
CRYPTOGRAPHY IN CYBER SECURITY AND DATA

PRIVACY

roject Report submitted to

ST.MARY'S COLLEGE (AUTONOMOUS), THOOTHUKUDI

Ailiated to

MANONMANIAM SUNDARANAR UNIVERSITY,

TIRUNELVELI

In partial fulfillment of the requirement for the award of degree of

Bachelor of Science in Mathematics

Submitted by

NAME REG.NO.

MAHESWARI.B 19AUMT20
MUKILA.R 19AUMT29

RASHIBA.J 19AUMT35
SAHAYA PERINBA PRAKASI.K 19AUMT37

SNEHA.T 19AUMT44

Under the Guidance of

Dr. Sr. S. KULANDAI THERESE M.Sc., B.Ed., M.Phil., Ph.D.

Assistant Professor of Mathematics

St. Mary's College (Autonomous), Thoothukudi.

Department of Mathematics

St. Mary's College (Autonomous), Thoothukudi

(2021-2022)

CERTIFICATE

We hereby declare that the project report entitled "CRYPTOGRAPHY IN CYBER

SECURITY AND DATA PRIVACY" being submitted to St. Mary's College

(Autonomous). Thoothukudi affiliated to Manonmaniam Sundaranar University.

Tirunelveli in partial fulfillment for the award of degree of Bachelor of Science in

Mathematics and it is a record of work done during the year 2021 2022 by the following

students

REG.NO. NAME

MAHESWARLB 19AUMT20

MUKILA.R 19AUMT29

RASHIBA.J 19AUMT35

SAHAYA PERINBA PRAKASIK 19AUMT37

SNEHA.T 19AUMT44

V relle Anpulne man

Sgpat4TP 9tsha NAtha Máry
M.Sc.,M.Phil., B.Ed., Ph.D.,

Head & Asst Professor of Mathematics

St. Mary's College (Autonomous)
Thoothukudi-628 001.

Signature of the Guide
Dr. 8. KULANDAI THERESE

M.Sc. B.Ed.M.Ph.,Ph.D.,

Assistant Professor,
Departnent of Mathematics,

St. Mary's Cokege (Autonomous).
Thoothukudi - 628 001.

R C SignaturedPthé Examiner Signature of the Principal
Principal

St. Mary's College (Autonomous)
Thoothukudi-628 001.

2

DECLARATION

We hereby declare that the project reported herewith, entitled "* CRYPTOGRAPHY IN

CYBER SECURITY AND DATA PRIVACY", is true to the best of our knowledge
It has not been submitted to any university for any degree or diploma.

8.Mahekdaru R. Mulila.
(MAHESWARI.B) (MUKILA.R)

J. Roshiba
(RASHIBA.J)

K.mkaye Poinbn "hakai
(SAHAYA'PERINBA PRAKASLK)

T Sneh

(SNEHA.T)

3

ACKNOWLEDGEMENT

First and foremost, we thank God Almighty for showering his blessings upon us, to undergo

this project successfully.

With immense pleasure, we register our deep sense of gratitude to our guide Dr. Sr. S.

Kulandai Therese M.SC. B.Ed., M.Phil., Ph.D. and the Head of the Department, Dr.

v. L. Stella Arputha Mary M.Sc., M.Phil., B.Ed., Ph.D. for having imparted

necessary guidelines throughout the period of our studies.

We thank our beloved Principal, Rev. Dr. Sr. A.S.J. Lucia Rose M.Sc., M.Phil.,

Ph.D., PGDCA for providing us the help to carry out our project effectively.

Last but not the least, we thank all those who extended their helping hands, to accomplish this

project.

5

CRYPTOGRAPHY IN CYBER

SECURITY AND DATA PRIVACY

6

 PREFACE

The topic of our Project “CRYPTOGRAPHY” is the art of concealing information to induce

secrecy in the communication and transmission of sensitive data is termed cryptography.

Diving deep into the etymology of the word ‘cryptography’ shows that this word finds its origin

in ancient Greek. Derived from words kryptos meaning “hidden” or “secret”

and graphy meaning “writing”, cryptography literally means writing something secretly.

The idea of cryptography is to convey a private message or piece of information from the sender

party to the intended recipient without getting the message intruded on by a malicious or

untrusted party. In the world of cryptography, this suspicious third party that is trying to sneak

into a private communication to extract something sensitive out of it is called

an adversary.Cryptography protects us from these unwanted adversaries by offering a range of

algorithms required to hide or protect our message in the best way possible and transmit it

comfortably over a not-so-secure network.

Chapter 1 presents briefly the idea of What is Cryptography, history of cryptography and

its types.

