matrix generation. 

3) Simple operations. 

Visual Cryptography is a special encryption technique to hide information in images in such a way 

that it can be decrypted by the human vision if the correct key image is used. Visual Cryptography 

uses two transparent images. One image contains random pixels and the other image contains the 

secret information. It is impossible to retrieve the secret information from one of the images. Both 

transparent images and layers are required to reveal the information. 

4.6.2  Applications 

• Safe websites 

• Secure online transactions 

• For encryption of files 

• Military communications 

• Encryption in WhatsApp 

• Sim card Authentication 

• Electronic Money 
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4.7  ELLIPTIC CURVE CRYPTOSYSTEM 

 
We start by giving a short introduction to the mathematical concept of elliptic curves, independent 

of their cryptographic applications. ECC is based on the generalized discrete logarithm problem. 

Hence, what we try to do first is to find a cyclic group on which we can build our cryptosystem. 

Of course, the mere existence of a cyclic group is not sufficient. The DL problem in this group 

must also be computationally hard, which means that it must have good one-way properties. 

 

         We start by considering certain polynomials (e.g., functions with sums of exponents 

of x and y), and we plot them over the real numbers. 

 

Example 1 

 
 Let’s look at the polynomial equation x2+y2= r2 over the real number R. If we plot all the pairs 

(x,y) which fulfill this equation in a coordinate system, we obtain a circle as shown in the figure. 

 

                                                 
 Plot of all points (x, y) which fulfill the equation x2 +y2 = r2 

 

We now look at other polynomial equations over the real numbers. 

 

Example 2  

A slight generalization of the circle equation is to introduce coefficients to the two terms x2 and 

y2, i.e., we look at the set of solutions to the equation a · x2 +b · y2 = c over the real numbers. It 

turns out that we obtain an ellipse, as shown in the figure. 
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Plot of all points (x,y) which fulfil the equation ax2+by2 = c. 

 

4.7.1  DEFINITION  

 
From the two examples above, we conclude that we can form certain types of curves from 

polynomial equations. By “curves”, we mean the set of points (x,y) which are solutions of the 

equations. 

 

• Elliptic curve cryptography is a key based technique for encrypting data.  ECC focuses 

on pairs of public and private keys for decryption and encryption. 

• It provides equal security with smaller key size as compared to non ECC algorithms. 

• It make use of elliptic curves. 

• Elliptic curves are defined by some mathematical function fx = y2 = x3 + ax = b. 

 

                                       
• Symmetric to x-axis. 

• If we draw a line, it will touch a maximum of 3 parts. 

• The definition of elliptic curve requires that the curve is nonsingular. Geometrically 

speaking, this means that the plot has no self-intersections or vertices.  

• For cryptographic use we are interested in studying the curve over a prime field as 

in the definition. However, if we plot such an elliptic curve over Zp, we do not get 

anything remotely resembling a curve. However, nothing prevents us from taking 

an elliptic curve equation and plotting it over the set of real numbers. 
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4.7.2  GROUP OPERATIONS OF ELLIPTIC CURVE 

We denote the group operation with the addition symbol2 “+”. “Addition” means that given two 

points and their coordinates, say P = (x1,y1) and Q = (x2,y2), we have to compute the coordinates 

of a third point R such that: 

 

                                                        P+Q = R 

                                             (x1,y1)+(x2,y2) = (x3,y3) 

 

As we will see below, it turns out that this addition operation looks quite arbitrary. 

Luckily, there is a nice geometric interpretation of the addition operation if we 

consider a curve defined over the real numbers. For this geometric interpretation, 

we have to distinguish two cases: the addition of two distinct points (named point 

addition) and the addition of one point to itself (named point doubling). 

Point Addition P+Q 
 

 This is the case where we compute R = P+Q and P ≠Q. The construction works as follows: Draw 

a line through P and Q and obtain a third point of intersection between the elliptic curve and the 

line. Mirror this third intersection point along the x-axis. This mirrored point is, by definition, the 

point R. 

 

 

                                
 

Point Doubling P+P 

This is the case where we compute P+Q but P=Q. Hence, we can write R = P+P = 2P. We need a 

slightly different construction here. We draw the tangent line through P and obtain a second point 

of intersection between this line and the elliptic curve. We mirror the point of the second 

intersection along the x-axis. This mirrored point is the result R of the doubling. 
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           We might wonder why the group operations have such an arbitrary looking form. 

Historically, this tangent-and-chord method was used to construct a third point if two points were 

already known, while only using the four standard algebraic operations add, subtract, multiply and 

divide. It turns out that if points on the elliptic curve are added in this very way, the set of points 

also fulfill most conditions necessary for a group, that is, closure, associativity, existence of an 

identity element and existence of an inverse. 

 

           Of course, in a cryptosystem we cannot perform geometric constructions. However, by 

applying simple coordinate geometry, we can express both of the geometric constructions from 

above through analytic expressions, i.e., formulae. As stated above, these formulae only involve 

the four basic algebraic operations. These operations can be performed in any field, not only over 

the field of the real numbers.  In particular, we can take the curve equation from above, but we 

now consider it over prime fields GF(p) rather than over the real numbers. This yields the 

following analytical expressions for the group operation. 

 

4.7.3  ELLIPTIC CURVE POINT ADDITION AND POINT DOUBLING 
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Note that the parameter s is the slope of the line through P and Q in the case of point addition, or 

the slope of the tangent through P in the case of point doubling. 
 

PROBLEM - 1 
On a elliptic curve y2 = x3 – 36 find a point P + Q and 2P 

 

Solution 
 

Let p = (-3,9), Q = (-2,8), a - -3        

                             

        X3 =  (
8−9

−2+3
)2 – (-3) – (-2) 

              

             = 12 +3 + 2 

      X3   = 6 

 

         Y3 = -9 + (
8−9

−2+3
)(-3-6) 

             = -9-1(-9) 

         Y3 = 0 

   P + Q = (6,0) 

 

Now to find 2P 

 

        X3 = (
3(9)+(−36)

2×9
)2 – 2(-3) 

               

             = (
27−36

18
)2 + 6 

             = 
1

4
 + 6 

       X3  = 
25

4
 

     

       Y3  = -9 + (
3×9−36

18
) (−3 −

25

4
) 

      Y3   = 
−35

8
 

 

     2P    = (
25

4
,

−35

8
) 
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CHAPTER   5 

MAGIC OF MATH IN CRYPTOGRAPHY 

THE   PERCEPTION 

              

 

REALITY 

                

 

 

5.1  CLOCK MATH 

Cryptography is based on math that everyone understands: Clock math! 

• Clocks have a finite range of numbers, which loop around rather than 

continuing to infinity. 

• If we can understand the math of clocks, we can understand math that 

secures our computers and networks! 

 

5.1.1  HOW ENCRYPTION WORKS 

1. Choose message m to be encrypted. 
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2. Choose a number r from the clock. 

• Must be chosen at random. 

• Every number must have equal chance! 

3.Add r to m. 

• The result, c called the ciphertext, is the encryption of message m with key r. 

                                              

5.1.2  CHOOSING SECRETS IN PUBLIC 

                   

 

5.2   GENERATING RANDOM NUMBERS DETERMINISTICALLY 
1. It sounds like an oxymoron. 

• How can a deterministic process generates random number? 

2. Yet this is the foundation of almost all cryptography. Every encryption algorithm is an 

algorithm that can take a small key, of say 16 characters and use it to produce an endless 

sequence of random bits. 

• These bits can then be used to encrypt the messages of any size or multiple messages.  

• HDs full of data can be encrypted with 1 random value this long : “abcdefghijklmnop” 
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5.2.1  TURNING ONE RANDOM NUMBER INTO MANY 

 

    Seed = 7 , M = 253 even or odd? output bit 

       49 = 7^2     mod  253 odd 1 

     124 = 49^2    mod 253 even 0 

196 = 124^2 mod 253 even 0 

213 = 196^2 mod 253 odd 1 

  82 = 213^2 mod 253 even 0 

      146 = 82^2   mod 253 even 0 

   64 = 146^2 mod 253 even 0 

    48 = 64^2   mod 253 even 0 

 

                                              

5.3   DIVIDING IN CLOCK MATH 
1. What does it mean to “divide”?   

• Is it possible to divide on a clock? 

2. We can!By multiplying by an “inverse” 

• Division by N = multiplying by (1/N) 

• E.g.: (x/3) = (x *1/3) 

3. Despite there being no fractions,there are inverses in clock math.An inverse is a 

number that when multiplied gives 1. 

• 3 * 1/3 = 1 

• E.g.: 3 * 4(mod 11) = 1 
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5.4  MANIPULATING SECRET CONTENTS 

In 1978, it was discovered that an encryption algorithm called RSA let people multiply two 

encrypted values together without decrypying them.        

 

                         

Then, in 1999, it was discovered that an encryption algorithm called Paillier let people add 

two encrypted values together without decrypting them. 
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5.5  UNIVERSAL FUNCTIONS 

 

 

5.6   APPLICATIONS OF FULLY HOMOMORPHIC ENCRYPTION  

(FHE) 
1. Having a genetic test done without revealing our  DNA  

• Encrypt each base pair, send encrypted bits to be processed  

• We get back and encrypted bit, which will decrypt to 1 if we have the 

disease, 0 if not 

▪ Prototypes of this have already been tested  

2. Systems that can handout encryption keys without seeing them  

3. Millions of others, literally everything we can think of can be done ! 

• But there is a down side : efficiency it’s much slower and less efficient to 

run a computation on encrypted data (each encrypted bit is 10000 bits 

inside )  

▪ A 750 MB genome that fitsn on a CD becomes 7.5 TB ( would 

fill a large HD )     
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APPLICATIONS OF CRYPTOGRAPHY IN CYBER 

SECURITY     

 

SECRECY IN TRANSMISSION 

Some existing secrecy systems for transmission access a private key system for converting 

transmitted data because it is the quickest approach that functions with rational guarantee and 

low overhead. 

If the multiple conversing parties is minute, key distribution is implemented periodically with 

a courier service and key preservation based on physical security of the keys over the method 

of use and destruction after new keys are disseminated. 

 

SECRECY IN STORAGE 

Secrecy in storage is frequently preserved by a one-key system where the user provide the 

key to the computer at the commencement of a session, and the system creates concern of 

encryption and decryption during the phase of normal use. 

 

AUTHENTICATION OF IDENTITY 

Authenticating the identity of individuals or systems to each other has been a difficulty for a 

very long time. Simple passwords have been used to test identity. More compound protocols 

such as sequence of keywords exchanged between sets of parties are generally display in the 

movies or on television.  

 

CREDENTIALING SYSTEMS      

A credential is generally a file that introduces one party to another by referencing a usually 

known trusted party. When credit is used for, references are usually requested. The credit of 

the references is determined and they are contacted to discover out the tested of the applicant. 

Credit cards are generally used to credential an individual to achieve more credit cards. 

  



 
 
 

55 
 

APPLICATIONS OF CRYPTOGRAPHY IN DATA PRIVACY 

 

INTEGRITY IN TRANSMISSION 

Some users of communication systems are not as much worried concerning secrecy as about 

integrity. In a computer funds transfer, the sum sent from one account to another is usually 

public knowledge. 

If an operating tapper can bring in a false transfer, funds can be shared illegally. An inaccuracy 

in an individual bit can cause millions of dollars to be wrongly credited or debited. 

Cryptographic methods are generally used to provide that intentional or accidental modification 

of transmitted data does not cause flawed actions to appear. 

 

INTEGRITY IN STORAGE 

The central meaning of assuring integrity of accumulated data has previously been access 

control. Access control contains systems of locks and keys, guards, and other approaches of a 

physical or logical feature. 

The recent advent of computer viruses has altered this to an important degree, and the use of 

cryptographic checksums for assuring the integrity of stored data is becoming broad. 

 

ELECTRONIC SIGNATURES 

Electronic signatures are a means of monetary a lawfully binding transaction among two or 

more parties. It can be as functional as a physical signature, electronic signatures should be at 

least as hard to fake at least as simple to use, and accepted in a court of law as binding upon 

some parties to the operation. 

The necessity for these electronic signatures is especially intense in business dealings wherein 

the parties to an agreement are not in the similar physical vicinity. 
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CONCLUSION 

 
How math secures the Internet 

• Hiding data that everyone can see. 

• Agreeing on secrets in public. 

• Speech that can’t be impersonated. 

 

Math that will change the world 

• Protecting data without having it. 

• Checking proofs we can’t see. 

• Working on data that we can’t access. 

 

  



 
 
 

57 
 

REFERENCES 

 

[1] ANSI X9.31-1998, American National Standard X9.31, Appendix A.2.4, Public Key 

Cryptography Using Reversible Algorithms for the Financial Services Industry (rDSA). 

Technical report, Accredited Standards Committee X9, Available at http://www.x9.org, 2001. 

 

 [2] J.L. Carter and M.N. Wegman. New hash functions and their use in authentication and set 

equality. Journal of Computer and System Sciences, 1981. 

 

[3] Manuel Blum and Shafi Goldwasser. An efficient probabilistic public-key encryption 

scheme which hides all partial information, In CRYPTO ’84: Proceedings of the 4th Annual 

International Cryptology Conference, Advances in Cryptology, 1984. 

 

[4] Dan Boneh and Richard J. Lipton. Algorithms for black-box fields and their application to 

cryptography (extended abstract). In CRYPTO ’96: Proceedings of the 16th Annual 

International Cryptology Conference, Advances in Cryptology, Springer, 1996. 

 

[5] ANSI X9.62-1999. The Elliptic Curve Digital Signature Algorithm (ECDSA), Technical 

report, American Bankers Association, 1999. 

 

[6] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications, Cambridge 

University Press, New York, NY, USA, 2004. 























































































































































FOURIER TRANSFORMS: STUDY, APPLICATIONS IN HEALTH 
AND DATA SCIENCES AND CODING THROUGH SOFTWARES 

Project Report submitted to 

ST.MARY'S COLLEGE (AUTONOMOUS), THOOTHUKUDI 

Affiliated to 

MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI 

In partial fulfillment of the requirement for the award of degree of 

Bachelor of Science in Mathematics 

NAME 

JOAN MORAIS. R 
MARIA ABITHAA VICTORIA. C 
MARIA BENJAMINI. A 
MONISHA ROSE. G 
YAMINI. S 

Submitted by 

Under the Guidance of 

REG.NO. 

19AUMT17 
19AUMT21 
19AUMT23 
19AUMT28 
19AUMT50 

Dr. Sr. S. KULANDAI THERESE M.Sc., B.Ed., M.Phil., Ph.D. 

Assistant Professor of Mathematics 

St. Mary's College (Autonomous). Thoothukudi. 

Department of Mathematics 

St. Mary's College (Autonomous), Thoothukudi 

(2021 - 2022) 



CERTIFICATE 

We hereby declare that the project report entitled "FOURIER TRANSFORMS: 
STUDY, APPLICATIONS IN HEALTH AND DATA SCIENCES AND CODING 
THROUGH SOFTWARES" being submitted to St. Mary's College 
(Autonomous), Thoothukudi affiliated to Manonmaniam Sundaranar 
University, Tirunelveli in partial fulfillment for the award of degree of 
Bachelor of Science in Mathematics and it is a record of work done during the 
year 2021 - 2022 by the following students : 

NAME 

JOAN MORAIS. R 
MARIA ABITHAA VICTORIA. C 
MARIA BENJAMIN!. A 
MO NISHA ROSE. G 
YAMINI.S 

Signature of the Guide 
Dr. S. KULANDAI THERESE 

M.Sc.,B.Ed.,M.Phll.,Ph.D .. 
Aaslstant Professor, 

Department of MathemaUca. 
Sl Mary's Colege (AutonomoUI). 

TooohJkudl · 628 001 . 

Signature ~fuaminer 

2 

REG.NO. 

19AUMT17 
19AUMT21 
19AUMT23 
19AUMT28 
19AUMT50 

\f't-J ~(,~ ~ u.l\,,u, ~ 
Dr .Signature.bf t'lt~ja-00 Mary'--1 

M -·· c. ,M.f: hil ., O.t::d ., Ph.D.~ 
w~ad r, /'.l~st r-_! ·_lfcs~,)f (Jf M1them,.\t\CS 
s(f:.1~1l '· ;.:; Un\l~go (A\.lto nomoµs) 
· 

1
' ' ' '1:l'b(,otb L' kli.di-628 001. 

LtM~ 
Signature of the Principal 

Prtnclpa1 
St. Mary's College (Autonomous) 

Thoothukudi-628 001. 



DECLARATION 

We hereby declare that the project reported entitled "FOURIER 
TRANSFORMS: STUDY, APPLICATIONS IN HEALTH AND DATA SCIENCES 
AND CODING THROUGH SOFTWARES", is our original work. It has not been 
submitted to any university for any degree or diploma. 

Jo'P 
(JOAN MORAIS. R) 

0 . 

!>-~~UV-: 
(MARIA BENJAMIN!. A) 

G. Mon·,sha. 'Rme &·Y~-
(MO NISHA ROSE. G) 

C-N~ia v4J,~Vi~ 
(MARIAABITHAA VICTORIA. C) 

3 

(YAMINI.S) 

1 



ACKN<)WI J~IJGEMENT 

rirst or :ill, we thank I.ore! Alml ijht y l'or ::-. l10wmi11g li lt: bl ec;slng~ tu 11nd(:rgo 

this proi<'l'l. 

With imnwnsc pleasure, we regis ter our deep sense 1Jf gra t itudc to our guidt 

Dr. Sr. S. Kulandai Therese M.Sc., H.Ed., M.Phil., Ph.D. and the Head of the 

Department, Dr. V. L. Stella Arputha Mary M.Sc., M.Phil., B.Ed., Ph.D. for 

havi ng imparted necessary guidelin e~ throughou t the period of our studies. 

We thank our beloved Principal, Rev. Dr. Sr. A.S.J. Lucia Rose M.Sc., M.Phil., 

Ph.D., PGDCA for providing us the help to carry out our project work 

successful1y. 

Finally, we thank all those who extended their helping hands regarding this 

project. 

4 



FOURIER TRANSFORMS

5



PREFACE

The topic of our Project "FOURIER TRANSFORMS : STUDY, APPLICATIONS
IN HEALTH AND DATA SCIENCES AND CODING THROUGH SOFTWARES",
focuses on underlying concepts of the discipline and behavioural aspects of
signals in time domain and frequency domain. Fourier Transform named af-
ter Joseph Fourier, is a mathematical transformation employed to transform
signals between time (or spatial) domain and frequency domain. The Fourier
Transform allows us to perform tasks that would be impossible to perform any
other way.
Important properties, standard formulae, definitions, relevant examples and
references have also been discussed to scaffold the readers on the necessary
concepts. After brief learning, it was a natural progression to apply the learned
concepts and practices in real life. Fourier Transform has multitude of applica-
tions in almost all areas of life which have been discussed in our project. The
Project is structured into five chapters :

Chapter 1 presents briefly the idea of What is a Fourier Transform and it’s
Types.

Chapter 2 deals with the most important Applications of Fourier Transform and
the softwares which can be used to calculate all types of Fourier Transforms.

Chapter 3 introduces the definitions of Fourier Transform, it’s Inverse, Fourier
Cosine and Sine Transform and it’s Inverses respectively.

Chapter 4 focuses on Properties, Fourier Integral Theorem, Alternative Form
of Fourier Complex Integral Formula, Standard Fourier Transform Pairs, Deriv-
ing Fourier Transform from Fourier Series and Relationship between Fourier
Transform and Laplace Transform.

Chapter 5 deals with Finite Fourier Sine and Cosine Transform, it’s Inverses
and Finite Fourier Transforms of Derivatives.
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FOURIER TRANSFORMS : STUDY, APPLICATIONS IN HEALTH
AND DATA SCIENCES AND CODING THROUGH SOFTWARES

1.1 Introduction

“Profound study of nature is the most fertile source of mathematical
discoveries.”

- Joseph Fourier

Jean Baptiste Joseph Fourier (1768 – 1830) was
a French mathematician and Physicist, best known
for initiating the investigation of Fourier series, which
eventually developed into Fourier analysis and Har-
monic analysis, and their applications to problems of
Heat transfer and Vibrations. The Fourier Transform
and Fourier’s law of conduction are also named in his
honour. Fourier is also generally credited with the dis-
covery of the Greenhouse effect.

What is Fourier Transform?

In mathematics, Fourier Transform is a mathematical technique
that transforms a function of time, x(t ), to a function of frequency, X (ω)

It is a mathematical transform that decomposes
functions depending on space or time into functions
depending on spatial or temporal frequency. The term Fourier transform refers
to both the frequency domain representation and the mathematical operation
that associates the frequency domain representation to a function of space or
time. The Fourier transform can be formally defined as an improper Riemann
integral, making it an integral transform.
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The representation of periodic signals as
a linear combination of harmonically related
complex exponentials can be extended to de-
velop a representation of periodic signals as
linear combination of complex exponentials.
This leads to Fourier Transforms. Also, Fourier
Transform is a tool that breaks a waveform (a

function or signal) into an alternate representation, characterized by sine and
cosines. The Fourier Transform shows that any waveform can be re-written
as the sum of sinusoidal functions. The more concentrated f (x) is, the more
spread out its Fourier transform f (ϵ) must be.

It is closely related to the Fourier Series and it is an extended form of Fourier
Analysis. Fourier Series is mainly used for periodic signals whereas Fourier
Transform is used for non-periodic signals.

Dirichlet’s Conditions (Conditions for existence of Fourier
transform)

1. f (t ) should be absolutely integrable (i.e.)
∞∫

−∞
| f (t )|d t < ∞.

2. The function must have finite number of maxima and minima.

3. The function must have finite number of discontinuities.

The choice of a particular transform is decided by the nature of the boundary
conditions and the convenience of inverting the transform function f̄ (s) to give
f (x).

1.2 TYPES OF FOURIER TRANSFORM

• Continuous Fourier Transform

• Discrete - Time Fourier Transform

• Discrete Fourier Transform

• Discrete Fourier Transform over a Ring

• Fourier Transform on Finite Groups

• Fourier Analysis

• Fast Fourier Transform
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2.1 APPLICATIONS OF FOURIER TRANSFORM

1. Rapid diagnosis of COVID-19 using FT-IR ATR spectroscopy
and machine learning

Attenuated Total Reflection - Fourier Transform InfraRed (ATR-FTIR) Spec-
troscopy associated with machine learning in oropharyngeal swab suspension
fluid is applicable to predict COVID-19 positive samples.

The study included samples
of 243 patients from two Brazil-
ian States. Samples were trans-
ported by using different vi-
ral transport mediums (liquid
1 or 2). Clinical COVID-19 di-
agnosis was performed by the
Reverse Transcription - Poly-
merase Chain Reaction (RT-
PCR). Researchers built a classi-
fication model based on Partial Least Squares (PLS) associated with cosine k-
Nearest Neighbours (KNN). Their analysis led to 84% and 87% sensitivity, 66%
and 64% specificity, and 76.9% and 78.4% accuracy for samples of liquids 1 and
2, respectively. Based on this proof-of-concept study, they believe this method
could offer a simple, label-free, cost-effective solution for high-throughput
screening of suspect patients for COVID-19 in health care centres and emer-
gency departments.

This technique has shown promise as a di-
agnostic or screening tool in several diseases
such as cancer, diabetes, hypertension, and
physiological stress.

Recently, ATR-FTIR has already been in-
vestigated as a screening/diagnostic tool in
medicine. In 2019, the use of this technique was
reported in the screening of patients with brain
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cancer, achieving sensitivity of 93.2% and specificity of 92.8% in the identifi-
cation of high-risk patients indicated for Definitive Diagnostic Tests (more ex-
pensive), thus saving time and cost. In infectious diseases, a similar study was
done to discriminate patients with Human immunodeficiency virus (HIV) in-
fection by ATR-FTIR also associated with Linear Discriminant Analysis (LDA)
in plasma samples. Interestingly, this analysis proved to be a possible strategy
for discrimination against different spectra of HIV infection and co-infection
with the hepatitis C virus (AIDS, HIV + HCV or AIDS + HCV).

2. Fourier Transform on Data Science

• Animated Visualization using Fourier Transform.

• Clean Up Data Noise with Fourier Transform in Python.

• Image Processing and Removal of Image Elements with Python - Appli-
cation of Fourier Transformation.

One of the more advanced
topics in image processing has
to do with the concept of Fourier
Transformation. Put very briefly,
some images contain system-
atic noise that users may want
to remove. If such noise is reg-
ular enough, employing Fourier
Transformation adjustments may
aid in image processing.

3. Fourier Transform on Analysis of Differential Equations

Some problems, such as cer-
tain differential equations, be-
come easier to solve when the
Fourier transform is applied. In
that case the solution to the
original problem is recovered

using the inverse Fourier transform. The operation of differentiation in the
time domain corresponds to multiplication by the frequency, so some differ-
ential equations are easier to analyze in the frequency domain. Perhaps the
most important use of the Fourier transformation is to solve partial differential
equations.
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4. Fourier Transform Spectroscopy

Fourier-transform spectroscopy is a measurement technique whereby spectra
are collected based on measurements of the coherence of a radiative source,
using time-domain or space-domain measurements of the radiation and elec-
tromagnetic.

The Fourier transform is also used in
Nuclear Magnetic Resonance (NMR) and
in other kinds of spectroscopy, e.g. In-
frared (FTIR). In NMR an exponentially
shaped Free Induction Decay (FID) sig-
nal is acquired in the time domain and
Fourier-transformed to a Lorentzian line-
shape in the frequency domain. The
Fourier transform is also used in Mag-
netic Resonance Imaging (MRI) and
Mass Spectrometry.

5. Fourier Transform on Signal Processing

The Fourier transform is used for
the spectral analysis of time-series. The
subject of statistical signal processing
does not, however, usually apply the
Fourier transformation to the signal it-
self. Even if a real signal is indeed
transient (Lasting only for a short time;
Impermanent), it has been found in
practice advisable to model a signal by
a function which is stationary in the
sense that its characteristic properties
are constant over all time. The Fourier transform of such a function does not
exist in the usual sense, and it has been found more useful for the analysis of
signals to instead take the Fourier transform of its auto correlation function.
For video signals other types of spectral analysis must also be employed, still
using the Fourier transform as a tool.

6. Fourier Transform on Quantum mechanics

The Fourier transform is useful in quantum mechanics. The Fourier transform
can be used to pass from one way of representing the state of the particle, by a
wave function of position, to another way of representing the state of the parti-
cle: by a wave function of momentum. The other use of the Fourier transform
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in both quantum mechanics and quantum field theory is to solve the appli-
cable wave equation. Fourier methods have been adapted to also deal with
non-trivial interactions.

7. Fourier Transform on Circuit Analysis

There are many linear circuits used in Electronic engineering field .These cir-
cuits include various components like capacitor, inductor ,resistor etc. Every
Electronic circuit can be modelled using mathematical equations. To perform
frequency analysis of the circuit Fourier Transform is used. Fourier Transform
helps us to analyse the behavior of circuit when different inputs are applied.

8. Fourier Transform on Cell phones

Communication is all based on Mathematics. The communication includes au-
tomatic transmission of data over wires and radio circuits through signals. Cell
phones are one of the most prominent communication device. The principle
of Fourier Transform is used in signal, which can be represented as the sum of
a collection of sine and cosine waves with various frequencies and amplitudes.
This collection of waves can then be manipulated with relative ease. Our mo-
bile phone has performing Fourier Transform. Every mobile device - such as
netbook, tablet and phone have been built in high speed cellular connection,
just like Fourier Transform. Humans very easily perform it mechanically every-
day.For example, when you are in a room with a great deal of noise and you
selectively hear your name above the noise, then you just performed Fourier
transform.

9. Fourier Transform on Image Processing

The Fourier Transform is used in a
wide range of applications such as im-
age analysis, image filtering, image re-
construction and image compression.
The Fourier Transform is an important
image processing tool which is used to
decompose an image into its sine and
cosine components. The output of the
transformation represents the image in
the Fourier or frequency domain, while the input image is the spatial domain
equivalent. In the Fourier domain image, each point represents a particular
frequency contained in the spatial domain image.

10. Fourier Transform on Analysis of Linear Time Invariant
(LTI) Systems
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A signal is any waveform (function of time). This could be anything in the real
world - an electromagnetic wave, the voltage across a resistor versus time, the
air pressure variance due to your speech (i.e. a sound wave), or the value of Ap-
ple Stock versus time. The family of Fourier Transforms are specifically devel-
oped for analysing frequency contents of the signals for which there is no def-
inition of linearity or time invariance. Hence we can define the Fourier trans-
form of any signal, as long as it’s integrable (i.e. stable).

11. Fourier Transform on Radio Astronomy

Radio astronomers are particularly avid users of Fourier transforms because
Fourier transforms are key components in data processing (e.g., periodicity
searches) and instruments (e.g., antennas, receivers, spectrometers) and they
are the cornerstones of interferometry and aperture synthesis.

Radio Frequency Interference (RFI)
makes the process of detecting and an-
alyzing pulsars extremely difficult. This
has forced astronomers to be creative
in identifying and determining the spe-
cific characteristics of these unique ro-
tating neutron stars. Astrophysicists
have utilized algorithms such as the
Fast Fourier Transform (FFT) to predict
the spin period and harmonic frequen-
cies of pulsars. Dedispersion and the
pulsar frequency are critical for predict-

ing multiple characteristics of pulsars and correcting the influence of the Inter-
stellar Medium (ISM). Hence, Discrete Fourier Transform is a useful technique
for detecting radio signals and determining the pulsar frequency.

12. Fourier Transform on Astronomy

Fourier transforms are performed to learn
about the spectral characteristics of a data set.
Thus in astronomy, when looking for periodic-
ities in a time series, we Fourier transform the
data and look for peaks in the spectrum. If the
data are regularly sampled we can make use of
the Fast Fourier Transform to decrease the com-
putation time.

13. Fourier Transform on Seismology
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Fourier transform is fundamental to
seismic data analysis. It applies to al-
most all stages of processing. A seis-
mic trace represents a seismic wavefield
recorded at a receiver location. The dig-
ital form of a seismic trace is a time se-
ries which can be completely described
as a discrete sum of a number of sinu-
soids — each with a unique peak ampli-

tude, frequency, and a phase-lag (relative alignment). The analysis of a seismic
trace into its sinusoidal components is achieved by the Forward Fourier Trans-
form. Conversely, the synthesis of a seismic trace from the individual sinusoidal
components is achieved by the Inverse Fourier Transform.
Seismic research has always been a common user for the Discrete Fourier
Transform (and the FFT). If you look at the history of the FFT you will find that
one of the original uses for the FFT was to distinguish between natural seismic
events and nuclear test explosions because they generate different frequency
spectra.

14. Fourier Transform on Radio Detection And Ranging
(RADAR)

The Fourier- transformation has become a
fundamental method in the signal processing
procedures, since the radar echo contains a va-
riety of informations in the signal form. This
information is convicted by the Fourier- trans-
formation into a data format which can be used
by the computer-aided signal processing. With
help of the Fast Fourier analysis whole signal
forms of radar echoes can be stored as only few data by the digital signal pro-
cessing. These data can be used by the process of the identification of radar
targets like fingerprints.
The signal received by a pulsed radar is a time sequence of pulses for which the
amplitude and phase are measured. Doppler processing techniques are based
on measuring the spectral (frequency) content of this signal. The frequency
content of this time-domain signal is obtained by taking its Fourier transfor-
mation, thus turning it into a frequency-domain signal or spectrum of the time-
domain signal.
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15. Fourier Transform on Music

Fourier Transform helps in determining
the constituent pitches in a musical wave-
form. While applying a Constant-Q trans-
form (a Fourier-related transform) to the wave-
form of a C major piano chord, the first
three peaks on the left correspond to the
frequencies of the fundamental frequency of
the chord (C, E, G). The remaining smaller
peaks are higher-frequency overtones of the
fundamental pitches. A pitch detection al-
gorithm could use the relative intensity of
these peaks to infer which notes the pianist
pressed.
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2.2 SOFTWARES THAT CAN BE USED TO
CALCULATE ALL TYPES OF FOURIER TRANSFORMS

• Python

• MATLAB

• "WolframAlpha - Computational Intelligence" - Free Online Fourier Trans-
form Calculator

• CoCalc

1. Python

Different types of Fourier Transform can be calculated through Python Coding
within some minutes. Let us try to understand this through simple coding for
calculating Fourier Transform (Continuous time and frequency).

Fourier Transform (Continuous time and frequency)

This occurs when the functional form of your time series is known analytically
(i.e. you have a formula x(t ) = ... for it) and goes from −∞ to ∞.

x( f ) =
∞∫

−∞
x(t )e−2πi f t d t

Program

Write a Program Coding to find the Fourier Transform of the funtion kte−kt 2

using Python in terms of the final variable f.

Coding

In [1] : import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
plt.style.use( [’science’, ’notebook’] )
import sympy as smp
from skimage import color
from skimage import io
from scipy.fft import fftfreq
from scipy.fft import fft, ifft, fft2, ifft2
In [2] : t, f = smp.symbols(’t, f’, real=True)
In [3] : t, f = smp.symbols(’t, f’, real=True)
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k = smp.symbols(’k’, real=True, positive=True)
x = smp.exp(-k * t**2) * k * t
x
Out [3] : kte−kt 2

In [4] : from sympy.integrals.transforms import fourier _transform
In [5] : x _FT = fourier _transform(x, t, f)
x _FT
Out [5] :

− iπ
3
2 f e−π2 f 2

kp
k

Like the above example, we can calculate any type of Fourier Transform using
Python. Plots can also be plotted for Fourier Transforms.

2. MATLAB

Different types of Fourier Transform can be calculated through MATLAB Cod-
ing. Let us try to understand this through simple coding for calculating Fourier
Transform of Unit impulse (Dirac delta) Function in MATLAB.

Note that fourier(f ) returns the Fourier Transform of f. By default, the func-
tion symvar determines the independent variable, and w is the transformation
variable.

Program

Write a Program to calculate the Fourier Transform of Unit impulse (Dirac delta)
Function using MATLAB.

Coding

> f = dirac(t);
> f _FT = fourier(f)

f _FT =
1
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3. "WolframAlpha - Computational Intelligence" - Free Online
Fourier Transform Calculator

"WolframAlpha" is an Free Online Fourier Transform Calculator through which
all types of Fourier Transforms can be calculated instantly. All you need to know
is which function to transform, initial variable and transform variable.

4. CoCalc

Different types of Fourier Transform can be calculated through CoCalc Coding
also.

Program

Write a Program to obtain Fourier Transformation Plot for the function

f1(t ) = 12sin(2π(3t ))+11sin(2π(4t ))+10sin(2π(5t ))+9sin(2π(6t ))

Coding

from sage.plot.bar _chart import BarChart
var(’t’)
f1(t) = 12*sin(2*pi*(3*t)) + 11*sin(2*pi*(4*t)) + 10*sin(2*pi*(5*t)) + 9*sin(2*pi*(6*t))
plot(f1, (t, -1, 2))

20



Output
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3.1 Fourier Transform

Fourier transform of f (x) is denoted by f̄ (s) or F { f (x)}.
F is the Fourier transform operator.
Fourier transform of f (x)

f̄ (s) = F { f (x)} =
∞∫

−∞
f (x)e−i sx d x

Example on how to calculate Fourier Transform for a given
function

Example 1

Find the Fourier transform of f (x) , defined as f (x) =

{
1, for |x| < a

0, for |x| > a

and hence find the value of
∞∫
0

si n x

x
d x.

Solution:

F { f (x)} =
a∫

−a

e−i sx d x

=
a∫

−a

(cos sx − i si n sx)d x

= 2

a∫
0

cos sx d x,
[

by the property of definite integrals
]

= 2

s
si n as

Taking Fourier inverse transforms,

F−1
{2

s
si n as

}
= f (x)

i.e.,

1

2π

∞∫
−∞

2

s
si n ase i xs d s = f (x)

22



i.e.,

1

π

∞∫
−∞

1

s
si n as(cos xs + i si n xs)d s = f (x)

i.e.,

2

π

∞∫
0

1

s
si n as cos xs d s = f (x)

[
Since,

1

s
si n as si n xs is odd

]

i.e., ∞∫
0

1

s
si n as cos xs d s =

{
π
2 , for |x| < a

0, for |x| > a

Substituting a = 1 and x = 0 , so that |0| < 1, we get

∞∫
0

si n s

s
d s = π

2

Changing the dummy variable s into x , we get

∞∫
0

si nx

x
d x = π

2

Example on how to calculate Fourier Transform for Unit Step
Function and Unit Impulse Function

Example 2

Find the Fourier transform of the unit step function and unit impulse function.

Solution:

(i) The unit step function is defined as

ua(x) =
{

0, for x < a

1, for x ≥ a

∴ F {ua(x)} =
∞∫

a

e−i sx d x =
[

e−i sx

−i s

]∞
a
= 1

i s
e−i as

In particular

F {u0(x)} = 1

i s
or

−i

s
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(ii) The unit impulse function or Dirac Delta function δa(x) is defined as
limϵ→0[ f (x)], where

f (x) =
{

1
ϵ , f or a − ϵ

2 ≤ x ≤ a + ϵ
2

0, elsewhere

F { f (x)} =
a− ϵ

2∫
a− ϵ

2

1

ϵ
e−i sx d x

= 1

ϵ

[
e−i sx

−i s

]a− ϵ
2

a+ ϵ
2

= 1

i ϵ s

{
e−i s(a− ϵ

2 ) −e−i s(a+ ϵ
2 )

}
= e−i as

[
sin

[
ϵS
2

][
ϵS
2

] ]

∴ F {δa(x)} = lim
ϵ→0

[
e−i as ·

{sin
[
ϵS
2

]
ϵS
2

}]
In particular

F {δa(x)} = 1

3.2 Inverse Fourier Transform

Inverse Fourier transform of f̄ (s)

F−1{ f̄ (s)} = 1

2π

∞∫
−∞

f̄ (s)e i xs d s

Some authors define the Fourier transform pair as:

F { f(x)} = f̄ (s) = 1p
2π

∞∫
−∞

f (x)e−i sx d x and

F−1{ f̄ (s)} = f (x) = 1p
2π

∞∫
−∞

f̄ (s) ·e i xs d s
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Example on how to calculate Inverse Fourier Transform for a
given function

Example 3

Find the inverse Fourier transform of f̄ (s) given by

f̄ (s) =
{

a −|s|, for |s| ≤ a

0, for |s| > a.

Hence show that
∞∫
0

si n2 x

x2
d x = π

2
.

Solution:

F−1{ f̄ (s)} = 1

2π

∞∫
−∞

f̄ (s)e i xs d s

= 1

2π

a∫
−a

{a −|s|}(cos xs + i si n xs)d s

= 1

π

a∫
0

(a − s)cos xs d s

[Since,{a −|s|}si n xs is odd]

= 1

π

[
(a − s)

si n xs

x
− cos xs

x2

]a

0

= 1

πx2
(1− cos ax)

= a2

2π

 si n
ax

2
ax

2


2

∴ F

 a2

2π

 si n
ax

2
ax

2


2
= f̄ (s)

i.e.,

a2

2π

∞∫
−∞

 si n
ax

2
ax

2


2

e−i sx d x =
{

a −|s|, for |s| ≤ a

0, for |s| > a
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Taking a = 2 and letting s → 0, we get

∞∫
−∞

[
si n x

x

]2

d x =π

Since the integrand is an even function of x , we get

∞∫
0

[
si n x

x

]2

d x = π

2

3.3 Fourier Cosine Transform

Fourier cosine transform of f (x) is denoted by f̄C (s) or FC { f (x)}.
FC is the Fourier cosine transform operator.
Fourier cosine transform of f (x)

f̄C (s) = FC { f (x)} =
∞∫

0

f (x)cos sx d x

Example on how to calculate Fourier Cosine Transform for a
given function

Example 4

Find the Fourier transform of e−a2x2
. Hence

(i) Prove that e
−x2

2 is self-reciprocal with respect to Fourier Transforms; and
(ii) Find the Fourier cosine transform of e−x2

Solution:

F {e−a2x2
} =

∞∫
−∞

e−a2x2 ·e−i sx d x

=
∞∫

−∞
e
−

[
ax+

(
i s
2a

)]2

·e
−s2

4a2 d x

= e
−s2

4a2 · 1

a

∞∫
−∞

e−t 2
d t ,

[on substituting sx + i s

2a
= t ]

=
p
π

a
e

−s2

4a2 (1)
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(i) Had we assumed the definition of the Fourier transform as

F { f (x)} = 1p
2π

∞∫
−∞

f (x)e i sx d x

(1) would have become

F {e−a2x2
} = 1

a
p

2
e

−s2

4a2

Substituting a = 1p
2

in (2), we get

F {e
−x2

2 } = e
−s2

2

and so

F−1{e
−s2

2 } = e
−x2

2

i.e., e
−x2

2 is reciprocal with respect to Fourier transforms.

(ii) From (1), we have

∞∫
−∞

e−a2x2
(cos sx − i sin sx)d x =

p
π

2a
e

−s2

4a2

Equating the real parts on both sides, we get

∞∫
0

e−a2x2
cos sx d x =

p
π

2a
e

−s2

4a2

or

FC {e−a2x2
} =

p
π

2a
e

−s2

4a2

3.4 Inverse Fourier Cosine Transform

Inverse Fourier cosine transform of f̄C (s)

F−1
C { f̄C (s)} = 2

π

∞∫
0

f̄C (s)cos xs d s
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Some authors define the Fourier cosine transform pair as:

FC { f(x)} = f̄C (s) =
√

2

π

∞∫
0

f (x)cos sx d x and

F−1
C { f̄C (s)} = f (x) =

√
2

π

∞∫
0

f̄C (s)cos xs d s

3.5 Fourier Sine Transform

Fourier sine transform of f (x) is denoted by f̄S(s) or FS{ f (x)}.
FS is the Fourier sine transform operator.
Fourier sine transform of f (x)

f̄S(s) = FS{ f (x)} =
∞∫

0

f (x) si n sx d x

Example on how to calculate Fourier Sine Transform for a given
function

Example 5

Find the Fourier Sine Transform of e−ax(a > 0). Hence find FS{xe−ax} and FS{ e−ax

x }.
Deduce the value of ∞∫

0

si n sx

x
d x.

Solution:

FS(e−ax) =
∞∫

0

e−ax si n sx d x

=
[

e−ax

s2 +a2
(−a si n sx − s cos sx)

]∞
0

= s

s2 +a2

i.e.,

∞∫
0

e−ax si n sx d x = s

s2 +a2
(1)

28



Differentiating both sides of (1) with respect to a, we get

∞∫
0

−xe−ax si n sx d x =− 2as

(s2 +a2)2

i.e.,

FS(xe−ax) = 2as

(s2 +a2)2

Integrating both sides of (1) with respect to a between a and ∞,

∞∫
0

(
e−ax

−x

)∞
0

si n sx d x =
[
−cot−1

(a

s

)]∞
a

i.e.,

∞∫
0

(
e−ax

x

)
si n sx d x = cot−1

(a

s

)
i.e.,

FS

(
e−ax

x

)
= cot−1

(a

s

)
, a > 0 (2)

Taking limits on both sides of (2) as a → 0, we get

FS

(
1

x

)
= cot−1(0) = π

2

Thus

∞∫
0

si n sx

x
= π

2
, s > 0.

3.6 Inverse Fourier Sine Transform

Inverse Fourier sine transform of f̄S(s)

F−1
S { f̄S(s)} = 2

π

∞∫
0

f̄S(s) si n xs d s
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Some authors define the Fourier sine transform pair as:

FS{ f(x)} = f̄S(s) =
√

2

π

∞∫
0

f (x) si n sx d x and

F−1
S { f̄S(s)} = f (x) =

√
2

π

∞∫
0

f̄S(s) si n xs d s

4.1 Fourier Integral Theorem

If f (x) is piecewise continuous, has piecewise continuous derivatives in every
finite interval in (−∞,∞) and absolutely integrable in (−∞,∞), then

f (x) = 1

2π

∞∫
−∞

∞∫
−∞

f (t ) ·e i s(x−t ) d t d s or equivalently

f (x) = 1

π

∞∫
0

∞∫
−∞

f (t )cos{s(x − t )}d t d s.

Proof:

When f (x) satisfies the conditions given in the theorem, we can prove that f (x)
can be expanded as a infinite series of the form.

f (x) =
∞∑

n=−∞
cne

i nπx
l (1)

in (−l , l ) however large l may be, where

cn = 1

2l

l∫
−l

f (t )e
−i nπt

l d t (2)

Substituting sn = nπ

l
and inserting (2) in (1), we have

f (x) =
∞∑

n=−∞
1

2l

l∫
−l

f (t )e i sn (x−t )d t

= 1

2π

l∫
−l

[ ∞∑
n=−∞

f (t )e i sn (x−t ) · π
l

]
d t
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on interchanging summation and integration.