Chapter 2 deals with one of the types of cryptography ‘Hashing’ and explains briefly the

types of Hashing.

Chapter 3 focuses on the most important applications of cryptography that is Encryption

and Decryption and application of matrices to cryptography.

Chapter 4 deals with the algorithms used in cryptography such as Triple DES, twofish,

AES, SHA256, how do block chains work,Visual cryptography and elliptic curve

cryptosystems.

Chapter 5 deals with the ‘Magic of math in Cryptography’.

7

CONTENT

Introduction 9

1 Cryptography

 1.1 Definition 10

 1.2 History of cryptography 10

 1.3 Cryptography in everyday life 10

 1.4 Types of cryptography 11

2 Hash functions

 2.1 Basics of hash functions 15

 2.2 Hashing 19

3 Encryption and Decryption

 3.1 Encryption 24

 3.2 Decryption 36

 3.3 Application of matrices to cryptography 36

4 Algorithms used in cryptography

 4.1 Triple DES 40

 4.2 Twofish 40

 4.3 AES 41

 4.4 SHA-256 41

 4.5 Blockchain 42

 4.6 Visual cryptography 43

 4.7 Elliptic curve crypyosystem 44

5 Magic of math in Cryptography

 5.1 Clock math 49

8

 5.2 Generating random numbers deterministically 50

 5.3 Dividing in clock math 51

 5.4 Manipulating secret contents 52

 5.5 Universal functions 53

 5.6 Applications of FHE 53

Applications of cryptography in cyber security 54

Applications of cryptography in data privacy 55

Conclusion 56

References 57

9

INTRODUCTION

 Claude E . Shannon is considered by many to be the father of

mathematical cryptography . Shannon worked for several years at Bell Labs and

during his time there , he produced an article entitled “ A mathematical theory

of cryptography ”. The first recorded use of cryptography for correspondence was

by the Spartans, who as early as 400 bc employed a cipher device called the

scytale for secret communication between military commanders.

10

CHAPTER 1

CRYPTOGRAPHY

1.1 DEFINITION

 Cryptography is the study of secure communications techniques that allow only the

sender and intended recipient of a message to view its contents. The term is derived from the Greek

word kryptos, which means hidden.

1.2 HISTORY OF CRYPTOGRAPHY

 As civilizations evolved, human beings got organized in tribes, groups and kingdoms.

This led to the emergence of ideas such as power, battles, supremacy and politics. These ideas

further fueled the natural need of people to communicate secretly with selective recipient which

in turn ensure the continuous evolution of cryptography as well. The roots of cryptography are

found in Roman and Egyptian civilizations.

1.2.1 HIEROGLYPH

 The first known evidence of cryptography can be traced to the use of ‘Hieroglyph’.

Some 4000 years ago, the Egyptians used to communicate by messages written in hieroglyph.

1.3 CRYPTOGRAPHY IN EVERYDAY LIFE

 Today, cryptography is used to protect digital data. It is a division of computer science

that focuses on transforming data into formats that cannot be recognized by unauthorized users.

An example of basic cryptography is a encrypted message in which letters are replaced with other

characters.

 ‘ Cryptography in everyday life ’ contains a range of situations where the use of

cryptography facilitates the provision of a secure service : cash withdrawal from an ATM, Pay TV,

email and file storage using Pretty Good Privacy (PGP) freeware, secure web browsing and use of

a GSM mobile phone.

11

1.4 TYPES OF CRYPTOGRAPHY

Cryptography can be broken down into three different types:

1.4.1 SYMMETRIC-KEY CRYPTOGRAPHY(Secret key cryptography)

 Both the sender and receiver share a single key. The sender uses this key to encrypt

plaintext and send the cipher text to the receiver. On the other side the receiver applies the same

key to decrypt the message and recover the plain text.

EXAMPLE OF SYMMETRIC KEY CRYPTOGRAPHY

Blowfish

Blowfish is a symmetric block cipher that can be used as a drop-in replacement for DES or IDEA.

It takes a variable-length key, from 32 bits to 448 bits, making it ideal for both domestic and

exportable use. Blowfish is an alternative to DES Encryption Technique.

12

Features

• Block cipher: 64-bit block

• Variable key length: 32 bits to 448 bits

• Much faster than DES and IDEA

• Unpatented and royalty-free

• No license required

Working

The above diagram shows Blowfish’s F-function. The function splits the 32-bit input into four

eight-bit quarters, and uses the quarters as input to the S-boxes. The outputs are added modulo232

and XORed to produce the final 32-bit output.

1.4.2 ASYMMETRIC-KEY CRYPTOGRAPHY(Public key cryptography)

 Public key cryptography is a very advanced form of cryptography. This is the most

revolutionary concept in the last 300-400 years. In Public-Key Cryptography two related keys

(public and private key) are used. Public key may be freely distributed, while its paired private

key, remains a secret. The public key is used for encryption and for decryption private key is used.

EXAMPLE OF ASYMMETRIC KEY CRYPTOGRAPHY

RSA algorithm

It is asymmetric cryptography algorithm. Asymmetric actually means that it works on two different

keys i.e. Public Key and Private Key. As the name describes that the Public Key is given to

everyone and Private key is kept private.

RSA Component Features

• Public/private key generation.

• Encrypt with either public or private key.

• Decrypt with matching public or private key.

13

• Create digital signatures.

• Verify digital signatures.

• Encrypt and decrypt in-memory strings or byte arrays of any size.

• Encode encrypted output to Base64, Hex, Quoted-Printable, or URL-encoding

• Export public/private key pairs to XML.

• Import key pair from .snk file.

• Import public/private key pairs from XML.

• Import/Export only public-part or private-part of key pair.

• PKCS v1.5 padding for encryption and signatures.

• OAEP Padding Scheme for Encryption/Decryption

• Create/verify signatures with little-endian or big-endian byte ordering.

• Supports key sizes ranging from 512 bits to 4096 bits.

• Supports hash algorithms: MD5, SHA-1, SHA-2 (SHA-256, SHA-384, SHA-512), and

more…

• Thread safe.

14

1.4.3 HASH FUNCTIONS

 No key is used in this algorithm. A fixed-length hash value is computed as per the

plain text that makes it impossible for the contents of the plain text to be recovered. Hash

functions are also used by many operating systems to encrypt passwords.

Examples of Hash Function

SHA

The Secure Hash Algorithm (SHA) hash functions are a set of cryptographic hash functions

designed by the National Security Agency (NSA) and published by the NIST as a U.S. Federal

Information Processing Standard .

• SHA stands for Secure Hash Algorithm.

• Because of the successful attacks on MD5, SHA – 0 and theoretical attacks on SHA – 1,

NIST perceived a need for an alternative, dissimilar cryptographic hash, which became SHA

– 3.

• In October 2012, the National Institute of Standards and Technology (NIST) chose the

Keccak algorithm as the new SHA- 3 standard.

This type is explained briefly in the following chapter.

15

CHAPTER 2

HASH FUNCTIONS

2.1 BASICS OF HASH FUNCTIONS

 Each key is associated with the values it is mapped to some numbers in the

range of 0 to table size -1.

 A Hash function is a key to address transformation

 Key % Table size

Example

Table size =10

 Key = 75

 Hash key = Key % Table size

 = 75 % 10

 = 5

 If input keys are random integers then this function is very simple and distribute the keys. If the

table size is 10 and all the keys end in zero, then this hash function is a wrong choice.

2.1.1 TYPES OF HASH FUNCTIONS

1. Division method

2. Mid square method

3. Folding method

4. Multiplication method

1. Division Method

 This is the most simple and easiest method to generate a hash value. The hash function

divides the value k by M and then uses the remainder obtained.

Formula

 h(K) = k mod M

 Here,

 K is the key value, and

 M is the size of the hash table.

It is best suited that M is a prime numbers as that can make sure the keys are more uniformly

distributed. The hash function is dependent upon the remainder of a division.

16

Example

 k = 12345

 M = 95

 h(12345) = 12345 mod 95

 = 90

Pros

1. This method is quit good for any value of M.

2. The division method is very fast since it requires only a single division operation.

Cons

1. This method leads to poor performance since consecutive keys map to consecutive hash

values in the hash table.

2. Sometimes extra care should be taken to choose value of M.

2. Mid square method

 The mid square method is very good hashing method. It involves two steps to compute

the hash value.

1. Square the value of the key k i.e. k2

2. Extract the middle r digits as the hash value.

Formula

 h(K) = h(k x k)

 here,

 k is the key value.

The value of r can be decided based on the size of the table.

Example

Suppose the hash table has 100 memory locations. So r = 2 because two degits are required to map

the key to the memory location.

 k = 60

 k x k = 60 x 60

 = 3600

 h(60) = 60

17

The hash value obtained is 60.

Pros

1. The performance of this method is good as most or all digits of the result. This is because

all digits in the key contribute to generating the middle digits of the squared result.

2. The result is not dominated by the distribution of the top digit or bottom digit of the original

key value.

Cons

1. The size of the key is one of the limitations of this method, as the key is of big size then its

squre will double the number of digits.

2. Another disadvantage is that there will be collisions but we can try to reduce collisions.

3. Digit folding method

This method involves two steps

1. Divide the key value k into a number of parts i.e. k1, k2, k3, …, kn, where each part that

can have lesser digits than the other parts.