= 1

2π

l∫
−l

[ ∞∑
n=−∞

f (t )e i sn (x−t )∆Sn

]
d t

Since

∆sn = sn+1 − sn = (n +1)π

l
− nπ

l
= π

l

Taking limits as ∆Sn → 0 or equivalently l →∞ we get

f (x) = 1

2π

∞∫
−∞

[ ∞∫
−∞

f (t )e i s(x−t ) d s
]

d t (3)

f (x) = 1

2π

∞∫
−∞

∞∫
−∞

f (t )e i s(x−t ) d t d s (4)

[Since, the limits of integration are constants]
From (3)

f (x) = 1

2π

∞∫
−∞

f (t )

∞∫
−∞

[cos s(x − t )+ i sin s(x − t )]d s d t

= 1

2π

∞∫
−∞

f (t ) ·2

∞∫
0

cos s(x − t )d s d t

[Since, cos s(x−t ) is an even function and sin s(x−t ) is an odd func-
tion of s in (−∞,∞)]

f (x) = 1

π

∞∫
0

∞∫
−∞

f (t )cos s(x − t )d t d s (5)

[Since, the limits of the integration are constants]
From (5), we have

f (x) = 1

π

∞∫
0

∞∫
−∞

f (t )[cos sx cos st + si n sx · si n st ]d t d s

= 1

π

∞∫
0

cos sx

 ∞∫
−∞

f (t )cos st d t

 d s + 1

π

∞∫
0

si n sx

 ∞∫
−∞

f (t ) si n st d t

 d s (6)
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If f (x) [or f (t )] is even,
f (t )cos st is an even function of t and f (t ) si n st is an odd function of t . Hence,
by the property of define integrals, we get the following from (6)

f (x) = 2

π

∞∫
0

∞∫
0

f (t )cos sx cos st d t d s (7)

The R.H.S of (7) is called the Fourier Cosine Integral of f (x), provided f (x) is
even.
If f (x) [or f (t )] is odd, f (t )cos st is an odd function of t and f (t ) si n st is an
even function of t .
Hence, by the property of definite integrals, we get the following from (6)

f (x) = 2

π

∞∫
0

∞∫
0

f (t ) si n sx si n st d t d s (8)

The R.H.S of (8) is called the Fourier Sine Integral of f (x), provided f (x) is odd.

Example on how to find Fourier Integral Representation for a
given function using Fourier Integral Theorem

Example 6

Find the Fourier integral representation of f (x) defined as

f (x) =


0, for x < 0
1
2 , for x = 0

e−x , for x > 0

Verify the representation at x = 0.

Solution:
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Fourier (complex) integral representation is given by

f (x) = 1

2π

∞∫
−∞

∞∫
−∞

f (t )e−i st e i sx d t d s

= 1

2π

∞∫
−∞

e i sx

 0∫
−∞

+
∞∫

0

f (t )e−i st d t

 d s

= 1

2π

∞∫
−∞

e i sx

 ∞∫
0

e−(1+i s)t d t

 d s [on using the given values of f(t)]

= 1

2π

∞∫
−∞

e i sx
{ e−(1+i s)t

−(1+ i s)

}t=∞

t=0
d s

= 1

2π

∞∫
−∞

e i sx · 1

1+ i s
d s

= 1

2π

∞∫
−∞

(1− i s)

1+ s2
(cos xs + i si n xs)d s

= 1

2π

∞∫
−∞

1

1+ s2
[{cos xs + s si n xs}+ i {si n xs − s cos xs}]

= 1

π

∞∫
0

(cos xs + s si n xs

1+ s2

)
(1)

by property of definite integrals, as the real part is even and the imaginary part
is odd.
Substituting x = 0 in the integral representation (1), we get

f (0) = 1

π

∞∫
0

d s

1+ s2
= 1

π

[
t an−1s

]∞
0
= 1

2

Thus the integral representation (1) holds good for x = 0 also.
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4.2 Alternative Form of Fourier Complex Integral Formula

The Fourier integral formula for f (x) is

f (x) = 1

2π

∞∫
−∞

∞∫
−∞

f (t )e i s(t−x) d t d s

Proof:

f (x) = 1

π

∞∫
0

∞∫
−∞

f (t )cos s(x − t )d t d s

= 1

π

∞∫
0

∞∫
−∞

f (t )cos s(t −x)d t d s

= 1

2π

∞∫
0

∞∫
−∞

f (t )
[

e i s(t−x) +e−i s(t−x)
]

d t d s

= 1

2π

∞∫
0

∞∫
−∞

f (t )e i s(t−x) d t d s + 1

2π

∞∫
0

∞∫
−∞

f (t )e−i s(t−x) d t d s

Substituting s =−s
′

in the second integral, we get

f (x) = 1

2π

∞∫
0

∞∫
−∞

f (t )e i s(t−x) d t d s + 1

2π

0∫
−∞

∞∫
−∞

f (t )e i s
′
(t−x)d t d s

′

= 1

2π

∞∫
−∞

∞∫
−∞

f (t )e i s(t−x) d t d s

[on changing s
′

into s and combining the two integrals] (1)

(1) provides an alternative formula for f (x). Comparing this with the Fourier
Complex integral formula derived in (4) of Fourier integral theorem, we note
that x and t can be interchanged in the exponential function.
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4.3 Standard Fourier Transform Pairs

S.No. x(t) X(t) X(ω)

1. δ(t ) 1 1

2. r ect (t ) si nc( f ) si nc
( ω

2π

)
3. tr i (t ) si nc2( f ) si nc2

( ω
2π

)
4. si nc(t ) r ect ( f ) r ect

( ω
2π

)
5. cos(2πat )

1

2

[
δ( f +a)+δ( f −a)

]
π [δ(ω+2πa)+δ(ω−2πa)]

6. sin(2πat )
j

2

[
δ( f +a)−δ( f −a)

]
jπ [δ(ω+2πa)−δ(ω−2πa)]

7. e−at u(t )
1

a + j 2π f

1

a + jω

8. t ne−at u(t )
1

(a + j 2π f )n+1

1

(a + jω)n+1

9. e−a|t | 2a

a2 +4π2 f 2

2a

a2 +ω2

10. e−πt 2
e−π f 2

e

−ω2

4π

11. sg n(t )
1

jπ f

2

jω

12. u(t )
1

2
δ( f )+ 1

j 2π f
πδ(ω)+ 1

jω

13. e−at cos2πbtu(t )
a + j 2π f

(a + j 2π f )2 + (2πb)2

a + jω

(a + jω)2 + (2πb)2

14. e−at sin2πbtu(t )
2πb

(a + j 2π f )2 + (2πb)2

2πb

(a + jω)2 + (2πb)2

15. eat u(−t )
1

a − j 2π f

1

a − jω
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4.4 Deriving Fourier Transform from Fourier Series

x(t ) =
∞∑

k=−∞
X [k]e j kωt

x(t ) =
∞∑

k=−∞
X [k]e j k 2π

T t
[

Since,ω= 2π

T

]
(1)

Let δ f = 1

T

(1) =⇒ x(t ) =
∞∑

k=−∞
X [k]e j k2π∆ f t

X [k] = 1

T

t0+T∫
t0

x(t )e− j kωt d t

X [k] = 1

T

t0+T∫
t0

x(t )e j k2π∆ f t d t (2)

where, X (ω) =
∞∫

−∞
x(t )e− jωt d t

The above equation is known as Fourier Transform Equation.
Substituting equation (2) in equation (1), we get,

x(t ) =
∞∑

k=−∞

∆ f

t0+T∫
t0

x(t )e− j 2πk∆ f t d t

 .e j k2π∆ f t

Let t0 =−T

2

x(t ) = lim
T→∞

∞∑
k=−∞


T
2∫

− T
2

x(t )e− j 2πk∆ f t d t

 .e j k2π∆ f t

When T →∞,
∑→

∫
,∆ f → d f , k∆ f → f ,continuous variable function.

x(t ) =
∞∫

−∞
d f

∞∫
−∞

x(t )e− j 2π f t d t .e j 2π f t

x(t ) =
∞∫

−∞
[X (ω)] e jωt dω
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The above equation is known as Fourier Inverse Transform Equation.

4.5 Relationship between Fourier Transform and Laplace
Transform

Let f (t ) be defined as f (t ) =
{

e−xtφ(t ), t ≥ 0

0, t < 0

Then

F
{

f (t )
}
=

∞∫
−∞

f (t )e−i y t d t

where y is the Fourier transform variable.

=
0∫

−∞
0 ·e−i y t d t +

−∞∫
0

e−xtφ(t )e−i y t d t

=
∞∫

0

e−stφ(t )d t
[
where s = x + i y

]
i .e., F

{
f (t )

}
= L

{
φ(t )

}
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4.6 PROPERTIES OF FOURIER TRANSFORM

Property 1 - Linearity Property

F is a linear operator, i.e. F [(c1 f1(x)+ c2 f2(x))] = c1F { f1(x)}+ c2F { f2(x)}, where
c1 and c2 are constants.

Proof :

F
[

c1 f1(x)+ c2 f2(x)
]
=

∞∫
−∞

[c1 f1(x)+ c2 f2(x)]e−i sxd x

= c1

∞∫
−∞

f1(x)e−i sxd x + c2

∞∫
−∞

f2(x)e−i sxd x

= c1F { f1}(x)+ c2F { f2(x)}

Property 2 - Change of Scale Property

If F { f (x)} = f̄ (s), then F { f (ax)} = 1

|a| f̄
[ s

a

]
Proof:

F { f (ax)} =
∞∫

−∞
f (ax)e−i sxd x

=
∞∫

−∞
f (t )e

−i st
a .

d t

a
, [ on substituting ax = t and assuming that a > 0.]

= 1

a
f̄
[ s

a

]
But

F { f (ax)} =
−∞∫
∞

f (t )e
−i st

a .
d t

a
, if a < 0

=− 1

a
f̄
[ s

a

]
∴ F { f (ax)} = 1

|a| f̄
[ s

a

]
Similarly,

FC { f (ax)} = 1

a
· f̄C

[ s

a

]
and

FS{ f (ax)} = 1

a
· f̄S

[ s

a

]
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Property 3 - Shifting Property (Shifting in x)

If F { f (x)} = f̄ (s), then F { f (x −a)} = e−i as f̄ (s)

Proof:

F { f (x −a)} =
∞∫

−∞
f (x −a)e−i sx d x

=
∞∫

−∞
f (t )e−i s(t+a) d t , [ on substituting t = x −a ]

= e−i as f̄ (s)

Property 4 - Shifting in Respect of s

If F { f (x)} = f̄ (s), then F {e−i ax f (x)} = f̄ (s +a)

Proof:

F {e−i ax f (x)} =
∞∫

−∞
e−i ax f (x)e−i sx d x

=
∞∫

−∞
f (x)e−i (s+a)x d x

= f̄ (s +a)

F {e i ax f (x)} =
∞∫

−∞
e i ax f (x)e−i sx d x

=
∞∫

−∞
f (x)e−i (s−a)x d x

= f̄ (s −a)
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Property 5 - Modulation Theorem

If F { f (x)} = f̄ (s), then F { f (x)cos ax} = 1

2

[
f̄ (s +a)+ f̄ (s −a)

]
Proof:

F
{

f (x)cos ax
}
= 1

2
F

[
f (x)(e i ax +e−i ax)

]
= 1

2

[
F { f (x)e i ax}+F { f (x)e−i ax}

]
= 1

2

[
f̄ (s −a)+ f̄ (s +a)

]
Property 6 - Conjugate Symmetry Property

If F { f (x)} = f̄ (s), then F { f ∗(−x)} = [ f̄ (s)]∗, where * denotes complex conjugate.

Proof:

f̄ (s) =
∞∫

−∞
f (x)e−i sxd x

∴ [ f̄ (s)]∗ =
∞∫

−∞
f ∗(x)e i sxd x

=
∞∫

−∞
f ∗(−t )e−i st d t , [On Substituting x =−t ]

= F { f ∗(−x)}
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Property 7 - Transform of Derivatives

If f (x) is continuous, f
′
(x) is piecewise continuously differentiable, f (x) and

f
′
(x) are absolutely intergrable in (−∞,∞) and limx→±∞ [ f (x) = 0], then F { f

′
(x) =

i s f̄ (s)} where f̄ (s) = F { f (x)}

Proof:

By the first three conditions given, F { f (x)} and F { f
′
(x)} exist.

F { f
′
(x)} =

∞∫
−∞

f
′
(x)e−i sx d x

=
[

e−i sx f (x)
]∞
−∞

+ i s

∞∫
−∞

e−i sx f (x)d x,

[on substituting by parts]

= 0+ i s F { f (x)}, [by the given condition]

= i s f̄ (s)

Example on how to solve Differential Equations using Fourier
Transforms

Example 7

Solve the differential equation

d 2 y

d x2
+3

d y

d x
+2y = e−x , x > 0

using Fourier transforms, given that y(0) = 0 and y ′(0) = 0.

Solution:

Taking Fourier complex transforms on both sides of the given differential equa-
tion, we have

(i s)2 ȳ(s)+3(i s) ȳ(s)+2 ȳ(s) = F (e−x), x > 0

= F {U (x) ·e−x},

[where U(x) is the unit step function]
i.e.,

41



[(i s)2 +3(i s)+2] ȳ(s) =
∞∫

0

e−(1+i s)x d x = 1

1+ i s

∴ ȳ(s) = 1

(i s +1)2(i s +2)

= −1

i s +1
+ 1

(i s +1)2
+ 1

i s +2
[by partial fractions.]

∴ y =−F−1
{ 1

i s +1

}
+ F−1

{ 1

(i s +1)2

}
+

{ 1

i s +2

}
=−U (x)e−x +U (x) . xe−x + U (x) .e−2x

Since

F {U (x)xe−x} =
∞∫

0

xe−(1+i s)x d x

=
[

x
{ e−(1+i s)x

−(1+ i s)

}
−

{e−(1+i s)x

(1+ i s)2

}]∞
0

= 1

(1+ i s)2

i.e.,
y =−e−x + xe−x + e−2x , x > 0

Example on how to solve Partial Differential Equations using
Transform of Derivatives and Fourier Cosine Transform

Example 8

Solve the equation
∂u

∂t
=α2 ∂2u

∂x ∂x
, satisfying the boundary conditions

∂u

∂x
(0, t ) =

k, t ≥ 0 and u(x, t ) → 0 as x →∞ and the initial condition u(x,0) = 0.

Solution:

We know that,

If f (0, y) is given but
∂ f

∂x
(0, y) is not known in a boundary value problem, Fourier

sine transform is used. On the other hand, if
∂ f

∂x
(0, y) is given but f (0, y) is not

known, Fourier cosine transform is used.

42



Since x > 0 and
∂u

∂x
(0, t ) is given, we take Fourier cosine transforms of the

equation with respect to x.
Thus

∂

∂t
ūC (s, t ) =α2

[
−s2ūC (s, t )− ∂u

∂x
(0, t )

]
i.e.,

∂

∂t
ūC (s, t )+α2s2ūC (s, t ) = kα2 (1)

Transform of the initial condition is

ūC (s,0) = 0 (2)

Solving (1) and using (2), we get

ūC (s, t ) = Ae−α2s2t − k

s2
(3)

Using (2) in (3), we get A = k

s2

∴ ūC (s, t ) = k

s2
(e−α2s2t −1)

Taking the inverse cosine transforms, we get

u(x, t ) = 2k

π

∞∫
0

1

s2
(e−α2s2t −1)cos xs d s

Property 8 - Derivatives of the Transform

If F { f (x)} = f̄ (s), then −i F {x f (x)} = d

ds
f̄ (s)

Proof:

f̄ (s) =
∞∫

−∞
e−i sx f (x)d s

d

d s
f̄ (s) =

∞∫
−∞

d

d s
[e−i sx f (x)]d x

= (−i )

∞∫
−∞

e−i sx[x f (x)]d x

=−i ·F {x f (x)}
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Extending, we get
dr

dsr
f̄ (s) = (−i )r F {xr f (x)}

Convolution Product

∞∫
−∞

f (x −u)g (u)du

is called the convolution product or simply the convolution of the functions
f (x) and g (x) and is denoted by f (x)∗g (x).

Property 9 - Convolution Theorem

The Fourier transform of the convolution of two functions is the product of
their Fourier transforms.
i.e., if F { f (x)}= f̄ (s) and F {g (x)}=ḡ (s), then

F { f (x)∗g (x)} = f̄ (s) · ḡ (s)

Proof:

F { f (x)∗g (x)} =
∞∫

−∞
f (x)∗g (x)e−i sx d x

=
∞∫

−∞

 ∞∫
−∞

f (x −u)g (u)du

e−i sx d x

=
∞∫

−∞
g (u)

 ∞∫
−∞

f (x −u)e−i sx d x

 du [on changing the order of integration.]

=
∞∫

−∞
g (u)[e−i us f̄ (s)]du, [by the shifting property.]

= f̄ (s) ·
∞∫

−∞
g (u)e−i su du

= f̄ (s) · ḡ (s)

Inverting, we get

F−1{ f̄ (s) · ḡ (s)} = f (x)∗g (x)

= F−1{ f̄ (s)}∗F−1{ḡ (s)}
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Property 10 - Parseval’s Identity or Energy Theorem

If F { f (x)} = f̄ (s), then

∞∫
−∞

| f (x)|2 d x = 1

2π

∞∫
−∞

| f̄ (s)|2 d s

Proof:

By convolution theorem,

f (x)∗ g (x) = F−1{ f̄ (s) · ḡ (s)}

i.e.,

∞∫
−∞

f (u) · g (x −u)du = 1

2π

∞∫
−∞

f̄ (s)ḡ (s)e i xs d s (1)

Substituting x = 0 in (1), we get

∞∫
−∞

f (u)g (−u)du = 1

2π

∞∫
−∞

f̄ (s)ḡ (s)d s (2)

(2) is true for any g (u); take g (u) = [ f (−u)]∗ and hence g (−u) = [ f (u)]∗, where
[ f (u)]∗ is the complex conjugate of f (u).
Also

ḡ (s) = F {g (x)} = F { f (−x)}∗ = [F f (x)]∗ = [ f̄ (s)]∗

[by conjugate symmetric property]
Using these in (2), we get

∞∫
−∞

f (u)[ f (u)]∗ du = 1

2π

∞∫
−∞

f̄ (s)[ f̄ (s)]∗ d s

i.e., ∞∫
−∞

| f (u)|2 du = 1

2π

∞∫
−∞

| f̄ (s)|2 d s,

or ∞∫
−∞

| f (x)|2d x = 1

2π

∞∫
−∞

| f̄ (s)|2 d s.

[on changing the dummy variable]
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Example on how to calculate Fourier cosine and sine
transforms of a given function using Parseval’s Identity

Example 9

Using Parseval’s identity for Fourier cosine and sine transforms of e−ax ,
evaluate

(i )

∞∫
0

d x

(a2 + x2)2
and (i i )

∞∫
0

x2

(a2 + x2)2
d x

Solution

(i ) FC (e−ax) =
∞∫

0

cos sx d x = a

s2 + a2

By Parseval’s identity,

∞∫
0

| f (x)|2 d x = 2

π

∞∫
0

| f̄C (s)|2 d s

∞∫
0

e−2ax d x = 2

π
a2

∞∫
0

d s

(s2 + a2)2

i.e., ∞∫
0

d s

(s2 + a2)2
= π

2a2
·
[

e−2ax

−2a

]∞
0

= π

4a3
, if a > 0

Changing the dummy variable s into x, we get the first result.

ii) Now

FS(e−ax) =
∞∫

0

e−ax si n sx d x = s

s2 +a2

By Parseval’s identity,

∞∫
0

| f (x)|2 d x = 2

π

∞∫
0

| f̄S(s)|2 d s
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i.e.,

2

π

∞∫
0

s2

((s2 +a2))2
d s =

∞∫
0

e−2ax d x

∞∫
0

x2d x

(x2 +a2)2
= π

4a
, if a > 0 [on changing the dummy variables.]

Property 11 - Parseval’s Identity for Fourier Cosine and Sine
Transforms

If f̄C (s), ḡC (s) are the Fourier cosine transforms and f̄S(s), ḡS(s) are the Fourier
sine transforms of f (x) and g (x) respectively, then

(i )

∞∫
0

f (x) g (x)d x =
∞∫

0

f̄C (s) ḡC (s)d s =
∞∫

0

f̄S(s) ḡS(s)d s

(i i )

∞∫
0

| f (x)|2 d x =
∞∫

0

| f̄C (s)|2 d s =
∞∫

0

| f̄S(s)|2 d s

Proof:

(i )

∞∫
0

f̄C (s) ḡC (s)d s =
∞∫

0

f̄C (s)

√
2

π

∞∫
0

g (x)cos sx d x

 d s

=
∞∫

0

g (x)

√
2

π

∞∫
0

f̄C (s)cos xs d s

 d x,

(changing the order of integration)

=
∞∫

0

f (x) g (x)d x

(ii) Replacing g (x) = f ∗(x) in (i) and noting that FC { f ∗(x)}

= { f̄C (s)}∗ andFS{ f ∗(x)} = { f̄S(s)}∗, we get

∞∫
0

f (x)

f ∗(x)d x =
∞∫

0

f̄C (s) { f̄C (s)}∗ d s =
∞∫

0

f̄S(s) { f̄S(s)}∗ d s

i.e.,

∞∫
0

| f (x)|2 d x =
∞∫

0

| f̄C (s)|2 d s =
∞∫

0

| f̄S(s)|2 d s
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Property 12

If FC { f (x)} = f̄C (s) and FS{ f (x)} = f̄S(s), then

(i )
d

d s
{ f̄C (s)} =−FS{x f (x)}and

(i i )
d

d s
{ f̄S(s)} = FC {x f (x)}.

Proof:

(i ) f̄C (s) =
∞∫

0

f (x)cos sx d x

d

d s
{ f̄C (s)} =

∞∫
0

f (x){−x si n sx}d x

=−
∞∫

0

{x f (x)} si n sx d x

=−FS{x f (x)}

(i i ) f̄S(s) =
∞∫

0

f (x) si n sx d x

d

d s
{ f̄S(s)} =

∞∫
0

f (x){x cos sx}d x

=
∞∫

0

{x f (x)}cos sx d x

= FC {x f (x)}

5.1 Finite Fourier Transforms of Derivatives

(i ) FS{ f ′(x)} =−nπ

l
f̄C (n)

(i i ) FC { f ′(x)} = (−1)n f (l )− f (0)+ nπ

l
f̄S(n)

(i i i ) FS{ f ′′(x)} =−n2π2

l 2
f̄S(n)+ nπ

l
{ f (0)− (−1)n f (l )}

(i v) FC {F ′′(x)} =−n2π2

l 2
f̄C (n)+ (−1)n f ′(l )− f ′(0)
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Proof:

FS{ f ′(x)} =
l∫

0

f ′(x) si n
nπx

l
d x

=
l∫

0

si n
nπx

l
d{ f (x)}

=
{

f (x) si n
nπx

l

}l

0
− nπ

l

l∫
0

f (x)cos
nπx

l
d x

=−nπ

l
f̄C (n)

FC { f ′(x)} =
π
2∫

0

1 · cos nx d x −
π∫

π
2

1 · cos nx d x

=
[

si n nx

n

]π
2

0
−

[
si n nx

n

]π
π
2

= 1

n

{
si n

nπ

2
−0− si n nπ+ si n

nπ

2

}
= 2

n
si n

nπ

2
, n ̸= 0

FS{ f ′′(x)} =
π
2∫

0

si n nx d x −
π∫

π
2

si n nx d x

=− 1

n

(
cos nx

)π
2

0
+ 1

n

(
cos nx

)π
π
2

= 1

n

{
1−2cos

nπ

2
+ (−1)n

}
5.2 Finite Fourier Sine Transform

Finite Fourier Sine Transform of f (x) in (0, l ) is denoted by f̄S(n) or FS{ f (x)}.
If the function f (x) is piecewise continuous in the interval (0,l), then the Fourier
sine transform of f (x) in (0, l )

f̄S(n) = FS{ f (x)} =
l∫

0

f (x) si n
nπx

l
d x
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5.3 Finite Fourier Cosine Transform

Finite Fourier Cosine Transform of f (x) in (0, l ) is denoted by f̄C (n) or FC { f (x)}.
If the function f (x) is piecewise continuous in the interval (0,l), then the Fourier
cosine transform of f (x) in (0, l )

f̄C (n) = FC { f (x)} =
l∫

0

f (x)cos
nπx

l
d x

Example on how to calculate Finite Fourier Sine and Cosine
Transforms of a given function

Example 10

Find the Finite Fourier Sine and Cosine Transforms of
[

1− x

π

]2
sin(0,π).

Solution:

Fs

{[
1− x

π

]2}
=

π∫
0

[
1− x

π

]2
sin nx d x

=
{[

1− x

π

]2 [−cosnx

n

][−2

π

][
1−x

π

][−sinnx

n2

]
+ 2

π2

cosnx

n3

}π
0

= 1

n
+ 2

π2n3

{
(−1)n −1

}
FC

{[
1− x

π

]2}
=

π∫
0

[
1− x

π

]2
cos nx d x

=
{[

1− x

π

]2 sin nx

n
−

[
− 2

π

][
1− x

π

][−cos nx

n2

]
+ 2

π2

[−sin nx

n3

]}π
0

= 2

πn2
, n ̸= 0

5.4 Inverse Finite Fourier Sine Transform

Inverse finite sine fourier transform of f̄S(n) is denoted by F−1
S { f̄S(n)}

If f̄S(n) is the finite Fourier cosine Transform of f (x) in (0, l ), then the Inverse
Finite Fourier Sine Transform of f̄S(n)

f (x) = 2

l

∞∑
n=1

f̄S(n)sin
nπx

l
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Example on how to calculate Inverse Finite Fourier Sine
Transform of a given function

Example 11

Find f (x), if its finite sine transform is given by f̄S(n) = 1− cos nπ

n2π2
in 0 < x <π.

Solution:

The inverse finite Fourier sine transform is given by

f (x) = 2

π

∞∑
n=1

f̄S(n) si n nx

= 2

π

∞∑
n=1

[
1− cos nπ

n2π2

]
si n nx

= 2

π3

∞∑
n=1

{1− (−1)n

n2

}
sin nx

= 4

π3

∞∑
n=1,3,5...

1

n2
si n nx

= 4

π3

∞∑
n=1

1

(2n −1)2
si n (2n −1)x

5.5 Inverse Finite Fourier Cosine Transform

Inverse finite cosine fourier transform of f̄C (n) is denoted by F−1
C { f̄C (n)}

If f̄C (n) is the finite Fourier sine Transform of f (x) in (0, l ), then the Inverse
Finite Fourier Cosine Transform of f̄C (n)

f (x) = 1

l
f̄C (0) + 2

l

∞∑
n=1

f̄C (n)cos
nπx

l

Example on how to calculate Inverse Finite Fourier Cosine
Transform of a given function

Example 12

Find f (x) if its finite cosine transform is given by

f̄c (n) = 1

(2n = 1)2
cos

2nπ

3
i n 0 < x < 1
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Solution:

The inverse finite Fourier cosine transform in (0, l ) is given by

f (x) = l

l
f̄C (0)+ 2

l

∞∑
n=1

f̄C (n)cos
nπx

l

Here l = 1 and f̄C (0) = 1

∴ f (x) = 1+2
∞∑

n=1

1

(2n = 1)2
cos

2nπ

3
cosnπx
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CONCLUSION

Fourier Transform has multitude of applications in almost all areas of life. Right
from the cell phones that we use in our day to day life to Radio Astronomy,
fourier transform plays a vital role in developing today’s modern world of tech-
nology.

Fourier transform clearly shows us that any waveform can be re-written as the
sum of sinusoidal functions. In other words, wherever there is a waveform
which is absolutely integrable with finite number of maxima, minima and dis-
continuities, fourier transform can be definitely applied.

Among all it’s tremendous applications, the most important contribution of
fourier transform is the rapid diagnosis of COVID 19 using FT-IR ATR spec-
troscopy combined with machine learning. It offered a simple, free-label and
cost-effective solution for high-throughput screening of suspect patients for
COVID-19 in health care centres and emergency departments. So, by making
effective researches on fourier transform, mankind will be much benefited.
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INTRODUCTION 
 
 
 
 
     In 1973, Kaufmann defined Fuzzy Graphs for the first time.  Then Azriel Rosenfeld 

developed the theory of fuzzy graphs in 1975.  Fuzzy Graph theory, a combination of graph 

theory and fuzzy set theory have been applied in various fields of science and engineering.  We, 

now have several fuzzy areas like fuzzy Algebra, fuzzy Topology, fuzzy logic and fuzzy 

optimization.  Fuzzy sets were proposed in order to give a degree of membership to an element 

in a given set.  The traditional logical membership has only two choices, namely that an element 

belongs to a set or does not belong to that set.  The crisp set theory is based on this logic and all 

results in pure mathematics are derived on this logic. The basic concepts of fuzzy sets can be 

found in the book “Fuzzy sets and Fuzzy logic” by George Klir and Bo Yuan.  The fuzzy graph 

theory can be used in a wide range of domains in which information is incomplete or imprecise, 

such as bioinformatics.  

     Applications of fuzzy logic and fuzzy graph theory in Decision – making, Pattern 

recognition, Image processing, Control system, Neutral networks, Genetic algorithm and in 

many other areas have been significant results. 

The Project consists of four chapters. 

     In chapter 1, we have discussed about the basic concepts of fuzzy graphs, strength of 

connectedness between two vertices, path and bridges. 

     In chapter 2, we have discussed about Fuzzy Regular Graphs and derive several results with 

respect to regularity. 

     In chapter 3, we have discussed about the concept of Matching in Fuzzy Graphs. 

     In chapter 4, we have discussed about the concept of morphism, based on the strength of 

connectedness between two vertices.                         
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                                                      CHAPTER 1  

                                           PRELIMINARIES 

 
Definition 1.1: Let S be any non-empty set. A fuzzy subset of S is a mapping 

:S [0, 1], where [0,1] denotes the closed interval of the set of real 

numbers. We say  as a fuzzy subset of S 

Definition 1.2: Let  be a fuzzy subset of S. We let  t { xS /  (x)  t } 

forall t [ 0,1] . The sets  t are called level sets or t-cuts of 

Definition 1.3: We define the supp(  ) as the set { xS /  (x)  0}. The height 

of  is defined as h()  { ( x) / x S } where  denotes supremum. 

Definition 1.4: Let  and  be two fuzzy subsets of S. Then, 

    if  (x)   (x) for all xS 

(2) μ ⊂ ν if μ (x) ≤ ν (x) for all x∈S and there exists one x∈S 

such that μ (x) < ν (x) . 

(3) μ = ν if μ (x) = ν (x) for all x∈S 

Definition 1.5: Let μ and ν be two fuzzy subsets of S. Then μ 𝖴ν is the fuzzy 

subset of S defined by( μ 𝖴ν )(x) = max{μ (x), ν (x)} for all x∈S and μ ∩ν is 

the fuzzy subset of S defined by( μ ∩ν )(x) = min{μ (x), ν (x)} for all x∈S . 

Definition 1.6 : A fuzzy graph G = (V, ,) is a nonempty set V together 

with a pair of functions  : V  [0, 1] and  : V  V  [0, 1] such that for all 

x,y in V , we have  (x,y)  x)  y). For simplicity, we denote the fuzzy graph 

by G =   or by (G,    

Example 1.7: Let V= {a,b,c,d,e}. The values of  are given in brackets in the 

following figure.  The nonzero edge weights are given along the edges 

a(0.7) 

 

 

b(0.5) e(0.6) 

 

 

 

 

c(0.8) 0.4 d(0.9) 

                                                                        Fig :1                                                                                            

                                                                           2 



  

 

Definition 1.8: The fuzzy graph H = (,) is called a partial fuzzy sub graph of

 G = (V, ,) if    and   . ( (i.e) (x)   (x) and (x,y) ≤  (x,y) ) 

for all x,y V. We say the partial fuzzy subgraph (,) spans the fuzzy graph 

( ,) if  =  . In this case, we call (,) a spanning fuzzy subgraph of ( ,). 

 

Definition 1.9: Let G = (V,  ,) be a fuzzy graph. For any fuzzy subset  of V 

such that    the partial subgraph of ( ,) induced by  is the maximal 

partial fuzzy subgraph of ( ,) that has the fuzzy vertex set . 

(i.e) (x,y) = (x)  (y)   (x,y) for all x,y V. 

 

 

Matrix representation of a fuzzy graph. 
 

 

 
 

                

    

 

     

 

 

A fuzzy graph can be represented by an adjacency matrix where rows and 

columns are indexed by the vertex set V and the (i,j)th entry is (x,y) and where

(x, x) = (x).

Since  is a fuzzy relation on  it follows that any diagonal element of  is 

larger than or equal to the elements in its column. For computational purposes, 

we omit the diagonal entries. The fuzzy graph given in the figure 1.5.7 has 

matrix representation

3



  

.4 y .6 

 

  

 
 

 

 
  
 

 

 

 

  

 
 
 

  
  

 

 

 

 

   

  

      
 

     

 

 

 
 

          
 

                
 

           
yS 

 

 

 

 

 

 

x z (  ) (x,z)=sup{ .2,.4,.5}=.5 

 

 

 

 

Fig (2) 

As Composition of fuzzy relations is associative, we can talk about    =  2 
 

and other powers of . 

 

We define ∞ (x,y) = sup { k (x,y) / k =1,2,3…..}. The composition can be 

computed, similar to matrix multiplication, where the addition is replaced by  

 

and the multiplication is replaced by  . We define 0 (x,y) = 0 if x  y and 

 

0 (x,y) =(x) otherwise. 

y 

.5 
.2 

.5 y .7 

The Composition of two fuzzy relations is defined as follows.

The composition of two fuzzy relations  and  of S  S is defined by

(  ) (x,z) = sup { (x,y)  (y,z) }

4



  

Definition 1.10: A path in a fuzzy graph ( ,) is a sequence of distinct vertices 

x0, x1, x2 ...................................... ,xn such that (xi-1 , xi)  0, 1 i  n. The strength of the 

path is defined as {(xi-1,xi)  i= 1,2…..n} where  denotes the minimum. 

Here ‘n’ is the length of the path. A single vertex is a path of length 0. A 

strongest path joining any two vertices has strength   (x, y) . 

 
 

Definition 1.11: A partial fuzzy subgraph ( ,) is said to be connected if for 

all x, y  supp(),   (x, y) >0. 

Definition 1.12: Let G = (V,  ,) be a fuzzy graph. Let x, y be two distinct 

vertices and let G be the partial fuzzy subgraph of G obtained by deleting the 

edge (x,y). That is, G =(,  ) where  (x, y) = 0 and   =  for all other pairs. 

We say that (x,y) is a bridge in G if   (u, v)    (u, v) for some u,v. In other 

words, deleting the edge (x,y) reduces the strength of connectedness between 

some pair of vertices. 

Example 1.13: 
 

 

 

a 
 

 

 

 

 

 

 
 

b c 
0.5 

    

1.0 1.0 

Fig(3)
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Here the edge ‘ab’ is a bridge, while ‘bc’ is not a bridge. 

 

 
 

Definition 1.14: G = ( ,) is called a tree if (supp(),supp() ) is a tree. 

 

G = ( ,) is called a fuzzy tree if ( ,) has a fuzzy spanning subgraph (,) 

which is a tree such that  (u,v)  supp() but not in supp() we have 

(u,v)   (u,v). That is, there exists a path in (,) between u and v whose 

strength is greater than (u,v). 

 

 

Definition 1.15: G = ( ,) is called a cycle if ( supp(),supp() ) is a cycle. G 

 

= ( ,) is called a fuzzy cycle if ( ,) if ( supp(),supp() ) is a cycle and 

there does not exist a unique (x,y)  supp() such that 

(x,y) = {(u,v)  (u,v)  supp()}. 

 
Example 1.16: 

 

 
 

a a 

 

 

 

 

 

 

 

 
 

0.5 

                                              

 

c b 
 

c
 

1.0 0.5 1.0 1.0 

 

b 

Fig(4)      

Fig (5)

0.5
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b 

 

 

 

 

c 
a 

 

 

0.5 1 
 

 

 

e d 
 

 

 

                                                                      Fig(6) 

 

 

 

 

 

 

 

Definition 1.17: The complement [12] of a fuzzy graph G = (V, ,) is 

defined as G = ( V, ,  ) where  (x,y) = (x) (y)- (x,y). 

Example 1.18: 
 

 

 
(.5) u (.6)v 

.5 
(.5) u 

 

(.6)v 

 
 

.3 

 

 
(.4)x .3 

.2 

 

 
(.3)w 

.1 

 

 
(.4)x .3 

.1 

 

 
(.3)w 

 

 
 

G G 

 

It is shown in [12], that G = G and that for a self-complementary fuzzy 
 

 
 

graph ( G = G ), we have   (u, v) = 
1 
( (u)  (v)) . 

u v 
2 u v 

1 
1 

1 1 

.3 
.4 

Fig (7) 
Fig (8) 
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Definition 1.19: The Cartesian product of two fuzzy graphs (G1,1,1) and 

(G2,2,2) is defined as the fuzzy graph (G1G2, 12, 12) where G1G2 has 

the vertex set V1V2, and the edge set is given by 

E = { ( (u, u2), (u, v2) ) / u V1 & u2v2 E2 }  { ( (u1,w), (v1,w ) / w V2 & 

u1v1 E1 } 

with 

 

( 12 ) ( u1,u2) = 1( u1)  2( u2) ; 

 

(12) ( (u, u2), (u, v2) ) = 1( u )  2( u2 ,v2) and 

 

(12) ( (u1,w), (v1,w) ) = 2( w )  1( u1 ,v1) 

 

 
Definition 1.20: The Composition of two fuzzy graphs (G1,1,1) and 

(G2,2,2) is defined as the fuzzy graph (G1[G2], 1•2,1• 2) where G1[G2]has 

the vertex set V1V2, and the edge set is given by 

E = {((u, u2), (u, v2) ) / u V1 & u2v2 E2 }{ ( (u1, u2),(v1 , v2 ) /u1v1 E1 ,u2 

 

,v2  V2 } with 

 

(1• 2) ( u1,u2) = 1( u1)  2( u2) ; 

 

(1 • 2) ( (u, u2), (u, v2) ) = 1( u )  2( u2 ,v2) and 

 

(1 • 2) ( (u1, u2),(v1 , v2 ) ) = 2(u2)  2(v2)  1( u1 ,v1) 

8



  

Definition 1.21: The Tensor product of two fuzzy graphs (G1,1,1) and 

(G2,2,2) is defined as the fuzzy graph (G1  G2, 1  2,1  2) where the 

vertex set V1V2, and the edge set is given by 

E = {((u1, u2), (v1, v2)) / u1v1 E1 ,u2v2  E2 } with 

(1   2) ( u1,u2) = 1( u1)  2( u2) ; and 

(1   2) ( (u1, u2),(v1 , v2 ) ) = 1( u1 ,v1)  2( u2 ,v2). 
 

 

 

Definition 1.22: Let G = (V,X) be a graph where V={v1,v2,----- ,vn} and 

Vi = {vi, xi1,xi2, ------- ,xiqi} where xijX and xij has vi as a vertex j=1,2,3……qi , 

i=1,2,3…n. Let S= {S1,S2,----- ,Sn} . Let T = { (Si , Sj)/  Si , Sj S, Si  Sj   }. 

 

Then (S,T) is an intersection graph. For this graph define fuzzy subsets  , of S 

and T by  (Si ) = (vi ) Si  and  (Si , S j ) =  (vi , v j ) (Si , S j )T . Then, (S,T) is 

called an intersection graph. 

 

 

Definition 1.23: The line graph of a graph G is by definition intersection 

graph Where L(G) = {Z,W} where Z= { {x}U{ux, vx} / x X, ux, vxV, x= (ux, 

vx) } and W= { (Sx, Sy) / Sx  Sy   , xX, x  y}. Define the fuzzy subsets 

, of Z and W by  (Sx ) =  (x) and  (Sx , S y ) =  (x)   ( y). Then ( , ) is a 

fuzzy sub graph of L(G).called the fuzzy line sub graph corresponding to (,  ) . 

 

The following theorems will be used in subsequent chapters. 
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Theorem 1.24: The following are equivalent 

 

 

     

 

         

 
          

 

 
 

    

  

 

     

 

 
 

          

 

 
 

              

   

 
 

                 

 

          

 

 

                  

(1) (x,y) is a Bridge

(2)   (x, y) <   (x,y)

(3) (x,y) is not the weakest edge of any cycle

Theorem 1.25: Let G = ( ,) be a cycle. Then ( ,) is a fuzzy cycle if and 

only if ( ,) is not a fuzzy tree.

Strong arcs in fuzzy graphs

Definition 1.26: The maximum of strengths of all paths from x to y is called 

CONNG (x,y). We say G is connected if CONNG (x,y).> 0 for all x,y

Definition 1.27: We call the arc (x,y) strong in G if (x,y) > 0 and (x,y) 

CONNG-(x,y) (x,y).where G-(x,y) is obtained by removing the edge (x,y).

Definition 1.28: A path from x to y is called strong if every edge in it is strong

10



  

Note 1.29: An arc of maximum weight is strong but the converse is not true 

(consider a fuzzy cycle, in which every arc is strong, even the weakest edge 

 
 

Note 1.30: A path of maximum strength need not be a strong path. 
 
 
 

Example 1.31: 
u
 

 

 

 

 

 
t 

v .5 w 
 

 

 

The two paths u,w,t and u,v,w,t have maximum strength .25 but u,v,w,t is not a 

strong path since the arc (v,w) is not strong. 

1 1 

.25 
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CHAPTER 2

FUZZY REGULAR GRAPHS

u v

by  (G) and the maximum of the degrees of the vertices is denoted by (G).

§2.1: Introduction

In this chapter, we see the concept of fuzzy regular graphs. We derive 

several results concerning fuzzy regular graphs. We prove if G is a  fuzzy 

regular graph then so is its complement. We prove that Cartesian product, 

Tensor product, Composition of two fuzzy regular graphs is fuzzy regular. We 

derive a necessary and sufficient condition for a fuzzy graph to be fuzzy regular. 

We prove the existence of a fuzzy regular graph containing the given fuzzy 

graph as an induced fuzzy sub graph. Then, we define s-regular fuzzy graphs 

and derive a necessary and sufficient condition for a fuzzy graph to be s-regular. 

Finally we introduce another type of regularity called pseudo-regular graphs and 

relate them with fuzzy regular graphs and regular graphs.

§2.2. Fuzzy regular graphs

Definition 2.2.1: Let G = (V, ,) be a fuzzy graph. The degree of a vertex v is 

defined as d(v) =   (u,v) The minimum of degrees of the vertices is denoted

12



 

.3 

 
 

.3 

¼ 
 

7/12 

 

1/3 

Definition 2.2.2: A fuzzy graph is called fuzzy regular if d(u) = d(v) for all 

u,vV ,u  v 

Example 2.2.3 
 

 

 

x 
.5 

w
 

 
 
 
 
 

.5 .5 
 
 
 
 

 

u v 
 
 

                              

 

Example 2.2.4 
 

 
 
 
 
 

 

y 

w 
 

2/3 

 

 
u 

½ 
 
                          

v 

x

1/3

1/4

Fig:10

Fig:11
13



 

Example 2.2.5: We give an example of a crisp graph which cannot be fuzzy 

regular. The graph in the following can never be fuzzy regular 

 

 

 

 
                    

 

 

 

 
 

 

 
 

 

 
 

G is fuzzy 

 

 
 

  

Proof: By definition of G ,  (x,y) = µ(x)  µ(y) - ρ(x,y) = 1- ρ(x,y). 
 

By taking the sum over the vertices y adjacent to x, we get d (x) = p-1-k, where 

p is the number of vertices, we get the result. 

 

 

Theorem 2.2.7: A necessary and sufficient condition for a fuzzy graph G to be 
 

fuzzy regular is that δ (G) + δ( G ) = p-1 where p is the no of vertices. 

Here after, we assume µ(x) = 1 for all the vertices x.

The following results are based on this assumption.

Theorem 2.2.6: If G(µ,ρ) is a fuzzy regular graph of degree k, then 

regular of degree p-k-1

Fig:12
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Proof: Suppose G is fuzzy regular of degree k then 

p-k-1. 

 
 

G is fuzzy regular of degree 

 
 

δ (G) + δ( G ) = k+p-k-1 = p-1 

 
Conversely, assume δ (G) + δ( G ) = p-1. Suppose G is not fuzzy regular then G 

has two vertices u and v such that a = d(u) and b = d(v) with a < b. 

 δ (G) ≤ a. Now in G , d(v) =p-1-b 

 

 δ( G ) ≤ p-1-b 

 
 δ (G) + δ( G ) ≤ a+ p-1-b < p-1 as b-a >0 

which is a contradiction to our assumption. 

 
 

Theorem 2.2.8: For every fuzzy graph G(µ,ρ) , there exists a fuzzy regular 

graph H containing G as an induced fuzzy sub graph 

 
 

Proof: Suppose G is not fuzzy regular let G' be another copy of G. We construct 

G1 from G and G' by adding the edges vi vi
’
 for all vertices for which d(vi ) < ∆ 

(G). Now assign the weight to edge vi vi
’
 by defining 

ρ(vi ,vi
’
 ) = min { 1, ∆ (G)- d(vi )} 

Now G is an induced subgraph of G1 with 

 

δ (G1) =min {1, min {1, ∆ (G)- d(vi )}} 

Clearly, δ (G) < δ (G1) ≤ ∆ (G). 
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If G1 is fuzzy regular then G1 is the desired graph. Otherwise, we 

continue this procedure till we get the required fuzzy regular graph. This 

process will stop in at most n steps. 

 
 

 
 

 

 

Definition 2.3.1: Let G = (V, ,) be a fuzzy regular Graph. The adjacency 

matrix of a such a fuzzy graph with 'n' vertices is a n X n matrix, whose (i,j) 
th
 

entry is ρ(vi ,vj ). 

 

 

2.3.2: Fuzzy regular graphs and doubly stochastic matrices. 

 

 
 

Let G = (V, ,) be a fuzzy regular Graph. By dividing the weight of each edge 

by the common degree (i.e) we normalize the weights of the edges we get a 

fuzzy regular graph in which d(v)=1 for each vertex v . . Since d(v) = 1 for each 

vertex v, the sum of elements in each row and in each column of the adjacency 

matrix becomes one. Therefore, the adjacency matrix of such a fuzzy regular 

graph becomes a doubly stochastic matrix in which all the elements along the 

principal diagonal are zero. (i.e) Corresponding to each fuzzy regular graph on 

'n' vertices we have a doubly stochastic matrix in which all the elements along 

the principal diagonal are zero. Conversely, given a doubly stochastic matrix in 

which all the elements along the principal diagonal are zero, we can associate a 

§2.3 Adjacency matrices of fuzzy regular graphs

16



fuzzy regular graph in which the degree of each vertex is one. The following 

results are obvious for fuzzy regular graphs in which, d(v)=1 for each vertex v. 

 

 

Result 2.3.3: An odd cycle is fuzzy regular if and only if the weights of all 

edges are equal to ½. 

Result 2.3.4: An even cycle is fuzzy Regular if and only if the weights of 

alternate edges are equal and the sum of weights of any two adjacent edges is 

one. 

Result 2.3.5: A cycle which is fuzzy regular is a fuzzy cycle. 
 

 

 
 

 

 

 

    

 

 
 

Theorem 2.4.1: If (G1,1) and (G2,2) are fuzzy regular graphs of degree k1 ,k2 

respectively then, 

(i) Their Cartesian product is also fuzzy regular of degree k1+ k2 

 

(ii) Their composition is also fuzzy regular of degree k2+ p2k1 

 

(iii) Their Tensor product is also fuzzy regular of degree k1k2 

§2. 4: Product of fuzzy regular graphs

In this section, we show that the products of fuzzy regular graphs are also fuzzy 

regular. We assume  (x) = 1 for all vertices x. We will represent (G1,1,1) and 

(G2,2,2) simply as (G1 , 1) and (G2 , 2). Let them have p1, p2 vertices. Then 

we have the following theorem.
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Proof :  i) Let u1 ,v1  V1 and u2 ,v2  V2 For a fixed (u1, u2)  V1V2 
 

 (12) ( (u1, u2), (v1, v2) ) = 
v 2 

(12) ( (u1, u2), (u1, v2) ) + 

 

 (12) ( (u1, u2), (v1, u2) ) 
v1 

 

=  2( u2 ,v2) +  1( u1 ,v1) 
v 2 v1 

 

    
 

 

 
 

ii)  (1  2) ( (u1, u2), (v1, v2) )     

 

 
 

 (1 2) 2) ( (u1, u2), (v1, u2) ) 

u1 v1 

 

          
     

 

       

   

 

    

 
 

 

iii)  (1  2) ( (u1, u2), (v1, v2) ) =   1( u1 ,v1) . 2( u2 ,v2) 
v1 v 2 

 
 

=(  1( u1 ,v1) ). (  2( u2 ,v2) ) 

v1 v 2 

 

= d(u1 ) d(u2 ) 

 

= k1 k2 

= k2+ p2k1

= d(u2 ) + p2 . d(u1 )

=  2( u2 ,v2) +  p2 1( u1 ,v1)
v2 v1

v2

=  2( u2 ,v2) +   1( u1 ,v1)
v2v1

=  (1 2) ( (u1, u2), (u1, v2) ) +

v 2

= d(u2 ) in G2 + d(u1 ) in G1

=   k2+ k1
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CHAPTER 3 
 

MATCHING IN FUZZY GRAPHS 

 
 

$ 3.1 Introduction. 
 

A fuzzy matching involving the vertex weight, the edge weight and the 

incidence of edges on a vertex. We define a fuzzy matching in a fuzzy graph 

and the fuzzy matching number of a fuzzy graph. The determination of fuzzy 

matching number is based on the solution of a 0,1 linear programming problem 

associated with it. We also define fuzzy perfect matching number of a fuzzy 

graph and derive three results for perfect fuzzy matching. We also define a new 

weight function for the edges of a fuzzy graph. This weight function depends on 

both the vertex weight and the edge weight. 

 

                             

 

      

   

Fig :13
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.2 

  

 

 

$ 3.2 Fuzzy Matching sets 

 

 

Definition 3.2.1: Let G = (V, ,) be a fuzzy graph with vertex set V. Let E 

denote the set of edges of nonzero weights. A subset M of E is called a fuzzy 

Matching if for each vertex u, we have  (u,v)   (u) 

vV 
(u,v)M 

 

 
 

Definition 3.2.2: Let G = (V, ,) be a fuzzy graph. We define the fuzzy 

matching Number F(G) as 

 

F (G) = Max 
 

 (u, v) / M is aFuzzyMatching in G

 and the edge set for 

M (u,v)M 


which the maximum is attained as fuzzy matching set. 

 

Example 3.2.3 : 
 

1 .3 .5 

 
 

.5 .4 

 

1 .3 .5 

 
The Fuzzy matching set is 

.5 .4 
 

 

.7 .2 
.4  

 
   

.7 4 

                          

F(G) = 1.2
Fig: 14                                                                                  Fig: 15
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e(.3) 

$ 3.3 The Linear programming formulation 
 
 

We can formulate the finding of the fuzzy matching number as a 0,1 

programming problem. Let E denote the incidence matrix of the fuzzy graph 

G = (V, ,) having n vertices and m edges. Then E is a n  m matrix whose 

( i , j )
th

 entry is  ( ej) if the j 
th

 edge is incident on vj and 0 otherwise. 

If X = ( x1, x2,……….,xn)
T
 and V=( (v1),(v2),…..,(vn) ) 

T
 and 

 

W = ( (e1), (e2),….., (em) ) then the Linear 0 ,1 programming problem is 

Maximze WX 

subject to 

 

EX  V 

 
Where, each xi is either 1 or 0. 

 

This is a zero-one Programming problem which can be solved by Additive 

Algorithm or by Branch and Bound Algorithm.   We can also consider the dual 

of the above linear programming problem as a Vertex cover problem for the 

given fuzzy graph. For illustration consider the following graph. 

U(.9) a(.5) V(.5) 
 

 

 

d(.4) b(.5) 
 

 

 

 

 

X(.7) 
 

c(.3) 
 

W(.6) 

 

Fig: 16
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.5 0 0 4 00 

5 .5 0 0 where the edges 0 5 3 0 0 
00.34 3 

The incidence matrix of the above graph is 

a,b,c.d and e represent the columns and the vertices U,V,W,X represent the 

edges. 

The fuzzy matching problem is Maximize (5 .5.3 4 3) c subject to 

5 0 04 

5 5 0 03 
'o.5 3 0 0 

0 0 .3 4 3 

The fuzzy matching corresponds to the solution a-1, c=1, d=land the fuzzy 

matching number is 1.2. Now comes the interesting part. Consider the dual of 

the above problem. The dual can be put in the form 

.5.5 0 0 

0 5 .5 

Minimize (9 5 6 7)subject to 0 0 3 

40 0 
0 3 0 

. The solution 

is u=1, w=1. Note that the constraint can be put in the form 
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(1 10 0 
0110 
00 1 1 

10 0 
o 1o 1 

which, is the corresponding L.P.P of finding the 

independence number for the crisp graph. 

$3.4 Perfect Matching Fuzzy Set 

Definition 3.4.1: A fuzzy matching M is called a perfect fuzzy matching if for 

each vertex u, we have 

2Puv) =H () 
VEV 

(u.v)EM 

Example 3.4.2 

4 9 4 

5 6 6 

Fig: 18 Fig:17 

The perfect Fuzzy Matching with F(G) = 1.8 
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

 

Theorem 3.4.3: Let a fuzzy graph G = (V, ,) have a perfect fuzzy matching. 
 

Then  

 
F (G) = 

 

1 
 (u) 

2 uV 

 

Proof: We have  (u, v)   (u) . Since at every vertex we attain the Maximum 
vV 
(u,v)M 

 
 

possible value for  (u,v) , this sum is the maximum over all possible fuzzy 
vV 
(u,v)M 

 

matchings for that vertex. Taking the sum over all the vertices on both sides we 

get the result. 

 

 

Theorem 3.4.4: Let G = (V, ,) be a M-strong graph. Let G have a perfect 
 

fuzzy matching M. Then the Components of the induced crisp 

subgraph of M are either K2 or K1,s 

Proof : Let M be a perfect fuzzy matching. Take an edge e from M. If no other 

edges of M is incident with e than we have a component K2 . If not, let its end 

vertices be u and v. Then either u is saturated by e or v is saturated by e. 

Without loss of generality, take u. Then no other edge of M is incident with u. 

Now we may have edges of M incident at v other than e. However in this case 

the edges of M, incident to v will have weights which are less than weight of the 

vertex v. Therefore such vertices will have weight of the respective edges in M 

24



as G is M-strong. In such cases, these vertices will be saturated by the edges of 

M and we cannot have edges in M incident to these vertices. Therefore In this 

case we have K1,s. .Hence, the result folloes.. 

 

Theorem 3.4.5: Let a fuzzy graph G = (V, ,) have a perfect fuzzy matching 

 

M. Suppose  (v) is the same for all the vertices v then the 

components of M are K2 or disjoint cycles. 

Proof : If a component of M is not K2 then the edges of M will grow at both 

ends of such edges. But  (v) is same for all the vertices v will 

ensure that the growth is at both ends and we get a cycle. Again 

these cycles will be disjoint as  (v) is the same for all vertices. 

$ 3.5 Weighted matching in fuzzy graph: 
 

Given a fuzzy graph we define a new function W : E  [0 ,1] by 
 

W (x,y) = 
2  (x, y) 

 
 

 (x)   ( y) 
 

In case  (x) =1 for all vertices x then this reduces to just the weight of the edge. 

This weight function involves both the weight of the vertex and the weight of 

the edge. Then we can find the maximum weighted matching for the 

corresponding weighted graph. In case of fuzzy bipartite graphs we can find a 
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maximum weighted matching by solving the corresponding assignment problem. 
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  CHAPTER 4   

  s-MORPHISM IN FUZZY GRAPHS  

  

§ 4.1: Introduction  

  In this chapter, we see another concept of morphism, based on the  strength 

of connectedness between two vertices. The strength of a path plays a  crucial role 

in determining the connectedness between two vertices.  Here, we  define an s-

morphism between two fuzzy graphs, which is based on the strength  of 

connectedness between two vertices. This s- morphism preserves the strength  

between two vertices, and two graphs which are s-morphic need not have the  same 

number of edges, even though they must have same number of vertices.  This s-

morphism can also be expressed in terms of matrices, which give rise to 

 various interpretations of a fuzzy graph. After defining the s-morphism, we  prove 

that it is an equivalence relation among the class of all fuzzy graphs with  n 

vertices. We also prove that this s - morphism preserves tree structures, bridges 

    and strong edges.  

§ 4.2: s-Morphism in fuzzy graph  

  

Definition 4.2.1: :Let (G1 ,μ1 , ρ1 ) and (G2 ,μ2, ρ2 ) be two fuzzy graphs. 

They are said to be s-morphic if there exists a bijection f: V1 → V2 such that  

       ρ1
∞ (u,v) = ρ2

∞ ( f (u), f (v)) ∀ u,v ∈ V1 . 

                

Example   

Example 4.1and 4.2 
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                  Fig (21)             Fig (22)   

  

  

 The map defined by. f(a) =u                       

                                   f(b)=z                                

                                   f(c)= y                                

                                  f(d)= x                   

                                  f(e)= v   

is a s-morphism.  

Given a fuzzy graph G we can compute its strength matrix as follows.  We 

define the product of two adjacency matrices  A and B as C=AB    

 where Cij= maxₖ { ( aik , bkj)} 
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It has been proved that ,if M is the adjacency matrix of a fuzzy graph  of 

order p then there exists a positive integer q ≤ p-1 such that  

 Mq = Mq+1 = Mq+2 = − − − − . It has also been proved that the strength of the  path 

connecting Vi and Vj is the (i,j)th entry of  Mq .  

  

The strength matrices of the above two graphs example 4.3 and 4.4 are respectively  

Example  

∞    .4     .4     .4     .4  

.4    ∞     .5     .5     .4  and                                                                                                                       

.4     .6      ∞     .5    .4  

.4     .6     .5    ∞      .4  

.4    ..4    .4     .4     ∞                           

  

∞     .5     .5     .4     .4  

.5     ∞.    .6     .4     .4  

.5     .6     ∞.    .4     .4  respectively  

 .4     .4    .4     ∞.    .4  

.4      .4    .4     .4     ∞.      
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§ 4.3: Equivalent condition for s-morphism  

  

We give an equivalent condition for two fuzzy graphs to be s-morphic.  

“The fuzzy graphs(  G1, μ1, ρ1) and ( G2, μ2, ρ2) are s-isomorphic iff there exists a  

permutation matrix P such that AP=PB (or A= PBP-1 ) where A, B are strength  

matrices of the fuzzy graphs G1 , G2 respectively”.   

 Here, the multiplication is the usual multiplication of matrices.  

        0   0     0     1     0 

In the above example 4.4, the permutation matrix is P=       0     0    1     0       0 

                  0     1     0      0     0         

                                1     0     0    0     0  

                            0      0     0    0    1 

                             

 Remark 4.3.1: Multiplying a matrix by a permutation matrix on the right interchanges the 

column, while multiplying on left interchanges rows. Also,  

Permutation matrices are real orthogonal matrices. (i.e) P t= P-1  

Remark 4.3.2: If two fuzzy graphs are s-isomorphic then they must have  equal 

number of vertices but they need not have the same number of edges.   

Refer Example 4.4.  

Theorem 4.3.3: For a given positive integer n, “s-isomorphism”is  

anequivalence relation in the class of fuzzy graphs on n vertices.  

Proof :  

We use the condition the fuzzy graphs(G1, μ1, ρ1) and ( G2, μ2, ρ2) are s-isomorphic  
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 if and only if there exists a permutation matrix P such that AP=PB or A= PBP-1  

where A, B are strength matrices of the graphs G1,G2 respectively.   

Clearly G1 is s-morphic to itself as we can take P to be the identity matrix.   

Let G1 be s-morphic to G2. Then A= PBP-1  

                                = P-1 B P  as  P = P-1 .   

Hence G2 is s-morphic to G2.   

Let G1,G2 and G3 be three fuzzy graphs with strength matrices A,B,C  respectively.   

Let G1 be s-morphic to G2 and G2 be s-morphic to G3 .Then there exists a  

permutation matrix P such that AP=PB and there exists a permutation matrix Q  

such that BQ=QC.   

Now,      AP =PB ⇒APQ = PBQ   

                                     =PQC   

But PQ is again a permutation matrix which implies that G1 is s-morphic to G3.   

Hence, the result follows.  

Theorem 4.3.4: If two trees are s-morphic then they are isomorphic in the crispsense also.  

Proof : Let T1, T2 be two trees which are s-morphic. Then they must have equal   

number of vertices. In a tree there exists only one path between any two  vertices. 

Also, the strength of two adjacent vertices is equal to the weight of the  edge joining 

them. Hence adjacency will be preserved. Therefore, T1, T2 must  be isomorphic 

in the crisp sense also.   

  

Note: However the result is not true in case of fuzzy trees, as given by the  

example 4.3  
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Theorem 4.3.5: Let two fuzzy graphs(G 1 ,μ1 , ρ1 ) and (G2 ,μ 2 , ρ2 ) be s-isomorphic  

.Then there exists a bijection f : V1 → V2 such that ρ∞ (u,v) = ρ∞ ( f (u), f (v))  

∀u,v ∈V1 and let. Let (u,v) be a bridge. If (f(u),f(v)) is also an edge, then  

(f(u),f(v)) is a bridge.  

Proof : Let f : V1 → V2  be an s-Morphism from G1 to G2  

Let (u,v) be a bridge in G1 . Then there exists two vertices u and v such that  ρ 1
ꞌ∞

 

(x,y) < ρ∞ (x,y)  for some pair of vertices x and y and where ρ1 '( u, v) = 0and  

 ρ 1 
ꞌ = ρ for all other vertices.   

Now, ρ 1
ꞌ∞( x,y ) < ρ1 

∞(x,y) ⇒  ρ2
ꞌ∞   (f(x),f(y))<  ρ2

∞  (f(x),f(y))as f is an s-morphism  

                                             ⇒ (f(u),f(v)) is a bridge in G2.  

  

Theorem 4.3.6: Let two fuzzy graphs(G1 ,μ1 , ρ1) and (G2 ,μ 2 , ρ2 ) be s-isomorphic. 

If (u,v) is a strong edge in G1 and if (f(u).f(v)) is an edge in G2 then (f(u),f(v)) is also a 

strong edge in G2 .  

Proof: Let (u,v) be a strong edge in G1 ⇒ ρ1 
∞ (u,v ) = ρ 1(u,v)   

                                                                 ⇒ ρ 2 (f( u), f( v)) = ρ1 (u, v)  as strength is  preserved.   

Also,  ρ2 (f( u), f(v) ≥ ρ 2 (f(u), f( v))   

       ⇒ ρ 1
∞   (u,v) ≥ ρ 2  (f( u), f( v))   

       ⇒ (f(u),f(v)) is strong edge .  
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APPLICATIONS OF FUZZY GRAPH IN VARIOUS FIELDS                                         

➢ Utility of Fuzzy Graph in Medical Field   

                         Utilizations of Artificial Intelligence Techniques occurred in numerous zones 

including medication, for example, determination, treatment of sickness, tolerant interest, and 

expectation of illness chance and so on. Fuzzy logic approach, as opposed to a certain or 

parallel rationale, utilizes a rationale and decision mechanism which doesn't have certain limits 

like human rationale. At the point when an individual is given a clinical assessment, a wide 

assortment of parameters, called side effects in clinical language, can be found out and 

estimated. Because of the intricacy of the human body, it is beyond the realm of imagination 

to expect to give a sensible utmost for the quantity of built up criteria. Fuzzy set theory rationale 

is a scientific control that we use every day and causes us to arrive at the structure in which we 

decipher our own practices. Fuzzy set theory in which esteems among genuine and bogus that 

is halfway valid and in part bogus are resolved. Fuzzy set theory express the vulnerabilities of 

life, for example, warm and cool which are in the middle of hot and cold scientifically. At the 

point when a specialist begins treatment of a patient he utilizes his own understanding, 

information from books, and mental capacity.  

➢ Exploit of Fuzzy Graph in Traffic Light Control  

                   The control strategy of the traffic light relies generally upon the quantity of vehicles 

in the crossing point line. On the off chance that the traffic stream in the crossing point line is 

high, at that point there is a chance of mishap. At the point when the quantity of vehicles in the 

crossing point line is low then there might be less chance of mishap. The idea of mishap and 

number of vehicles in each line could be fuzzy. This shouldn’t be numerical, is related to the 

ideal security level for the traffic. Here we describe each traffic stream with a fuzzy edge whose 

enrolment esteem relies upon the quantity of vehicles in that way. Two fuzzy nodes are 

neighbouring on the off chance that the relating traffic streams cross one another; at that point 

there is a chance of mishap. Plausibility of mishap worth will rely upon node enrolment esteem. 

The most extreme security level is achieved when all paths are viewed as in crossing point with 

one another and the quantity of vehicles in each line is likewise high. So Graph will be a 

complete graph. Right now, chromatic number is the quantity of paths and the control approach 

of the lights guarantee that just a single development is permitted in any space of the cycle. 

Then again, the base security level is achieved when the crossing point edge set is unfilled, 

right now, chromatic number is 1 and all developments are permitted at any moment. 
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➢ Utilize of Fuzzy Graph in Neural Networks           

                Neural systems are disentangled models of the organic sensory system and in this 

way have drawn their motivation from the sort of registering performed by a human mind. 

Neural systems exhibit trademark, for example, mapping abilities or example affiliation, 

speculation, vigor, adaptation to internal failure, and resemble and rapid data handling. Fuzzy 

neural systems and neural fuzzy frameworks are ground-breaking procedures for different 

computational and control applications. The region is still under an extraordinary deluge from 

both hypothetical and applied research. There is no orderly or brought together methodology 

for fusing the ideas of fuzziness and neural handling. Fuzzy sets can be utilized to delineate 

different parts of Neural Computing. That is, fuzziness might be presented at the info yield 

signals, synaptic loads, and collection activity and actuation capacity of individual neurons to 

make it fluffy neuron.  Applying fuzzy techniques into the activities of neural systems 

establishes a significant push of neuron-fuzzy computing. A fuzzy neuron has a similar 

fundamental structure as the counterfeit neuron with the exception of that its segments and 

parameters are depicted through the arithmetic of fuzzy logic. 
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CONCLUSION: 

The study of fuzzy graphs made in this report is far from being complete. We 

sincerely hope that the wide ranging applications of graph theory and the 

interdisciplinary nature of fuzzy set theory, if properly blended together could 

pave a way for a substantial growth of fuzzy graph theory. Research on the 

theory of fuzzy sets has been witnessing an exponential growth; both within 

mathematics and in its applications. This ranges from traditional mathematical 

subjects like logic, topology, algebra, analysis etc. to pattern recognition, 

information theory, artificial intelligence, operations research, neural 

networks, planning etc. Consequently, fuzzy set theory has emerged as a 

potential area of interdisciplinary research. We hope that the growth of fuzzy 

graph theory will be further accelerated by the development of fuzzy software 

and fuzzy hardware. 
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                   INTRODUCTION 
                                                                                                                                                                   
        The term ‘FUZZY’ refers to ‘lacking in clarity’ or ‘vagueness’. Fuzziness occurs 

when the boundary of a piece of information is not clear-cut.  For example, moving the 

camera causes fuzzy photos. 

 

Fuzzy set theory: Fuzzy set theory was proposed by Prof. Lotfi A. Zadeh in 1965 as 

an extension of the classical notion of a set.  With the proposed methodology, Zadeh 

introduced a mathematic method with which decision making using fuzzy descriptions 

of some information becomes possible.  Fuzzy set theory is at once a generalization as 

well as extension of Crisp set theory.  Thus, the basic theme and ideas of Crisp set 

theory will be reflected in Fuzzy set theory. 

 

Fuzzy relation:  From a historical perspective, the first fuzzy relation was mentioned 

in the year 1971 by Lotfi A. Zadeh.  Fuzzy relation can be utilized in databases. 

 

Fuzzy matrix:  Fuzzy matrices were introduced for the first time by Thomason who 

discussed the convergence of power of fuzzy matrix. Fuzzy matrices play a vital role in 

scientific development.   

 

Fuzzy logic:  Fuzzy logic is a logic.  Logic refers to the study of methods and principles 

of human reasoning. Any event that changes continuously we cannot define it as a true 

or false in such cases we can solve it by fuzzy logic.  It deals with vagueness and 

imprecise information.  It was proposed by Lotfi A. Zadeh in his paper ‘Fuzzy Logic 

and Approximate Reasoning, Synthes, 30,1975’. 
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                          1.   FUZZY SET THEORY 

            The concept of set is the building block of mathematics.  In fact, the whole edifice 

of mathematics is constructed out of it.  This concept is so fundamental and all-pervading 

that it is absolutely essential to have a firm and clear understanding of the theory of sets. 

           A set means any well-defined collection of objects.  This, however, is not at all 

defined it is what is called an undefined term.  Another undefined term is a  

member or an element of a set.  We express the relation between an object and a set to 

which it belongs by writing a ϵ A. The symbol ϵ is read as “belongs to “, “lies in” etc.    

Crisp Set: 

      Crisp set is a collection of unordered distinct elements, which are derived from 

Universal set. In the context of fuzzy sets theory, we often refer crisp sets. 

Characteristic function: 

         Crisp Set Theory can also be studied via characteristic function. 

Definition: 

      Let U be a fixed non-empty set, to be called the universal set or universe of discourse 

or simply domain. Define, 

                            F: U → {0,1} 

      f is called characteristic function on U.  The set of all such functions is denoted as 

CH(U).  Each element of CH(U) is called a CH on U. 

1.1. FUZZY SETS: 

               The concept of a fuzzy set is an extension of the concept of a crisp set.  Just as a 

crisp set on a universal is defined by its characteristic function from U to {0,1}, a fuzzy 

set on a domain U is defined by its membership function from U to [0,1].  Let U be a non 

- empty set to be called the universal set or the universe of discourse or simply a domain. 

Then by a fuzzy set on U is meant a function,  

                            A: U → [0,1]. 

         ‘A’ is called the membership function, A(x) is called the membership grade of x.  A 

= {(x, A(x)): x ϵ U}.  We represent the unit interval [0,1] by I. 
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Membership Function: 

          The membership function fully defines the fuzzy set.  A membership function 

provides a measure of the degree of similarity of an element to a fuzzy set.  It can be 

either be chosen by the user arbitrarily, based on the user’s experience or be designed 

using machine learning methods. 

 Example:  

 Consider U= {a, b, c, d} and   A: U → I defined by  

            A(a) = 0.0,       A(b) = 0.7, 

            A(c) = 0.4,        A(d) = 1 

                   Then A is a fuzzy set on U.   

       A = {(a,0), (b,0.7), (c,0.4), (d,1)} 

  Fuzzy Power Set: 

      Let U be a domain.  The set of all fuzzy sets on U is denoted by PF(U) 

   is called the Fuzzy Power Set of U. 

                         PF(U) = {A| A: U  I} 

   1.1.1 RELATION BETWEEN FUZZY SETS: 

          Let U be a domain and A, B be fuzzy sets on U. 

    Containment or Inclusion: 

             A is said to be included or contained in B if and only if A(x)≤B(x) for  

    all x in U.  We write as A⊆B. We also say that A is a subset of B. 

     Equality: 

              A is said to be equal to B or same as B if and only if A⊆B and B⊆A, 

           i.e.) A(x) = B(x), for all x ϵ U. 

       We write as A=B. 

      These two relations satisfy the following properties:  

       Let A, B, C be fuzzy sets on U. Then, 

1. A⊆A. 
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2. A⊆B and B⊆A imply A⊆C. 

3. A⊆B and B⊆A imply A=B. 

4. A=A 

5. A=B imply B=A. 

6. A=B and B=C imply A=C. 

1.2. OPERATIONS ON FUZZY SETS: 

         Let U be a domain and A, B be fuzzy sets on U. Then, 

 Union: 

       Union of A and B, denoted by A∪B, is defined as that fuzzy set on U for which,  

        (A∪B) (x) = max (A(x), B(x)), for every x ϵ U. 

 Intersection:  

     Intersection of A and B, denoted by A ∩ B is defined as that fuzzy set on U for which, 

        (A∩B) x = min (A(x), B(x)), for every x ϵ U. 

 Complement:  

       Complement of A, denoted by A′, defined as they fuzzy set on U for which,  

                        (𝐀′)𝐱 =  𝟏 −  𝐀(𝐱),  for every x in U.  

  Example: 

1) Let U= {a, b, c, d} be the domain and A and B be fuzzy sets on U as given a 

 

       a        b        c       d 

     A     0.5      0.8      0.0      0.3 

     B     0.2     1.0     0.1      0.7 

        

   For A∪B, 

    (A∪B) (a) = max [A(a), B(a)] 

                = max [0.5, 0.2] 

                = 0.5 

    (A∪B) (b) = max [A(b), B(b)] 
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                 = max [0.8, 1.0] 

                 = 1.0 

    (A∪B) (c) = max [A(c), B(c)] 

                = max [0.0, 0.1] 

                = 0.1 

    (A∪B) (a) = max [A(c), B(c)] 

                = max [0.3, 0.7] 

                = 0.7 

Thus, 

        a        b        c        d 

    AUB      0.5      1.0      0.1      0.7 

 

   For A ∩ B, 

 (A ∩ B) (a) = min [ A(a), B(a)] 

                    = min [ 0.5, 0.2] 

                    = 0.2 

(A ∩ B) (b) = min [ A(b), B(b)] 

                    = min [ 0.8, 1.0] 

                    = 0.8 

(A ∩ B) (c) = min [ A(c), B(c)] 

                    = min [ 0.0, 0.1] 

                    = 0.0 

(A ∩ B) (d) = min [ A(d), B(d)] 

                    = min [ 0.3, 0.7] 

                    = 0.3 

Thus, 
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        a        b        c        d 

   A ∩ B      0.2      0.8      0.0      0.3 

 

For  A′, 

A′(a) = 1 - A(a) 

          = 1 - 0.5 

          = 0.5 

A′(b) = 1 - A(b) 

          = 1 - 0.8 

          = 0.2 

A′(c) = 1 - A(c) 

         = 1 - 0.0 

          = 1.0 

A′(d) = 1 - A(d) 

          = 1 - 0.3 

          = 0.7 

  Thus, 

           a          b          c          d 

A′         0.5         0.2         1.0          0.7 

 

For B′, 

B′(a) = 1 - B(a) 

          = 1 - 0.2 

          = 0.8 

B′(b) = 1 - B(b) 

          = 1 - 1.0 

          = 0.0 

B′(c) = 1 - B(c) 

          = 1 - 0.1 

          = 0.9 
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B′(d) = 1 - B(d) 

          = 1 - 0.7 

          = 0.3 

  Thus, 

           a          b          c          d 

𝐵′         0.2         1.0         0.1          0.3 

 

1.3. CERTAIN NUMBERS ASSOCIATED WITH A FUZZY SETS: 

  Let A be a fuzzy set on U. Then by the scalar cardinality of A, we mean then 

number ∑A(x) where the summation is over all the elements of U or more generally, 

the summation is over the support of A[supp(A)].  This makes sense only when U is 

a finite set or more generally, the support of A is finite.  This number is denoted by 

|A| or SC (A). 

Example: 

1) A = (0.1, 0.8, 0.2) 

                         SC(A) = 1.1 

i)Height of a fuzzy set: 

          Let A be a fuzzy set on U.  Then the height of A is defined to be that number ht (A) 

which is such that: 

i) A(x) ≤ ht (A), for all x in supp(A). 

ii) A(x) = ht (A) for all least one x in supp(A). 

 This can be compactly expressed as follows: 

                               ht (A) = max {A(x)| x in supp(A)}. 

When supp(A) is finite.  When supp (A) is not finite, we write, 

                                ht (A) = supremum {A(x)| x in supp(A)}. 

And include the condition A(x) = ht(A) for at least one x, explicitly in order 

to exclude certain pathological cases like the following fuzzy set: 

                        A(x) = 1 - ⅇ−𝑥  , for x≥0 
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                        A(x) = 0, for x≤0. 

For this fuzzy set, height is 1, but there is no value of x for which A(x)=1 and also that 

ht(A) always lies between 0 and 1. 

Example: 

1. If A = (0.0, 0.2, 0.8) 

                  Then ht(A)=0.8 

2. If A = (0.0, 0.2, 0.6) 

       Then ht (A)=0.6 

ii)Normal fuzzy set:   

          Let A be a fuzzy set on U.  Then A is said to be normal if A(x) = 1 for at least one 

x in U.  In other word, ht(A) = 1.  

Example: 

1. All non-empty crisp sets are normal. 

         Certain fuzzy set can be converted into a normal fuzzy set.  This procedure is called 

normalization of a fuzzy set. 

iii)Normalization of a fuzzy set: 

          Let A be a non-empty fuzzy set on U.  Let 𝐴𝑁(𝑥) = A(x)/ht(A) for all x in U.  Then  

𝐴𝑁  is a fuzzy set on U, called the normalized version of A.  Note that ht(𝐴𝑁)=1,so that 

𝐴𝑁  is normal.  Note that 𝐴𝑁   is always a fuzzy set.  This process associates a fuzzy set 

with a given fuzzy set.  Note also that if A is normal, then 𝐴𝑁 = 𝐴 , i.e., an already 

normal fuzzy set is not affected by normalization. 

Example: 

1. For A = (0.0, 0.2, 0.8), ht(A)=0.8 and hence  𝐴𝑁 = (0.0, 0.25, 1.0) 

2. For A = (0.0, 0.2, 1.0), ht(A)=1 and hence  𝐴𝑁 = (0.0, 0.2, 1.0) 

                   

iv)Support of a fuzzy set: 

          Let A be a fuzzy set on U.  The set { xϵU | A(x)>0} is called the support of A and 

is denoted by supp(A). 

Remark: 

1. supp(A) is a crisp set on U, for all fuzzy set A. 

2. supp(A) = A for any crisp set A. 



15 
 

3. for a genuine fuzzy set A, A ⊂ supp(A) 

        Before giving the definition of 𝛼-cuts of a fuzzy set, we deal with level set 

associated with a fuzzy set.  

v) Level set associated with a fuzzy set: 

               With every fuzzy set A on U, we associate L(A), a crisp subset on I=[0,1] called 

its level set.  L(A) is defined as follows: 

                   L(A) = { 𝛼 𝜖 𝐼 / 𝐴(𝑥)  =  𝛼, 𝑓𝑜𝑟 𝑠𝑜𝑚ⅇ 𝑥𝜖𝑈}. 

Example: 

1. Let A = {0.8, 0.0, 1.0, 0.4} 

          Then L(A) = {0.4, 0.8, 1.0}. 

2. Let A be given by  

                        A(x) = 1 - ⅇ−𝑥  , for x≥0 

                        A(x) = 0, for x≤0. 

Then, L(A) = [0,1] 

vi)𝜶-Cuts of a fuzzy set: 

Given a fuzzy set A on U and a number 𝛼 in I, such that 0< 𝛼≤1.  We can  

associate crisp set with A, denoted by 𝐴𝛼 and defined as 

                        𝐴𝛼 = {xϵU | A(x)≥ 𝛼}.  𝐴𝛼 is called the 𝛼-cuts of A.  Thus, for each 𝛼 , we 

obtain an 𝛼-cuts of A. 

Example: 

Let U be the set {a, b, c, d} and A be given by A = (0.8,1.0,0.3,0.1).  Then, 

                       𝐴1.0  = (0,1,0,0) = {b} 

                       𝐴0.8  = (1,1,0,0) = {a, b} 

                       𝐴0.3 = (1,1,1,0) = {a, b, c}  

                       𝐴0.1 = (1,1,1,1) = U 

More generally,  

           When 0 <𝛼 ≤ 0.1,  𝐴𝛼  = 𝐴0.1 

           When 0.1 <𝛼 ≤ 0.3,  𝐴𝛼  = 𝐴0.3 
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            When 0.3<𝛼 ≤ 0.8,  𝐴𝛼  = 𝐴0.8 

            When 0.8<𝛼 ≤ 1.0,  𝐴𝛼  = 𝐴1.0 

This happens when the domain U is a countable set. 

vii) Fuzzy cardinality of a fuzzy set: 

     We now introduce an important concept associated with a given fuzzy 

 set namely, its fuzzy cardinality.  

       Let A be a non-empty fuzzy set on U and supp(A) be finite.  Its fuzzy cardinality, 

denoted by FC(A), is defined as the fuzzy set on N ((the set of all-natural numbers.) given 

by ∑ 𝛼/ SC (𝐴𝛼) that is 

 FC(A) = ∑ 𝛼  /nα where nα= SC (𝐴𝛼) and ∑ runs over all 𝛼  in L(A). 

Example: 

1.For A= (0, 0.3, 0.2, 0.8, 0.1), L(A) = {0.1, 0.2, 0.3, 0.8}.  Thus the 𝛼 −Cuts of A are  

𝐴0.1 = {0,1,1,1,1};  𝐴0.2= {0,1,1,1,0}; 

                          𝐴0.3 = {0,1,0,1,0};  𝐴0.8= {0,0,0,1,0}; 

 

Further, SC (𝐴0.1)=4 

             SC (𝐴0.2)=3 

             SC (𝐴0.3)=2 

             SC (𝐴0.8)=1 

 

Thus, FC(A) = 
0.8

1
+

0.3

2
+

0.2

3
+

0.1

4
 

2.If A={a} is a crisp singleton set, then L(A) = {1}.  Hence, there is only one non-empty  

𝛼-cut,  𝐴1.0 = {a}.  Therefore, SC (𝐴1.0) = 1 and FC(A) =1.0/1.  Thus, FC(A) = {1} is a 

crisp singleton on N.  The fuzzy cardinality gives a mapping from PF(U) to PF(N). 

 viii)Fuzzification of a fuzzy set: 

  We now take up the method of fuzzification of a given fuzzy set.  Let U 

 be a domain and for every x in U let a fuzzy set K(x) on U be given, then for any fuzzy 

set A on U, we define the fuzzification of A,   

                                      F(A) = ∑A(x)K(x) 
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Here, ∑ stands for the union over elements of U and A(x)F(x) stands for usual product of 

numbers.  Note, that F(A) is a fuzzy set on U.  The collection {K(x)| x ϵ U} is called the 

kernel of fuzzification. 

 Example: 

 Let U be {a,b,c,d},  

                A=
0.3

𝑎
+

0.6

𝑏
 

           K(a) = 
0.7

𝑎
+

0.4

𝑏
 

           K(b) = 
0.4

𝑎
+

1.0

𝑏
+

0.4

𝑐
 

           K(c) = 
0.2

𝑏
+

0.8

𝑐
 

Then  

          K(A) = A(a)K(a) + A(b)K(b) + A(c)K(c) 

                    = 0.3×[ 
0.7

𝑎
+

0.4

𝑏
] + 0.6 × [ 

0.4

𝑎
+

1.0

𝑏
+

0.4

𝑐
]  + 0 

                    == 
0.24

𝑎
+

0.6

𝑏
+

0.24

𝑐
 

 

1.4.THE POWER OF A FUZZY SET: 

        For a fuzzy set A on U, and a positive real number 𝛼, we define the 𝛼-th power of A 

(denoted by 𝐴𝛼), 

                            𝐴𝛼(x)= [𝐴(𝑥)]𝛼 for all x in U 

The following special cases are quite important in applications: 

i)Concentration of A: 

              It is denoted by con(A) and is given by  

                                 con(A)(x) = [𝐴(𝑥)]2  for x in U 

                                 con(A)(x) = 𝐴2 for x in U 

That is,                     con(A)  = 𝐴2 

ii) Dilation of A: 
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            This is denoted by Dil(A) and is given by Dil(A) == [𝐴(𝑥)]0.5  for all x in U.  

That is, 

                              Dil(A) = 𝐴0.5    

iii)Contrast Intensification of a Fuzzy set: 

       The contrast intensification of a fuzzy set A, denoted by Int(A), is defined as: 

                   Int(A)(x) = 2[ 𝐴(𝑥)]2  for 0≤A(x)≤0.5 

                                   = 1-2[1- 𝐴(𝑥)2] for 0.5≤A(x)≤1  

1.5. EXTENTION PRINCIPLE: 

      The extension principle is a basis principle by means of which certain mathematical 

concepts pertaining to the crisp side can be generalized to the fuzzy framework (Notable 

exception are union, intersection and complement operators of crisp sets.) 

      The extension principle was introduced by Zadeh in his paper ‘The Concept of a 

Linguistic Variable and its Application to Approximate Reasoning’.  A further 

elaboration of this principle was presented by R.R. Yager in ‘A Characterization of the 

Extension Principle’.  The details of this principle are as follows: 

      Let f be a function from  𝑈1 × 𝑈2 × 𝑈3 ×  ⋯ × 𝑈𝑛 (a Cartesian product of n domains) 

to V.  Let 𝐴1, 𝐴2, 𝐴3,..…, 𝐴𝑛 be fuzzy sets on 𝑈1,𝑈2,𝑈3,  ⋯ ,𝑈𝑛 respectively. Then, 

extension principle indicates a method of associating a fuzzy set B on V based on the 

given information or inputs.  This fuzzy set B is given by 

                        B(v) = 0, if 𝑓−1(𝑣) is empty 

                                = max [min {𝐴1(𝑢1), 𝐴2(𝑢2), ….,𝐴𝑛(𝑢𝑛)}] if 𝑓−1(𝑣) is empty where 

the max is taken over all n-tuples (𝑢1,𝑢2,𝑢3,  ⋯ ,𝑢𝑛) in  𝑈1 × 𝑈2 × 𝑈3 ×  ⋯ × 𝑈𝑛  whose 

image is v under f, i.e., all n-tuples such that f(𝑢1,𝑢2,𝑢3,  ⋯ ,𝑢𝑛)=v. 

We write, 

              B = f(A) or B = 𝑓 ∘ 𝐴 

Where, A =    𝐴1 × 𝐴2 × 𝐴3 ×  ⋯ × 𝐴𝑛  and 

A (𝑢1,𝑢2,𝑢3,  ⋯ ,𝑢𝑛) = min [𝐴1(𝑢1), 𝐴2(𝑢2), ….,𝐴𝑛(𝑢𝑛)] is a fuzzy set on 

              U =  𝑈1 × 𝑈2 × 𝑈3 ×  ⋯ × 𝑈𝑛 . 
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  A is called the cartesian product of the fuzzy sets 𝐴1, 𝐴2, 𝐴3,..…, 𝐴𝑛.  The fuzzy set B is 

called the image of A under f. 

   We close this section with two examples illustrating the extension principle.  The first 

one is a straightforward example which helps to clarify and fix the concepts. The second 

one illustrates the idea of extending the addition of real numbers to ‘addition’ of fuzzy 

sets. 

Example 1 

Consider the three domains U, V, and W where U = {a, b, c}, V = {x, y, z} and  

W = {p, q, r}.  Consider the function f: U×V →W 

 where f(a,x) = f(a,y) = f(c,y) = p, 

            f(a,z) = f(b,x) = f(b,z) = q  and 

            f(b,y) = f(c,x) = f(c,z) = r.  This can be expressed compactly in the form of a 

table: 

            

 U                  V 

            

            F 

  

           x 

              

        

           y 

  

           z 

a 

b 

c 

           p 

           q 

            r 

         

             p 

             r 

             p 

            q 

            q 

             r  

        

Consider the fuzzy sets A and B on U and V respectively, where 

                                 A = 
0.2

𝑎
+

0.7

𝑏
+

0.5

𝑐
 

                                 B = 
0.5

𝑥
+

0.3

𝑦
+

1.0

𝑧
 

Then, the values of C(p), C(q) and C(r), where C = f(A×B) the image fuzzy set on W, are 

given by 

                    𝑖)    𝑓−1(𝑝) = {(a, x), (a, y), (c, y)} 

                        C(p) = max [min {𝐴(𝑎), 𝐵(𝑥)},min{A(a), B(y)}, min{A(c), B(y)}] 
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                                = max [min {0.2, 0.5}, min {0.2, 0.3}, min {0.5, 0.3}] 

                                = max [0.2, 0.2, 0.3] 

                     C(p) = 0.3 

            ii)  𝑓−1(𝑞) = {(a, z), (b, x), (b, z)}       

                       C(q) = max [min {𝐴(𝑎), 𝐵(𝑧)},min{A(b), B(x)}, min{A(b),B(z)}] 

                                = max [min {0.2, 1.0}, min {0.7, 0.5}, min {0.7, 1.0}] 

                                = max [0.2, 0.5, 0.7] 

                    C(q) = 0.7 

           iii)  𝑓−1(𝑟) = {(b, y), (c, x), (c, z)}       

                       C(r) = max [min {𝐴(𝑏), 𝐵(𝑦)},min{A(c), B(x)}, min{A(c),B(z)}] 

                                = max [min {0.7, 0.3}, min {0.5, 0.5}, min {0.5, 1.0}] 

                                = max [0.3, 0.5, 0.5] 

                    C(r) = 0.5 

       Thus,  

                         C = 
0.3

𝑝
+

0.7

𝑞
+

0.5

𝑟
 

Example 2 

Consider the three domains U, V and W where U=V=W=N, the set of natural numbers. 

        Let f: U×V → W be given by f (m, n) = m + n, i.e., f is the addition operation on 

natural numbers. 

   Let A and B be fuzzy sets on U and V respectively, given by 

                                         A = 
0.2

2
+

0.8

3
+

0.7

4
   and  

                                         B = 
0.7

3
+

0.6

4
+

0.5

5
 

 Observe that supp(A) = {2, 3, 4} and supp(B) = {3, 4, 5}.  Thus, the various pairs in 

U×V that are to be considered lie in supp(A) × supp(B). These pairs and their images 

under f are given in the following table: 
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              i) 𝑓−1(7) = {(2, 5), (3, 4), (4, 3)}       

                    C (7) = max [min {𝐴(2), 𝐵(5)},min{A (3), B (4)}, min {A (4), B(3)}] 

                             = max [min {0.2, 1.0}, min {0.7, 0.5}, min {0.7, 1.0}] 

                             = max [0.2, 0.5, 0.7] 

                  C (7) = 0.7 

             ii)  𝑓−1(5) = {(2, 3)}       

                       C (5) = max [min {𝐴(2), 𝐵(3)}] 

                                = max [min {0.2, 0.7}] 

                                = max [0.2] 

                    C  (5) = 0.2 

           iii)  𝑓−1(6) = {(2, 4), (3, 3)}       

                       C (6) = max [min {𝐴(2), 𝐵(4)},min{A (3), B (3)}] 

                                = max [min {0.2, 0.6}, min {0.8, 0.7}] 

                                = max [0.2, 0.7] 

                    C (6) = 0.7 

              iv)  𝑓−1(8) = {(4, 4), (3, 5)}       

                       C (8) = max [min {𝐴(4), 𝐵(4)},min {A (3), B (5)}] 

                                = max [min {0.7, 0.6}, min {0.8, 0.5}] 

                                = max [0.6, 0.5] 

                    C (8) = 0.6 

                 v)  𝑓−1(9) = {(4, 5)}       

         f       3        4     5 

         2 

         3 

         4 

     5 

     6 

     7 

       6 

       7 

       8 

    7 

    8 

     9 
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                       C (9) = max [min {𝐴(4), 𝐵(5)}] 

                                 = max [min {0.7, 0.5}] 

                                = max [0.5] 

                    C (9) = 0.5 

Therefore, 

                          C = 
0.2

5
+

0.7

6
+

0.7

7
 + 

0.6

8
+

0.5

9
 

Since f represents addition, C=f (A, B) can be written as: 

                          C = A+B 

Where ‘+’ denotes addition of fuzzy sets or if we prefer, can be called fuzzy addition. 
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2.FUZZY RELATION  

2.1 DEFINITION: 

  Fuzzy relation defines the mapping of variables from one fuzzy set to 

another. Like crisp relation, we can also define the relation over fuzzy set. 

 Let A be a fuzzy set on universe X and B be a fuzzy set on universe Y, then the 

Cartesian product between fuzzy sets A and B will result in a fuzzy relation R which is 

contained with the full Cartesian product space or it is subset of cartesian product of 

fuzzy subsets. Formally, we can define fuzzy relation as,  

R = A x B 

And 

R ⊂ (X x Y) 

 where the relation R has membership function, 

 μR(x, y) = μA x B(x, y) = min( μA(x), μB(y)  

An n-ary fuzzy relation R is a fuzzy set on U₁ x U₂x…………….x𝑈𝑛 where                        

U₁. U₂.......,𝑈𝑛 are domains. 

A 2-ary fuzzy relation is also called a binary fuzzy relation. A binary fuzzy 

relation (BFR) looks like 

R = ∑
𝑹(𝒖,𝒗)

(𝒖,𝒗)
 

where (u, v) varies over U x V. 

 We say that R is from U to V and is indicated by R: U→V 

 A 3-ary fuzzy relation is also called a ternary fuzzy relation. A 3-ary fuzzy 

relation looks like 

T=∑
𝒕(𝒖,,𝒗,𝒘)

(𝒖,𝒗,𝒘)
 

where the triplets (u, v, w) vary over U x V x W.  
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Example 

1. Let U = {a, b, c} and V = {x, y}. Then a binary fuzzy relation on U x V is given 

by 

  R         x           y 

 

 a          0.6        1.0 

 b          0.3        0.5 

                                                 c           0.4        0.2 
 

This is called the tabular or matrix representation of R and it is very useful when 

dealing with binary fuzzy relations. 

2. U = {a, b, c}, V= {x, y} and W= {&, *}. Then a fuzzy relation on 

 U x V x W is given by  

 

𝑇 =
0.21

(𝑎, 𝑥, &)
+

0.38

(𝑏, 𝑦, &)
+

0.9

(𝑎, 𝑦,∗)
 

 

 We can express T which is a ternary fuzzy relation in the tabular form: one 

matrix for & and one for *.  

 

  &         x           y  

 

 a          0.21      0 

 b          0           0.38 

                                                 c          0           0 

 

 * x y 

 

 a          0           0.9 

 b          0           0 

                                                 c          0           0 

 

 

3. U and V be the set of real numbers. Then the relation 'y is smaller than x' is a 

binary fuzzy relation on U×V.A representation of this fuzzy relation is given 

by 
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𝑅(𝑥, 𝑦) = 0                             𝑖𝑓 𝑦 ≥ 𝑥 

                                 =
1

1 + (𝑥 − 𝑦)−2
        𝑖𝑓 𝑦 < 𝑥    

 

2.2. OPERATIONS ON FUZZY RELATIONS : 

   Let U₁, U₂, ………., 𝑈𝑛 be domains and let U = U₁ x U₂ x……….x 

𝑈𝑛.Then U is also a domain, by definition of cartesian product and u ∈ U looks like u = 

(u1, u2, .......un), an n-tuple. We thus have PF(U) = PF (U₁ x U₂x…….x 𝑈𝑛). This equality 

shows that every n-ary fuzzy relation (FR) on U₁x U₂x……. ×𝑈𝑛, is a fuzzy set on U 

and vice-versa. 

Let U be U₁× U₂×.......... × 𝑈𝑛. 

1.Equality: 

 For R, S in PF(U), we say R = S if and only if R(u) = S(u) for all u in U 

2. Containment: 

 For R, S in PF(U), we say R ⊆ S if and only if R(u) ≤ S(u) for all u in U.        

3.Union:  

For R, S in PF(U), the union of R and S, denoted by R∪S, is defined by 

 (R∪S)(u) = max[R(u), S(u)] for every u in U. 

Example: 

Let  A =[
0 1 0
1 0 0
0 0 1

]    

 B =[
0 0 1
0 1 0
0 0 1

] 

       (A∪ 𝐵)(𝑢) =  [
0 1 1
1 1 0
0 0 1

] 

4.Intersection: 

            For R, S in PF(U), the intersection of R and S, denoted by R∩S, is defined by 

(R∩S)(u) = min[R(u), S(u)] for every u in U. 

Example: 
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Let  A =[
0 1 0
1 0 0
0 0 1

]    B =[
0 0 1
0 1 0
0 0 1

] 

 

      (A ∩ 𝐵)(𝑢) =  [
0 0 0
0 0 0
0 0 1

] 

5.Complement: 

 For R in P(FU). R' is defined by R'(u) = 1-R(u) for every w in U. 

Example: 

Let  A =[
0 1 0
1 0 0
0 0 1

] 

      A’(u) =  [
0 1 1
1 1 0
0 0 1

] 

2.3. α-CUTS OF A FUZZY RELATION: 

 Let R be a fuzzy relation (FR) on U× V and 𝛼 be such that 0 < α ≤ 1. Then, the 

α-cut of R, denoted by Rα is defined by 

𝑅𝛼 = { (𝑢, 𝑣) ∣ 𝑅(𝑢, 𝑣) ≥ 𝛼} 

 Note that Rα is a crisp set on U x V and hence is a crisp (binary) relation on U×V.  

The α-cuts of R satisfy the following property, called the decomposition theorem 

or resolution form of R. Let R be a fuzzy relation on U x V. Then R=∑(αRα) where 

 ∑ is taken over all α. The following example illustrates the above point. 

          Let R be a fuzzy relation on U ×V given by the matrix 

R = [
0.7 0.4
0.4 0.0

] 

Then,   R0.4 =[
1 1
1 0

]  and   R0.7 =[
1 0
0 0

] 

(0.4× R0.4) ∪ (0.7× R0.7) = [
0.4 0.4
0.4 0

] ∪  [
0.7 0
0 0

] 

            = [
0.7 0.4
0.4 0.0

] 
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 This verifies the above theorem. 

Remark: 

  The α-cut decomposition can be obtained directly by applying the maximum 

principle. Again, consider R as above. Consider the largest entry 0.7 of R and write R 

as:  

R= 0.7×[
1 0
0 0

] ∪ [
0.4 0.4
0.4 0

] 

Now, apply this principle again to obtain 

R=0.7x [
1 0
0 0

] ∪ 0.4x[
1 1
1 0

] 

which is the α-cut decomposition of R. 

2.4. COMPOSITION OF FUZZY RELATIONS: 

 Composition of two relations can be defined in several ways. 

 • Max-min composition 

 • Max product composition  

Max-min Composition of Two Fuzzy Relations:  

      Let R be a binary fuzzy relation (BFR) on U x V and S be a BFR on V× W. Then, 

the max-min composition of R and S (that is, composition of R followed by S) is a BFR 

on U×W, denoted by SοR and is given by 

(SoR) (u, w) = max [min {R (u, v), S (v, w)}] 

where the maximum is taken over all v in V. 

 2. More generally, let R be in PF (U x V) and S be in PF (V x W). where now 

U=U₁ x U₂ × ……. ×Uk 

V = V₁ x V₂ ×…......× Vm 

and  W = W₁ x W₂ x…….x 𝑊𝑛 

Then, the max-min composition of R and S, denoted by SoR, is a fuzzy relation on U× 

Wand is given by 

(SoR) (u, w) = max {min (R (u, v). S (v, w)}] 

Where now 

u = (𝑢1, 𝑢2,.............,𝑢𝑘) 

                                                    v = (𝑣1, 𝑣2,………..,𝑣𝑚) 



28 
 

w = (𝑤1, 𝑤2, . . . . . . . . . , 𝑤𝑛) 

 

The maximum is taken over all v in V.  

Note that R is a (k+ m)-ary fuzzy relation, S is an (m + n)-ary fuzzy relation and Vis 

the common domain (or, called the linking domain) of R and S. This is called the 

compatibility condition for composition. And finally. SοR is a (k+ n)-ary fuzzy 

relation.  

Examples: 

 Consider the fuzzy relations R on U x V and S on V x W, where U = {a, b, c} 

V = {x, y, z} and W= {&, *} given in matrix form by 

R = [
1.0 0.4 0.5
0.3 0.0 0.7
0.6 0.8 0.2

]  S = [
0.7 0.1
0.2 0.9
0.8 0.4

] 

 

Then SoR can be defined and it is fuzzy relation on U × W. Now 

(SoR) (a, &) = max [min {R (a, v), S (v. &)}], for every v in V  

= max [min {R (a, x), S (x, &)}, min {R (a, y), S (y, &)}, min {R (a, z), S (z, &)}] 

= max [min (1, 0.7), min (0.4, 0.2), min (0.5, 0.8)] 

 = max (0.7, 0.2, 0.5] 

 = 0.7  

(SoR) (a, ∗) = max [min {R (a, v), S (v, *)}], for every v in V  

= max [min {R (a, x), S (x, *)}, min {R (a, y), S (y, *)}, min {R (a, z), S (z, *)}] 

= max [min (1.0, 1.0), min (0.4, 0.9), min (0.5, 0.4)] 

 = max [1, 0.4, 0.4] 

 = 0.4  

(SoR) (b, &) = max [min {R (b, v), S (v, &)}], for every v in V  

= max [min {R (b, x), S (x, &)}, min {R (b, y), S (y, &)}, min {R (b, z), S (z, &)}] 

= max [min (0.3, 0.2), min (0.0, 0.2), min (0.7, 0.8)] 

= max [2, 0.0 ,0.7] 

= 0.7 
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 (SoR) (b, ∗) = max [min {R (b, v), S (v, *)}], for every v in V  

= max [min {R (b, x), S (x, *)}, min {R (b, y), S (y, *)}, min {R (b, z), S (z, *)}] 

= max [min (0.3, 0.1), min (0.0, 0.9), min (0.7, 0.4)] 

 = max [0.1, 0.0 ,0.4] 

 = 0.4 

(SoR) (c, &) = max [min {R (c, v), S (v, &)}], for every v in V  

= max [min {R (c, x), S (x, &)}, min {R (c, y), S (c, &)}, min {R (c, z), S (z, &)}] 

= max [min (0.6, 0.7), min (0.8, 0.2), min (0.2, 0.8)] 

= max [0.6, 0.2 ,0.2] 

= 0.6 

 (SoR) (c, ∗) = max [min {R (c, v), S (v, *)}], for every v in V  

= max [min {R (c, x), S (x, *)}, min {R (c, y), S (y, *)}, min {R (c, z), S (z, *)}] 

= max [min (0.6, 0.1), min (0.8, 0.9), min (0.2, 0.4)] 

 = max [0.1, 0.8 ,0.2] 

 = 0.8 

SοR = [
0.7 0.4
0.7 0.4
0.6 0.8

] 

The Max-product composition: 

It can be defined as: 

  If R is a fuzzy relation on U×V and S is a fuzzy relation on V×W then 

the max product composition of R followed by S, denoted again by 

(SοR) (u,w) = max [R (u,v)*S (v,w)] 

Where ‘*’ is the ordinary product of real numbers and ‘max’ is taken over all elements 

v in V 

 This special case deals with the composition, of a fuzzy relation, as explained in the 

following definition. 

 Let A be a fuzzy set on U and R be a fuzzy relation on U×V, where  



30 
 

V =V1× V2 ×………….× Vn .Then the composition of A followed by R, also called the 

image of A under R, denoted by RοA and defined as  

(RοA) (v) = max [min {A(u), R(u,v)}] 

Where ‘max’ is taken over all u in U. RοA is an n-ary fuzzy relation on V (in case n=1 

it is a fuzzy set on V). We can in a similar way, define the max – product composition 

of A and R 

2.5. PROJECTIONS OF FUZZY RELATION: 

Definition:  

 Let R be a BFR on U×V. Then, by the first projection of R or the projection of 

R on U or the shadow of R on U, we mean the fuzzy set on U given by 

 max {R (u, v)∣ for all v in V}.  

 We denote this projection by    Proj[R : U] or by [R↑U] or simply R1, (that is. 

R projected on to the first domain). Similarly, we can talk about the projection of R on 

V, defined by   max {R (u, v) all u in U}. This is denoted by Proj[R: V] or [R ↓ V] or 

R2. (that is, projection on the second domain). 

EXAMPLE: 

 Let U = {a,b,c} and V = {x,y}.Here R is given by  

R =[
0.6 1.0
0.3 0.5
0.4 0.2

] 

To determine R1, we need to compute R1(a), R1(b), R1(c). 

  R1(a)  = max {R(a,v)∣for all v in V} 

   = max {R(a,x), R(a,y)} 

   = max {0.6,1} 

   = 1 

R1(b)  = max {R(b,v)∣for all v in V} 

   = max {R(b,x), R(b,y)} 

   = max {0.3,0.5} 

   = 0.5 

R1(c)  = max {R(c,v)∣for all v in V} 

   = max {R(c,x), R(c,y)} 
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   = max {0.4,0.2} 

   = 0.4 

     R 1= (1, 0.5, 0.4) 

Similarly, we have by looking at column maxima 

R2(x)  = max {R(x,u)∣for all u in U} 

   = max {R(x,a), R(x,b), R(x,c)} 

   = max {0.6, 0.3, 0.4} 

   = 0.6 

R2(y)  = max {R(y,u)∣for all u in U} 

   = max {R(y,a), R(y,b), R(y,c)} 

   = max {1.0, 0.5, 0.2} 

   = 1.0 

     R 2= (0.6, 1) 
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            3. FUZZY MATRICES 

          Fuzzy matrix, we mean a matrix over a fuzzy algebra. We confine with matrices over 

the fuzzy algebra ℱ = [0,1] under the max-min operations and with the usual ordering on real 

numbers. Fuzzy matrices have quite different properties from matrices over a field, due to 

fact that addition in a fuzzy algebra does not form a group, every fuzzy linear transformation 

on Vn can be represented by a unique fuzzy matrix. One of the most important ways to study 

a fuzzy matrix is to consider its row space that subspace of Vn spanned by its rows. 

3.1. DEFINITION : 

Let ℱmn denote the set of all m×n matrices over ℱ. If m=n in shorts we write 

ℱn elements of ℱmn are called membership value matrices, binary fuzzy relation matrices 

(or) in short, fuzzy matrices. Matrices over the Boolean algebra {0,1} are special type of 

fuzzy matrices. 

 

           Let A= (aij) ϵ ℱmn . Then the element aij is called (i,j) entry of . Let Ai*(A*j) denote 

the ith row (column) of A. The row space ℝ(A) of A is the subspace of Vn generated by the 

rows {Ai*} of A. The column space ℘(A) of A is the subspace of Vm generated by the 

columns {A*j} of A.The null space or Kernel of A is the {x/xA = 0} . Note that a row 

(column) vector is just an element of Vn (𝑉𝑉). 
 

           The n×m zero matrix O is the matrix all of whose entries are zero. The n×n identity 

matrix I is the matrix (δij) such δij = 1 if i=j and δij=0 if i≠j. Then n×m universal matrix J is 

the matrix all of whose entries are 1. 

           Since the order of a matrix is clear from the context, most of the time suppress the 

order of the matrix. 

3.2. ADDITION OF MATRICES:  

           Let A = (aij) ϵ ℱmn and B = (bij) ϵ ℱmn . Then the A + B = (sup{aij,bij}) ϵ ℱ mn is 

called the sum of A and B. 

Example:  

If A =[
0.5 0 1
0.8 0.2 0.3
0 0.6 0.1

] 
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    B=[
0.2 0.4 0.6
0.5 0.3 0.3
0.7 0.8 0

] 

  A+B = (sup {aij,bij}) 

A+B= [
0.5 0 1
0.8 0.2 0.3
0 0.6 0.1

] + [
0.2 0.4 0.6
0.5 0.3 0.3
0.7 0.8 0

] 

 

A+B=[

sup {𝑎11 , 𝑏11} sup {𝑎12 , 𝑏12} sup {𝑎13 , 𝑏13}

sup {𝑎21 , 𝑏21} sup {𝑎22 , 𝑏22} sup {𝑎23 , 𝑏23}

sup {𝑎31 , 𝑏31} sup {𝑎32 , 𝑏32} sup {𝑎33 , 𝑏33}
] 

 

 

        =[

sup {0.5,0.2} sup {0,0.4} sup {1,0.6}
sup {0.8,0.5} sup {0.2,0.3} sup {0.3,0.3}

sup {0,0.7} sup {0.6,0.8} sup {0.1,0}
] 

 

A+B= [
0.5 0.4 1
0.8 0.3 0.3
0.7 0.8 1

] 

 

                  Let A = (aij) ϵ ℱmn and C ϵ ℱ then the fuzzy multiplication, that is scalar 

multiplication with scalars restricted to ℱ is defined as 

CA =(inf{c,aij}) ϵ ℱm 

                For the universal matrix J, CJ = (inf {C,1}) is the constant matrix all of whose 

entries are C. Further under component wise multiplication. 

                      CJ ʘ A = (inf {c,aij}) = CA  

PREPOSITION: 

The set ℱmn is a fuzzy vector space under the operations defined as 

 A+B = (sup{aij,bij}) and CA = (inf {c,aij}) for A = (aij) , B= (bij) ϵ ℱmn 

Proof : 

For ,  

           A,B,C ϵ ℱmn , 
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A+B = B+A ϵ ℱmn (Commutativity) 

A+(B+C) = (A+B) + C (Associativity)  

For all A ϵ ℱmn , there exists an element 0 ϵ ℱmn such that A+0 = A 

. 

For C ϵ ℱ , 

 

c(A+B) = cJ ʘ (A+B) 

                          = (cJ ʘ A) + (cJ ʘ B) 

                          = cA + cB 

For c1 , c2 ϵ ℱ, 

(c1+c2) A = (c1 + c2) J ʘ A 

= (c1J + c2J) ʘ A 

= (c1 J ʘ A) + (𝑐2J ʘ A) 

= c1A + c2A 

Hence ℱmn is a vector space over ℱ. In particular for m=1 

3.3. MAX - MIN COMPOSITION OF MATRICES: 

 For A = (aij) ϵ ℱmp and B = (bij) ϵ ℱpn , the max-min produce  

              AB = (sup inf {aik, bjk}) ϵ ℱmn. 

The product AB defined if and only if the number of columns of A is the 

same as the number of rows of B. A are said to be comfortable for multiplication.
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 Example: 

           A=[
0.8 0.1
0.2 1

] 

           B=[
0.6 0.5
0.4 0.3

] 

        AB=[
0.8 0.1
0.2 1

] [
0.6 0.5
0.4 0.3

] 

             =[
[0.8    0.1](0.6

0.4
) [0.8    0.1](0.5

0.3
)

[0.2   1](0.6
0.4

) [0.2   1](0.5
0.3

)
] 

             =[
𝑠𝑢𝑝{𝑖𝑛𝑓{0.8,0.6}, 𝑖𝑛𝑓{0.8,0.5}} 𝑠𝑢𝑝{𝑖𝑛𝑓{0.8,0.5}, 𝑖𝑛𝑓{0.1,0.3}}
𝑠𝑢𝑝{𝑖𝑛𝑓{0.2,0.6}, 𝑖𝑛𝑓{1,0.4}} 𝑠𝑢𝑝{𝑖𝑛𝑓{0.2,0.5}, 𝑖𝑛𝑓{1,0.3}}

] 

              =[
𝑠𝑢𝑝{0.6,0.1} 𝑠𝑢𝑝{0.5,0.1}
𝑠𝑢𝑝{0.2,0.4} 𝑠𝑢𝑝{0.2,0.3}

]  

         AB=[
0.6 0.5
0.4 0.3

] 

3.4. MATRIX MULTIPLICATION: 

           Matrix multiplication is not in general commutative, that is, AB ≠ BA. Further AB = 

0 need not imply A = 0 (or) B = 0 as in the case of real matrices 

Example: 

A=[
0.8 0.1
0.2 1

] 

B=[
0.6 0.5
0.4 0.3

] 

C=[
0.6 0.2
0.7 0.3

] 

  AB= (sup{inf{aik ,bkj}}) ϵ  ℱmn 

               AB=[
0.8 0.1
0.2 1

] [
0.6 0.5
0.4 0.3

] 
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                   =[
[0.8    0.1](0.6

0.4
) [0.8    0.1](0.5

0.3
)

[0.2   1](0.6
0.4

) [0.2   1](0.5
0.3

)
] 

                   =[
𝑠𝑢𝑝{𝑖𝑛𝑓{0.8,0.6}, 𝑖𝑛𝑓{0.1,0.4}} 𝑠𝑢𝑝{𝑖𝑛𝑓{0.8,0.5}, 𝑖𝑛𝑓{0.1,0.3}}

𝑠𝑢𝑝{𝑖𝑛𝑓{0.2,0.6}, 𝑖𝑛𝑓{1,0.4}} 𝑠𝑢𝑝{𝑖𝑛𝑓{0.2,0.5}, 𝑖𝑛𝑓{1,0.3}}
] 

                   =[
𝑠𝑢𝑝{0.6,0.1} 𝑠𝑢𝑝{0.5,0.1}

𝑠𝑢𝑝{0.2,0.4} 𝑠𝑢𝑝{0.2,0.3}
] 

             AB=[
0.6 0.5
0.4 0.3

] 

           BA=[
[0.6   0.5](0.8

0.2
) [0.6    0.5](0.1

1
)

[0.4   0.3](0.8
0.2

) [0.4   0.3](0.1
1

)
] 

                =[
𝑠𝑢𝑝{𝑖𝑛𝑓{0.6,0.8}, 𝑖𝑛𝑓{0.5,0.2}} 𝑠𝑢𝑝{𝑖𝑛𝑓{0.6,0.1}, 𝑖𝑛𝑓{0.5,1}}

𝑠𝑢𝑝{𝑖𝑛𝑓{0.4,0.8}, 𝑖𝑛𝑓{0.3,0.2}} 𝑠𝑢𝑝{𝑖𝑛𝑓{0.4,0.1}, 𝑖𝑛𝑓{0.3,1}}
] 

                  =[
𝑠𝑢𝑝{0.6,0.2} 𝑠𝑢𝑝{0.1,0.5}

𝑠𝑢𝑝{0.4,0.2} 𝑠𝑢𝑝{0.1,0.3}
] 

            BA=[
0.6 0.5
0.4 0.3

] 

             BC=[
0.6 0.5
0.4 0.3

] [
0.6 0.2
0.7 0.3

] 

 

                 =[
[0.6   0.5](0.6

0.7
) [0.6    0.5](0.2

0.3
)

[0.4   0.3](0.6
0.7

) [0.4   0.3](0.2
0.3

)
] 

 

              =[
𝑠𝑢𝑝{𝑖𝑛𝑓{0.6,0.6}, 𝑖𝑛𝑓{0.5,0.7}} 𝑠𝑢𝑝{𝑖𝑛𝑓{0.6,0.2}, 𝑖𝑛𝑓{0.5,0.3}}

𝑠𝑢𝑝{𝑖𝑛𝑓{0.4,0.6}, 𝑖𝑛𝑓{0.3,0.7}} 𝑠𝑢𝑝{𝑖𝑛𝑓{0.4,0.2}, 𝑖𝑛𝑓{0.3,0.3}}
] 

               =[
𝑠𝑢𝑝{0.6,0.5} 𝑠𝑢𝑝{0.2,0.3}

𝑠𝑢𝑝{0.4,0.3} 𝑠𝑢𝑝{0.2,0.3}
] 

           BC =[
0.6 0.3
0.4 0.3

] 
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              CB =[
0.6 0.2
0.7 0.3

] [
0.6 0.5
0.4 0.3

] 

 

                 =[
[0.6   0.2](0.6

0.4
) [0.6    0.2](0.5

0.3
)

[0.7   0.3](0.6
0.4

) [0.7   0.3](0.5
0.3

)
] 

    

                =[
𝑠𝑢𝑝{𝑖𝑛𝑓{0.6,0.6}, 𝑖𝑛𝑓{0.2,0.4}} 𝑠𝑢𝑝{𝑖𝑛𝑓{0.6,0.5}, 𝑖𝑛𝑓{0.2,0.3}}
𝑠𝑢𝑝{𝑖𝑛𝑓{0.7,0.6}, 𝑖𝑛𝑓{0.3,0.4}} 𝑠𝑢𝑝{𝑖𝑛𝑓{0.7,0.5}, 𝑖𝑛𝑓{0.3,0.3}}

] 

 

                =[
𝑠𝑢𝑝{0.6,0.2} 𝑠𝑢𝑝{0.5,0.2}

𝑠𝑢𝑝{0.6,0.3} 𝑠𝑢𝑝{0.5,0.3}
] 

 

          CB =[
0.6 0.5
0.4 0.5

] 

 

   BC =[
0.6 0.3
0.4 0.3

] ≠ [
0.6 0.5
0.4 0.5

]=CB 
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                                         4. FUZZY LOGIC 
 

            Any event that changes continuously we cannot define it as a true or false 

in such cases we can solve it by fuzzy logic. It deals with vagueness and 

imprecise information. 
 

4.1. LOGIC CONNECTIVES (Negation, Conjunction, Disjunction) 

Truth table for Negation: 

                 P                 ˥P 

                 T                  F 

                  F                  T 

 

 Truth table for conjunction: 

                P                Q              P˄Q 

               T                T               T 

               T                F               F 

               F                T               F 

               F                F               F 

 

Truth table for Disjunction: 

             P            Q           P˅Q 

            T            T            T 

            T            F            T 

            F            T            T 

            F            F            F 
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         P         Q        ˥P     P˄Q     P˅Q 

        T         T        F       T      T 

        F         T        T       F      T 

        T         F        F       F      T 

        F         F        T        F       F 

 

 Conditional or Bi conditional: 

     Let P and Q be any two statements. Then the statement P ⟹ Q which is read 

as if P then Q or P implies Q is called a conditional statement. The truth tables of 

P⟹Q is F when Q has truth values F and P the truth values F and P the truth values 

T; in all other cases P⟹ Q has truth values T. P is called antecedent and Q is called 

consequent in P Q. The truth table for P⟹Q is given as follows: 

 

                P              Q           P⟹  Q 

               T               T              T 

               T              F              F 

                F              T              T 

                F               F               T  

  

       For any two statement P and Q the statement P⇔ Q is called a Biconditional. 

This is read as P if and only if Q and abbreviated as P iff Q this is also called P is 

necessary and sufficient for Q. P⇔ Q has the truth values T whenever both P and 

Q have identical truth values. The table is given as follows:  

 

            P              Q              P⇔  Q 

            T                T                 T 

            T                F                  F 

             F                T                  F 

             F                F                  T 
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4.2. THREE-VALUED LOGICS: 

 The classical logic is two-valued: the values being True and False. Aristotle, who 

was the founder of the two-valued logic, felt that this assumption is not justified and 

raised doubts about this assumption of two truth values. 

To tackle such situations. Lukasiewicz suggested in 1920. a 3-valued logic. In this 

logic everything is same as in the 2-valued logic, except that there are three truth values: 

The May be and False. These linguistic values are usually represented by 1,
1

2
 and 0.2 

respectively. In this 3-valued logic, denoted by L3. the truth value of any statement can be 

either 1 or 
1

2
  or 0. i.e. T(p) = 1 or 

1

2
  or 0. We define three operations on the statements p, 

q, r denoted by p ˅q,p˄q and ¬p analogous to the three operations OR, AND and NOT of 

classical logic. These are defined by their truth values as follows 

           T (p ˅q) = max {T(p), T(q)} 

           T (p ˄q) = min {T(p), T(q)} 

T(¬p) = 1- T(p) 

Lukasiewicz also defined the implication operation by  

             T(p→q) = 1 - T(p) + T(q), if T(p) > T(q)  

Or simply as:     = 1                    , if T(p) ≤ T(q)  

 Using this formula, we can write down the truth table of →. This is given in the 

table, 

→        1 1

2
 

         0 

         1         1 1

2
 

         0 

1

2
 

        1 1

2
 

1

2
 

        0         1           1           1 
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         This 3-valued logic has many distinguishing and surprising features. One of them is 

that the WFF [p∨ (¬p)] is NOT a tautology (Note, however, that [p ∨ (¬p)] is a tautology 

in the classical logic). This can be seen by writing the truth table of this WFF as given in 

Table 

             P          ¬p        [p ∨(¬p)] 

              1              1                 1 

1

2
 

1

2
 

1

2
 

              1               1                 1 

Thus, we see that the last column of the table does not have all the entries equal to 1 

A 0 0 0 1

2
 

1

2
 

1

2
 

1 1 1 

B 0 1

2
 

1     0 1

2
 

    1 0 1

2
 

1 

˄ 0 1

2
 

0 1

2
 

1

2
 

1

2
 

0 1

2
 

1 

˅ 0 1

2
 

1 1

2
 

1

2
 

1

2
 

1 1

2
 

1 

→ 1 1

2
 

1 1

2
 

1

2
 

1

2
 

0 1

2
 

1 

 

A    0     0    0 1

2
 

1

2
 

1

2
 

   1    1    1 

B    0 1

2
 

   1     0 1

2
 

    1    0 1

2
 

   1 

˄    0     0    0     0 1

2
 

1

2
 

   0 1

2
 

    1 

˅    0 1

2
 

   1 1

2
 

1

2
 

1

2
 

   1     1    1 



42 
 

→    1    1    1     0     1     1    0 1

2
 

    1 

One thing is common for Lukasiewicz and Bochvar logics, namely, the definition 

of T(¬p) 

T(¬p) = 1- T(p) 

  But, this is not true for Heyting's logic. 

4.3.  N-VALUED LOGICS FOR N ≥ 4: 

 Once the 3-valued logics were accepted and their usefulness realized, further 

generalizations took place. Several n-valued logics for n≥4 were developed in the 1930's . 

For a given value of n, consider the set T(n) called the truth value set, where 

T(n) = {0,
1

(𝑛−1)
,

2

(𝑛−1)
, …

𝑛−2

(𝑛−1)
, 1} 

      Using this set. Lukasiewicz proposed the first generalization of L, denoted by Ln 

using the following equations as definitions: 

    T(¬p) = 1- T(p) 

T (p ˅q) = max {T(p), T(q)} 

T (p ˄q) = min {T(p), T(q)} 

T(p→q) =min {1, 1 - (p) + T(q)} 

T(p↔q) = 1-[T(P)-T(q)] 

Note that, for n = 2, T(n)= (0, 1) and the above definitions reduce to the truth table 

of the classical logic. Similarly, for n = 3, T(n)= (0,  
1

2
, 1) and L, reduces to Ly.  

Thus. L, is an appropriate generalization of both the 2-valued classical logic L, and 

the 3-valued logic L3 

  4.4. INFINITE-VALUED LOGICS  

The natural generalization of n-valued logics is the infinite-valued logics, wherein 

infinite sets are used as truth value sets. Two of the commonly used infinite sets are: 

1. T(infinity)= all rational numbers in the unit interval [0, 1] 

2.  T (1) =l= all real numbers in the unit interval [0, 1]  
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Of course, there are other infinite sets, which are subsets of [0, 1] and which can be used 

as truth value sets. For example. 

 S1=  {0,1,
1

2
,

1

3
,

1

4
, … … . .

2

3
,

3

4
.

4

5
, … . . } 

 S2 = {0,1,
1

2
, (

1

2
) , (

1

2
) , … … . . (

1

2
) , 1 − (

1

2
) , … . . } 

Nee that we can also express S, and S. in a compact way as follows: 

 S1=  {0,1, ,
1

𝑛
, 1−, 𝑛 = 1,2,3 … . . } 

S1=  {0,1,
1

2
,

1

3
,

1

4
, … … . .

2

3
,

3

4
.

4

5
, … . . } 

 Lukasiewicz proposed two infinite valued logics, denoted by L (infinity) and L 

(1) L(infinity) is based on 7infinity) and L (1) is based on 7(1) as their truth value sets 

respectively. Both of them are based on the same sets of definitions (Refer Eq. (1)). Note 

that L (1) is a genuine generalization of L(infinity) and L(infinity) is a genuine. 

generalization of L  

 4.5. FUZZY LOGICS: 

          In its widest sense, fuzzy logic encompasses the logics developed so far and even 

more. In fact, L₂ is a fuzzy logic in this sense. But for the present, it is enough to consider 

logic in the following narrower sense: fuzzy logic is any logic having 7= [0, 1] as its 

truck value set, we have already come across an example of fuzzy logic in the previous 

section, namely. L (1) Most of the fuzzy logics (including L (1)) are based on the 

following definitions for the logical connectives ˅, ˄ and ¬ 

                  T (P ˅ q) = max [T(p), T(q)] 

                  T (P ˄ q) = min [T(p), T(q)] 

                  T(¬p) = 1- T(p) 

Where p,q are fuzzy propositions and T(p),T(q) take values in 1.note that we have not 

specified the connectives → each specification of → gives rise to a different fuzzy logic. 

That is these fuzzy logics differ in the definition of →. In L(1),we have 

                 T (P→q) =min [1, 1-T(p), T(q)] 

Zadeh proposed the following definition: 
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                T (p→ q) =max {min [ T(p), T(q)], 1 – T(p)} 

There are plenty of definition available in the literature for → some of them are: 

Let a = T(p) and b = T(q). then  

1. T (p → q) = 1, if a ≤ b and 0, otherwise  

2. T (P → q) = 1, if a ≤ b and b, otherwise  

3. T (P → q) = min {1, b/a} 

4. T (p→ q) = min {1, [b(1-a)]/ [a (1 – b)} 

 

Each one of the above definitions give rise to different fuzzy logic.  

      Each one of the fuzzy logics is to be considered as a model for real life situation and 

the choice will depend on the characteristic of the problem considered and the intuition 

experience and the ingenuity of the problem solver  

     Given A in PF(U), consider the proposition p where p: x is a member of A. Then  

                                     T(P) = A (x)   

      Similarly, if B is in PF(U), then we get the proposition q where q: x is a member of B 

and T(q) B(x). Then 

                             T (p ˅q) = max[T(p), T(q)] 

                                            = max[A(x), B(x)] 

                                            = (AUB)(x)  

      Thus, the proposition corresponding to A∪B is p ˅q. Similarly, we can show that 

A∩B corresponds to p ˄q and A' corresponds to ¬p.  
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CONCLUSION:           

          Fuzzy theories have been used in day-to-day life.  Fuzzy set theory has been shown 

to be a useful tool to describe situations in which the data are imprecise or vague.  Fuzzy 

sets handle such situations by attributing a degree to which a certain object belongs to a 

set.  Fuzzy logic has been successfully used in numerous fields such as control systems 

engineering, image processing, power optimization.  Fuzzy relation equations, which are 

obtained by the composition of binary fuzzy relations, are used in this work as a tool for 

evaluating student mathematical modelling skills.  Fuzzy matrix frame work have been 

utilized in several different approaches to model the medicine diagnostic process and 

decision-making process.         
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1. INTRODUCTION 

R is another emerging name in the Programming world! 

 

R is an open-source programming language that is widely used as a statistical software and 

data analysis tool. R generally comes with the Command-line interface. R is available across 

widely used platforms like Windows, Linux, and macOS. Also, the R programming language is 

the latest cutting-edge tool. 

 

It was designed by Ross Ihaka and Robert Gentleman at the University of Auckland, New 

Zealand, and is currently developed by the R Development Core Team. R programming 

language is an implementation of the S programming language. It also combines with lexical 

scoping semantics inspired by Scheme. Moreover, the project conceives in 1992, with an 

initial version released in 1995 and a stable beta version in 2000. 

Is it worth learning R in 2022? 

In our opinion, absolutely YES! This is still an awesome programming language to learn. With 

the increasing demand for machine learning and data science, it is worth learning the R 

programming language.  Various big tech companies like Facebook, Google, Uber, etc. are 

using the R language for their businesses.  Learning the R programming language is surely 

worthwhile for future career endeavors. 

Programming in R 
Since R is much similar to other widely used languages syntactically, it is easier to code and 

learn in R. Programs can be written in R in any of the widely used IDE like R Studio, Rattle, 

Tinn-R, etc. After writing the program save the file with the extension .r. 

Introduction to R studio 

R Studio is an integrated development environment (IDE) for R. IDE is a GUI, where you can 

write your quotes, see the results and also see the variables that are generated during the 

course of programming.  

R Studio can be downloaded from its Official Website (https://rstudio.com/) 

 

https://rstudio.com/
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After the installation process is over, the R Studio interface looks like this: 

• The console panel (left panel) is the place where R is waiting for you to tell it what to 

do, and see the results that are generated when you type in the commands. 

• To the top right, you have the Environmental/History panel. It contains 2 tabs:  

o Environment tab: It shows the variables that are generated during the course 

of programming in a workspace that is temporary. 

o History tab: In this tab, you’ll see all the commands that are used till now from 

the start of usage of R Studio. 

• To the right bottom, you have another panel, which contains multiple tabs, such as 

files,  
plots, packages, help, and viewer.  

o The Files tab shows the files and directories that are available within the 

default workspace of R. 

o The Plots tab shows the plots that are generated during the course of 

programming. 

o The Packages tab helps you to look at what are the packages that are already 

installed in the R Studio and it also gives a user interface to install new 

packages. 

o The Help tab is the most important one where you can get help from the R 

Documentation on the functions that are in built-in R. 

o The final and last tab is that the Viewer tab which can be used to see the local 

web content that’s generated using R. 
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Getting help with R: 

Before asking others for help, it’s generally a good idea for you to try to help yourself. R 
includes extensive facilities for accessing documentation and searching for help. There are 
also specialized search engines for accessing information about R on the internet, and general 
internet search engines can also prove useful. 

• If you need help with a function, then type question mark followed by the name of the 
function. For example, ?read.table to get help for function read.table. 

• Sometimes, you want to search by the subject on which we want help (e.g., data 
input). In such a case, type help.search("data input") 

• 'help()' for on-line help, or 'help.start()’ for an HTML browser interface to help. 

• The find function tells us what package something is in.  

            For example: 

            > find("lowess") 

            [1] "package:stats" 

• The apropos returns a character vector giving the names of all objects in the search 
list that match your enquiry. 

            For example: 

            > apropos("lm") 

            [1] ".colMeans"         ".lm.fit"                      "colMeans"         "confint.lm"      

            [5] "contr.helmert"   "dummy.coef.lm"     "glm"                    "glm.control"     

            [9] "glm.fit"                "KalmanForecast"     "KalmanLike"      "KalmanRun" 

• To see a worked example just type the function name, e.g., lm for linear models:  

             >example(lm)  

             and we see the printed and graphical output produced by the lm function. 

Libraries in R: 

R provides many functions and one can also write own.  Functions and datasets are organised 
into libraries.  To use a library, simply type the library function with the name of the library in 
brackets. For example: >library(MASS) 

Examples of libraries that come as a part of base package in R: 

• MASS: package associated with Venables and Ripley’s book entitled Modern Applied 
Statistics using S-Plus. 

• mgcv : generalized additive models. 
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2. R AS A CALCULATOR 

R can be used as a powerful calculator by entering equations directly at the prompt in the 
command console. R will evaluate the expressions and respond with the result. While this is 
a simple interaction interface, there could be problems if you are not careful. R will normally 
execute your arithmetic expression by evaluating each item from left to right, but generally it 
follows the BEDMAS order: Brackets (), Exponents ̂ , Division / and Multiplication *, Addition 
+ and Subtraction -.  Let's start with some simple expressions as examples.  

 

Simple Arithmetic Expressions: 

The operators R uses for basic arithmetic are:  

+    Addition 
-    Subtraction 
*    Multiplication 
/    Division 
^    Exponentiation 

Examples: 

 > 2+3  

[1] 5  

> 2-3  

[1] -1 

> 2*3  

[1] 6 

> 3/2  

[1] 1.5 

> 2^3  

[1] 8 

> 2*3-4+5/6  

[1] 2.8333 

 

Integer Division 

 Division in which the fractional part(remainder) is discarded 

Usage: 
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%/% 

Example: 

> c(2,3,5,7) %/% 2 

[1] 1 1 2 3 

 

Modulo Division 

 x mod y: Modulo operation finds the remainder after division of one number by another. 

Usage: 

%% 

Example: 

> c(2,3,5,7) %% 2 

[1] 0 1 1 1 

 

Maximum & Minimum 

The max(), min() is a built in R- function.  max() is used to calculate the maximum of vector 
elements or maximum of a particular column of a data frame.  min(), is used to calculate the 
minimum of vector elements or minimum of a particular column of a data frame. 

Usage: 

• max(x) 

• min(x), where x is a numeric or character arguments. 

Example: 

> max(1.2, 3.4, -7.8) 

[1] 3.4 

> min(1.2, 3.4, -7.8) 

[1] -7.8 

 

Absolute Value 

To calculate the absolute value in R, use the abs() method. The abs() function takes a real 
number or numeric value as a vector, matrix, or data frame and returns the absolute value. 
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Usage: 

abs(x), where x is a numeric or character arguments. 

Example: 

> abs(c(-1,-2,-3,4,5)) 

[1] 1 2 3 4 5 

 

Square Root 

sqrt() function in R Language is used to calculate the mathematical square-root of the value 
passed to it as argument. 

Usage: 

sqrt(x), where x is a numeric or character arguments. 

Example: 

 > sqrt(c(4,9,16,25)) 

[1] 2 3 4 5 

 

Sum 

sum() function in R is used to calculate the sum of vector elements. 

Usage: 

sum(x), where x is a numeric or character arguments. 

Example: 

> sum(c(2,3,5,7)) 

[1] 17 

 

Product 

prod() function in R Language is used to return the multiplication results of all the values 
present in its arguments. 

Usage: 

prod(x), where x is a numeric or character arguments. 
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Example: 

> prod(c(2,3,5,7)) 

[1] 210 

 

Round 

round() function in R Language is used to round off values to a specific number of decimal 
values. 

Usage: 

round(x), where x is a numeric or character arguments. 

Example: 

> round(1.23) 

[1] 1 

 

round(), floor(), ceiling() Rounding, up and down 

log() Logarithms 

exp() Exponential function 
sin(), cos(), tan(), Trigonometric functions 

sinh(), cosh(), tanh(), Hyperbolic functions 

 

Assignments 

Assignment operator “=” can be used to assign the value to a variable in an environment. 

Example: 

> x1 = c(1,2,3,4) 

> x2 = x1^2 

> x2 

[1] 1 4 9 16 
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3.  FUNCTIONS & MATRIX OPERATIONS 

Functions 

A function is a set of statements organized together to perform a specific task. R has a large 
number of in-built functions and the user can create their own functions.  In R, a function is 
an object so the R interpreter is able to pass control to the function, along with arguments 
that may be necessary for the function to accomplish the actions.  The function in turn 
performs its task and returns control to the interpreter as well as any result which may be 
stored in other objects. 

Usage: 

Name = function(Argument1, Argument2, ...) 

{ 

expression 

} 

where expression is a single command or a group of commands 

Function (Single Variable) 

> abc = function(x){ 

x^2 

} 

> abc(3) 

[1] 9 

Function (Two Variables) 

> abc = function(x,y){ 

x^2+y^2 

} 

> abc(-2,-1) 

[1] 5 

Function (Other Variables) 

> abc = function(x){ 

sin(x)^2+cos(x)^2 + x 
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} 

> abc(8) 

  [1] 9 

Matrix 

In R, a matrix is a collection of elements of the same data type (numeric, character, or logical) 
arranged into a fixed number of rows and columns.  It is a rectangular array with p rows and 
n columns. An element in the i-th row and j-th column is denoted by Xij or or X[i, j].  A Matrix 
is created using the matrix() function. 

 In R, a 4 × 2-matrix X can be created with a following command: 

 > x = matrix(nrow=4, ncol=2, data=c(1,2,3,4,5,6,7,8)) 

 > x 

      [,1] [,2] 

 [1,]  1     5 

 [2,]  2     6 

 [3,]  3     7 

 [4,]  4     8 

Note: 

• The parameter nrow defines the row number of a matrix. 

• The parameter ncol defines the column number of a matrix. 

• The parameter data assigns specified values to the matrix elements. 

• The values from the parameters are written column-wise in matrix. 

• One can access a single element of a matrix with x[i,j]: 

> x[3,2] 

[1] 7 

• In case, the data has to be entered row wise, then a 4 × 2-matrix X can be created with 

 > x = matrix( nrow=4, ncol=2, data=c(1,2,3,4,5,6,7,8), byrow = TRUE) 

> x 

      [,1] [,2] 

[1,]   1    2 

[2,]   3    4 

[3,]   5    6 
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[4,]   7    8 

 

Properties of a Matrix 

dim() function in R Language is used to get the dimension of the specified matrix, array or 
data frame.  nrow() function is used to return the number of rows of the specified matrix.  
ncol() function is used to return the number of columns of the specified matrix. mode() 
function informs the type of an object in the matrix. 

Usage: 

• dim(x), where x is an R object, for example a matrix, array or data frame. 

• nrow(x), where x is a vector, array, data frame. 

• ncol(x), where x is a vector, array, data frame. 

• mode(x), where x is any R object. 

Example: 

> dim(x) 

[1] 4 2 

> nrow(x)  

 [1] 4 

> ncol(x)  

 [1] 2 

> mode(x)  

[1] "numeric" 

Assigning a specified number to all matrix elements: 

> x = matrix(nrow=4, ncol=2, data=2) 

> x 

[,1] [,2] 

[1,] 2 2 

[2,] 2 2 

[3,] 2 2 

[4,] 2 2 
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Diagonal Matrix 

diag() function in R Language is used to construct a diagonal matrix. t() function in R Language 
is used to calculate transpose of a matrix or Data Frame. 

Example: 

> d = diag(1, nrow=2, ncol=2) 

> d 

[,1] [,2] 

[1,] 1 0 

[2,] 0 1 

Transpose of a Matrix 

t() function in R Language is used to calculate transpose of a matrix or Data Frame. 

Example: 

> x = matrix(nrow=4, ncol=2, data=1:8, byrow=T) 

> x 

      [,1] [,2] 

[1,]   1    2 

[2,]   3    4 

[3,]   5    6 

[4,]   7    8 

> xt = t(x) 

> xt 

      [,1] [,2] [,3] [,4] 

[1,]   1    3     5     7 

[2,]   2    4     6     8 

 

Matrix Operations 

There are multiple matrix operations that you can perform in R. The most basic matrix 
operations are addition and subtraction.  Addition and subtraction of matrices of same 
dimensions can be executed with the usual operators + and -.  
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Matrix Multiplication 

In R, the operator%*% is used for matrix multiplication satisfying the condition that the 
number of columns in the first matrix is equal to the number of rows in second. 

Example: 

> xtx = t(x) %*% x 

> xtx 

[,1] [,2] 

[1,] 84 100 

[2,] 100 120 

Inverse of a Matrix 

In order to calculate the inverse of a matrix in R, solve() function is used.  It finds the inverse 
of a positive definite matrix. 

Example: 

> y=matrix( nrow=2, ncol=2, byrow=T, data=c(84,100,100,120)) 

> y 

         [,1] [,2] 

[1,]   84  100 

[2,] 100  120 

> solve(y) 

          [,1]   [,2] 

[1,] 1.50 -1.25 

[2,] -1.25 1.05 
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4.  MISSING DATA & LOGICAL OPERATORS 

Missing Data 

R represents missing observations through the data value NA. We can detect missing values 
using is.na. NA is a placeholder for something that exists but is missing. NULL stands for 
something that never existed at all. 

Example: 

 > x = NA  

> is.na(x)  

 [1] TRUE 

> x = c(11, NA, 13) 

 > is.na(x)  

[1] FALSE TRUE FALSE 

Logical Operators and Comparisons 
The following table shows the operations and functions for logical comparisons (True or 
False). TRUE and FALSE are reserved words denoting logical constants. 

Operator Executions 

        > Greater than 

      >= Greater than or equal 

       < Less than 

      <= Less than or equal 

      == Exactly equal to 

     ! = Not equal to 

      ! Negation(not) 

  &, && and 

   |, || or 

   Xor( ) either…or(exclusive) 

 isTRUE(x) Test if x is TRUE 

   TRUE true 

   FALSE false 

 

• The shorter form performs element-wise comparisons in almost the same way as arithmetic 
operators. 



   
 

20 

 
 

 

• The longer form evaluates left to right examining only the first element of each vector. 
Evaluation proceeds only until the result is determined. 

• The longer form is appropriate for programming control-flow and typically preferred in if 
clauses (conditional). 

Examples: 

> 8 > 7  

[1] TRUE 

• Is 8 less than 6? 

> isTRUE(8<6) 

[1] FALSE 

> x = 5  

> (x < 10) && (x > 2)  

[1] TRUE 

• Is x greater than 10 or x is greater than 5? 

> (x > 10) || (x > 5)  

[1] FALSE 

• Is x equal to 10 and is y equal to 20? 

> x = 10 

> y = 20 

> (x == 10) & (y == 20)  

[1] TRUE 

 

Examples using & and | 

> x = 1:6  

> (x > 2) | (x < 5)  

[1] TRUE TRUE TRUE TRUE TRUE TRUE 

[1] 1 2 3 4 5 6 

> x = 1:6 

> (x > 2) & (x < 5)  
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[1] FALSE FALSE TRUE TRUE FALSE FALSE 

> x[(x > 2) & (x < 5)] 

[1] 3 4 

The longer form evaluates left to right examining only the first element of each vector 

> x = 1:6  

> (x > 2) && (x < 5) 

[1] FALSE 

is equivalent to: 

> (x[1] > 2) & (x[1] < 5) 

 [1] FALSE 

Note:  x[1] is only the first element in x 

 

Truth Table 

A truth table is a display of the inputs to, and the output of a Boolean function organized as a 
table where each row gives one combination of input values and the corresponding value of 
the function. 

Statement 1 
:: 
(x) 

Statement 2 
:: 
(y) 

Outcomes 
:: 
x and y 

Outcomes 
:: 
x or y 

True True True True 

True False False True 

False True False True 

False False False False 
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5.  CONDITIONAL EXECUTION & LOOPS 

Control structures in R: 

• Control statements,  

• Loops,  

• Functions. 

Conditional Execution 

Conditional execution controls whether or not the core will execute an instruction. If they 
match then the instruction is executed, otherwise the instruction is ignored. The condition 
attribute is postfixed to the instruction mnemonic, which is encoded into the instruction.  
Conditionals are expressions that perform different computations or actions depending on 
whether a predefined Boolean condition is TRUE or FALSE. Conditional statements include 
if(), the combination if()/esle(), and ifelse(). 

Usage: 

if (condition) {executes commands if condition is TRUE}  

if (condition) {executes commands if condition is TRUE}  else { executes commands if condition 
is FALSE } 

Example: 

> x = 5  

> if ( x==3 ) { x = x-1 } else { x = 2*x } 

> x [1] 1 

Interpretation: 

• If x = 3, then execute x = x – 1. 

• If x ≠ 3, then execute x = 2*x.  

In this case, x = 5, so x ≠ 3. Thus x = 2*5 

ifelse Execution 

The ifelse function is used to assign one object or another depending on whether the first 
argument, test, is TRUE or FALSE. 

Usage:  ifelse(test, yes, no) 

Example: 

> x = 1:10 
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>x 

[1] 1 2 3 4 5 6 7 8 9 10 

> ifelse( x<6, x^2, x+1 ) 

[1] 1 4 9 16 25 7 8 9 10 11 

Interpretation: 

• If x < 6 (TRUE), then x = x2 (YES). 

• If x ≥ 6 (FALSE), then x = x + 1 (NO). 

• So, for x = 1, 2, 3, 4, 5, we get x = x2=1, 4, 9, 16, 25 

• For x=6, 7, 8, 9, 10, we get x= x+1 = 7, 8, 9, 0, 11 

Loops 

Repetitive commands are executed by loops 

•for loop 

•while loop 

•repeat loop 

For Loop 

For loop in R Programming Language can be used to execute a group of statements repeatedly 
depending upon the number of elements in the object. It is an entry-controlled loop.  In this 
loop the test condition is tested first, then the body of the loop is executed, the loop body 
would not be executed if the test condition is false. 

Usage: 

for (var in vector) {commands to be executed} 

Here, var takes on each value of vector during the loop. 

Example: 

> for ( i in c(2,4,6,7) ) { print( i^2 ) } 

[1] 4 

[1] 16 

[1] 36 

[1] 49 

While Loop 
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A "While" Loop is used to repeat a specific block of code an unknown number of times, until 
a condition is met. 

Usage:  while(condition){ commands to be executed as long as condition is TRUE } 

Example: 

> i = 1 

> while (i<5) { 

+ print(i^2)  

+ i = i+2  

+} 

 [1] 1 

 [1] 9 

Repeat Loop 

Repeat loop in R is used to iterate over a block of code multiple number of times. And also, it 
executes the same code again and again until a break statement is found. Additionally, the 
command next is available, to return to the beginning of the loop (to return to the first 
command in the loop). 

Usage:  repeat{ commands to be executed } 

Example: 

> i = 1 

> repeat{ 

 + i = i+1 

 + if (i < 10) next 

 + print(i^2) 

 + if (i >= 13) break 

+} 

 [1] 100 

 [1] 121 

 [1] 144 

 [1] 169 
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6.  DATA MANAGEMENT 

Sequences 

seq() function in R Language is used to create a sequence of elements in a Vector. It takes the 
length and difference between values as optional argument. 

Usage: 

seq(from,to,by) 

Example: 

> seq(from=-4, to=4) 

[1] -4 -3 -2 -1 0 1 2 3 4 

 

Sequence with constant increment: 

Example: 

> seq(from=20, to=10, by=-2) 

[1] 20 18 16 14 12 10 

Downstream sequence with constant increment: 

Example: 

> seq(from=3, to=-2, by=-0.5) 

[1] 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2 

Sequences with a predefined length: 

Sequences with a predefined length with default increment +1. 

Examples: 

> seq(to=10, length=10) 

[1] 1 2 3 4 5 6 7 8 9 10 

> x=50 

> seq(0, x, x/10) 

[1] 0 5 10 15 20 25 30 35 40 45 50 
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Index-Vector 

Vector elements are accessed using indexing vectors, which can be numeric, character or 
logical vectors. You can access an individual element of a vector by its position (or "index"), 
indicated using square brackets. 

Example: 

> x = c(9,8,7,6) 

> ind = seq(along=x) 

> ind 

[1] 1 2 3 4 

> x[ ind[2] ]  

[1] 8 

Generating Sequence of Alphabets 

letters are used to find sequence of lowercase alphabets. To create a sequential uppercase 
alphabet in R, use the LETTERS constant. The LETTERS is a character constant in R that 
generates an uppercase alphabet, and you can use it with different functions to extract the 
result as per your requirement. 

Usage: 

• letters[from_index:to_index] 

• LETTERS[from_index:to_index] 

Examples: 

> letters 

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" 

[15] "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z“ 

> letters[1:3] 

[1] "a" "b" "c" 

> LETTERS 

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" 

[15] "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z" 

> LETTERS[21:23] 

[1] "U" "V" "W“ 
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Repeats 

Command rep() is used to replicate the values in a vector. 

Usage: 

• rep(x, times=n ) 

• rep(x, each=n ) 

Example: 

> rep(1:4, each = 2, times = 3) 

[1] 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 

Repetition of elements in a matrix: 

> x = matrix(nrow=2, ncol=2, data=1:4, byrow=T) 

> x 

      [,1] [,2] 

[1,]  1   2 

[2,]  3    4 

> rep(x, 3) 

[1] 1 3 2 4 1 3 2 4 1 3 2 4 

Repetition of characters: 

> rep(c("a", "b", "c"), 2) 

[1] "a" "b" "c" "a" "b" "c" 

 

Sorting 

To sort a data frame in R, use the order() function. By default, sorting is ASCENDING. Prepend 
the sorting variable by a minus sign to indicate DESCENDING order. 

Usage: 

sort(x, decreasing = FALSE, ..,), where x is a sequence of numeric, complex, character or logical 

vectors. 

Example: 

> y = c(8,5,7,6) 

> y 
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[1] 8 5 7 6 

> sort(y) 

[1] 5 6 7 8 

> sort(y, decreasing = TRUE) 

[1] 8 7 6 5 

 

Ordering 

The order() function in R is very useful in sorting a particular data value according to a specific 
variable. It will arrange the data or orders the data based on given parameters. 

Usage: 

order(x, decreasing = FALSE, ..,), where x is a sequence of numeric, complex, character or 
logical vectors. 

Example: 

> y = c(8,5,7,6) 

> y 

[1] 8 5 7 6 

> order(y) 

[1] 2 4 3 1 

> order(y, decreasing = TRUE) 

[1] 1 3 4 2 

 

Lists 

Lists are the R objects which contain elements of different types like − numbers, strings, 
vectors and another list inside it. A list can also contain a matrix or a function as its elements. 
List is created using list() function.  Lists can be indexed by position.  

For example: x[[5]] refers to the fifth element of x. 

Difference between a vector and a list: 

• In a vector, all elements must have the same mode. 

• In a list, the elements can have different modes. 

List can contain any kind.  An example of a list that contains different object types:  
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> z1 = list(c("water", "juice", "lemonade"), rep(1:4, each=2), matrix(data=5:8, nrow=2, ncol=2, 
byrow=T))  

> z1  

[[1]]  

[1] "water" "juice" "lemonade"  

[[2]]  

[1] 1 1 2 2 3 3 4 4  

[[3]]  

[,1] [,2]  

[1,] 5 6  

[2,] 7 8 

Access the elements of a list using the operator [[]]  

Following commands work.  

> z1[[1]]  

[1] "water" "juice" "lemonade"  

Suppose we want to extract "juice". 

z1[[1]][2]   

[1] "juice" 

 

Mode 

Every object has a mode. 

The mode indicates how the object is stored in memory: as a  

• number,  

• character string, 

• list of pointers to other objects, 

• function etc. 

OBJECT EXAMPLE MODE 

Number 1.234   numeric 
Vector of numbers   c(5, 6, 7, 8)   numeric 

Character string   "India"   character 
Vector of character strings c("India", "USA") character 
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Factor factor(c("UP", "MP")) numeric 
List list("India", "USA") list 

Data frame data.frame(x=1:2, 
y=c("India", "USA")) 

list 

Function print function 

Usage: 

mode(x), where x is a numeric or character arguments. 

Example: 

> mode(c(5,6,7,8)) 

[1] "numeric" 

> mode(c("India", "USA")) 

[1] "character" 

> mode(list("India", "USA")) 

[1] "list" 

> mode(print) 

[1] "function" 

 

Vector Indexing 
Vector elements are accessed using indexing vectors, which can be numeric, character or 
logical vectors. You can access an individual element of a vector by its position (or "index"), 
indicated using square brackets.  

Example: 

> x = 1:10  

>x  

[1] 1 2 3 4 5 6 7 8 9 10  

> x[ (x > 5) ]  

[1] 6 7 8 9 10  

> x[ (x%%2==0) ] 

[1] 2 4 6 8 10  
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Logical Vector 

A logical vector is a vector that only contains TRUE and FALSE values. In R, true values are 
designated with TRUE, and false values with FALSE. When you index a vector with a logical 
vector, R will return values of the vector for which the indexing vector is TRUE. 

Example: 

> x[5] = NA  

> x  

[1] 1 2 3 4 NA 6 7 8 9 10  

> y = x[ !is.na(x) ] 

> y  

[1] 1 2 3 4 6 7 8 9 10 

Vector of Negative integers 

A negative of a vector represents the direction opposite to the reference direction. It means 
that the magnitude of two vectors is same but they are opposite in direction. 

> x = 1:10  

> x  

[1] 1 2 3 4 5 6 7 8 9 10  

> x[-(1:5)]  

[1] 6 7 8 9 10 

 

String Vector 

names() function in R Language is used to get or set the name of an Object. This function takes 
object i.e., vector, matrix or data frame as argument along with the value that is to be assigned 
as name to the object. The length of the value vector passed must be exactly equal to the 
length of the object to be named. 

Usage: 

names(x), where x is an R object. 

Example: 

> z = list(a1 = 1, a2 = "c", a3 = 1:3)  

> z  
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$a1  

[1] 1  

$a2  

[1] "c"  

$a3  

[1] 1 2 3  

> names(z)  

[1] "a1" "a2" "a3"  

 

Empty Index 

In R Programming Language an empty index can be created by simply not passing any value 
while creating a regular index using the x[] function. 

Example: 

> x = 1:10  

>x  

[1] 1 2 3 4 5 6 7 8 9 10  

> x[]  

[1] 1 2 3 4 5 6 7 8 9 10 

Matrix created from Lists 

List can be heterogeneous (mixed modes).  We can start with a heterogeneous list, give it 
dimensions, and thus create a heterogeneous matrix that is a mixture of numeric and 
character data. 

Example: 

> ab = list(1, 2, 3, "X", "Y", "Z")  

> dim(ab) = c(2,3)  

> print(ab)  

      [,1] [,2] [,3]  

[1,]   1    3    "Y"  

[2,]   2  "X"  "Z" 
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Factors 

Factors in R Programming Language are data structures that are implemented to categorize 
the data or represent categorical data and store it on multiple levels. They can be stored as 
integers with a corresponding label to every unique integer. Factors are the data objects 
which are used to categorize the data and store it as levels. They can store both strings and 
integers. They are useful in data analysis for statistical modeling. 

Usage: 

• factor(x) 

• factor(x,levels), where x is a numeric or character arguments. 

Example: 

> x = factor(c("juice", "juice", "lemonade",  

"juice", "water")) 

>x  

[1] juice juice lemonade juice water  

Levels: juice lemonade water 

The single levels are ordered alphabetically: 

juice --- lemonade --- water 

Unclass Function 

All objects in R have a class, reported by the function class. For simple vectors this is just the 
mode, for example "numeric", "logical", "character" or "list", but "matrix", "array", "factor" 
and "data.frame" are other possible values. unclass() is used to temporarily remove the 
effects of class. The command unclass shows, an integer is assigned to every factor level. 

Usage: 

unclass(x), where x is an R object. 

Example: 

> x = factor(c("juice", "juice", "lemonade", "juice", "water"))  

> unclass(x)  

[1] 1 1 2 1 3  

attr(,"levels")  

[1] "juice" "lemonade" "water"  
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Ordered Factor 

The levels of factors are stored in alphabetical order, or in the order they were specified to 
factor if they were specified explicitly. Sometimes the levels will have a natural ordering that 
we want to record and want our statistical analysis to make use of. The ordered() function 
creates such ordered factors but is otherwise identical to factor. 

Example: 

> income = ordered(c("high", "high", "low", "medium", "medium"), levels=c("low", "medium", 
"high"))  

> income  

[1] high high low medium medium  

Levels: low < medium < high  

 

Turning a vector into a factor: 

A vector can be turned into a factor with the command as.factor(). However, it converts a 
vector into a factor and uses value labels as factor levels. 

Usage: 

as.factor(x), where x is a vector of data, taking a small number of distinct values. 

Example: 

> x = c(4, 5, 1, 2, 3, 3, 4, 4, 5, 6)  

> x = as.factor(x)  

> x  

[1] 4 5 1 2 3 3 4 4 5 6  

Levels: 1 2 3 4 5 6 
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7.  STRINGS - DISPLAY & FORMATTING 

Any value written within a pair of single quote or double quotes in R is treated as a string. 
Internally R stores every string within double quotes, even when you create them with single 
quote. 

Formatting and Display of strings 

A common task when working with character strings involves printing and displaying them on 
the screen or on a file.  R provides a series of functions for printing strings.  Some of the 
printing functions are 

• print(x), where x is an object used to select a method. 

• format(x), where x is any R object, typically numeric. 

• cat(x), where x is an R object 

• paste(x), where x is a one or more R objects, to be converted to character vectors. 

Print Function 

In R there are various methods to print the output. Most common method to print output in 
R program, is the print() function. 

Example: 

> print(sqrt(2), digits=16) 

[1] 1.414213562373095 

Limitations: 

• The print function has a significant limitation that it prints only one object at a time.  
Trying to print multiple items gives error message: 

 Example: 

> print("The zero occurs at", 2*pi, "radians.") 

Error in print.default("The zero occurs at", 2 * pi, "radians."): invalid 'quote' argument 

• The only way to print multiple items is to print them one at a time 

 Example: 

> print("The zero occurs at"); print(2*pi); 

print("radians") 

[1] "The zero occurs at" 

[1] 6.283185 

[1] "radians" 
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Format Function 

The function format() allows you to format an R object for pretty printing. Essentially, format() 
treats the elements of a vector as character strings using a common format. This is especially 
useful when printing numbers and quantities under different formats. 

Usage: 

format(x, trim = FALSE, digits = NULL, nsmall = 0L, justify = c("left", "right", "centre", "none"), 
width = NULL, ...) 

Example: 

> print(format( 0.5, digits=10, nsmall=15 )) 

[1] "0.500000000000000" 

Cat Function 
The function cat() converts its arguments to character strings, concatenates them, separating 
them by the given sep= string, and then prints them. cat puts a space between each item by 
default.  One must provide a newline character (\n) (newline) to terminate the line. cat is 
useful for producing output in user defined functions. 

Example: 

> cat( 1:10, sep = "_" ) 

1_2_3_4_5_6_7_8_9_10 

The cat function is an alternative to print that lets you combine multiple items into a 
continuous output as well as it can also print simple vectors. 

> cat("The zero occurs at", 2*pi, "radians.", "\n") 

The zero occurs at 6.283185 radians. 

> evenno = c(2,4,6,8,10) 

> evenno 

[1] 2 4 6 8 10 

> cat("The first few even numbers are:", evenno, "...\n") 

The first few even numbers are: 2 4 6 8 10 … 

Paste Function 

The paste() function concatenates several strings together.  It creates a new string by joining 
the given strings end to end.  The result of paste() can be assigned to a variable.  paste inserts 
a single space between pairs of strings.  A desired line break can be achieved with "\n" 
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(newline).  The collapse parameter defines a top-level separator and instructs paste to 
concatenate the generated strings using that separator: 

Usage: 

paste (..., sep = " ", collapse = NULL). 

Example: 

> x = paste("Ex", 1:5, sep="_", collapse="") 

> x[1] 

[1] "Ex_1Ex_2Ex_3Ex_4Ex_5" 

> names = c("Prof. Singh", "Mr. Venkat", "Dr. Jha") 

> paste(names, "is", "a good", "person.", collapse=", and ") 

[1] "Prof. Singh is a good person., and Mr. Venkat is a good person., and Dr. Jha is a good 
person.” 

Splitting 
The strsplit() in R programming language function is used to split the elements of the specified 
character vector into substrings according to the given substring taken as its parameter. 

Usage: 

strsplit(x, split, fixed = FALSE, ...) 

Example: 

> x = "The&!syntax&!of&!paste&!is!&available!&inthe online-help" 

> x 

[1] "The&!syntax&!of&!paste&!is!&available! 

&inthe online-help" 

> abc = strsplit(x,"!&") 

> abc 

[[1]] 

[1] "The&!syntax&!of&!paste&!is" "available!&inthe online-help" 

Note: To access single components: 

> abc[[1]][1] 

[1] "The&!syntax&!of&!paste&!is" 
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String Manipulation Functions 
Here are the functions available for string manipulation in R: 

• nchar(x) 

• tolower(x) 

• toupper(x), where x is a character vector, or a vector to be coerced to a character 
vector 

nchar Function 

With the help of this nchar() function, we can count the characters.  This function consists of 
a character vector as its argument which then returns a vector comprising of different sizes 
of the elements of x. nchar() is the fastest way to find out if elements of a character vector 
are non-empty strings or not. 

Example: 

> x = "R course 24.07.2017" 

> nchar(x) 

[1] 19 

tolower and toupper Functions 

The tolower() function is used to convert the string characters to the lower case.  The 
toupper() function is used to convert the string characters to upper case. 

Usage: 

• tolower(x) 

• toupper(x), where x is a character vector, or a vector to be coerced to a character 
vector 

Example: 

> x = "R course will start from 24.07.2022" 

> tolower(x) 

[1] "r course will start from 24.07.2022" 

> toupper(x) 

[1] "R COURSE WILL START FROM 24.07.2022" 

 

Operations with Strings 
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R has various functions for regular expression-based match and replaces.  Some functions 
(e.g., grep, grepl, etc.) are used for searching for matches and functions whereas sub and gsub 
are used for performing replacement. 

• sub() 

• gsub() 

• grep() 

sub and gsub Functions 

The sub() and gsub() function in R is used for substitution as well as replacement operations. 
The sub() function will replace the first occurrence leaving the other as it is. On the other 
hand, the gsub() function will replace all the strings or values with the input strings. 

Usage: 

sub(old, new, string) 

gsub(old, new, string) 

Example: 

> y = "Mr. Singh is the smart one. Mr. Singh is funny, too." 

> y 

[1] "Mr. Singh is the smart one. Mr. Singh is funny, too."  

> sub("Mr. Singh","Professor Jha", y) 

[1] "Professor Jha is the smart one. Mr. Singh is funny, too." 

> gsub("Mr. Singh","Professor Jha", y) 

[1] "Professor Jha is the smart one. Professor Jha is funny, too." 

 

grep Function 

grep() function in R Language is used to search for matches of a pattern within each element 
of the given string.  If its value is TRUE, it returns the matching elements vector, else return 
the indices vector.  value = FALSE is default. 

Usage: 

grep(pattern, x, value=TRUE/FALSE) 

Examples: 

grep(pattern, x, value = TRUE) returns a character vector containing the selected elements 
of x. 
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> x = c("R Course", "exercises", "include examples of R language") 

> grep("ex", x , value=T) 

[1] "exercises" "include examples of R language" 

grep(pattern, x, value = FALSE) returns an integer vector of the indices of the elements of x 
that yielded a match.  

> x = c("R Course", "exercises", "include examples of R language")  

> grep("ex", x , value=F) 

[1] 2 3 

 

Combining two Strings 

The c() in R programming language function is used to combine two strings. 

Example: 

> x = "R course 24.07.2022" 

> y = "Number of participants: 25" 

> c(x,y) 

[1] "R course 24.07.2022" "Number of participants: 25" 

 

eval Function 

eval() function in R Language is used to evaluate an expression passed to it as argument. 

Usage: 

eval(x), where x is an object to be evaluated 

Example: 

> eval("6+8") 

[1] "6+8" 

> eval(6+8) 

[1] 14 

> eval("6+8 is Fourteen") 

[1] "6+8 is Fourteen" 

https://www.geeksforgeeks.org/introduction-to-r-programming-language/
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The eval() function evaluates an expression, but "6+8" is a string, not an expression whereas 
6+8 is not an expression so it evaluates. 

 

parse Function 

parse() function in R language is used to convert an object of character class to an object of 
expression class.  parse() with text=string is used to change the string into an expression. 

Usage: 

parse(x), where x is an object of character class. 

Example: 

> eval("6+8") 

[1] "6+8" 

> class("6+8") 

[1] "character" 

> eval(parse(text="6+8")) 

[1] 14 

> class(parse(text="6+8")) 

[1] "expression" 
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8.  DATA FRAMES 

A data frame is a table or a two-dimensional array-like structure in which each column 
contains values of one variable and each row contains one set of values from each column. 
Following are the characteristics of a data frame. The column names should be non-empty. 
The row names should be unique. Data frames contain complete data sets that are mostly 
created with other programs (spreadsheet-files, software SPSS-files, Excel-files etc.). 
Variables in a data frame may be numeric (numbers) or categorical (characters or factors). 

Example: 

An example data frame painters is available in the library MASS. 

> library(MASS) 

> painters 

                       Composition       Drawing       Colour       Expression       School 

Da Udine                  10              8     16                    3            A 

Da Vinci                   15             16                4                       14               A 

Del Piombo                       8                   13             16                         7                A  

Del Sarto                   12                 16               9                         8                A  

Fr. Penni                   0                  15               8                         0                A 

                                           .                     .                   .                         .                  . 

                                           .                     .                   .                         .                  . 

                                           .                     .                   .                         .                  . 

Here, the names of the painters serve as row identifications, i.e., every row is assigned to the 
name of the corresponding painter. 

Row Names 

All data frames have a row names attribute, a character vector of length the number of rows 
with no duplicates nor missing values. 

Usage: 

rownames(x), where x is an object of class “data.frame”. 

Example: 

> rownames(painters) 

[1] "Da Udine"   "Da Vinci"    "Del Piombo"  
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[4] "Del Sarto"   "Fr. Penni"    "Guilio Romano"  

[7] "Michelangelo"   "Perino del Vaga"   "Perugino"  

[10] "Raphael"   "F. Zucarro"    "Fr. Salviata"  

[13] "Parmigiano"   "Primaticcio"                             "T. Zucarro"  

[16] "Volterra"   "Barocci"    "Cortona"  

[19] "Josepin"                 "L. Jordaens"                              "Testa"  

[22] "Vanius"                 "Bassano"                                   "Bellini"  

[25] "Giorgione"   "Murillo"    "Palma Giovane"  

Column Names 

colnames() method in R is used to rename and replace the column names of the data frame 
in R. The columns of the data frame can be renamed by specifying the new column names as 
a vector. The new name replaces the corresponding old name of the column in the data frame. 

Usage: 

colnames(x), where x is an object of class “data.frame”. 

Example: 

> colnames(painters) 

[1] "Composition" "Drawing" "Colour" "Expression" "School" 

Variables 

The data set contains four numerical variables (Composition, Drawing, Colour and 
Expression), as well as one factor variable (School). 

Example: 

> is.numeric(painters$School)  

[1] FALSE 

> is.factor(painters$School)  

[1] TRUE 

> is.numeric(painters$Drawing)  

[1] TRUE 

> is.factor(painters$Drawing)  

[1] FALSE 
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Summary Function 

The summary() command will provide you with a statistical summary of your data. The output 
of summary command depends on the object you are looking at. It gives the output as the 
largest value in data, the least value or mean and median and another similar type of 
information. 

Usage: 

summary(x), where x is an object for which a summary is desired. 

Example: 

> summary(painters) 

    Composition            Drawing                   Colour                Expression                 School  

Min.          :  0.00   Min.        :   6.00    Min.       :  0.00     Min.       :  0.000       A          :10 

1st Qu.     :  8.25    1st Qu.   : 10.00    1st Qu.  :  7.25      1st Qu. :  4.000       D          :10 

Median    :12.50   Median   : 13.50   Median  :10.00     Median :   6.000      E           : 7 

Mean       :11.56   Mean       :12.46    Mean     :10.94     Mean    :    7.667     G           : 7 

3rd Qu.    :15.00    3rd Qu.   :15.00     3rd Qu. :16.00      3rd Qu.: 11.500      B           : 6 

Max.         :18.00   Max.        :18.00     Max.      :18.00     Max.      :18.000      C            : 6 

                                                                                                                                     (Other): 8 

Test if we are dealing with a data frame: 

> is.data.frame(painters)  

[1] TRUE 

Creating data frames 

We can create a data frame in R by passing the variable a,b,c,d into the data. frame() function. 
We can R create data frame and name the columns with name() and simply specify the name 
of the variables. 

Example: 

> x = 1:16 

> y = matrix(x, nrow=4, ncol=4) 

> z = letters[1:16] 

> x  

[1] 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  
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> y  

         [,1]      [,2]    [,3]   [,4]  

[1,]      1          5        9     13  

[2,]      2          6      10     14  

[3,]      3          7      11     15  

[4,]      4          8      12     16  

> z 

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" 

  

> datafr = data.frame(x, y, z) 

> datafr 

x  X1  X2  X3  X4  z 

1  1  1  5  9  13  a 

2  2  2  6  10  14  b 

3  3  3  7  11  15  c 

4  4  4  8  12  16  d 

5  5  1  5  9  13  e 

6  6  2  6  10  14  f 

7  7  3  7  11  15  g 

8  8  4  8  12  16  h 

9  9  1  5  9  13  i 

10  10  2  6  10  14  j 

11  11  3  7  11  15  k 

12  12  4  8  12  16  l 

13  13  1  5  9  13  m 

14  14  2  6  10  14  n 

15  15  3  7  11  15  o 

16  16  4  8  12  16  p 
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Structure of the data 

Data structures in R programming are tools for holding multiple values. R's base data 
structures are often organized by their dimensionality (1D, 2D, or nD) and whether they're 
homogeneous (all elements must be of the identical type) or heterogeneous (the elements 
are often of various types). 

Usage: 

str(x), where x is any R object about which you want to have some information. 

Example: 

> str(painters) 

'data.frame' :            54     obs.      of    5  variables:  

$ Composition:         int          10   15    8    12    0    15     8    15    4    17 ...  

$ Drawing        :         int          8     16   13   16   15   16   17   16   12   18 ...  

$ Colour           :         int          16    4     16   9     8     4      4     7     10   12 ...  

$ Expression   :         int           3     14    7     8     0   14      8       6   4     18 ...  

$ School           :         Factor    w /   8    levels   "A",     "B",   "C",   "D"..: 1 1 1 1 1 1 1 1 ...  

Note:  int means integer. 

 

How to extract variable from a data frame? 

▪ Extract a variable from data frame using $ 

▪ Variables can be extracted using the $ operator followed by the name of the variable. 

Suppose we want to extract information on variable School from the data set painters. 

> painters$School  

[1]    A  A  A  A  A  A  A  A  A  A  B  B  B  B  B  B  C  C  C  C  C  C  D  D  D  D  D  

[28]  D  D  D  D  D  E  E  E  E  E  E  E  F  F  F  F  G  G  G  G  G  G  G  H  H  H  H  

Levels: A  B C  D  E  F  G  H 

How to extract data from a data frame? 

▪ The data from a data frame can be extracted by using the matrix-style [row, column] 
indexing. 

Suppose, if we want to extract information on the first painter Da Udine on the variable 
Composition from the data set painters. 
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> painters["Da Udine", "Composition"]  

[1] 10 

Subsets of a Data Frame 

A Data Frame is a two-dimensional data structure, i.e., data is aligned in a tabular fashion in 
rows and columns. It is the process of selecting a set of desired rows and columns from the 
data frame. 

Usage: 

subset(x), where x is an object to be subsetted. 

Example: 

> subset(painters, School=='F') 

    Composition     Drawing      Colour    Expression       School 

Durer                                               8                 10       10                     8                         F 

Holbein                                           9                 10               16                    13      F 

Pourbus                   4            15      6                      6     F 

Van Leyden                   8             6      6                      4     F 

Splitting of a data frame 

Using the 'product' and 'condition' variables, divide the data frame into groups. Use the 
unsplit() function to restore the original data frame from the split() method. The unsplit() 
method has the following syntax. Use the split() function in R to split a vector or data frame. 

Usage: 

split(x), where x is a vector or data frame containing values to be divided into groups. 

Example: 

Following command splits painters with respect to School (A,B,C,… categories) 

> splitted = split(painters, painters$School) 

> splitted 

$A 

        Composition        Drawing          Colour      Expression          School 

Da Udine                                  10                     8                 16                       3                    A 

Da Vinci                                    15                   16                   4                     14                    A 
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Del Piombo                                8                   13                 16                       7                    A 

Del Sarto                                  12                   16                    9                       8                   A 

Fr. Penni                                     0                   15                    8                       0                   A 

Guilio Romano                        15                   16                    4                     14                   A 

Michelangelo                            8                   17                    4                        8                  A 

Perino del Vaga                      15                   16                    7                        6                  A 

Perugino                                    4                   12                  10                        4                  A 

Raphael                                    17                  18                  12                      18                  A 

 

$B 

                         Composition            Drawing           Colour           Expression          School 

F. Zucarro                         10                      13                      8                           8                     B 

Fr. Salviata                       13                      15                       8                           8                     B 

Parmigiano                      10                      15                       6                           6                     B 

Primaticcio                      15                      14                        7                         10                    B 

T. Zucarro                        13                      14                      10                           9                    B 

Volterra                           12                      15                         5                           8                    B 

 

And so on. 
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9.  STATISTICAL FUNCTIONS 
Suppose there are 10 persons coded into two categories as male and female.  

 M, F, M, F, M, M, M, F, M, M. 

Use a1 and a2 to refer to male and female categories.  There are 7 male and 3 female persons, 
denoted as n1 = 7 and n2 = 3.  The number of observations in a particular category is called 
the absolute frequency. 

The relative frequencies of a1 and a2 are 

 

This gives us information about the proportions of male and female. 

Absolute and Relative Frequencies 
Table uses the cross-classifying factors to build a contingency table of the counts at each 
combination of factor levels. In R, the command table() creates the absolute frequency of 
the variable of the data file. 

Usage: 

• table(x) 

• table(x)/length(x), where x is one or more objects which can be interpreted as factors 
or a list. 

Example: 

• ABSOLUTE FREQUENCY 

> gender = c(1, 2, 1, 2, 1, 1, 1, 2, 1, 1)  

> gender  

[1] 1 2 1 2 1 1 1 2 1 1 

> table(gender) 

1 2  

7 3 

• RELATIVE FREQUENCY 

> table(gender)/length(gender)  
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 1      2  
0.7   0.3 

 

Partition Values 

The Partition Values are the measures used in statistics for dividing the total number for 
dividing the total number of observations of a distribution into certain number of equal parts. 

Quartile: Divides the data into 4 equal parts. 

Decile: Divides the data into 10 equal parts. 

Percentile: Divides the data into 100 equal parts. 

 

Quantile 

The generic function quantile produces sample quantiles corresponding to the given 
probabilities. The smallest observation corresponds to a probability of 0 and the largest to a 
probability of 1. 

Usage: 

• quantile(x, ...) 

• quantile(x, probs = seq(0, 1, 0. 25),...), where x is a numeric vector. 

Example: 

> marks = c(68, 82, 63, 86, 34, 96, 41, 89, 29, 51, 75, 77, 56, 59, 42) 

> quantile(marks)  

 0% 25% 50% 75% 100%  

29.0 46.5 63.0 79.5 96.0 

> quantile(marks, probs=c(0,0.25,0.5,0.75,1)) 

 0% 25% 50% 75% 100%  

29.0 46.5 63.0 79.5 96.0 

 

Variability 

Variability (also known as Statistical Dispersion) is one of the features of descriptive statistics. 
Variability shows the spread of a data set around a point. 

Data: 𝑥1, 𝑥2, … , 𝑥𝑛  where 𝑥  is a data vector. 
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To find the variability of this data: 

> marks = c(68, 82, 63, 86, 34, 96, 41, 89, 29, 51, 75, 77, 56, 59, 42) 

• Variance 

 

Usage: var(x), where x is a numeric vector, matrix or data frame. 

Example: 

> var(marks) 

[1] 439.3143 

• Range 

maximum(𝑥1, 𝑥2, … , 𝑥𝑛) - minimum(𝑥1, 𝑥2, … , 𝑥𝑛) 

USAGE: max(x) - min(x), where x is any numeric or character objects. 

• Interquartile Range 

Third quartile(𝑥1, 𝑥2, … , 𝑥𝑛) - First quartile(𝑥1, 𝑥2, … , 𝑥𝑛) 

Usage: IQR(x), where x is a numeric vector. 

Example:  

> IQR(marks) 

[1] 33 

• Quartile Deviation 

 [Third quartile(𝑥1, 𝑥2, … , 𝑥𝑛) - First quartile(𝑥1, 𝑥2, … , 𝑥𝑛)]/2 = Interquartile range/2 

Usage: IQR(x)/2, where x is a numeric vector. 

Example: 

> IQR(marks)/2 

[1] 16.5 

 

Correlation 
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Let x,y be the two data vectors 

Data: 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛) 

• Covariance 

 

Usage: cov(x,y): covariance between x and y 

Example: 

> cov( c(1,2,3,4), c(1,2,3,4) ) 

[1] 1.666667 

> cov( c(1,2,3,4), c(-1,-2,-3,-4) ) 

[1] -1.666667 

• Correlation Coefficient 

Measures the degree of linear relationship between the two variables. 

 

Usage: cor(x,y): correlation between x and y 

Example: 

• Exact positive linear dependence 

> cor( c(1,2,3,4), c(1,2,3,4) ) 

[1] 1 

• Exact negative linear dependence 

> cor( c(1,2,3,4), c(-1,-2,-3,-4) ) 

[1] -1 
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Graphics and Plots 

The graphics package is an R base package for creating graphs. The plot function is the most 
basic function to create plots in R. With this plotting function you can create several types of 
plots, like line charts, bar plots or even boxplots, depending on the input. 

Bar Plots 

A bar plot is used to display the relationship between a numeric and a categorical variable. 
Each entity of the categoric variable is represented as a bar. The size of the bar represents its 
numeric value. 

Usage: 

barplot(x), where x refers to the vector of values for which the barplot is desired. 

Example: 

> gender = c(1, 2, 1, 2, 1, 1, 1, 2, 1, 1)  

> gender 

[1] 1 2 1 2 1 1 1 2 1 1 

> barplot(gender) 

  

Pie Diagram 

A pie chart is a representation of values as slices of a circle with different colors. The slices are 
labeled and the numbers corresponding to each slice is also represented in the chart. In R the 
pie chart is created using the pie() function which takes positive numbers as a vector input. 

Usage: 
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pie(x), where x refers to a vector of values for which the Pie diagram is desired. 

Example: 

> pie(gender) 

   

Histogram 

A histogram represents the frequencies of values of a variable bucketed into ranges. 
Histogram is similar to bar chat but the difference is it groups the values into continuous 
ranges. Each bar in histogram represents the height of the number of values present in that 
range. R creates histogram using hist() function. 

Usage: 

hist(x), where x refers to a vector of values for which the histogram is desired. 

Example: 

> hist(gender) 
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Boxplot 

Boxplots are a measure of how well distributed is the data in a data set. It divides the data set 
into three quartiles. This graph represents the minimum, maximum, median, first quartile and 
third quartile in the data set. 

Usage: 

boxplot(x), where x refers to the vector of values for which the boxplot is desired. 

Example: 

> marks = c(68, 82, 63, 86, 34, 96, 41, 89, 29, 51, 75, 77, 56, 59, 42) 

> boxplot(marks) 
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Scatter Plot 

A scatter plot is a set of dotted points to represent individual pieces of data in the horizontal 
and vertical axis. A graph in which the values of two variables are plotted along X-axis and Y-
axis, the pattern of the resulting points reveals a correlation between them. 

Usage: 

• plot(x, y) 

• plot(x, y, type) 

type 

“p" for points “b" for both 

“l" for lines “c" for the lines part alone of “b" 

“o" for both ‘overplotted’ “s" for stair steps. 

“h" for ‘histogram’ like (or ‘high-density’) vertical lines 

Parameters: 

• x: This parameter sets the horizontal coordinates. 

• y: This parameter sets the vertical coordinates. 

• xlab: This parameter is the label for horizontal axis. 

• ylab: This parameter is the label for vertical axis. 

• main: This parameter main is the title of the chart. 

• xlim: This parameter is used for plotting values of x. 

• ylim: This parameter is used for plotting values of y. 

• axes: This parameter indicates whether both axes should be drawn on the plot. 

Examples: 
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Daily water demand in a city depends upon weather temperature. We know from experience 
that water consumption increases as weather temperature increases. Data on 27 days is 
collected as follows: 

Daily water demand (in million litres), Temperature (in centigrade) 

> water = c(33710, 31666, 33495, 32758, 34067, 36069, 37497, 33044, 35216, 35383, 37066, 
38037, 38495, 39895, 41311, 42849, 43038, 43873, 43923, 45078, 46935, 47951, 46085, 
48003, 45050, 42924, 46061) 

> temp = c(23,25,25,26,27,28,30,26,29,32,33,34,35,38,39,42,43,44,45,45.5, 

45,46,44,44,41,37,40) 

> plot(water, temp) 

 

> plot(water, temp, "l") 
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> plot(water, temp, "b") 

 

> plot(water, temp, "o") 
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> plot(water, temp, "h") 

 

> plot(water, temp, "s") 
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> plot(water, temp, xlab=" Daily Water Consumption ", ylab=" Day Temperature ", 
main="Daily Water Consumption versus Day Temperature") 
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Smooth Scatter Plot 

In statistical, several Scatter plot smoothing methods are available to fit a function through 
the points of a scatterplot to best represent the relationship between the variables. 

Usage: 

scatter.smooth(x,y), where x, y refers to the arguments that provide the x and y coordinates 
for the plot. 

Example: 

>scatter.smooth(water,temp) 

 

More Functions: 

• contour() for contour lines 

• dotchart() for dot charts (replacement for bar charts) 

• image() pictures with colors as third dimension 

• mosaicplot() mosaic plot for (multidimensional) diagrams of categorical variables 
(contingency tables) 

• persp() perspective surfaces over the x–y plane 
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10.  R PROGRAMMING 

Steps to write a programme: 

♦ A programme is a set of instructions or commands which are written in a sequence of 

operations i.e., what comes first and what comes after that. 

♦ The objective of a programme is to obtain a defined outcome based on input variables. 

♦ The computer is instructed to perform the defined task. 

♦ Computer is an obedient worker but it has its own language. 

♦ We do not understand computer’s language and computer does not understand our 

language. 

♦ The software helps us and works like an interpreter between us and computer. 

♦ We say something in software’s language and software informs it to computer. 

♦ Computer does the task and informs back to software. 

♦ The software translates it to our language and informs us. 

♦ Programme in R is written as a function using function. 

♦ Write down the objective, i.e., what we want to obtain as an outcome. 

♦ Translate it in the language of R.  

♦ Identify the input and output variables. 

♦ Identify the nature of input and output variables, i.e., numeric, string, factor, matrix 

etc. 

♦ Input and output variables can be single variable, vector, matrix or even a function 

itself. 

♦ The input variables are the component of function which are reported in the argument 

of function() 

♦ The output of a function can also be input to another function. 

♦ The output of an outcome can be formatted as per the need and requirement. 

 

Tips 

❖ Loops usually slower the speed of programmes, so better is to use vectors and 

matrices. 

❖ Use # symbol to write comment to understand the syntax. 

❖ Use the variable names which are easy to understand. 

❖ Don’t forget to initialize the variables. 
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Example: 

Suppose we want to compute 

 

At a Glance: 

> f = function(x) 

{ 

if(x>0) {exp((x+log(1+x^3))/x^2)} 

 else if(x==0) {10} 

 else {(2+x^3)/x} 

} 

 

Output: 

> f(8) 

[1] 1.249201 

> f(-4) 

[1] 15.5 

> f(0) 

[1] 10 
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APPLICATIONS 

Real-Life uses of R 
R applications are not enough until you don’t know how people/companies are using the R 

programming language. 

 

1. Facebook – Facebook uses R to update status and its social network graph. It is also 

used for predicting colleague interactions with R. 

2. Ford Motor Company – Ford relies on Hadoop. It also relies on R for statistical analysis 

as well as carrying out data-driven support for decision making. 

3. Google – Google uses R to calculate ROI on advertising campaigns and to predict 

economic activity and also to improve the efficiency of online advertising. 

4. Foursquare – R is an important stack behind Foursquare’s famed recommendation 

engine. 

5. Microsoft – Microsoft uses R for the Xbox matchmaking service and also as a statistical 

engine within the Azure ML framework. 

6. Mozilla – It is the foundation behind the Firefox web browser and uses R to visualize 

web activity. 

7. New York Times – R is used in the news cycle at The New York Times to crunch data 

and prepare graphics before they go for printing. 

8. Thomas Cook – Thomas Cook uses R for prediction and also Fuzzy Logic Systems to 

automate price settings of their last-minute offers. 

9. National Weather Service – The National Weather Service uses R at its River Forecast 

Centers. Thus, it is used to generate graphics for flood forecasting. 

10. Twitter – R is part of Twitter’s Data Science toolbox for sophisticated statistical 

modeling. 

 

https://data-flair.training/blogs/fuzzy-logic-systems/
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Pros and Cons of R 

R is one of the most popular languages for statistical modeling and analysis. But like every 
other programming language, R has its own set of benefits and limitations.  R is a continuously 
evolving language. This means that many of the cons will gradually fade away with the future 
updates of R. 

Advantages of R:   

• R is the most comprehensive statistical analysis package. As new technology and 

concepts often appear first in R. 

• As R programming language is an open source. Thus, you can run R anywhere and at 

any time. 

• R programming language is suitable for GNU/Linux and Windows operating system. 

• R programming is cross-platform which runs on any operating system. 

• In R, everyone is welcome to provide new packages, bug fixes, and code 

enhancements. 

Disadvantages of R:   

• In the R programming language, the standard of some packages is less than perfect. 

• Although, R commands give little pressure to memory management. So R 

programming language may consume all available memory. 

• In R basically, nobody to complain if something doesn’t work. 

• R programming language is much slower than other programming languages such as 

Python and MATLAB. 

We got to know the positive aspects of R Language which place us a step ahead towards 
generating our interest in learning R. We also inferred many of its weaknesses but, most of 
them are under the correction phase through several upgrades and further development. We 
believe that many of the limitations will be eradicated in future. 

 

 

 

 

 

 



   
 

66 

 
 

 

CONCLUSION 

 
As a conclusion, R is the most popular analytic tool for data analysis and statistics, having 

approximately 2 million users. It is ideal for all data analytics operations. 

Being an open-source language, it is continuously expanding, people from all over the world 

are contributing to its development. 

The platform independence, diversity of packages, and robust graphical features add an 

advantage to this primary tool in the analytics industry. 

Due to a shortfall of data analysts, various jobs are available for R programmers in the Data 

Analyst Industry. Both novice and professionals have a place in this industry. 

Apart from the IT industry, several other industries are using data to transform problems into 

solutions - 

• Financial Sectors 

• Banks 

• Health Organizations 

• Manufacturing companies 

• Academia 

• Governmental departments 

Companies like Facebook, Google, Twitter are adopting R to meet their analytical goals. 

Emerging startups are moving on the same path. 

The adoption of R in data-driven companies is increasing rapidly and will flourish in the years 

to come. 

However, these organizations expect their new employees to be up to date with R. They want 

them to be familiar with R and its use for Data Analytics. With so many advantages, this 

language will continue to grow in popularity in the world of statistical computing and data 

analytics. 
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            QUEUING THEORY 

 

INTRODUCTION 

Queuing theory is a branch of mathematics that studies and models the act of 

waiting in lines. This paper will take a brief look in to the formulation of the queuing 

theory along with examples of the models and applications of their use.The goal of 

the paper is to provide the reader with enough background in order to properly model 

a basic queuing system in to one of the categories we will look at ,when possible. 

Also, the reader should begin to understand the basic ideas of how to determine use 

full information such as average waiting times from a particular queuing system  

A common situation that occurs in everyday life is that of queuing or waiting 

in a line. Queues (waiting lines) are usually seen at bus stops, ticket booths, doctors' 

clinics, bank counters, traffic lights and so on queues are also found in workshops 

where the machines wait to be repaired; at a tool crib where the mechanics wait to 

receive tools; in a warehouse where items wait to be used, incoming calls wait to 

mature in the telephone exchange, trucks wait to be unloaded, airplanes wait either to 

take off or land and so on. 

In general, a queue is formed at a queuing system when either customers 

(human beings or p entities) requiring service wait due to the fact that the number of 

customers exceeds the number of service facilities, or service facilities do not work 

efficiently and take more time than prescribed to serve a customer. Queuing theory 

can be applied to a variety of operational situations where it is not possible to 

accurately predict the rate (or time) of customers and service rate (or time) of service 

facility or facilities. In particular, it can be used to determine the level of service (either 

the service rate or the number of service facilities) that balances the following two 

conflicting costs: 

(i) cost of offering the service  

(ii) cost incurred due to delay in offering service 

 

The first cost is associated with the service facilities and their operation, and 

the second represents the cost of customer's waiting time. Obviously, an increase in 

the existing service facilities would reduce the customer's waiting time. 
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Conversely, decreasing the level of service would result in long queue(s). This 

means an increase (decrease) in the level of service increases (decreases) the cost of 

operating service facilities but decreases (increases)the cost of waiting. Figure  

illustrates both types of costs as a function of level of service. The optimumservice 

level is one that minimizes the sum of the two costs. 

 

 

 

Since cost of waiting is difficult to estimate, it is usually measured in terms of 

loss of sales or goodwillwhen the customer is a human being who has no sympathy 

with the service. But, if the customer is a machine waiting for repair, then cost of 

waiting is measured in terms of cost of lost production. Many practical situations in 

which study of queuing theory can provide solution to waiting line problems are listed 

in Table  

 

 

 

 

 

 

Situation Customers Service Facilities 
Petrol 

pumps 

(station) 

Automobiles Pumps/Passionel 

Hospitals Patients Doctors/Nurses/Rooms 

Airport Aircraft Runways 

Post office Letters Sorting System 
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 DEFINITIONS 

 Customer: A person (or object) arriving at a service station for availing service. 

Service station (or Service facility): The place where service is provided to the 

customers. 

Queue: A line or a sequence of people/objects awaiting their twin to be attended to or 

serviced.  

Waiting time in queue: The time that a customer spends in the queue before being 

taken up for service. It is the difference between the time of arrival of a customer and 

the time at which the service station takes-up the service for the customer. 

 Line length (or queue size) This refers to the total number of customers in the system 

who are actually waiting in the line and not being serviced. Queue length may be 

defined as the number of units waiting in a queue or present in a system. 

 NOTATIONS 

 The notations used for analyzing of a queuing system are as follows: 

n = number of customers in the system (waiting and in service) 

𝑃0= Probability of n customers in the system  

𝛌 = average (expected) customer arrival rate or  in the queuing system 

 𝛍 = average (expected) service rate or average number of customers served per unit 

time at the place of service 

𝜆

µ
 = ρ = 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛(1/µ)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑡𝑒𝑟 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒(
1

ℷ
)

 

      𝜌 = traffic intensity or server utilization factor 

𝑃0 = probability of no customer in the system, 1-(ℷ/μ) 

s = number of service channels (service facilities or servers) 

N = maximum number of customers allowed in the system  

𝐿𝑠= average (expected) number of customers in the system (waiting and in service) 

Job 

interviews 

Applicants Interviewers 
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𝐿𝑞= average (expected) number of customers in the queue (queue length)  

L= average (expected) length of non-empty queue 

𝑊𝑠 = average (expected) waiting time in the system (waiting and in service)  

𝑊𝑞= average (expected) waiting time in the queue 

𝑃𝑊 = probability that an arriving customer has to wait (system being busy),  

1-𝑃0= (𝛌/µ). 

 

QUEUEING SYSTEM 

The mechanism of a queueing process is very simple. Customers arrive at a 

service counter and are attended to by one or more of the servers. As soon as a 

customer is served, it departs from the system. Thus a queueing system can be 

described as consisting of customers arriving for service, waiting for service if it is 

not immediate, and leaving the system after being served. The general framework of 

a queueing system is shown below. 

 

 

ELEMENTS OF A QUEUEING SYSTEM 

The basic elements of a queucing system are as follows: 

1. Input (or Arrival) Process. This element of queueing system is 

concerned with the pattern in which the customers arrive for service. Input source can 

be described by following three factors: 
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(a) Size of the queue. If the total number of potential customers requiring 

service are only few, then size of the input source is said to be finite. On the other 

hand, if potential customers requiring service are sufficiently large in number, then 

the input source is considered to be infinite. 

Also, the customers may arrive at the service facility in batches of fixed size or 

of variable side or one by one. In the case when more than one arrival is allowed to 

enter the system simultaneously (entering the system does not necessarily mean 

entering into service), the input is said to occur in bulk or in batches. Ships discharging 

cargo at a dock, families visiting restaurants, etc. are the examples of bulk arrivals. 

(b) Pattern of arrivals. Customers may arrive in the system at known (regular 

or otherwise) times, or they may arrive in a random way. In case the arrival times are 

known with certainty, the queueing problems are categorized as deterministic models. 

On the other hand, if the time betweet successive arrivals (inter-arrival times) is 

uncertain, the arrival pattern is measured by either an arrival rate or inter arrival time. 

These are characterised by the probability distribution associated with this random 

process. The most common stochastic queueing models assume that arrival rate follow 

a Poisson distribution and/or the inter-arrival times follow an exponential distribution. 

(c) Customer’s behaviour. It is also necessary to know the reaction of a 

customer upon entering the system. A customer may decide to wait no matter how 

long the queue becomes (patient customer or if the queue is too long to suit him, may 

decide not to enter it (impatient customer). Machines arriving at the maintenance shop 

in a plant are examples of patient customers. For impatien customers, 

(i) if a customer decides not to enter the queue because of its length, he is said 

to have balked.  

(ii) if a customer enters the queue, but after some time loses patience and 

decides to leave, then he is said to have reneged. 

(iii) if a customer moves from one queue to another (providing similar/different 

services) for his personal economic gains, then he is said to have jockeyed for position. 

The final factor to be considered regarding the input process is the manner in 

which the arrival pattern changes with time. The input process which does not change 

with time is called a stationary input process. If it is time dependent then the process 

is termed as transient. 
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2. Queue Discipline. It is a rule according to which customers are selected 

for service when queue has been formed. The most common queue discipline is the 

"first come, first served (FCFS or the first in, first out" (FIFO) rule under which the 

customers are serviced in the strict order at their arrivals. Other queue discipline 

include: "last in, first out" (LIFO) rule according to which the last arrival in the system 

is serviced first. 

This discipline is practised in most cargo handling situations where the last item 

loaded is removed first. Another example may be from the production process, where 

items arrive at a workplace and are stacked one on top of the other. Item on the top of 

the stack is taken first processing which is the last one to have arrived for service. 

Besides these, other disciplines “selection for service in random order” (SIRO) rule 

according to which the arrivals are serviced randomly irrespective of their arrivals in 

the system; and a variety of priority schemes-according to which a customer's service 

is done in preference over some other customer. 

Under priority discipline, the service is of two types: 

 (i) Pre-emptive priority. Under th the customers of high priority are given 

service over the low priority customers. That is lower priority customer's service is 

interrupted (pre-empted) to start service for a priority customer. The initial service is 

resumed again as soon as the highest priority customer has been served. 

(ii) Non pre-emptive priority. In this case the highest priority customer goes 

ahead in the queue but his service is started only after the completion of the service of 

the currently being served customers. 

 

3. Service Mechanism. The service mechanism is concerned with service 

time and service facilities. Service time is the time interval from the commencement 

of service to the completion of service. If there are infinite number of servers then all 

the customers are served instantaneously on arrival and there will be no queue.  

If the number of servers is finite, then the customers are served according to a 

specific order. Further, the customers may be served in batches of fixed size or of 

variable size rather than individually by the same server, such as a computer with 

parallel processing or people boarding a bus. The service system in this case is termed 

as bulk service system. 
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In the case of parallel channels "fastest server rule" (FSR) is adopted. For its 

discussion we suppose that the customers arrive before parallel service channels. If 

only one service channel is free. then incoming customer is assigned to free service 

channel. But it will be more efficient to assume that an incoming customer is to be 

assigned a server of largest service rate among the free ones. Service facilities can be 

of the following types: 

(a) Single queue-one server, i.e., one queue-one service 

channel, wherein the customer waits till the service point is ready to take him in for 

servicing. 

 
(b)Single queue-several servers wherein the customers wait in a single 

queue until one of the service channels is ready to take them in for servicing. 

 

 (c) Several queues-one server wherein there are several queues and the 

customer may join any one of these but there is only one service channel. 
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(d) Several servers. When there are several service channels available to 

provide service, much depends upon their arrangements. They may be arranged in 

parallel or in series or a more complex combination of both, depending on the design 

of the system's service mechanism. 

 

By parallel channels, we mean a number of channels providing identical service 

facilities. Further, customers may wait in a single queue until one of the service 

channels is ready to serve, as in a barber shop where many chairs are considered as 

different service channels; or customers may form separate queues in front of each 

service channel as in the case of super markets.  

For series channels, a customer must pass through all the service channels in 

sequence before service is completed. The situations may be seen in public offices 

where parts of the service are doneat different service counters. 

 

4. Capacity of the System. The source from which customers are generated 

may be finite or infinite. A finite source limits the customers arriving for service. i.e., 

there is a finite limit to the maximum queue size. The queue can also be viewed as one 

with forced balking where a customer is forced to balk if he arrives at a time when 
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queue size is at its limit. Alternatively, an infinite source is forever "abundant" as in 

the case of telephone calls arriving at a telephone exchange. 

 

    OPERATING CHARACTERISTICS OF A QUEUEING SYSTEM: 

 Some of the operational characteristics of a queueing system, that are of general 

interest for the evaluation of the performance of an existing queueing system and to 

design a new system are as follows: 

1. Expected number of customers in the system denoted by E (n) or L is the 

average number of customers in the system, both waiting and in service. Here, n stands 

for the number of customers in the queueing system. 

 2. Expected number of customers in the queue denoted by E (m) or Lq, is the 

average number a customers waiting in the queue. Here m= n-1, i.e, excluding the 

customer being served. 

3. Expected waiting time in the system denoted by E(v) or W is the average 

total time spent by a customer in the system. It is generally taken to be the waiting 

time plus servicing time. 

4. Expected waiting time in queue denoted by E (w) or Wqis the average time 

spent by a customer in the queue before the commencement of his service. 

5. The server utilization factor (or busy period) denoted by P (= 𝜆 µ⁄ ) is the 

proportion of time that a server actually spends with the customers. Here, 𝛌 stands for 

the average number of custome arriving per unit of time and 𝛍 stands for the average 

number of customers completing service per of time.  

The server utilization factor is also known as traffic intensity or the clearing 

ratio. 

     DETERMINISTIC QUEUEING SYSTEM 

A queueing system wherein the customers arrive at regular intervals and the 

service time for each customer is known and constant, is known as a deterministic 

queueing system. 

Let the customers come at the teller counter of a bank for withdrawl every 3 

minutes. Thus the interval between the arrival of any two successive customers, that 

is the inter-arrival time, is exactly 3 minutes. Further, suppose that the incharge of that 
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particular teller takes exactly 3 minutes to serve a customer. This implies that the 

arrival and service rates are both equal to 20 customers per hour. In this situation there 

shall never be a queue and the incharge of the teller shall always be busy with servicing 

of customers. 

 Now suppose instead, that the incharge of the teller can serve 30 customers per 

hour, i.e.. he takes 2 minutes to serve a customer and then has to wait for one minute 

for the next customer to come for service. Here also, there would be no queue, but the 

teller is not always busy.  

Further, suppose that the incharge of the teller can serve only 15 customers per 

hour, i.e., he takes 4 minutes to serve a customer. Clearly, in this situation he would 

be always busy and the queue length will increase continuously without limit with the 

passage of time. This implies that when the service rate is less than the arrival rate, 

the service facility cannot cope with all the arrivals and eventually the system leads to 

an explosive situation. In such situations, the problem can be resolved by providing 

additional service facilities, like opening parallel counters. We can summarize the 

above as follows: 

Let the arrival rate be 𝛌 customers per unit time and the service rate be 𝛍 

customers per unit time. Then, 

 

(i) if  λ > µ, the waiting line (queue) shall be formed and will increase 

indefinitely: the service facility would always be busy and the service 

system will eventually fail. 

(ii)  if  λ ≤ µ, there shall be no queue and hence no waiting time: the 

proportion of time the service facility would be idle is 1-λ/μ. 

 

However, it is easy to visualize that the condition of uniform arrival and 

uniform service rates has a very limited practicability. Generally, the arrivals and 

servicing time are both variable and uncertain. Thus, variable arrival rates and 

servicing times are the more realistic assumptions. The probabilistic queueing models 

are based on these assumptions. 

PROBABILITY DISTRIBUTIONS IN QUEUEING SYSTEMS 

It is assumed that customers joining the queueing system arrive in a random 

manner and follow a Poisson distribution or equivalently the inter-arrival times obey 
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exponential distribution. In most of the cases, service times are also assumed to be 

exponentially distributed. It implies that the probability of service completion in any 

short time period is constant and independent of the length of time that the service has 

been in progress. 

In this section, the arrival and service distributions for Poisson queues are derived. 

The basic assumptions (axioms) governing this type of queues are stated below: 

Axiom1. The number of arrivals in non-overlapping intervals are statistically 

independent, that is, the process has independent increments.  

Axiom 2. The probability of more than one arrival between time t and time t + ∆t is o 

(∆t); that is, the probability of two or more arrivals during the small time interval Δt 

is negligible 

Thus     Po (∆t) + P1 (∆t) +o (∆t) = 1. 

Axiom 3. The probability that an arrival occurs between time t and time t + ∆t is equal 

to λ ∆t + o (∆t). 

Thus     P₁ (∆t)= λ ∆t + o (∆t). 

Where λ is a constant and is independent of the total number of arrivals upto time t . 

∆t is an incremental element and o (∆t) represents the terms such that  lim
∆𝑡→0

𝜎(∆𝑡)

∆𝑡
= 0 

 

1. Distribution of Arrivals (Pure Birth Process) 

The model in which only arrivals are counted and no departure takes place are called 

pure birth models. Stated in terms of queueing, birth-death processes usually arise 

when an additional customer increases the arrival (referred as birth) in the system and 

decreases by departure (referred as death) of serviced customer from the system. 

Let Pn (t) denote the probability of n arrivals in a time interval of length t (both waiting 

and in service), where n ≥ 0 is an integer. Then Pn(t +∆t) being the probability of n 

arrivals in a time interval of length t + ∆t  (making use of axiom 1) is as follows: 

Pn (t + Δt) = P{n arrivals in time t  and one arrival in time ∆t} 

+ P {(n-1) arrivals in time t and one arrival in time ∆t} 

+ P{(n-2) arrivals in time t and two arrivals in time ∆t} 

+………+ P{no arrival in time t and arrivals in time ∆t). for n ≥ 1. 
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Making use of axiom 2 and axiom 3, this difference equation reduces to 

Pn (t +∆t) = Pn (t) Po (∆t) + Pn-1(t) P₁ (∆t) + o (∆t)  

                         = Pn (t) [1 - ʎ∆t - o (∆t)] + P n-1(t) {ʎ ∆t + o (∆t) } + o (∆t) 

where the last term, o (∆t), represents the terms  

P[(n-k) arrivals in time t and k arrivals in time ∆t]                 2≤ k ≤ n 

The above equation can be re-written as    

Pn(t+∆t) – Pn (t)= -𝛌∆t.Pn(t) +𝛌∆t. P n-1(t) + o (∆t) 

Dividing it by ∆t on both sides and then taking the limit as ∆t- 0, the equation 

reduces to 

𝑑

𝑑𝑡
𝑃𝑛(𝑡) =  −𝜆𝑃𝑛(𝑡) + 𝜆𝑃𝑛−1(𝑡).          𝑛 ≥ 1.                 ………(A) 

For the case when n=0. 

𝑃0(𝑡 + ∆𝑡) = 𝑃0(𝑡)𝑃0(∆𝑡) =  𝑃0(𝑡)[1 − 𝜆∆𝑡 − 𝑜 (∆𝑡)] 

 

Rearranging the terms and then dividing on both sides by ∆𝑡. taking the limit as ∆𝑡 →

0, we have 

𝑑

𝑑𝑡
𝑃𝑜(𝑡) = − ʎ𝑃0 (𝑡)             …….(B) 

To solve the n+1 differential-difference equations given in (A) and (B), we make use 

of the generating function 

∅ (𝑧, 𝑡) =  ∑𝑃𝑛(𝑡). 𝑧
𝑛.

∞

𝑛=0

 

in the unit circle |z| ≤ 1. 

Now multiplying the differential-difference equations given in (B) and (A) by zº,  z¹, 

𝑧2… . . 𝑧𝑛. respectively and then taking summation over n from 0 to ∞, we get  

∑
𝑑

𝑑𝑡
𝑃𝑛 (𝑡)𝑧

𝑛 = − 

∞

𝑛=0

𝜆∅(𝑧, 𝑡) +  𝜆 𝑧 ∅(𝑧, 𝑡). 

This can also be written as 
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𝑑

𝑑𝑡
 ∅ (𝑧, 𝑡) =  𝜆(𝑧 − 1)∅(𝑧, 𝑡) 

An obvious solution of this differential equation is 

∅ (𝑧, 𝑡) =  𝐶 𝑒𝜆(𝑧−1)𝑡. 

where C is an arbitrary constant. 

To determine the value of C, we use the initial condition that there is no arrival by 

time t0 and this gives 

∅ (𝑧, 0) =  𝑃𝑜 (0) + ∑𝑃𝑛(0)𝑍
𝑛 = 1

∞

𝑛=1

 

Now, Pn (0) = 0 for n ≥ 1. Therefore, C = 1. 

Hence,     ∅ (𝑧, 𝑡) =  𝑒𝜆(𝑧−1)𝑡 .                           ………..(C) 

Now,    
𝑑

𝑑𝑧
 ∅ (𝑧, 𝑡)|𝑧=0 = 𝑃1(𝑡).

𝑑2

𝑑𝑧2
 ∅ (𝑧, 𝑡)|𝑧=0 = 2! 𝑃2(𝑡) 

𝑑𝑛

𝑑𝑧𝑛
 ∅ (𝑧, 𝑡)|𝑧=0 = 𝑛! 𝑃𝑛(𝑡) 

Using the value of ϕ (z, t) as given in equation (C), we get 

𝑃0 (𝑡) =  𝑒
−𝜆  𝑡 ,                  𝑃1 (𝑡) =  𝜆(𝑡)𝑒

−𝜆  𝑡   , 

                            𝑃2 (𝑡) =
1

2!
(𝜆𝑡)𝑒−𝜆 𝑡 ,           𝑃𝑛 (𝑡) =

1

𝑛!
(𝜆𝑡)𝑛𝑒−𝜆   𝑡 . 

The general formula, therefore is  

𝑃𝑛(𝑡) =  
(𝜆𝑡)𝑛

𝑛!
𝑒−𝜆𝑡 ,for n ≥ 0 

which is the well-known Poisson probability law with mean λt. Thus, the random 

variable defined as the number of arrivals to a system in time t, has the Poisson 

distribution with a mean of 𝜆𝑡 arrival or a mean arrival rate of 𝜆. 

2. Distribution of Inter-arrival Times (Exponential Process) 

Inter-arrival times are defined as the time intervals between two successive arrivals. 

Here, we shall show that if the arrival process follows the Poisson distribution, an 

associated random variable defined as the time between successive arrivals (inter-

arrival time) follows the exponential distribution f(t) = 𝜆𝑒−𝜆𝑡and vice-versa.  
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Let the random variable T be the time between successive arrivals; then 

P(T> t) = P (no arrival in time t ) = P0 (t) = 𝑒−𝜆𝑡 

The cumulative distribution function of  T denoted by F(t) is given by 

F(t) = P(T≤ t)=1─P (T>t) 

               = 1- P0 (t) = 1- 𝑒−𝜆𝑡 ,t > 0 

The density function f(t) for inter-arrival times, therefore, is 

f (t) = 
𝑑

𝑑𝑡
 𝐹 (𝑡) = 𝜆𝑒−𝜆𝑡 , t >0 

 

The expected (or mean) inter-arrival time is given by E (t) =∫ t. f(t) dt 
∞

0
  

                      = ∫ λ t e−λt
∞

0
dt  

                                   = 1/𝛌 

where λ is the mean arrival rate. 

Thus, T has the exponentialdistribution with mean 1/ λ. We would intuitively expect 

that, if the mean arrival rate is λ, then the mean time between arrivals is 1/𝛌. 

Conversely, we can also show that if the inter-arrival times are independent and have 

the same exponential distribution then the arrival rate follows the Poisson distribution.  

3.Distribution of Departures (PureDeath Process) 

The model in which only departures are counted and no other arrivals allowed are 

called pure death models.Thequeueing system starts with N customers at time t=0, 

where N ≥ 1. Departures occur at the rate of μ customers per unit time. To develop the 

differential-difference equations for the probability of n customers remaining after 't' 

time units, Pn (t), we make use of similar assumptions as was done for arrivals. Let 

the three axioms, given at the beginning of this section, be changed by using the word 

service instead of arrival and condition the probability statements by requiring the 

system to be non-empty. Let us define 

μ∆t = probability that a customer in service at time t will service during time ∆t. For 

small time interval ∆t > 0. 𝜇 ∆t gives probability of one departure during ∆t. Using the 

same arguments as in pure birth process case, the differential-difference equations for 

this can easily be obtained. 
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Pn. (t + ∆t) = Pn(t) {1-μ∆t + o (∆t)} + Pn+1 (t).{μ ∆t + o (∆t)},       1≤ n ≤ N -1 

Po ( t + ∆ 𝑡) = 𝑃𝑜 (𝑡) + 𝑃1 (𝑡){ 𝜇 ∆ 𝑡 + 𝑜 (∆𝑡)}, 𝑛 = 0 

PN (t + ∆t) = PN (t). (1-μ ∆t + ο (∆t)}, n = N 

Re-arranging the above equations, dividing them by ∆t on both sides and then taking 

the limits as ∆t  0, we get 

𝑑

𝑑𝑡
 𝑃𝑛 (𝑡) =  −𝜇 𝑃𝑛 (𝑡) +  𝜇 𝑃𝑛+1 (𝑡)    0 ≤ 𝑛 ≤ 𝑁 − 1, 𝑡 > 0 

𝑑

𝑑𝑡
 𝑃0(𝑡) =  𝜇 𝑃1 (𝑡) ;    𝑛 = 0, 𝑡 ≥ 0                                                           

       
𝑑

𝑑𝑡
 𝑃𝑁 (𝑡) =  − 𝜇 𝑃𝑁 (𝑡);      𝑛 = 𝑁 , 𝑡 ≥ 0  

The solution of these equations with initial conditions : 

Pn(0)={
1  ;      𝑛 = 𝑁 ≠ 0
0 ;             𝑛 ≠  𝑁

 

can easily be obtained as earlier. The general solution to the above equation so 

obtained is  

𝑃𝑛(𝑡) =  
(𝜇𝑡)𝑁−𝑛𝑒−𝜇𝑡

(𝑁−𝑛)!
 ; 1 ≤ 𝑛 ≤ 𝑁  and  P0 (t) = 1- ∑ 𝑃𝑛 (𝑡)

𝑁
𝑛=1  

which is known as a truncated Poisson law. 

 

4. Distribution of Service Times 

Making similar assumption as done above for arrivals, one could utilize the same type 

of process to describe the service pattern. Let the three axioms be changed by using 

the word service instead of arrival and condition the probability statements by 

requiring the system to be non-empty. Then we can easily show that, the time t to 

complete the service on a customer follows the exponential distribution: 

𝑠(𝑡) =  {
𝜇𝑒−𝜇𝑡  ;   𝑡 > 0
0    ;   𝑡 < 0    

 

Where μ  is the mean service rate for a particular service channel. This shows that 

follows exponential distribution which mean 1/μ . The number, n, of potential services 

in time t will follow the poison distribution given by 
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Φ (n) = P {n service in time T, if servicing is going on throughout T}     

          = 
(𝜇𝑇)𝑁

𝑛!
𝑒𝜇𝑡 

Consequently, we can also show that  

P [no service in ∆t] = 1- μ ∆t + o (∆t)   and    P [one service in ∆t] = μ∆t + o(∆t) 

 

CLASSIFICATION OF QUEUEING MODELS 

Generally queueing model may be completely specified in the following symbolic 

form : 

(a/b/c) : (d/e). 

The first and second symbols denote the type of distributions of inter-arrival times and 

inter-service times, respectively. Third symbol specifies the number of servers, 

whereas fourth symbol stands for the capacity  of the system and the last symbol 

denotes the queue discipline. 

If we specify the following letters as: 

M = Poisson arrival or departure distribution.  

E = Erlangian or Gamma inter-arrival for service time distribution. 

GI = General input distribution, 

G= General service time distribution. 

then (M/𝐸𝑘/1) : (∞/FIFO) defines a queueing system in which arrivals follow Poisson 

distribution service times are Erlangian, single server, infinite capacity and “ first in, 

first out” queue  discipline. 

 DEFINITION OF TRANSIENT AND STEADY STATES 

A queueing system is said to be in transient state when its operating characteristic 

(like input, mean queue length, etc.) are dependent upon time.  

If the characteristic of the queueing system becomes independent of time, then 

the steady state condition is said to prevail  

If Pn(t) denotes the probability that there are n customers in the system at time 

t,then in the steady state case, we have 
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                              lim
𝑡→∞

𝑃𝑛(𝑡) =  𝑃𝑛(independent of  t) 

Due to practical viewpoint of the steady state behaviour of the systems, the 

present chapter is simply focused on studying queueing systems under the existence 

of steady-state conditions. However the differential-difference equations which can 

be used for deriving transient solutions will be presented. 

POISSON QUEUEING SYSTEM 

 Queues, that follow the poison arrivals (exponential inter-arrival time) and 

Poisson service (exponential service time) are called Poisson queues. In this section, 

we shall study a number of Poisson queues with different characteristics.  

Model 1 ((M/M/1): (∞/FIFO). This model deals with a queucing system having 

single service Thennet. Poisson input, Exponential service and there is no limit on the 

system capacity while the inmers are served on a "first in, first out" basis. 

The solution procedure of this queueing model can be summarized in the 

following three steps:  

Step 1. Construction of Differential Difference Equations. Let pn(t)be the 

probability that there are n customers in the system at time t. The probability that the 

system has n customers at time (t+Δt) can be expressed as the sum of the joint 

probabilities of the four mutually exclusive and collectively exhaustive events as 

follows : 

 

 

Pn(t+Δt)=Pn(t).P [no arrival in  Δt].P[no service completion in Δt] 

                 +pn(t).P[one arrival in Δt].P[one service completed in Δt] 

                 +Pn+1(t).P[no arrival in Δt].P[one service completed inΔt] 

                 +Pn-1(t).P[one arrival in Δt].p[one service completed inΔt]  

 

This is re-written as: 

Pn(t+ Δt)= pn(t)[1 – λΔt + o(Δt)][1 - µΔt+o(Δt)] + Pn(t)[λΔt][µΔt] 

              +Pn+1(t)[1 – λΔt +o(Δt)][µΔt + o(Δt)]+pn-1(t)[λΔt + o(Δt)][1 -µt + o(Δt)] 

  

Or    Pn(1+Δt) – pn(t) = -(λ + µ)ΔtPn(t) + µΔtPn+1(t) + o(Δt) 

Since Δt is very small, terms involving (Δt)2 can be neglected. Dividing the above 

equation by Δt on both sides and then taking limit as Δt       0, we get 
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     d/dt(pn) = -(λ + µ)pn(t) + µPn+1 (t)+ λPn-1(t) ;  n ≥ 1   

 

Similarly, if there is no customer in the system at time (t + Δt), there will be no service 

completion during Δt . Thus for n= 0 and t ≥ 0, we have only two probabilities instead 

of four. The resulting equation is 

           Po(t+ Δt)= po(t){1 – λΔt + o(Δt)} + P1(t){µΔt +o(Δt)}{1 – λΔt + o(Δt)} 

or            Po(t+Δt) – po(t) = -λΔtP0(t) + µΔtP1(t) + o(Δt). 

 

Dividing both sides of this equation by Δt and then taking limit as Δt        0,we get 

             d/dt(po(t)) = -λpo(t) + µP1(t) ;                     n = 0 

 

Step 2. Deriving the Stendy-State Difference Equations. In the steady-state. Pn(t) 

is  independent of time t and λ <µ when t      ∞ .Thus Pn (t)       Pn and 

 

Consequently the differential-difference equations obtained in Step 1 reduce to 

                0 = -(λ + µ)pn + µPn+1 + λPn-1   ;  n≥ 1   

and                  0=-λPn + µP1 ; n = 0 

These constitute the steady-state difference equations. 

 

Step 3.Solution of the Seady-State Difference Equations. For the solution of the 

above difference equations there exist three methods, namely, the iterative method, 

use of generating functions and the use of linear operaters.Out of these three the first 

one is the most straightforward and therefore the solution of the above equation will 

be obtained here by using the iterative method. 

 

Using iteratively, the difference-equation yield 

       P1 = 
𝜆

𝜇
 Po ,   P2 = 

𝜆+𝜇

𝜇
P1 - 

𝜆

𝜇
Po = (

𝜆

𝜇
)
2
Po 

        P3 = (
𝜆+𝜇

𝜆
)P2  - 

𝜆

𝜇
 𝑃1= (

𝜆

𝜇
)
3
Po ,   and    in general Pn = (

𝜆

𝜇
)
𝑛

Po . 

Now,               Pn+1 = 
𝜆+𝜇

𝜇
Pn - 

𝜆

𝜇
Pn-1 , n ≥ 1 . 

Substituting the values of Pn and  Pn-1 , the equation yields 

                    Pn+1 = 
𝜆+𝜇

𝜇
(
𝜆

𝜇
)
𝑛

Po - 
𝜆

𝜇
(
𝜆

𝜇
)
𝑛−1

Po = (
𝜆

𝜇
)
𝑛+1

Po 

Thus, by the principle of mathematical induction, the general formulae for Pn, is valid 

for n ≥ 0 
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To obtain the value of Po ,we make use of the boundary condition ∑ 𝑃∞
𝑛=0 n = 1 

 

⸫          1 = ∑ (
𝜆

𝜇
)∞

𝑛=0
nPo = Po ∑ (

𝜆

𝜇
)∞

𝑛=0
n ;     since   Pn = (

𝜆

𝜇
)nPo 

               = Po
1

1−𝜆/𝜇
,   since (

𝜆

𝜇
)< 1 

This gives           Po = 1 - (
𝜆

𝜇
). 

Hence, the steady- state solution is 

      Pn = (
𝜆

𝜇
)n(1 −

𝜆

𝜇
)= ρn(1-ρ) ; ρ = (

𝜆

𝜇
)< 1, and n ≥ 0. 

This expression gives us the probability distribution of queue length. 

Characteristic of Model I 

(i)Probability of queue size being greater than or equal than or equal to k, the number 

of customer is given by 

 P(n ≥k) =∑ 𝑃𝑘
∞
𝑘=𝑛  = ∑ (1 − 𝜌)𝜌∞

𝑘=𝑛
k = (1-ρ)ρn∑ 𝜌∞

𝑘=𝑛
k-n = (1-ρ)ρn ∑ 𝜌∞

𝑘−𝑛=0
k-n 

               =(1-ρ)ρn∑ 𝜌∞
𝑥=0 

x = 
(1−𝜌)𝜌𝑛

1−𝜌
  = ρn 

(ii)Average number of customer in the system is given by  

E(n) = ∑ 𝑛𝑃∞
𝑛=0 n = ∑ 𝑛(1 − 𝜌)∞

𝑛=0 ρn = (1 – ρ) ∑ 𝑛𝜌𝑛∞
𝑛=0  = ρ(1 – ρ)∑ 𝑛𝜌𝑛−1∞

𝑛=0
 

              = ρ(1-ρ)∑
𝑑

𝑑𝜌
∞
𝑛=0 ρn  = ρ(1 – ρ)

𝑑

𝑑𝜌
∑ 𝜌𝑛∞
𝑛=0  ,  since ρ < 1 

         =ρ(1-ρ)
1

(1−𝜌)2
 = 

𝜌

1−𝜌
 = 

𝜆

𝜇− 𝜆
 . 

(iii)Average queue length is given by 

            E(m) = ∑ 𝑚𝑃∞
𝑚=0 n ,    where  m = n – 1 

being the number of customer in the queue excluding the customer which is in service. 

⸫        E(m) = ∑ (𝑛 − 1)∞
𝑛=1 Pn = ∑ 𝑛𝑝∞

𝑛=1 n – ∑ 𝑃𝑛
∞
𝑛=1  

                  = ∑ 𝑛𝑃∞
𝑛=0 n  - [∑ 𝑃𝑛 − 𝑃𝑜∞

𝑛=0 ] 
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                  = 
𝜌

1−𝜌
 – [ 1-(1-ρ)] = 

𝜌

1−𝜌
 – ρ 

                   =ρ2/ (1-ρ) = 𝛌2/(𝛍 – 𝛌) . 

 

(iv)Average length of non-empty queue is given by 

            E(m|m > 0) = 
𝐸(𝑚)

𝑃( 𝑚>𝑜)
 = 

𝜆2

𝜇(𝜇−𝜆)
 × 

1

(
𝜆

𝜇
)2

  =
𝜇

𝜇−𝜆
 . 

         Since          P ( m > 0 ) = P(n > 1) = ∑ 𝑃𝑛
∞
𝑛=0  – Po – P1 = (

𝜆

𝜇
)
2
 

(v)The fluctuation (variance) of queue length is given by 

         V(n) =∑ [𝑛 − 𝐸(𝑛)]2∞
𝑛=0 Pn = ∑ 𝑛2∞

𝑛=0 Pn – [E(n)]2 

Using some algebraic transformation and the value of Pn the result reduces to 

V(n) = (1 – ρ)
𝜌+𝜌2

(1− 𝜌)3
 - [

𝜌

1−𝜌
]
2
 = 

𝜌

(1− 𝜌)2
  =  

𝜆µ

(µ− 𝜆)2
 . 

Waiting Time Distribution for Model I. 

                       The Waiting time of a customer in the system is, for the most part, a 

continuous random variable except that there is a non zero probability that the delay 

will be zero, that is a customer entering service immediately upon arrival.Therefore, 

if we denote the time spent in the queue by w and ψw(t) denotes its cumulative 

probability distribution then from the complete randomness of the Poisson 

distribution, we have  

Ψw(0)  =  P(w = 0)      (No customers in the system upon arrival) 

                  =Po = (1 –ρ). 

It is now required to find ψw(t)  for t > 0 

       Let there be n customers in the system upon arrival then in order for a customer 

to go into service at a time between 0 and t , all the n customers must have been served 

by time t. Let s1, s2, s3,……,sn denote service times of n customers respectively. Then  

W= ∑ 𝑠𝑖
𝑛
𝑖=1 ,   (n ≥ 1)  and    w = 0    (n = 0). 

The distribution function of waiting time, w, for a customer who has to wait is given 

by  
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P(w ≤ t) = P[∑ 𝑠𝑖 ≤ 𝑡 
𝑛
𝑖=1 ] ;   n ≥ 1  and t > 0. 

   Since, the service time for each customer is dependent and identically distributed, 

therefore its probability density function is given by µe-µt(t > 0), where µ is the mean 

service rate. Thus  

Ψn(t) = ∑ 𝑝𝑛
∞
𝑛=1  × P(n – 1 customer are served at time t) ×P(1 customer is served in 

time Δt) 

              =∑ (1 − 
𝜆

µ
)∞

𝑛=1 (
𝜆

µ
)
𝑛 (µ𝑡)𝑛−1𝑒−µ𝑡

(𝑛−1)!
 . µΔt. 

The expression for ψw(t) , therefore ,can be written as 

Ψw(t) = P( w ≤ t) = ∑ 𝑃𝑛
∞
𝑛=1 ∫ Ψ𝑛

𝑡

0
(t) dt 

    =∑ (1 −  𝜌)𝜌𝑛∞
𝑛=1 ∫

(µ𝑡)𝑛−1

(𝑛−1)!

𝑡

0
e-µt.µdt = (1-ρ)ρ∫ µ𝑒−µ𝑡

𝑡 

0
∑

(µ𝑡𝜌)𝑛

(𝑛=1)!
∞
𝑛=1  . dt 

     =(1 – ρ)ρ ∫ µ𝑒−µ𝑡(1− 𝜌)
𝑡

0
dt . 

Example 1: A road transport company has one reservation clerk on duty at a time. He 

handles information of bus schedules and makes reservations.Customers arrive at a 

rate of 8 per hour and the clerk can service 12 customers on an average per hour. After 

stating your assumptions, answer the following : 

   (i)What is the average number of customer waiting for the service of the clerk? 

   (ii) What is the average time a customer has to wait before getting servie? 

   (iii) The management is comptemplating to install a computer system to handle the 

information and reservation .This is expected to reduce the service time from 5 to 3 

minutes. The additional cost of having the new system works out to Rs. 50 per day, If 

the cost of goodwill of having to wait is estimated to be 12 paise per minute spent 

waiting before being served. Should the company install the computer system? 

Assume 8 hours working day . 

Solution: 

We are given 

𝛌 = 8 customers per hour and 𝛍 = 12 customers per hour. 

(i) Average number of customers waiting for the service of the clerk(in the system): 
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E(n) = 
𝜆

𝜇− 𝜆
 = 

8

12−8
 = 2 customers. 

 The Average number of customers waiting for the service of the clerk(in the queue ) 

E(m) = 
𝜆2

𝜇(𝜇− 𝜆)
 = 

8 ×8

12(12−8)
  or  1.33 customer. 

(ii) The Average waiting time of a customer (in the system) before getting service : 

E(v) = 
1

𝜇−𝜆
 = 

1

12−8
 hour or 15 minutes. 

The Average waiting time of a customer(in the queue) before getting service: 

E(w) = 
𝜆

𝜇(𝜇− 𝜆)
 = 

8

12(12−8)
 = 

1

6
 hours or 10 minutes. 

(iii) We now calculate the difference between the goodwill cost of customers with one 

system and the goodwill cost of customers with an additional system. This difference 

will be compared with the additional cost (of Rs . 50 per day) of installing another 

computer system . 

An arrival waits for E(w) hours before being served and there are 𝛌 arrivals per hour 

. Thus , expected waiting time for all customer in an 8-hours day with one system 

        = 8𝛌×E(w) = 8 × 8 × 
1

6
 hrs . or

64

6
 × 60 minutes ,i.e., 640 minutes. 

The goodwill cost per day with one system = 640 × Rs. 0.12 = Rs. 76.80 

  The expected waiting time of a customer before getting service when there is an 

additional computer system is: 

       E(w*) = 
8

20(20−8)
 = 

8

20 ×12
 or 

1

30
 hr . 

Thus expected waiting time of customer in an 8-hour day with an additional computer 

system is 

        8λ × E(w*) = 8 × 8 × 
1

30
  hr. = 128 minutes. 

The total goodwill cost with an additional computer system   

                                                            = 128 × Re. 0.12 = Rs. 15.36 

Hence, reduction in goodwill cost with the installation of a computer system 

 = Re. 76.80 – Rs. 15.36 = Rs. 61.44  
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Whereas the additional cost of a computer system is Rs.50 per day , Rs.61.44 is the 

reduction in goodwill cost when additional computer system is installed, hence there 

will be net saving at Rs.11.44 per day. It is ,therefore, worthwhile to install a computer. 

Example 2 :In the production shop of a company the breakdown of the machines is 

found to be poisson with an average rate 3 machines per hour . Breakdown time at one 

machine cost Rs. 40 per hour to the company. There are two choice before the 

company for hiring the repaireman. One of the repairman is slow but cheap , the other 

fast but expensive . The slow-cheap repairman demands Rs. 20 per hour and will repair 

the broken down machines exponentially at the rate of 4 per hour. The fast expensive 

repairman demands Rs. 30 per hour and will repair machines exponentially at the 

average rate of 6 per hour. Which repairman should be hired ? 

Solution . In this problem ,we compare the total expected daily cost for both the 

repairman. This would equal the total wages paid plus the downtime cost. 

 

Case  1: Slow-cheap repairman 

λ = 3 machines per hour and µ =  4 machines per hour. 

     ∴     Average downtime of a machine = 
1

µ− 𝜆
 = 

1

4−3
 = 1 hour. 

     ∴      The downtime of 3 machine that arrive in an hour = 1 × 3 = 3 hours. 

  Downtime cost = Rs. 40 × 3 = Rs. 120,  

  charges paid to the repairman =Rs 20 × 3 = Rs. 60  

     Total cost = Rs. 120 + Rs 60 = Rs 180. 

Case 2 : Fast-expensive repairman  

  λ = 3 machines per hour and µ = 6 machines per hour 

∴         Average downtime of  machines = 
1

µ− 𝜆
 = 

1

3
 hour 

∴        The downtime of 3 machines that arrive in an hour = 
1 

3
 × 3 = 1 hour. 

          Downtime cost = Rs. 40 × 1 = Rs. 40, 

          charges paid to the repairman = Rs. 30 × 1 = Rs.30 

          Total cost = Rs. 40 + Rs. 30 =Rs. 70. 



24 
 

From the above two cases , the decision of the company should be to engage the fast-

expensive repairman. 

 

Model II {(M/M/1) : (∞/𝑺𝑰𝑹𝑶)}.This model is essentially the same as Model I, 

except that the service discipline follows the SIRO – rule (service in random order ) 

instead of FIFO – rule. As the derivation of Pn for model I does not depend on any 

specific queue discipline, it may be concluded that for SIRO-rule case,  we must have 

                              Pn= (1 – ρ)ρn,  n ≥ 0 

Consequently , whether the queue discipline follows the SIRO-rule or FIFO-

rule the average number of customers in the system ,E(n) , will remain the same. In 

fact E(n) will remain the same as any queue discipline provided, of course, Pn remains 

unchanged. Thus, E(v) = 
1

𝜆
 E(n)  under the SIRO – rule is the same as under the FIFO-

rule . 

 

         This result can be extended to any queue discipline as long as Pn remain 

unchanged. Specifically the result applies to the three most common disciplines, 

namely, FIFO, LIFO and SIRO. The three  queue disciplines differ only in the 

distribution of waiting time where the probabilities of long and short waiting times 

change depending upon the discipline used.Thus we can use the symbol 𝛍t (general 

discipline) to represent the disciplines FIFO, LIFO and SIRO, When the waiting time 

distribution is not required. 

 

Model III {(M/M/I) :(N/FIFO)}.This model differs from that of Model I in 

the sense that the maximum number of customers in the system is limited to N. 

Therefore, the difference equation of Model I are valid for this model as long as n < 

N. 

                The additional difference equation for n = N, is 

     𝑃𝑁(𝑡 + 𝛥𝑡) = 𝑃𝑁(𝑡)[1 −  𝜇𝛥𝑡] + 𝑃𝑁−1(𝑡). [𝜆𝛥𝑡] [1 −  𝜇𝛥𝑡] + 0(Δt). 

This gives, after simplification, the differential-difference equation 
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𝑑

𝑑𝑡
.  𝑃𝑁 (𝑡)  =  − 𝜇 𝑃𝑁 (𝑡) +  𝜆 𝑃𝑁−1 (𝑡) 

from which the resultant steady-state difference equation is 

0 =   − 𝜇 𝑃𝑁  +  𝜆 𝑃𝑁−1  

   The complete set of steady-state difference equations for this model, therefore, can 

be written as 

𝜇 𝑃1   =   𝜆 𝑃0
 

𝜇 𝑃𝑛+1   =   (𝜆 + 𝜇)𝑃𝑛 − 𝜆 𝑃𝑛−1         1  ≤  𝑛  ≤  𝑁 − 1  

and 𝜇 𝑃𝑁  =  𝜆 𝑃𝑁−1 

                  Using the iterative procedure (as in Model I), the first two difference 

equations give 

 𝑃𝑛  = ( 𝜆 /𝜇)𝑛   𝑃0.                   𝑛  ≤  𝑁 − 1  

                   Also, we see that for this value of   𝑃𝑛 , the third (last) difference equation 

holds for n = N 

 Therefore, we have  

𝑃𝑛   =  (𝜆/𝜇)𝑛  𝑃0  =  𝜌𝑛  𝑃0, 𝑛  ≤  𝑁     𝑎𝑛𝑑 (𝜆/𝜇)𝑛  = 𝜌 

                  For obtaining the value of    𝑃0, we make use of the boundary conditions,  

∑ Pn
 𝑁
𝑛=0   = 1. Therefore  

1 = 𝑃0∑ ρn 𝑁
𝑛=0    = {

𝑃0
 1−𝜌𝑁+1

1−𝜌
,     (𝜌  ≠  1)

𝑃0 (𝑁 + 1),     (𝜌 = 1)
 

Thus 
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𝑃0  =  

{
 

 
1 − 𝜌

1 − 𝜌𝑁+1
,   (𝜌 ≠ 1)

1

𝑁 + 1
,       (𝜌 = 1)

 

Hence, 

   𝑃𝑛 = {

(1−𝜌)𝜌𝑛

1−𝜌𝑁+1
  , (𝜌 ≠ 1);          0 ≤ 𝑛 ≤ 𝑁

1

𝑁+1
, (𝜌 = 1)                          

 

Remark. The steady-state solution exists even for 𝜌 ≥ 1.  Intuitively this makes sense 

since the maximum limit prevents the process from ''blowing up''. If  N→ ∞ , then the 

steady-state solution is  

Pn=(1 − 𝜌)𝜌𝑛  ;                      𝑛 < ∞  

This result is in complete agreement with that of Model I. 

Characteristics of Model III 

(i) Average number of customers in the system is given by 

            𝐸(𝑛) = ∑ 𝑛𝑁 
𝑛=0   𝑃𝑛 =  𝑃0 ∑ 𝑛 𝑁

𝑛=0   𝜌𝑛 =  𝑃0𝜌∑
𝑑

𝑑𝜌
𝜌𝑛𝑁 

𝑛=0   

𝐸(𝑛) = 𝑃0𝜌
𝑑

𝑑𝜌
∑ 𝜌𝑛
𝑁 

𝑛=0 

𝑃0𝜌
𝑑

𝑑𝜌
[
1 − 𝜌𝑁+1

1 − 𝜌
]                           

  = 𝑃0
𝜌[1 − (𝑁 + 1)𝜌𝑛 +𝑁𝜌𝑁+1]

(1 − 𝜌)2
                     

=
𝜌[1 − (𝑁 + 1)𝜌𝑁  + 𝑁𝜌𝑁+1]

(1 − 𝜌)(1 − 𝜌(𝑁+1))
                     

 

                                                                               Since   𝑃0  =  
1−𝜌

1−𝜌𝑁+1
;  𝜌 ≠ 1 
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(ii) Average queue length is given by  

𝐸(𝑚) = ∑(𝑛 − 1)𝑃𝑛

𝑁 

𝑛=1 

=  𝐸(𝑛) − ∑ 𝑃𝑛

𝑁 

𝑛=1 

= 𝐸(𝑛) − (1 − 𝑃0) 

                  = 𝐸(𝑛) −
𝜌(1−𝜌𝑁)

1−𝜌𝑁+1
 ,                since 𝑃0  =  

1−𝜌

1−𝜌𝑁+1
,  (𝜌 ≠ 1) 

 =
𝜌2[1 − 𝑁𝜌𝑁−1  +  (𝑁 − 1)𝜌𝑁]

(1 − 𝜌)(1 − 𝜌𝑁+1)
                             

(iii) The average waiting time in the system can be obtained by using Little's formula, 

that is  𝐸(𝑣)  =  {𝐸(𝑛)}/𝝀 where 𝜆′ is the mean rate of customers entering the system 

and is equal to (1 − 𝑃𝑁). The average waiting time in the queue can be obtained by 

using the relations  

𝐸(𝑊)  =  𝐸(𝑉) − 1/𝜇         𝑜𝑟        𝐸(𝑊)  =  {𝐸(𝑚)}/𝜆′. 

 

EXAMPLES 

1.At a railway station, only one train is handled at a time. The railway yard is sufficient 

only for two trains to wait while other is given signal to leave the station. Trains arrive 

at the station at an average rate of 6 per hour and the railway station can handle them 

on an average of 12 per hour. Assuming Poisson arrivals and exponential service 

distribution, find the steady-state probabilities for the various number of trains in the 

system. Also, find the average waiting time of a new train coming into the yard.  

Solution 

𝐻𝑒𝑟𝑒, 𝜆  =  6 𝑎𝑛𝑑 𝜇  =  12 𝑠𝑜 𝑡ℎ𝑎𝑡 𝜌  =  6/12  =  1/2  =  0.5  

             The maximum queue length is 2, i.e., the maximum number of trains in the 

system is 3(=N). 

 The probability that there is no train in the system (both waiting and in service) is 

given by 
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𝑃0  =  
1 − 𝜌

1 − 𝜌𝑁+1
=

1 − 0.5

1 − (0.5)3+1
  =  0.53 

Now, since      𝑃𝑛 = 𝑃0𝜌
𝑛, therefore 

𝑃1 = (0.53)(0.5) = 0.27,  𝑃2 =  (0.53)(0.5)2 = 0.13,  𝑎𝑛𝑑  

𝑃3 = (0.53)(0.5)
3 = 0.0 7                                                            

Hence, we get  

𝐸(𝑛) = 1(0.27) +  2(0.13) + 3(0.07) = 0.74 

Thus the average number of trains in the system is 0.74 and each train takes on an 

average of 
1

12
(= 0.8)  hours for getting service. As the arrival of new train expects to 

find an average of 0.74 train in the system before it. 

𝐸(𝑊) = (0.74)(0.08) ℎ𝑜𝑢𝑟𝑠  =  0.0592 ℎ𝑜𝑢𝑟𝑠 𝑜𝑟 3.5 minutes 

 

2.Assume that the goods trains are coming in a yard at the rate of 30 trains per day 

and suppose that the inter-arrival times follow an exponential distribution. The service 

times for each train is assumed to be exponential with an average of 36 minutes. If the 

yard can admit 9 trains at a time (there being 10 lines, one of which is reserved for 

shunting purpose), calculate the probability that the yard is empty and find the average 

queue length. 

        Solution: We have  

𝜆 =
30

60 × 24
=
1

48
      𝑎𝑛𝑑       𝜇 =

1

16
𝑡𝑟𝑎𝑖𝑛𝑠 𝑝𝑒𝑟 minutes 

⸫                        𝜌 = 𝜆/𝜇 = 36/48 = 0.75  

The probability that the yard is empty is given by 

                           𝑃0 =  
1−𝜌

1−𝜌𝑁+1
=  

1−0.75

1−(0.75)10
,                 since N = 9 
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=  
0.25

0.90
= 0.28                                 

Average queue length is given by 

𝐸(𝑚) =
𝜌2[1 − 𝑁 𝜌𝑁−1 + (𝑁−1) 𝜌𝑁]

(1 − 𝜌)(1 − 𝜌𝑁+1)
 

                                     =
(0.75)2[1 −  9(0.75)8 + 8(0.75)9]

0.25[(0.75)10]
 

 

      = (2.22)
(1 − 0.303)

(1 − 0.005)
 

= (2.22) (0.70)   

= 1.55                  

 

Model IV (Generalized Model : Birth-Death Process). This model 

deals with a queueing system having single service channel, Poisson input with no 

limits on the system capacity . Arrivals can be considered as births to the system , 

whereas a departure can be looked upon as a death. Let  

 N = number of customer in the system  

 𝜆𝑛 = arrival rate of the customers given n customers in the system 

 𝜇𝑛 = departure rate of customers given n customers in the system, and  

 𝑃𝑛 = steady-state probability of n customers in the system. 

The model determines the values of 𝑃𝑛 in terms of 𝜆𝑛 and 𝜇𝑛 . Now, from the axioms 

of Poisson process , we observe that an arrival during the small time interval 𝛥𝑡 is 

negligible . This implies that for n > 0 , state n can change only to two possible states 

: state n – 1 when a departure occurs at the rate 𝜇𝑛 and state n + 1 when an arrival 

occurs at rate 𝜆𝑛. State 0 can only change to state I when an arrival occurs at the rate 

of  𝜆𝑜 . Since no departure is possible when the system is empty, 𝜇𝑜 is undefined. 
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 Under steady-state conditions, for n > 0, the rates of flow into and out of state 

n must be equal. This is illustrated in the transition-rate diagram given below : 

  

 

 

The balance equation is : 

 Expected rate of flow into state n = Expected rate of flow out of state n 

i.e.,  𝜆𝑛−1𝑃𝑛−1 + 𝜇𝑛+1𝑃𝑛+1 =  𝜆𝑛𝑃𝑛 + 𝜇𝑛𝑃𝑛  n ≥ 1 

and                𝜇1𝑃1 =  𝜆0𝑃0   n = 0 

    Using the iterative procedure (as in Model I ), we have  

  𝑃1 = 
𝜆0

𝜇1
𝑃0 ,  𝑃2 = 

𝜆1+𝜇1

𝜇2
𝑃1 -   

𝜆0

𝜇2
𝑃0 = 

𝜆1 𝜆𝑜

𝜇2𝜇1
𝑃0 

  𝑃3  = 
𝜆2+𝜇2

𝜇3
𝑃2 -   

𝜆1

𝜇3
𝑃1= 

𝜆2𝜆1 𝜆𝑜

𝜇3𝜇2𝜇1
𝑃0 

In general , we can write the following formula  

 𝑃𝑛 =  
𝜆𝑛−1𝜆𝑛−2……. 𝜆0

𝜇𝑛𝜇𝑛−1……..𝜇1
𝑃0, n ≥ 1   or    𝑃𝑛 =  𝑃0∏

𝜆𝑖

𝜇𝑖+1

𝑛−1
𝑖=0  ,  n ≥ 1 

Now   𝑃𝑛+1  = 
𝜆𝑛+𝜇𝑛

𝜇𝑛+1
𝑃𝑛 -   

𝜆𝑛+1

𝜇𝑛+1
𝑃𝑛−1 = 𝑃0∏

𝜆𝑖

𝜇𝑖+1

𝑛
𝑖=0  

Thus, by mathematical induction the general value of 𝑃𝑛 holds for all n. 

To obtain the value of 𝑃0, we use the boundary condition ∑ 𝑃𝑛
∞
𝑛=0  = 1 

Or  𝑃0 +  ∑ 𝑃𝑛
∞
𝑛=1  = 1, to get 

 𝑃0 = (1 + ∑ ∏
𝜆𝑖

𝜇𝑖+1

𝑛−1
𝑖=0

∞
𝑛=1 )-1     
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Remark.𝑃0 = 0 if  R.H.S is a divergent series . In case R.H.S is convergent , the 

value of   𝑃0 will depend on 𝜆𝑖’s and 𝜇𝑖’s. 

 

Special cases  

Case I . When 𝜆𝑛= 𝛌 for n ≥ 0 ; and  𝜇𝑛 = 𝛍 for n > 1 

    𝑃0 = [1 + ∑ (𝜆/𝜇)𝑛∞
𝑛=1 ]-1     = 1 – ρ. 

In this case ,therefore  

    𝑃𝑛 = ρn (1 – ρ), for n ≥ 0. 

This result is exactlt the same as that of Model I . 

Case II. When  𝜆𝑛 = 
𝜆

𝑛+1
 for n ≥ 0 and  𝜇𝑛 = 𝛍 for n > 1. 

 𝑃0 = [1 + ∑
𝜆𝑛

𝑛!𝜇𝑛
∞
𝑛=1 ]-1    = [1 +  𝜌 + 

1

2!
𝜌2 +

1

3!
𝜌3 +⋯]-1 = 𝑒−𝑝 

⸫   𝑃𝑛 = 
1

𝑛!
𝜌𝑛𝑒−𝑝 for n ≥ 0 and 𝜌 = 

𝜆

𝜇
 . 

Which is a poisson distribution with mean E(n) = 𝜌. 

Case III . When 𝜆𝑛=   for n ≥ 0 ; and  𝜇𝑛 =n𝛍 for n > 1, 

      𝑃0 = [1 + ∑
𝜆𝑛

𝑛!𝜇𝑛
∞
𝑛=1 ]-1 =  𝑒−𝑝 

⸫     𝑃𝑛 = 
1

𝑛!
𝜌𝑛𝑒−𝑝, for n ≥ 0 and 𝜌 = 

𝜆

𝜇
 . 

Which is again  poisson with mean E(n) = 𝜌 ; and E(m) = 0, E(w) = 0. 

 In this case the service rate increases with the increase in queue length and 

hence is known as a queueing problem with infinite number of channels ,  i.e., 

(M/M/∞) : (∞/FIFO). This model is known as a Self-service Model. 

EXAMPLE 

Problems arrive at a computing centre in Poisson fashion at an average rate of five per 

day . The rules of the computing centre are that any man waiting to get his problem 

solved must aid the man whose problem is being solved. If the time to solve a problem 

with one man has an exponential distribution with mean time of     
1

3
 day , and if the 
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average solving time is inversely proportional to the number of people working on the 

problem, approximate the expected time in the centre of  a person entering the line. 

Solution. Here 𝛌 = 5 problems per day, and 𝛍 = 3 problems per day. 

It is given that the service rate increases with the increase in  the number of person. 

⸫ 𝜇𝑛 = n𝛍 when there are n problems and 𝑃𝑛 = 
1

𝑛!
𝜌𝑛𝑒−𝑝 

E(n) = ∑ 𝑛𝑝𝑛
∞
𝑛=0  = ∑ 𝑛 

1

𝑛!
∞
𝑛=0 𝜌𝑛𝑒−𝑝 = 𝑒−𝑝. 𝜌. 𝑒𝑝 = ρ = 

5

3
 or 1.67 

Now, the average solving time, which is inversely proportional to the number of 

people working on the problem, is given by 1/5 day per problem. 

⸫    Expected time for a person entering the line is given by  

    
1

5
𝐸(𝑛) = 

1

5
×
5

3
 days = 

1

3
 days or 8 hours. 

Model V {(M/M/C) : (∞/ FIFO)}. This model is a special case of Model IV in 

the sense that here we consider C parallel service channels. The arrival rate is 𝛌 and 

the service rate per service channel is 𝛍. 

 The effect of using C parallel service channel is a proportionate increase in the service 

rate of the facility to n𝛍 if n ≤ C and C𝛍 if  n>C. Thus, in terms of the generalized 

model (Model IV), 𝜆𝑛 and 𝜇𝑛 are defined as  

     𝜆𝑛 = 𝛌, n ≥ 0 

and    𝜇𝑛 = n𝛍  if    1 ≤ n ≤ C    and   C𝛍, if n ≥ C. 

Utilizing the above values of  𝜆𝑛 and 𝜇𝑛, the steady – state probability of Model IV 

becomes  

  𝑃𝑛 =  {

 λ𝑛𝑃0

nµ(n−1)…(1)µ
;   1 ≤  n ≤  C,

 λ𝑛𝑃0

( Cµ)) (Cµ)…( Cµ)( Cµ)⏟                 ( C−1)µ (C−2)µ…(1)µ 
;  n >  𝐶

  

 

                    =  
 λ𝑛𝑃0

𝑛! 𝜇𝑛
 if  1 ≤  n ≤  C    and    

 λ𝑛𝑃0

𝐶𝑛−𝐶𝐶! 𝜇𝑛
      if n >  𝐶 

                     = 
1

𝑛!
𝜌𝑛𝑃0 if  1 ≤  n ≤  C    and   

1

𝐶𝑛−𝐶𝐶! 𝜇𝑛
𝜌𝑛𝑃0  if  n >  𝐶 
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To find the value of 𝑃0, we use the boundary condition ∑ 𝑃𝑛
∞
𝑛=0  = 1 

    ∑ 𝑃𝑛
𝐶−1
𝑛=0 + ∑ 𝑃𝑛

∞
𝑛=𝑐  = 1 

Or             [∑
1

𝑛!
𝜌𝑛 + ∑

1

𝐶𝑛−𝐶𝐶!
𝜌𝑛∞

𝑛=𝐶
𝐶−1
𝑛=0 ] 𝑃0 = 1 

Or    𝑃0 = [∑
1

𝑛!
𝜌𝑛 + 𝜌𝐶 ∑

1

𝐶𝑛−𝐶𝐶!
(
𝜌

𝐶
)
𝑛−𝐶

∞
𝑛=𝐶

𝐶−1
𝑛=0 ]

−1

   

       =  [∑
1

𝑛!
(
𝜆

𝜇
)
𝑛
+

1

𝐶!
(
𝜆

𝜇
)
𝐶
.
𝐶𝜇

𝐶𝜇− 𝜆

𝐶−1
𝑛=0 ]

−1

 

Remark. The result obtained above is valid only if 
𝜆

𝐶𝜇
 < 1; that is, the mean arrival rate 

must be less than the mean maximum potential service rate of the system. If    C = 1, 

then the value of 𝑃0 is in complete agreement with the value of 𝑃0 for Model I. 

Characteristics of Model V 

(i) P(n  ≥ C) = Probability that an arrival has to wait  

                = ∑ 𝑃𝑛
∞
𝑛=𝐶  = ∑

1

𝐶𝑛−𝐶𝐶!
(𝜆/𝜇)𝑛∞

𝑛=𝐶 𝑃0 = 
(𝜆/𝜇)𝐶 𝐶𝜇

𝐶!(𝐶𝜇−𝜆)
𝑃0 

(ii) Probability that an arrival enters the service without wait 

                 = 1 – P(n ≥ C)     or    1 -  
𝐶(𝜆/𝜇)𝐶

𝐶!(𝐶−𝜆/𝜇)
𝑃0 

(iii) Average queue length is given by  

                 E(m)=∑ (𝑛 − 𝐶)∞
𝑛=𝐶 𝑃𝑛  = ∑ 𝑥𝑃𝑥+𝑐 ,      𝑓𝑜𝑟 𝑥 = 𝑛 − 𝑐

∞
𝑥=0  

                    = ∑ 𝑥.
1

𝐶!𝐶𝑥
(
𝜆

𝜇
)𝐶+𝑥∞

𝑥=𝐶 𝑃0 

                       E(m)= 
1

𝐶!
(𝜆/𝜇)𝐶 ∑ 𝑥. (

𝜆

𝐶𝜇
)𝑥∞

𝑥=0 𝑃0 

                              = 
1

𝐶!
(𝜆/𝜇)𝐶𝑃0∑ (

𝑑

𝑑𝑦
𝑦𝑥)∞

𝑥=0 . y,    where y= 
𝜆

𝐶𝜇
 

                              = 
1

𝐶!
(𝜆/𝜇)𝐶𝑃0y 

𝑑

𝑑𝑦
(
1

1−𝑦
) 

                               = 
𝜆𝜇(

𝜆

𝜇
)
𝐶
𝑃0

(𝐶−1)!(𝐶𝜇−𝜆)2
 

(iv) Average number of customer in the system is given 

E(n) = E(m) + 
𝜆

𝜇
 = 

𝜆𝜇(
𝜆

𝜇
)
𝐶
𝑃0

(𝐶−1)!(𝐶𝜇−𝜆)2
 + 

𝜆

𝜇
. 
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(v) Average waiting time of an arrival is given by  

                  E(w) = 
1

𝜆
 E(m) = 

𝜇(
𝜆

𝜇
)
𝐶
𝑃0

(𝐶−1)!(𝐶𝜇−𝜆)2
 

(vi) Average waiting time an arrival spends in the system is given by  

E(v) = E(w) + 
1

𝜇
 = 

𝜇(
𝜆

𝜇
)
𝐶
𝑃0

(𝐶−1)!(𝐶𝜇−𝜆)2
 + 

1

𝜇
    or E(v) = E(n)/𝛌. 

 

(vii) Average number of idle servers is equal to  

C – Average number of customers served. 

EXAMPLE 

A Supermarket has two girls serving at the counters. The customers arrive in a poisson 

fashion at the rate of 12 per hour. The service time for each customer is exponential 

with mean 10 minutes .Find 

(i) the probability that an arriving customer has to wait for service, 

 (ii) the average number of customers in the system, and 

 (iii) the average time spent by a customer in the super-market 

Solution. We are given 

  𝛌 = 12 customer per hour,   = 10 per hour,   C = 2 girls. 

⸫      𝑃0 =  [∑
1

𝑛!
(
12

10
)
𝑛
+

1

2!
(
12

10
)
2
.
2×10

20− 12
2−1
𝑛=0 ]

−1

 = 
1

4
    (or 0.25) 

(i) Probability of having to wait for service 

P(w > 0) = 
1

𝐶!
(
𝜆

𝜇
)𝐶

 𝐶𝜇

(𝐶𝜇−𝜆)
𝑃0 

       = 
1

2
(
12

10
)2

20

(20−12)
×
1

4
 = 0.45 

(ii) Average queue length is  

E(m) = 
𝜆𝜇(

𝜆

𝜇
)
𝐶
𝑃0

(𝐶−1)!(𝐶𝜇−𝜆)2
 =
12×10×(1.2)2×0.25

(2−1)!(20−12)2
 = 

27

40
 

        Average number of customer in the system  

                    E(n) = E(m) + 
𝜆

𝜇
 = 

27

40
 +
12

10
 = 1.82 (or 2 customers) approx.. 

(iii) Average time spent by a customer in supermarket  
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                         E(v) = E(n)/𝛌 = 1.82/12 = 0.156 hours  or 9.3 minutes. 

 

MODEL VI:{(M/M/C):(N/FIFO)}.This model is essentially the same as model V 

except that the maximum number in the system is limited to N where N≥C. Therefore, 

utilizing the steady-state probabilities of model IV, with  

  𝜆𝑛 = 𝛌 if 0 ≤ n < N;  and  0 otherwise  

And   µn=nµ  if 0 ≤ n < C;  and  Cµ if C≤n<N 

  We get  

  Pn = {

1

𝑛!
(
𝜆

µ
)
𝑛
𝑃0;     0 ≤ 𝑛 < 𝐶

1

𝐶𝑛−𝐶𝐶!
(
𝜆

𝜇
)𝑛𝑃0;  𝐶 ≤ 𝑛 ≤ 𝑁

 

Where 𝑃0  = {∑
1

𝑛!

𝐶−1
𝑛=0 (

𝜆

𝜇
)𝑛 + ∑

1

𝐶𝑛−𝐶𝐶!

𝑁
𝑛=𝐶 (

𝜆

𝜇
)𝑛}

−1
 

        = {
[∑ (

𝜆

𝜇
)𝑛𝐶−1

𝑛=0 + 
1

𝐶!
 (
𝜆

𝜇
)𝐶 {1 − (

𝜆

𝐶𝜇
)𝑁−𝐶+1}

𝐶𝜇

𝐶𝜇− 𝜆
  ]
−1

[∑ (
𝜆

𝜇
)𝑛𝐶−1

𝑛=0 + 
1

𝐶!
 (
𝜆

𝜇
)
𝐶
(𝑁 − 𝐶 + 1)]

−1

   ;      
𝜆

𝐶𝜇
=  1

 

Remark. If we take N       ∞ and consider 𝛌/C𝛍 < 1, then the reduced result corresponds 

to that of Model V. Also, if we take C = 1 then the reduced result corresponds to that 

of Model I. 

Characteristics of model VI 

(i) Average queue length is given by  

    E(m)= ∑ (𝑛 − 𝐶)𝑃𝑛
𝑁
𝑛=𝐶  ∑ (𝑛 − 𝐶)𝑁

𝑛=𝐶

(
𝜆

𝜇
)𝑛

𝐶!𝐶𝑛−𝐶
 𝑃0 

(ii)  Average number of customers in the system is given by 

 E(n)=E(m)+C-𝑃0∑
𝐶−1
𝑛=0

(𝐶−𝑛)(𝜌𝐶)𝑛

𝑛!
 

(iii) Average waiting time in the system can be obtained by using Littles’s 

formula, that is, 

 E(v)=[E(n)]/𝛌’   where  𝛌’=𝛌’(1-𝑃𝑁) is the effective 

arrival rate. 
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Average waiting time in a queue can be obtained by using 

 E(w)=E(v)-1/µ or E(w)=[E(m)]/ℷ’. 

EXAMPLE 

A car servicing station has 3 stalls where service can be offered simultaneously. 

The cars wait in such a way that when a stall becomes vacant, the car at the head of 

the line pulls up to it. The station can accommodate at most four cars waiting 

(seven in the station) at one time. The arrival pattern is Poisson with a mean of one 

car per minute during the peak hours. The service time is exponential with mean 6 

minutes. Find the average number of cars in the service station during peak hours, 

the average number of cars per hour that cannot enter the station because of full 

capacity. 

Solution. Here 𝜆 = 1 car per minute , 𝜇 = 1/6 car per minute, 𝐶 = 3, 

 𝑁 = 7, 𝜌 = 𝜆/𝜇 = 6 and 

          𝑃0 =[∑
1

𝑛!

3−1
𝑛=0 6𝑛 + ∑

1×6𝑛

3𝑛−33!
7
𝑛=3 ]

−1

  

 

Expected number of cars in the queue is 

E = 
(𝐶𝜌)𝐶

𝐶!(1−𝜌)2
 (1-𝜌𝑁−𝐶+1 − (1 −  𝜌)(𝑁 − 𝐶 + 1)𝜌𝑁−𝐶) 

   = 
(3×6)3×6

3!(−5)2
.
1

1141
 (1 - 65 – (-5)(5)(6)4) 

   = 3.09 Cars 

Expected number of cars in the service station 

  E (𝑛) = 3.09 + 3 - 𝑃0∑
(3−𝑛)

𝑛!
 (6)𝑛2

𝑛=0  6.06 Cars 

Expected waiting time a car spends in the system  

 E (v) = 
6.06

1(1−𝑃7)
 = 

0.06

1−
67

3!34
×

1

1141

 = 0.121 

Since,  𝑃𝑛 = 
1

𝐶!𝐶𝑛−𝐶
(
𝜆

𝜇
)𝑛𝑃0  for   C  ≤   n  ≤  N 

Expected number of cars per hour that cannot enter the station is  

  60𝛌𝑃𝑁 =  60 × 1 × 𝑃7 = 60×
67

3!34
 ×

1

1141
 = 30.3 cars per hour
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Model VII {M/M/C} : {C/FIFO}.This model is essentially the same as Model 

VI except that here N = C. Therefore, we consider the situation where no 

waiting queue is allowed to form. This gives rise to stationary distribution 

known as Erlang’s first formula and can be easily obtained by using the result of 

Model VI with N = C. Thus, we have  

   𝑃𝑛 = 
1

𝑛!
(
𝜆

µ
)𝑛𝑃0 if 0 ≤  n ≤  C    and  0 otherwise  

Where         𝑃0 = [∑
1

𝑛!
(
𝜆

µ
)𝑛𝐶

𝑛=0 ]
−1

 

 The resultant formula for 𝑃0 is itself called Erlang’s Loss Formula. 

EXAMPLE 

 A tax consulting film has three counters in its office to receive people 

who have problem concerning their income, wealth and sales taxes. On the 

average 48 persons arrive in an 8 hour in a day. Each tax adviser spends 15 on 

an average on an arrival. If the arrivals are poissonly distribution and the service 

time are according to exponential distribution, 

Find 

1)The average number of customers in system 

2)Average number of customers to be served 

3)Average time a customer spends in the system 

Solution: 

Here C=3, λ=48/8=6 per hour 

µ=
1

15
×60=4 per hour 

Probability  𝑃0=[∑
1

𝑛!
(
𝜆

µ
)
𝑛

𝐶−1
𝑛=0 +

1

𝐶!
(
𝜆

µ
)
𝐶 𝐶µ

(𝐶µ−𝜆)
]
−1

 

            =[∑
1

𝑛!
(
𝜆

µ
)
𝑛

𝐶−1
𝑛=0 +

1

3!
(
𝜆

µ
)
3 3µ

(3µ−𝜆)
]
−1

 

            =    
1

[1+
𝜆

µ
+
1

2
(
𝜆

µ
)
2
+
(𝜆/µ)2

6
.
3µ

3µ−𝜆
]
 

            =   
1

[1+
3

2
+
1

2
(
3

2
)
2
+
(3/2)2

6
.
3×4

3×4−6
]
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   =      
1

[1+
3

2
+
9

8
]+
27

48
.
12

12−6

 

   =      
1

29

8
+
9

8

 

    =  
8

39
 

    =  0.21 

1) Average number of customers in the system, 

           𝐿𝑠 =
𝜆µ(𝜆/µ)

𝑐

(𝐶−1)!(𝐶µ−𝜆)
2 . 𝑃0 +

𝜆

µ
 

=
6 × 4 × (3/2)2

2! (12 − 6)2
× (0.21) +

3

2
 

      =1.74 

  2) Average number of customer waiting to be served: 

    𝐿𝑞=𝐿𝑠-
𝜆

µ
  

    =1.74- 
3

2
  

    =0.24 

  3) Average time a customer spends in the system: 

   𝑊𝑠 =
𝐿𝑠

𝜆
=
1.74

6
 

         =0.29hour 

         =17.4 minutes 

 

   LIMITATION OF QUEUING THEORY 

 The problem resolving is based on mathematical distributions and 

assuming (the client’s behaviour is predicted, but no one guarantees the 

100 per cent accurateness). 

  Situations that take place in real life are usually complex and get beyond 

the philosophy and mathematics, which means that doubt remains no 

matter how accurate you are 

  Many companies have multi-channel services when one client has to 

receive services from several operators, and this can mean that customers 
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would often have to fall in a new queue soon after they get out of the 

previous one  

 It takes much effort, time and energy to analyse a particular situation and 

solve the problem using the theory (this method is expensive). 

 

 

APPLICATION OF QUEUING THEORY 

(i)Application in communication system 

Applicability of queueing theory through Markov process is alsofound in the field 

of communication system. This chain is based on the condition that the past, 

present and future all of them are independent. The natural laws of jump chain 

done within Markov chain process is also one of the examples of the queueing 

theory in communication system. 

(ii)Applications in Health Care Systems 

  Queuing theory is “The mathematical approach to the analysis of 

waiting lines in Health care setting”.Queuing system is very beneficial in the 

health care systems as well. One of the biggest hurdles in health care 

organizations is the fact that patients have to wait in long queues for their turn to 

be assisted. Queuing system minimizes the time that customers have to waste in 

waiting and utilizing their resources and servers. These servers include the nurses, 

hospital beds, doctors and other health care services. When a person chose to stop 

waiting in a queue, he complies with the phenomenon of reneging. This decision 

is dependent on the length of the queue and the amount of stamina that a patient 

has to wait in a line. Health care organizations attain dysfunctional equilibrium 

through exceeding server capacity by reneging. This example can be understood 

through the example of emergency units in the hospital (Tian & Zhang, n.d). Most 

of the patients quit emergency departments without even getting treated for their 

health problem due to capacity, arrival rate and utilization. Statistics and data 

collected from this amount of number of people leaving, health care organizations 

determine the rate of revenue loss. The Same queuing method can also be utilized 

to minimize the reneging factor in health care organizations. One way of doing 

this is by categorizing patients according to the service they require. Also we use 

the telecommunication system to avoid queue length byreserving previously 

appointment to consult a doctor. 
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CONCLUSION 

With the knowledge of probability theory, input and output models, and 

birth- death processes, it is possible to derive many different queuing models, 

including but not limited to the ones we observed in this paper. Queuing theory 

can be applicable in many real-world situations. For example, understanding 

how to model a multiple-server queue could make it possible to determine how 

many servers actually needed and at what wage in order to maximize financial 

efficiency. Or perhaps a queuing model could be used to study the lifespan of 

the bulbs in street lamps in order to better understand how frequently they need 

to be replaced. 

The applications of queuing theory extend well beyond waiting in line at a 

bank. It may take some creative thinking, but if there is any sort of scenario 

where time passes before a particular event occurs, there is probably some way 

to develop it into a queuing model. Queues are so commonplace in society that 

it is highly worthwhile to study them, even if only to shave a few seconds off 

one's wait in the checkout line. 
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INTRODUCTION: 

     A wide variety of recurrence relations occur in models. Some of these recurrence 

relations can be solved using iteration on some other adhoc technique. However, one 

important class of recurrence relation can be explicitly solved in a systematic way. 

There are recurrence relations that express the terms of a sequence as linear 

combinations of previous terms. 

     This study of what are called either recurrence relations on difference equations 

is the discrete counterpart to ideas applied in ordinary  differential equations. 

     Our development  will not employ any ideas from differential equations but will 

start with the notion of a geometric progression. As further ideas are developed, we 

shall see some of the many applications that make this topic so important. 

     A recurrence relation is an equation that uses recursion to relate terms in a 

sequence  an array. It is a way to define a sequence on array in terms of itself 

.Recurrence relations have applications in many areas of mathematics number 

theory- the Fibonacci sequences. 

Definition: 

     A recurrence relation for the sequence {𝒂𝒏} is an equation that expresses 𝒂𝒏 in 

terms of one or more preceding terms of the sequence, viz, 𝒂𝟎, 𝒂𝟏, … , 𝒂𝒏−𝟏, for n ≥

𝐧𝟎. Here 𝑛0 is used to define initial condition and is a non-negative  integer.  

     A sequence is called as a solution of a recurrence relation if its terms satisfy the 

recurrence relation. 

     The  initial conditions for a sequence specify the terms that precede the first term 

where the recurrence relation takes effect. 

 

1.1 THE FIRST-ORDER RECURRENCE RELATION 



 

3 

 

           Suppose n is a natural number, we define 2n as 

 

 

                2n = 2.2.2………2 

             
                      n2’s 

 or 

 

      2′= 2, and for k ≥1 , 2k+1 =  2.2k  

We write 0!=1 and for k ≥ 0, (k+1)! = (k+1)!k!. 

A sequence is a function whose domain is some infinite set of integers (often 

N) and whose range is a set of real numbers. 

The sequence which is the function f : N→R defined by f(n) = 

n2=1,4,9,16,……(1) 

The numbers in the list are called the terms of sequence , the terms are denoted 

a0, a1,a2,…..  

The sequence 2, 4, 8, 16, ..... can be defined recursively like : 𝑎1 = 2 and for 

f ≥ 1,  𝑎𝑘+1= 2𝑎𝑘 setting  k =1,2,3…. and 𝑎1= 2 in (1) gives 2,4,8…. 

The equation ak+1 = 2ak in (1), which defines one member of the sequence 

in terms of a previous one, is called a recurrence relation. The equation 𝑎1= 

2 is called an initial condition. 

            For example, we write , 

               𝑎0 = 2 and for k ≥ 0, 𝑎𝑘+1 = 2ak or we say 𝑎1 = 2 and for k ≥ 2, 𝑎𝑘= 

2𝑎𝑘−1 . 

In (1), for instance, 𝑎𝑛 = 2𝑛 , we say that , 𝑎𝑛 = 2𝑛 is the solution to the 

recurrence relation.  

A sequence of numbers like 50, 64, 78, 92, ...... where each term is determined 

by adding the same fixed number to the previous one, is called an arithmetic 

sequence. The fixed number is called the common difference of the sequence. 
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 The arithmetic sequence with first term a and common difference d is the 

sequence defined by 

               𝑎1 = a  and k ≥ 1, 𝑎𝑘+1 = 𝑎𝑘+d 

The general arithmetic sequence, takes the form  

                      a, a + d, a + 2d, ......  

  and for n ≥ 1, the nthterm of the sequence is 𝑎𝑛 = a + (n – 1) d.  

  The sum of n terms of the arithmetic sequence with first term a and common 

difference d is 

                     S = 
n

2
 [2a + (n – 1) d]  

The geometric sequence with first term a and common ratio r is the sequence 

defined by 

                       𝑎1 = a and for k ≥ 1, 𝑎𝑘+1= r𝑎𝑘 

 The general geometric sequence, this has the form 

                        a, ar,𝑎𝑟2, 𝑎𝑟3,………… 

 the nth term being 𝑎𝑛 = 𝑎rn−1, the sum S of n terms (r ≠ 1), S = a(1 – rn)/(1 

– r) 

1.1.1 THE FIBONACCI SEQUENCE 

    The Fibonacci sequence, 

                                     f1= 1, f2 = 1 and for k ≥ 2, fk+1= fk+fk−1the nth term 

of the Fibonacci sequence is the closed integer to the number  

                                  
1

√5
(

1+√5

2
)

n

 

 

For example, 𝑎1= 1 and for k > 1 

                            ak = {
   1 + 𝑎𝑘

2
            

if k is even 

1 + 𝑎3𝑘−1    if k is odd  
 

 

Problem 1(Rabbits and the Fibonacci numbers ) 
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                Consider this problem, which was originally posed by Leonardo di 

pisa, also known as Fibonacci in the thirteenth century in this book liber abaci. 

A young pair of rabbits(one of each sex) is placed on an island. A pair of 

rabbits does not breed until they are 2 months old. After they are 2                  

months old, each pair of rabbits produces another pair each month. Find a 

recurrence relation for the number of pair of rabbits on the island after n 

months, assuming that no rabbits over die. 

 

 

        Solution. 

                   Denote by fn the number of pair of rabbits after n months. We will show 

that fn , n=1,2,3……are the terms of the Fibonacci sequence. 

                      The rabbit population can be modeled using a recurrence relation. At 

the end of the first month the number of pairs of rabbits on the island is f1  = 1. Since 

this pair does not breed during the second month f2 =1 also. To  find the number of 

pairs after n months, add the number on the island the previous month, fn−1 and the 

number of new born pairs which equals fn−2 , Since each new born pair comes from 

a pair of least 2 months old. 

                      Consequently the sequence {fn} satisfies the recurrence relation and 

the initial conditions uniquely determine this sequence the number of pairs of rabbits 

on the island after n months is given by the nth fibonacci number. 

Problem 2 
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            A person invests Rs. 10,000/- @ 12% interest compounded annually. How 

much will be there at the end of 15 years.  

Solution. 

           Let An represents the amount at the end of n years. 

 So at the end of n – 1 years, the amount is An−1. 

 Since the amount after n years equals the amount after n – 1 years plus interest for 

the nth year.  

Thus the sequence {An} satisfies the recurrence relation 

                     An= An−1 + (0.12) An−1 = (1.12) An−1, n ≥ 1.  

With initial condition A0 = 10,000. 

 The recurrence relation with the initial condition allow us to compute the value of 

An for any n. 

 For example,                  A1 = (1.12) A0  

                                      A2 = (1.12) A1= (1.12)2 A0  

                                      A3= (1.12) A2 = (1.12)3A0  

                                      : 

                                      : 

                                     An = (1.12)n A0  

which is an explicit formula and the required amount can be derived from the 

formula by putting n = 15.  

So, A15 = (1.12)15 (10000).  

Problem 3 

 Suppose that a person deposits $10,000 in a savings account at a bank yielding 11% 

per year with interest compounded annually. How much will be in the account after 

30 years ?  



 

7 

 

Solution. 

            To solve this problem. Let Pn denote the amount in the account after n years. 

 Since the amount in the account after n years equals the amount in the account after 

n – 1 years plus interest for the nth year, we see that sequence {Pn } satisfies the 

recurrence relation 

                             𝑃𝑛= 𝑃𝑛−1 + 0.11 𝑃𝑛−1 = (1.11) 𝑃𝑛−1  

This initial condition is 𝑃0 = 10,000.  

We can use an interative approach to find a formula for Pn.  

Note that          P1  = (1.11) P0 

                         P2  = (1.11) P1 = (1.11)2 P0 

                         P3  = (1.11) P2 = (1.11)3 P0 

                         ........................................  

                         ........................................  

                         Pn = (1.11) Pn−1 = (1.11)n P0 

when we insert the initial condition P0 = 10,000, the formula Pn= (1.11)n 10,000 is 

obtained. 

 We can use mathematical induction to establish its validity. That the formula is valid 

for n = 0 is a consequence of the initial condition.  

Now assume that Pn = (1.11)n 10,000. 

 Then, from the recurrence relation and the induction hypothesis.  

Pn+1= (1.11) Pn= (1.11) (1.11)n 10,000 = (1.11)n+1 10,000.  

This shows that the explicit formula for Pn is valid. 

 Inserting n = 30 into the formula Pn = (1.11)n 10,000 

 Shows that after 30 years the account contains P30 = (1.11)30 10,000 = $228,922.97 
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Problem 4 

Solve the recurrence relation 𝑎𝑛 = 7-𝑎𝑛−1 for n ≥ 1 given that 𝑎2=98 

Solution.  

          Given recurrence relation is 𝑎𝑛 = 7-𝑎𝑛−1 for n≥ 1          → (1) 

The given recurrence relation is a first order linear or homogeneous linear relation. 

The generalsolution of first order linear or homogeneous recurrence relation of 

 𝑎𝑛 =𝑐𝑛. 𝑎0                                                                                  → (2) 

In eq (1) substituting n+1 in place of n,   𝑎𝑛+1 = 7. 𝑎𝑛+1−1 

                                                                   𝑎𝑛+1 =7. 𝑎𝑛                → (3) 

If   𝑎𝑛=𝑐𝑛 the   𝑎𝑛+1 = 𝑐𝑛+1 

                        7. 𝑎𝑛= 𝑐𝑛. 𝑐       [𝑎𝑚+𝑛 = 𝑎𝑚 . 𝑎𝑛 ] 

                       7. 𝑐𝑛= 𝑐𝑛.c 

                           C = 7 

Substituting  c value in eq (2), 𝑎𝑛 =7𝑛. 𝑎0                                   → (4) 

                         𝑎2 = 98 

Substituting n=2 in eq (4) 

                         𝑎2 =  72. 𝑎0 

                         98 = 72. 𝑎0 

                          𝑎0 = 
98

49
 =2 

Substitute  𝑎0 value in eq (4) 

                          𝑎𝑛 = 7𝑛.2 



 

9 

 

 

1.1.2 TOWER OF HANOI 

       Problem 5 

                          The game of Hanoi Tower is to play with a set of disks of graduated 

size with holes in their centers and a playing board having three spokes for holding 

the disks. 

                      

           The object of the game is to transfer all the disks from spoke A to spoke C by 

moving one disk at a time without placing a larger disk on top of a smaller one. What 

is the minimal number of moves required when there are n disks?  

Solution. 

             Let 𝑎𝑛 be the minimum number of moves to transfer n disks from one spoke 

to another. In order to move n disks from spoke A to spoke C, one must move the 

first n − 1 disks from spoke A to spoke B by 𝑎𝑛−1 moves ,then move the last (also 

the largest) disk from spoke A to spoke C by one move, and then remove the n − 1 

disks again from spoke B to spoke C by 𝑎𝑛−1  moves. Thus the total number of 

moves should be  

                              𝑎𝑛 = 𝑎𝑛−1 +1+ 𝑎𝑛−1  = 2𝑎𝑛−1 + 1.  

            This means that the sequence {𝑎𝑛 |𝑛 ≥ 1} satisfies the recurrence relation 
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                               {
𝑎𝑛 = 2𝑎𝑛−1 + 1, 𝑛 ≥ 1
𝑎1 = 1                              

                            (1) 

 

            Applying the recurrence relation again and again, we have  

                               𝑎1= 2𝑎0 + 1 

                               𝑎2 = 2𝑎1 + 1 = 2(2𝑎0 + 1) + 1  

                                    = 22 𝑎0 + 2 + 1 

                               𝑎3 = 2𝑎2 + 1 = 2(22 𝑎0 + 2 + 1) + 1  

                                    = 23 𝑎0+ 22 + 2 + 1 

                               𝑎4 = 2𝑎3 + 1 = 2(23 𝑎0+ 22 + 2 + 1) + 1  

                                    = 24 𝑎0 + 23 + 22+ 2 + 1  

                                ⋮                

                              𝑎𝑛 = 2𝑛 𝑎0+ 2𝑛−1+ 2𝑛−2+ · · · + 2 + 1 

                                    = 2𝑛 𝑎0 + 2𝑛 − 1 

Let 𝑎0 = 0. The general term is given by  

                                   𝑎𝑛=2𝑛 − 1, n ≥ 1. 

Given a recurrence relation for a sequence with initial conditions. Solving the 

recurrence relation means to find a formula to express the general term 𝒂𝒏 of the 

sequence. 

1.2 METHOD OF LINEAR RECURRENCE RELATION 

1.2.1. Back Tracking Method 

                    In this method, we shall start from 𝑎𝑛 and move backward towards 𝑎1 

to find a pattern, if any, to solve the problem. 

                    To backtrack, we keep on substituting the definition of  𝑎𝑛, 

  𝑎𝑛−1, 𝑎𝑛−2 and so on. Until a recognizable pattern appears. 
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1.2.2. Forward Chaining Method 

In this method, we begin from initial (terminating) condition and keep on moving 

towards the 𝑛𝑡ℎ term until we get a clear pattern. 

1.2.3. Summation Method 

To solve a first order linear recurrence relation with constant coefficient.In this 

method, we arrange the given equation in the following form : 

𝑎𝑛– 𝑘𝑎𝑛−1
 = f(n) and then backtrack till terminating condition. 

In the process, we get a number of equations. Add these equations in such a way 

that all intermediate terms gets cancelled. Finally, we get the required solution. 

Problem 6 

 Solve the recurrence equation 𝑎𝑛 = 𝑎𝑛−1 + 3 with 𝑎1 = 2. 

Solution.  

 Backtracking Method : 

We have, 

                𝑎𝑛 =  𝑎𝑛−1 + 3 with 𝑎1 = 2  

                 𝑎𝑛=  𝑎𝑛−2 + 3 + 3 (since 𝑎𝑛−1  = 𝑎𝑛−2 + 3) 

                   =  𝑎𝑛−2 + 2 × 3 

                   = 𝑎𝑛−3 + 3 + 2 × 3 (since 𝑎𝑛−2 =   𝑎𝑛−3+ 3) 

                   = 𝑎𝑛−3 + 3 × 3 

                   =  𝑎𝑛−4+ 3 + 3 × 3 (since 𝑎𝑛−3=   𝑎𝑛−4+ 3) 

                   = 𝑎𝑛−4+ 4 × 3 

                  − − − − − − − − − − − − 

                  − − − − − − − − − − − − 

                  = 𝑎𝑛−(𝑛−1)+ (n – 1) × 3 

                  = 𝑎1 + 3(n – 1) 

                  = 2 + 3(n – 1) (since 𝑎1 = 2 is the terminating condition) 

∴ 𝑎𝑛= 2 + 3(n – 1) 
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Forward Chaining Method : 

Given, initial condition : 𝑎1= 2 

Now ,𝑎1= 2 

𝑎2 = 𝑎1+ 3 

 𝑎3= 𝑎2 + 3 

     =  𝑎1+ 2 × 3 

𝑎4 =  𝑎3+ 3 

     = 𝑎1+ 2 × 3 + 3 

     = 𝑎1+ 3 × 3  

     = 𝑎1+ (4 – 1) × 3 

 𝑎5=𝑎1+ (5 – 1) × 3 

− − − − − − − − − − − − 

− − − − − − − − − − − − 

𝑎𝑛 =  𝑎1+ (n – 1) 3   

∴ 𝑎𝑛= 2 + 3(n – 1) 

Summation Method : 

The given equation can be rearranged as 

 𝑎𝑛– 𝑎𝑛−1    = 3 

𝑎𝑛−1 – 𝑎𝑛−2 = 3 

𝑎𝑛−2 – 𝑎𝑛−3 = 3 

− − − − − − − − − − − − 

− − − − − − − − − − − − 

𝑎3 –  𝑎2= 3 

 𝑎2 – 𝑎1  = 3 

We stop here, since 𝑎1 = 2 is given. 

Adding all, we get 

𝑎𝑛 – 𝑎1 = 3 + 3 + 3 + ...... + (n – 1) times. 

             = 3(n – 1) 

    ⇒ 𝑎𝑛 = 𝑎1 + 3(n – 1) 
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Problem 7 

 

Solve the recurrence relation an= an−1 + 3 with a1= 2 defines the sequence  

2, 5, 8, ...... . 

 

Solution.  

 

We backtrack the value of 𝑎𝑛 by substituting the definition of 𝑎𝑛−1, 𝑎𝑛−2, and so 

on until a pattern is clear. 

 

𝑎𝑛 = 𝑎𝑛−1 + 3  

    = (𝑎𝑛−2+ 3) + 3  

    = ((𝑎𝑛−3+ 3) + 3) + 3  

 

 

 

Eventually this process will produce 𝑎𝑛 = 

𝑎𝑛 – (n – 1) + (n – 1) . 3 

    =𝑎1+ (n – 1) . 3 

    = 2 + (n – 1) . 3 

or  

𝑎𝑛 = 𝑎𝑛−1+ 3 

     = 𝑎𝑛−2+ 2.3 

     = 𝑎𝑛−3+ 3.3 

 

An explicit formula for the sequence is 𝑎𝑛 = 2 + (n – 1) 3 

Problem 8 

 Write down the first six terms of the sequence defined by 𝑎1= 1,  𝑎𝑘+1 = 3𝑎𝑘 + 1 

for k ≥ 1. Guess a formula for 𝑎𝑛  and prove that your formula is correct. 

Solution.   

The first six terms are  

𝑎1 = 1 

𝑎2 = 3𝑎1 + 1 = 3(1) + 1 = 4 
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𝑎3 = 3𝑎2 + 1 = 3(4) + 1 = 13 

𝑎4 = 40, 

 𝑎5= 121,   

𝑎6 = 364. 

Since there is multiplication by 3 at each step, we might suspect that 3𝑛 is involved 

in the answer. 

After trial and error, we guess that 𝑎𝑛 =
1

2
(3𝑛 – 1) and verify this by mathematical 

induction. 

When n = 1, the formula gives, 
1

2
(31 – 1) = 1, which is indeed 𝑎1, the first term in the sequence. 

Now assume that k ≥1 and that  

        𝑎𝑘 = 
1

2
(3𝑘 – 1). 

We wish to prove that, 

           𝑎𝑘+1 = 
1

2
(3𝑘+1– 1) 

We have,  

           𝑎𝑘+1 = 3𝑎𝑘 + 1  

                       = 3 ½ (3𝑘 – 1) + 1 

Using the induction hypothesis, 

Hence, 𝑎𝑘+1 =
1

2
 3𝑘+1– 

3

2
+1 

                    = 
1

2
(3𝑘+1– 1) as required. 

By the principle of mathematical induction, our guess is correct. 

Problem 9 

 Backtrack to find an explicit formula for the sequence defined by the recurrence 

relation 𝑏𝑛 = 2𝑏𝑛−1 + 1 with initial condition 𝑏1 = 7 

Solution.  
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We begin by substituting the definition of the previous term in the defining 

formula. 

       𝑏𝑛 = 2𝑏𝑛−1 + 1 

            = 2 (2𝑏𝑛−2 + 1) + 1 

            = 2[2 (2𝑏𝑛−3 + 1) + 1] + 1 

            = 23 𝑏𝑛−3+ 4 + 2 + 1 

            = 23 𝑏𝑛−3+ 22+ 21 + 1. 

A pattern is emerging with these rewriting of 𝑏𝑛 

(Note :  There are no set rules for how to rewrite these expressions and a certain          

amount of experimentation may be necessary.) 

The backtracking will end at 

        𝑏𝑛 = 2𝑛−1 𝑏𝑛−(𝑛−1)+ 2𝑛−2 + 2𝑛−3 + ...... + 22 + 21 + 1 

             = 2𝑛−1𝑏1 + 2𝑛−1– 1 

             = 7 . 2𝑛−1+ 2𝑛−1 – 1 (using 𝑏1 = 7) 

         𝑏𝑛= 8 . 2𝑛−1 – 1 (or)  2𝑛+2– 1 

 Problem 10 

 

     Solve the recurrence relation 𝑎𝑛 = 𝑎𝑛−1+ 2, n ≥ 2 subject to initial condition 

𝑎1 = 3. 

 

Solution.  

 

We backtrack the value of 𝑎𝑛 by substituting the expression of 𝑎𝑛−1, 𝑎𝑛−2 and so 

on,until a pattern is clear. 

Given  𝑎𝑛 = 𝑎𝑛−1 + 2  ...(1) 

Replacing n by n – 1 in (1), we 

obtain 
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Replacing n by n−2 in (1), we obtain 

       𝑎𝑛−2 = 𝑎𝑛−3+ 2 

So, from (2),  

      𝑎𝑛 = (𝑎𝑛−3+ 2) + 2.2  

           = 𝑎𝑛−3 + 3.2 

In general 

         𝑎𝑛 = 𝑎𝑛−𝑘 + k . 2 

For k = n – 1, 𝑎𝑛 = 𝑎𝑛−(𝑛−1) + (n – 1) . 2 

                           =𝑎1 + (n – 1) . 2 

                           = 3 + (n – 1) . 2 

which is an explicit formula 

1.3 THE SECOND-ORDER LINEAR Homogeneous Recurrence Relation 

with constant coefficients 

Let k ∈ Z+ and 𝐶𝑛 (≠ 0), 𝐶𝑛−1, 𝐶𝑛−2 ,...... 𝐶𝑛−𝑘 (≠ 0) be real numbers. If 𝑎𝑛, for n ≥ 

0, is a discrete function, then  

                 𝐶𝑛𝑎𝑛 +  𝐶𝑛−1𝑎𝑛−1 + 𝐶𝑛−2𝑎𝑛−2+ ...... + 𝐶𝑛−𝑘𝑎𝑛−𝑘 = f(x), n ≥ k 

is a linear recurrence relation (with constant coefficients) of order k. When f(n) = 

0, for all n ≥ 0, therelation is called homogeneous ; other wise, it is non-

homogeneous. 

The homogeneous relation of order two : 

        𝐶𝑛𝑎𝑛 +  𝐶𝑛−1𝑎𝑛−1 + 𝐶𝑛−2𝑎𝑛−2 = 0 , n ≥ 2. 

A solution of the form 𝑎𝑛 = C𝑟𝑛, where C ≠ 0 and r ≠ 0 substituting 𝑎𝑛 = C𝑟𝑛 into 

                                         𝐶𝑛𝑎𝑛 +  𝐶𝑛−1𝑎𝑛−1 + 𝐶𝑛−2𝑎𝑛−2 = 0  

We obtain              𝐶𝑛𝐶𝑟𝑛 + 𝐶𝑛−1𝐶𝑟𝑛−1 + 𝐶𝑛−2𝐶𝑟𝑛−2 = 0, 

with C, r ≠ 0, this becomes 

                         𝐶𝑛𝑟2 + 𝐶𝑛−1r + 𝐶𝑛−2 = 0, 

𝑎𝑛−1 = 𝑎𝑛−2 + 2 

 

𝑎𝑛 = 𝑎𝑛−2 + 2 = (𝑎𝑛−2 + 2) + 2 

     = 𝑎𝑛−2 + 2.2  

 

From (1),  

 

...(2) 
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a quadratic equation which is called the characteristic equation. 

1.4 THE NON HOMOGENEOUS RECURRENCE RELATIONS 

 

The recurrence relations 

 

                          𝑎𝑛 + 𝑐𝑛−1𝑎𝑛−1
 = f(n), n ≥ 1                     ... (1) 

                         𝑎𝑛+ 𝑐𝑛−1𝑎𝑛−1 + 𝑐𝑛−2𝑎𝑛−2 = f(n), n ≥ 2  ... (2) 

 Where 𝑐𝑛−1 and 𝑐𝑛−2 are constants,  

 𝑐𝑛−1 ≠ 0 in (1), 𝑐𝑛−2 ≠ 0, and f(n) is not identically 0. 

 

     Although there is no general method for solving all non homogeneous relations, 

for certain functions 

f(n) we shall find a successful technique. 

 

When 𝑐𝑛−1 = – 1, (1) gives, for the non homogeneous relation 𝑎𝑛 – 𝑎𝑛−1 = f(n), we 

have 

           𝑎1 = 𝑎0 + f(1) 

          𝑎2  = 𝑎1 + f(2) = 𝑎0 + f(1) + f(2) 

          𝑎3  = 𝑎2 + f(3) = 𝑎0 + f(1) + f(2) + f(3) 

-------------- 

           𝑎𝑛 = 𝑎0 + f(1) + ...... + f(n) 

                 = 𝑎0  + ∑ 𝑓(𝑖)𝑛
𝑖=1  

 

We can solve this type of relation in terms of n, if we find a suitable summation 

formula for  ∑ 𝑓(𝑖)𝑛
𝑖=1 (a) The non homogeneous first-order relation 

𝒂𝒏+ 𝒄𝒏−𝟏𝒂𝒏−𝟏 = k𝒓𝒏 

where k is a constant and n∈ 𝑧+  

 

(b) If 𝑟𝑛 is not a solution of the associated homogeneous relation 𝑎𝑛 +𝑐𝑛−1𝑎𝑛−1 = 

0, then 𝑎𝑛(P)=A𝑟𝑛 , where A is a constant. When 𝑟𝑛 is a solution of the associated 

homogeneous relation, then 

          𝑎𝑛(P) = Bn 𝑟𝑛, for B a constant. 

 

(c) The non-homogeneous second order relation 

         𝒂𝒏+ 𝒄𝒏−𝟏𝒂𝒏−𝟏 +𝒄𝒏−𝟐𝒂𝒏−𝟐= k𝒓𝒏 . 
Where k is a constant . 

 

 1.4.1. Characteristic Equation Method : 
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             This method can be used to solve any constant order linear recurrence 

equation with  constant  coefficient . This recurrence relation may be homogeneous 

or non-homogeneous. Before attempting to solve any such problem, let us first, 

understand what is characteristic equation for a  given  recurrence 

equation  and how to find it. 

 

A recurrence equation of the mentioned type can be arrranged in standard 

form as : 

            𝑨𝒏 + 𝑪𝟏𝑨𝑵−𝟏+ 𝑪𝟐𝑨𝑵−𝟐+ 𝑪𝟑𝑨𝑵−𝟑 =  R.H.S …… (1) 

 

Where 𝐶𝐼, 𝐶2,𝐶3 are constant coefficients and R.H.S. has one of the following 

forms : 

 

Form Examples 

Homogeneous 0 

A constant to the 𝑛𝑡ℎ 

power 
2𝑛, 𝜋−𝑠 ,2−𝑛 , √2𝑛 

A polynomial in n 3, 𝑛2  , 𝑛2 − 𝑛 , 𝑛3+2n - 1 

A product of a constant to 

the 𝑛𝑡ℎ power and a 

polynomial in n 

 

2𝑛 (𝑛2 + 2n – 1), (n – 1) 𝑛6, n 6𝑛 

 

A linear combination of 

any of the above 
(2𝑛 + 3𝑛/2) (𝑛2 + 2n – 1) + 5 

In the recurrence equation (1), assigning R.H.S. = 0, we get 

 

𝑨𝒏 + 𝑪𝟏𝑨𝑵−𝟏+ 𝑪𝟐𝑨𝑵−𝟐+ 𝑪𝟑𝑨𝑵−𝟑  =  0         …… (2) 

 

 
 

This equation (2) gives the homogeneous part of the given recurrence equation. 

Every recurrence equation has a homogeneous part . If the recurrence relation is 

homogeneous  then it has only homogeneous part and solving such equation is one 

step process. On the other hand, if the given recurrence equation is non-

homogeneous  then its homogeneous part is obtained by assigning R.H.S. equal to 

zero. 

 

A characteristic equation corresponds to homogeneous part of the given recurrence 

relation. 

The characteristic equation of (2) is given  as : 
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𝑥3 +  𝑐1 𝑥
2 +𝑐2 𝑥 +  𝑐3  = 0     …….      (3) 

  

This has been obtained by the following procedure  : 

  

(i) Find the order of the recurrence equation here it is 3. 

 

(ii) Take any variable (say x) and substitute 

𝐴𝑛 , 𝐴𝑛−1, 𝐴𝑛−2 , by 𝑥3, 𝑥2, x  respectively in the homogeneous part of the 

recurrence equation. 

Equation so obtained is called characteristic equation of the given recurrence 

equation .  

Example (1)  :  

                   The characteristic equation of the recurrence equation  

             𝑐𝑛=3𝑐𝑛−1 − 2𝑐𝑛−2   is given by  

                                

                              𝑥2 – 3x + 2 = 0. 

Example (2)  :  

                   The characteristic equation of the recurrence equation  

𝑓𝑛 = 𝑓𝑛−1+𝑓𝑛−2  is given by  

 

                          𝑥2 – x – 1 = 0. 

 

 

Example (3) :    

                    The characteristic equation of the recurrence equation 

   𝐴𝑛 – 5𝐴𝑛−1 + 6𝐴𝑛−2 = 2𝑛 + n   is given  by  

 

                   𝑥2 – 5x+6 = 0  

Theorem 1.1 

 If the characteristic  equation  𝑥2- 𝑟1x - 𝑟2 = 0 of the recurrence equation  𝑎𝑛 =

 𝑟1𝑎𝑛−1 +  𝑟2𝑎𝑛−2 has two distinct roots 𝑠1 and 𝑠2 then 𝑎𝑛 = u 𝑠1
𝑛 +  𝑣𝑠2

𝑛   is the 

closed form formula for the sequence where u and v depend on the initial condition 

 Proof.  

                Since   𝑠1 and  𝑠2 are roots of 
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                                𝑥2- 𝑟1x - 𝑟2 = 0    →   (1) 

We have  

                𝑠1
2- 𝑟1𝑠1- 𝑟2 = 0 →  (2)   

                 

                𝑠2
2- 𝑟1𝑠2- 𝑟2 = 0 →  (3)   

 

Since u and v are dependent on the initial conditions 

           We have 

                     𝑎1= u𝑠1+ v𝑠2  

   And    𝑎2 = u𝑠1
2 + v𝑠2

2 

Now,  

           𝑎𝑛= u𝑠1
𝑛 + v𝑠2

𝑛 

               

               = u𝑠1
𝑛−2 𝑠1

2 + v𝑠2
𝑛−2𝑠2

2 

                

               = u𝑠1
𝑛−2 [ 𝑟1𝑠1+ 𝑟2] + v𝑠2

𝑛−2 [ 𝑟1𝑠2+ 𝑟2] 

                                                 

                                                             From (2) and (3) 

               

              = 𝑟1u𝑠1
𝑛−1+ 𝑟2u𝑠1

𝑛−2 + 𝑟1v𝑠2
𝑛−1+ 𝑟2v𝑠2

𝑛−2 

 

              = 𝑟1[ u𝑠1
𝑛−1 + v𝑠2

𝑛−1 ] + 𝑟2 [u𝑠1
𝑛−2 + v𝑠2

𝑛−2 ] 

               

              =  𝑟1𝑎𝑛−1 +  𝑟2𝑎𝑛−2 

 

(i.e) 𝑎𝑛= u 𝑠1
𝑛 +  𝑣𝑠2

𝑛  is an explicit formula for the given relation .  

 

There are four steps in the process  : 

 

Step 1 : Find the homogeneous solution to the homogeneous equation. This results 

when you set the  R.H.S. to zero. If it is already zero, skip the next two steps and 

go directly to the step 4.Your answer will contains one or more undetermined 

coefficients whose values cannot bedetermined until step 4. 

 

Step 2 : Find the particular solution by guessing a form similar to the R.H.S. This 

step does not 

produce any additional undetermined coefficients, nor does it eliminate those from 

step 1. 
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Step 3 : Combine the homogeneous and particular solution. 

 

Step 4 : Use boundary or initial conditions to eliminate the undetermined constants 

from the step 1. 

  

Problem 11 

 

What is the solutions of recurrence relation  𝑎𝑛 = 𝑎𝑛−1 + 2𝑎𝑛−2 with 𝑎0 = 2 and 

𝑎1 = 7  ? 

 

Solution :  

 The characteristic equation of the recurrence relation is  𝑟2 – r – 2 = 0. 

                          Its roots are r = 2 and r = – 1. 

 

Hence, the sequence {𝑎𝑛} is a solution to the recurrence relation if and only if 

𝑎𝑛= ∝1 2𝑛 +∝2 (−1)𝑛 for some constants ∝1 and ∝2 . 
 

From the initial conditions, it follows that 

 

𝑎0= 2 =  ∝1+ ∝2 

𝑎1 = 7 = ∝1 . 2 + ∝2 . (– 1) 

 

Solving these two equations shows that ∝1 = 3 and  ∝2 = – 1. 

 

Hence, the solution to the recurrence relation and initial conditions is the sequence 

{𝑎𝑛} with 

                   𝑎𝑛 = 3.2𝑛 – (−1)𝑛 . 

Problem 12 ` 

                 What is the solution of the recurrence relation 

an = 6an−1– 9an−2 with initial conditions a0 = 1 and a1 = 6  ? 

  

Solution :  

  

The only root of 𝑟2 – 6r + 9 = 0 is r = 3. 

 

Hence, the solution to this recurrence relation is 𝑎𝑛 = ∝1 3𝑛+ ∝2 𝑛3𝑛 

for some constants  ∝1 and ∝2 . 

    

Using the initial conditions, it follows that 
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 𝑎0= 1 = ∝1 

𝑎1 = 6 = ∝1  . 3 ∝2 + . 3 

  

Solving these two equations shows that  ∝1 = 1 a𝑛𝑑 ∝2= 1. 

 

Consequently, the solution to this recurrence relation and the initial conditions is 

                                        𝑎𝑛 = 3𝑛+ 𝑛3𝑛 

 

Problem 13  

                   Find the solution to the recurrence relation 

        an   = 6 an−1– 11an−2 + 6 an−3  with initial conditions  a0 = 2, a1 = 5 and  

a2= 15 

 

Solution : 

 

   The characteristic polynomial of this recurrence relation is 𝑟3 – 6𝑟2 + 11r – 6 = 0 

The characteristic roots are r = 1, r = 2 and r = 3 

 

Since  𝑟3– 6𝑟2 + 11r – 6 = (r – 1)(r – 2)(r – 3) 

Hence, the solutions to this recurrence relation are of the form  

 𝑎𝑛=  ∝1 . 1𝑛 + ∝2 . 2n +∝3 . 3n. 

 

To find the constants ∝1 , ∝2 and  ∝3 .  
           use the initial conditions. 

This gives   𝑎0  = 2 =   ∝1 + ∝2+  ∝3 

                   𝑎1= 5 =   ∝1 + ∝2. 2 +  ∝3  . 3 

                    𝑎2 = 15 =    ∝1 + ∝2. 4 +  ∝3  . 9 

When these three simultaneous equations are solved for   ∝1 ,   ∝2   𝑎𝑛𝑑  ∝3 .we find 

that    ∝1= 1,  ∝2– 1 and    ∝3= 2. 

             Hence, the unique solution to this recurrence relation and the given initial 

conditions is the sequence {𝑎𝑛} with  

                        𝑎𝑛    = 1 – 2𝑛 + 2 . 3𝑛 

 

Problem 14  

            Find the solution to the recurrence relation 

                        𝑎𝑛  = – 3 𝑎𝑛−1 – 3𝑎𝑛−2 − 𝑎𝑛−3 with initial conditions a0  = 1, 

 𝑎1  = – 2 and  a2 – 1. 

                                                                                                                                                                                                                        

 Solution : 
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         The characteristic equation of this recurrence relation is 𝑟3 + 3𝑟2 + 3r + 1 = 0 

Since  𝑟3 + 3𝑟2 + 3r + 1 = (𝑟 + 1)3, there is a single root r = – 1 of multiplicity 

three of the characteristic equation. 

 

The solutions of this recurrence relation are of the form 

𝑎𝑛 =  ∝1,0 (−1)𝑛 +  ∝1, 1𝑛(−1)𝑛 +  ∝1,0 𝑛2(−1)𝑛 

 

To find the constant  ∝1,0 ,   ∝1,1 ,  ∝1,2  use the initial conditions. 

This gives 𝑎0  = 1 =  ∝1,0 

                 𝑎1  = – 2 = − ∝1,0 - ∝1,1 –  ∝1,2 

                 𝑎2 = – 1= ∝1,0  + 2 ∝1,1  + 4 ∝1,2 

 

The simultaneous solution of these three equations is 

                    ∝1,0= 1,   ∝1,1  = 3, and  ∝1,2 = – 2 

 

Hence, the unique solution to this recurrence relation and the given initial 

conditions is the sequence {an} with  

                     𝑎𝑛  = (1 + 3n – 2𝑛2)  (−1)𝑛. 

 

1.6 The Method of Generating Function 

 One of the uses of generating function method is to find the closed form formula 

for a recurrence relation. Before using this method, ensure that the given recurrence 

equation is in linear form. 

     A non-linear recurrence equation cannot be solved by the Generating Function 

Method. Use substitution of variable technique to convert a non linear recurrence 

(equation) relation into linear. 

     Solving a recurrence (equation) relation using generating function method 

involves two steps process. 

Step 1: Find generating function for the sequences for which the general term is 

given by recurrence relation. 

Step 2: Find coefficient of 𝑥2 or 
𝑥2

𝑛!
  depending upon whether the generating function  
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The value so obtained will be an algebraic formula for an, expressed in terms of n 

which is the position of 𝑎𝑛 is sequence. 

 

      A generating function is a polynomial expression of the form 

f(x) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ....... + 𝑎𝑛𝑥𝑛 + ...... . 

  in which the coefficients 𝑎𝑖 are all zero after a certain point, a generating function 

usually has infinitely many non-zero terms. There is an obvious correspondence 

between generating functions and sequences. 

 

𝑎0 ,𝑎1, 𝑎2, ...... 
 

𝑎0+ 𝑎1𝑥 + 𝑎2𝑥2+ 𝑎3𝑥3 + ......                                           ↔ 𝑎0, 𝑎1, 𝑎2, 𝑎3, ...... 
*If      f(x) = 𝑎0 + 𝑎1𝑥+ 𝑎2𝑥2+ ......                   and  

          g(x) = 𝑏0+ 𝑏1𝑥+ 𝑏2𝑥2+ ...... then 

f(x) + g(x) = (𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑥 + (𝑎2 + 𝑏2)𝑥2 + ...... 

    f(x)g(x) = (𝑎0𝑏0) + (𝑎1𝑏0 + 𝑎0𝑏1)x + (𝑎0𝑏2+ 𝑎1𝑏1 + 𝑎2𝑏0)𝑥2+ ...... 

 

The coefficient of 𝒙𝒏 in the product f(x)g(x) is the infinite sum 

𝑎0𝑏𝑛 + 𝑎1𝑏𝑛−1 + 𝑎2𝑏𝑛−2+ ...... + 𝑎𝑛𝑏0. 

 

Problem 15  

 

 If f(x) = 1 + x +  + 𝑥2...... + 𝑥𝑛 + ...... and 

g(x) = 1 –x + 𝑥2 –  + 𝑥3...... + (– 1)n 𝑥𝑛+ ......, 

find f(x) + g(x) and f(x)g(x). 

 

Solution.  

 

f(x) + g(x) = (1 + x + 𝑥2+ ...... + 𝑥𝑛 + ....) + (1 –x + 𝑥2 – 𝑥3+ ...... + (– 1)n𝑥𝑛..) 

                  = (1 + 1) + (1 – 1)x + (1 + 1)𝑥2 + ...... + (1 + (– 1)n) 𝑥𝑛 + ...... 

                  = 2 + 2𝑥2 + 2𝑥4 + ...... 

 

f(x)g(x)     = (1 + x + 𝑥2+ .... + 𝑥𝑛 + .....) . (1 – x + 𝑥2 – 𝑥3 + ...... + (– 1)n𝑥𝑛+...) 

                  = 1 + [1(– 1) + 1(1)] x + [1(1) + 1(– 1) + 1(1)] 𝑥2+ ...... 

                  = 1 + 𝑥2 + 𝑥4+ 𝑥6+ ....... .           

Problem 16 
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 Solve the recurrence relation 𝑎𝑛 = 3𝑎𝑛−1 , n ≥ 1, given 𝑎0 = 1. 

 

Solution. 

 

 Consider the generating function 

f(x) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ...... + 𝑎𝑛𝑥𝑛 + ........  of the sequence 𝑎0, 𝑎1, 𝑎2, ...... 

multiplying by 3x and writing the product 3xf(x) below f(x) so that terms involving 

𝑥𝑛 match, we obtain 

 

f(x)     = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2+ ....... + 𝑎𝑛𝑥𝑛+ ........ 

3xf(x) = 3𝑎0𝑥 + 3𝑎1𝑥2 ....... + 3𝑎𝑛−1𝑥𝑛 + ...... 

 

Subtracting  gives 

 

f(x) – 3xf(x) = 𝑎0 + (𝑎1 – 3𝑎0)x + (𝑎2 – 3𝑎1) 𝑥2 + ...... + (𝑎𝑛 – 3𝑎𝑛−1) 𝑥𝑛+ ...... 

Since 𝑎0 = 1, 𝑎1 = 3𝑎0. 

In general, 𝑎𝑛 = 3𝑎𝑛−1, this says that 

    (1 – 3x) f(x) = 1. 

Thus,          f(x)= 
1

1−3𝑥
 

We have     
1

1−𝑥
 = 1+ x + 𝑥2+……         (*) 

Using (*),  f(x) = 1 + 3x + (3𝑥)2  + ...... + (3𝑥)𝑛 + ....... 

                         = 1 + 3x+ 9𝑥2+ ...... + 3𝑛𝑥𝑛 + ......... 

 

We conclude that 𝑎𝑛, which is the coefficient of 𝑥𝑛in f(x), must equal 3𝑛. 

We have 𝑎𝑛 = 3𝑛 as the solution to our recurrence relation. 

Problem 17 

 

 Solve the recurrence relation 𝑎𝑛 = 2𝑎𝑛−1 – 𝑎𝑛−2 , n ≥ 2, given 𝑎0 = 3, 𝑎1 = – 2. 

 

Solution. 

 

 Letting f(x) be the generating function of the sequence in question. 

We have f(x) = 𝑎0+ 𝑎1𝑥 + 𝑎2𝑥2 + ...... + 𝑎𝑛𝑥𝑛 + ...... 

           2xf(x) = 2𝑎0𝑥+ 2𝑎1𝑥2 + ....... + 2𝑎𝑛−1𝑥𝑛 + ...... 

          𝑥2 f(x) = 𝑎0𝑥2 + ...... + 𝑎𝑛−2𝑥𝑛 + ....... 

Therefore, f(x) – 2xf(x) + 𝑥2f(x) 

                      = 𝑎0 + (𝑎1 – 2𝑎0)x + (𝑎2 – 2𝑎1 + 𝑎0) 𝑥2+ ....... + (𝑎𝑛 – 2𝑎𝑛−1 + 

𝑎𝑛−2) 𝑥𝑛 + ....... 
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                      = 3 – 8x. 

Since 𝑎0 = 3, 𝑎1 = – 2 and 𝑎𝑛 – 2𝑎𝑛−1 + 𝑎𝑛−2 = 0 for n ≥ 2. 

So, (1 – 2x + 𝑥2) f(x) = 3 – 8x 

               (1 − 𝑥)2 f(x) = 3 – 8x 

 f(x) = 
3−8𝑥

(1−𝑥)2 

        = (1 + 2x + 3𝑥2 + ....... + (n + 1)𝑥𝑛 + ......) (3 – 8x) 

        = 3 – 2x – 7𝑥2 – 12𝑥3 + ....... + [3(n + 1) – 8n]𝑥𝑛 + ...... 

        = 3 – 2x – 7𝑥2 – 12𝑥3 + ....... + (– 5n + 3) 𝑥𝑛 + ...... 

Therefore 𝑎𝑛 = 3 – 5n is the desired solution. 

Problem 18 

 

 Find the sequence {𝑦𝑥} having the generating function G given by 

G(x) = 
3

1−𝑥
+

1

1−2𝑥
 

 

Solution 

 

We have 

   G(x)  = 3(1 − 𝑥)−1 + (1 − 2𝑥)−1 

             = 3(1 + x + 𝑥2 + ...... + 𝑥𝑛 + ......) + (1 + 2𝑥1 + 22𝑥2 + ...... + 2𝑛𝑥𝑛+ ......) 

             = (3 + 1) + (3 + 2)x + (3 + 22) + ...... + (3 + 2𝑛) 𝑥𝑛 + ….. 

where   

          𝑦𝑛= 3 + 2𝑛 

Problem 19 

 

 Suppose a is a real number. Show that 
1

1−𝑎𝑥
 is the generating function for a certain 

geometric sequence. 

 

Solution 

 

 We have 
1

1−𝑥
 = 1 + 𝑥+ 𝑥2+ 𝑥3 + ...... (1) 

Replacing x by ax in (1), we see that 
1

1−𝑎𝑥
 = 1 + ax + (𝑎𝑥)2 + (𝑎𝑥)3 + ...... 

        = 1 + ax + 𝑎2𝑥2 + 𝑎3𝑥3 + ...... 
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From this, we see that 
1

1−𝑎𝑥
 is the generating function for the sequence 1, 𝑎1, 𝑎2, 

𝑎3, ...... which is the geometric sequence with first term 1 and common ratio a. 

 

Problem 20 

 

 Prove that 
1

(1−𝑥)2 = 1 + 2x + 3𝑥2 + 4𝑥3 + ...... + (n + 1)𝑥𝑛 + ...... . 

 

Solution 

 

            1 = (1 − 𝑥)2(1 + 2x + 3𝑥2 + ...... + (n + 1)𝑥𝑛 + ......) 

                   = (1 – 2x + 𝑥2)(1 + 2x + 3𝑥2 + ...... + (n + 1)𝑥𝑛 + ......) 

                   = 1 + [1(2) – 2(1)]x + [1(3) – 2(2) + 1(1)]𝑥2 + .......... + [1(n + 1) – 2(n) 

+ 1(n – 1)]𝑥𝑛 + ....... 

                1 = 1,  since n + 1 – 2n + n = 0. 

 

Expression for Generating Functions 

 

If  A(x) =  ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0  then 

 

 ∑ 𝑎𝑛𝑥𝑛∞
𝑛=𝑘       = A(x) −𝑎0 − 𝑎1𝑥1 −…..−𝑎𝑘−1𝑥𝑘−1 

 

 ∑ 𝑎𝑛−1𝑥𝑛∞
𝑛=𝑘   = 𝑥1(A(x) −𝑎0  − 𝑎1𝑥1 − …..−𝑎𝑘−2𝑥𝑘−2) 

 

 ∑ 𝑎𝑛−2𝑥𝑛  ∞
𝑛=𝑘 = 𝑥2(A(x)−𝑎0 − 𝑎1𝑥1 −……−𝑎𝑘−3𝑥𝑘−3) 

 

 - - - - - - - - - - - - - 

 

 ∑ 𝑎𝑛−𝑘𝑥𝑛∞
𝑛=𝑘  = 𝑥𝑘(A(x)) 

 

                                   Table of Generating Functions 

                      Sequence 𝒂𝒏 Generating Function A(x) 

                             C(k,n)                            (𝟏 + 𝒙)𝒌 

                                1 𝟏

𝟏 − 𝒙
 

𝒂𝒏 𝟏

𝟏 − 𝒂𝒙
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−𝟏𝒏 𝟏

𝟏 + 𝒙
 

−𝒂𝒏 𝟏

𝟏 + 𝒂𝒙
 

                     C(k-1+n , n) 𝟏

(𝟏 − 𝒙)𝒌
 

                    C(k-1+n, n)𝒂𝒏 𝟏

(𝟏 − 𝒂𝒙)𝒌
 

               C(k-1+n, n)(−𝒂)𝒏 𝟏

(𝟏 + 𝒂𝒙)𝒌
 

                             n+1 𝟏

(𝟏 − 𝒙)𝟐 

                              n 𝟏

(𝟏 − 𝒙)𝟐 

                       (n+2)(n+1) 𝟐

(𝟏 − 𝒙)𝟑 

                       (n+1)(n) 𝟐𝒙

(𝟏 − 𝒙)𝟑 

𝒏𝟐 𝒙(𝟏 + 𝒙)

(𝟏 − 𝒙)𝟑  

                (n+3)(n+2)(n+1) 𝟔

(𝟏 − 𝒙)𝟒 

                   (n+2)(n+1)(n) 𝟔𝒙

(𝟏 − 𝒙)𝟒 

𝒏𝟑 𝒙(𝟏 + 𝟒𝒙 + 𝒙𝟐)

(𝟏 − 𝒙)𝟐  

                          (n+1)𝒂𝒏 𝟏

(𝟏 − 𝒂𝒙)𝟐 

                             n𝒂𝒏 𝒂𝒙

(𝟏 − 𝒂𝒙)𝟐 

𝒏𝟐𝒂𝒏 (𝒂𝒙)(𝟏 + 𝒂𝒙)

(𝟏 − 𝒂𝒙)𝟑  

𝒏𝟑𝒂𝒏 (𝒂𝒙)(𝟏 + 𝟒𝒂𝒙 + 𝒂𝟐𝒙𝟐)

(𝟏 − 𝒂𝒙)𝟒  

 

Theorem 1.2 
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 If {𝑎𝑛}𝑛=0
∞   is a sequence of numbers which satisfy the linear recurrence relation 

with constant coefficients 𝑎𝑛 + 𝑐1𝑎𝑛−1 +  … . + 𝑐𝑘𝑎𝑛−𝑘where 𝑐𝑘 ≠ 0, and n ≥ k, 

then the generating function 

                      A(x) = ∑ 𝒂𝒏𝒙𝒏∞
𝒏=𝟎 equals 

𝑷(𝒙)

𝑸(𝒙)
,  

 

       where  

                     P(x) = 𝑎0 + (𝑎1 + 𝑐1𝑎0)𝑥1 + ....... + (𝑎𝑘−1 + 𝑐1𝑎𝑘−2 + ⋯ +
𝑐𝑘−1𝑎0)𝑥𝑘−1                           
                    Q(x) = 1 + 𝑐1𝑥1 + ....... + 𝑐𝑘𝑥𝑘. 

Conversely, given such polynomials  P(x) and Q(x), where P(x) has degree less 

than k, and Q(x) has degree k, there is a sequence {𝑎𝑛}𝑛=0
∞   whose generating 

function is A(x) = 
𝑃(𝑥)

 𝑄(𝑥)
 

 

 

Problem 21 

 

 Solve 𝑎𝑛 – 8𝑎𝑛−1  + 21𝑎𝑛−2 – 18𝑎𝑛−3 = 0 for n ≥3. 

 

Solution. 

 

 Here, if A(x) =∑ 𝑎𝑛
∞
𝑛=0 𝑥𝑛 ,then 

 

        ∑ 𝑎𝑛
∞
𝑛=3 𝑥𝑛 – 8 ∑ 𝑎𝑛−1

∞
𝑛=3 𝑥𝑛 + 21 ∑ 𝑎𝑛−2

∞
𝑛=3 𝑥𝑛 – 18 ∑ 𝑎𝑛−3

∞
𝑛=3 𝑥𝑛 = 0, 

 

    (A(x)-𝑎0-𝑎1𝑥1-𝑎2𝑥2) – 8𝑥1(A(x)-𝑎0-𝑎1𝑥1) + 21𝑥2(A(x)-𝑎0) - 18𝑥2A(x) = 0 

 

               A(x) = 
𝒂𝟎+(𝒂𝟏−𝟖𝒂𝟎 )𝒙𝟏+ (𝒂𝟐− 𝟖𝒂𝟏+𝟐𝟏𝒂𝟎)𝒙𝟐

𝟏−𝟖𝒙𝟏+𝟐𝟏𝒙𝟐−𝟏𝟖𝒙𝟑  

 
Since 1−8𝑥1+21𝑥2 − 18𝑥3= (1−2𝑥1)(1 − 3𝑥1)2 

We see that there are constants 𝐶1 , 𝐶2 , 𝐶3 , such that 

 

A(x) = 
𝐶1

(1−2𝑥)
 + 

𝐶2

(1−3𝑥)
 + 

𝐶3

(1−3𝑥)2 

 

A(x) = ∑ [𝐶12𝑛∞
𝑛=0 +  𝐶23𝑛 +  𝐶3𝑛3(𝑛 + 1, 𝑛)]𝑥𝑛 

𝑎𝑛= 𝐶12𝑛 + 𝐶23𝑛 + 𝐶3(𝑛 + 1)3𝑛. 
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Conclusion: 

First Order homogenous linear recurrence is in fact a geometric sequence 

We studied characteristics of second and higher order linear homogenous 

recurrence relations with constant coefficients.  The non-homogenous recurrence 

relations with constant coefficients.  Different methods to solve such recurrences.   

As most of the algorithms are recursive therefore to give analysis of such 

algorithms, we have discussed his powerful technique. 
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