2. Add the individual parts. The hash value is obtained by ignoring the last carry if any.

Formula

 k = k1,k2,k3,k4,…,kn

 s = k1+k2+k3+k4+…kn

 h(k) = s

 here,

 s is obtained by adding the parts of the key k

 Example

 k = 12345

 k1 = 12, k2 = 34, k3 = 5

 s = k1+k2+k3

 =12+34+5

 =51

h(k) = 51

18

4. Multiplication method

This method involves the following steps

1. Choose a constant value A such that 0 < A < 1.

2. Multiply the key value with A.

3. Extract the fractional part of kA.

4. Multiply the result of the above step by the size of the hash table i.e. M.

5. The resulting hash value is obtained by taking the floor of the result obtained in step 4.

Formula

 h(K) = floor (M (kA mod 1))

 Here,

 M is the size of the hash table.

 K is the key value.

 A is a constant value.

Example

 k = 12345

 A = 0.357840

 M = 100

 h(12345) = floor[100 (12345*0.357840 mod 1)]

 = floor[100 (4417.5348 mod 1)]

 = floor[100 (0.5348)]

 = floor[53.48]

 = 53

19

Pros

The advantages of the multiplication method is that it can work with any value of between 0 and

1, although there are some values that tend to give better results than the rest.

Cons

The multiplication method is generally suitable when the table size is the power of two, then the

whole process of computing the index by the key using multiplication hashing is very fast.

2.2 HASHING

 The implementation of hash table is called as hashing. It can perform insertion, deletion

and find operations in a constant average time.

2.2.1 COLLISION RESOLUTION TECHNIQUES

 1. Open Hashing

 a. Separate chaining

 2. Closed Hashing

 a. Linear Probing

 b. Quadratic Probing

 c. Double Hashing

1. Open Hashing

a. Separate chaining

• Retrieval of an item, r, with hash address, i, is simply retrieval from the

linked list at position i.

• Deletion of an item, r, with hash address, i, is simply deleting r from the

linked list at position i.

Example

 Load the keys 23, 13, 21, 14, 7, 8, and 15, in this order, in a hash table of size 7 using

separate chaining with the hash function:

 h(key)=key % 7

 h(23) = 23 % 7 = 2

20

 h(13) = 13 % 7 = 6

 h(21) = 21 % 7 = 0

 h(14) = 14 % 7 = 0 collision

 h(7) = 7 % 7 = 0 collision

 h(8) = 8 % 7 = 1

 h(15) = 15 % 7 = 1 collision

0

1

2

3

4

5

6

2. Closed Hashing

 a. Linear Probing

 In linear probing, f is a linear function of i, typically f(i) = i. This means to trying cells

sequentially (with wraparound) in search of an empty cell.

Example

 Table size = 10

 hash(key) = key % 10

f(i) = i

 Inserted keys: 89, 18, 49, 58, 69

 h(89)= 89 % 10 = 9

 h(18)= 18 % 10 = 8

 h(49)= 49 % 10 = 9 collision

 i=1, f(1)= 1

21 14 7

8 15

23

13

21

 h(58)= 58 % 10 = 8 collision

 i=1, f(1)= 1

 i=2, f(2)= 2

 i=3, f(3)= 3

 h(69)= 69 % 10 = 9 collision

 i=3, f(3)= 3

b. Quadratic Probing

 In quadratic probing, f is a quadratic function of i, typically f(i)= i2.

Example

 Table size = 10

 hash(key) = key % 10

 f(i) = i2

 Inserted keys: 89, 18, 49, 58, 69

 h(89)= 89 % 10 = 9

 h(18)= 18 % 10 = 8

 h(49)= 49 % 10 = 9 collision

 i=1, f(1)= 12=1

 h(58)= 58 % 10 = 8 collision

 89 18 49 58 69

0 49 49 49

1 58 58

2 69

3

4

5

6

7

8 18 18 18 18

9 89 89 89 89 89

22

 i=1, f(1)= 12=1

 i=2, f(2)= 22=4

 h(69)= 69 % 10 = 9 collision

 i=2, f(2)= 22=4

c. Double Hashing

 Hash function

 hash(key)= key % table size

 When collision occurs use a second hash function

 Hash2(key) = R - (key % R)

 R is a greatest prime number smaller than table size

Example

Table size = 10

hash(key) = key

 f(i)=i

hash2(key) = R - (key % R)

 R = 7

 inserted keys: 89, 18, 49, 58, 69

 h(89)= 89 % 10 = 9

 89 18 49 58 69

0 49 49 49

1

2 58 58

3 69

4

5

6

7

8 18 18 18 18

9 89 89 89 89 89

23

 h(18)= 18 % 10 = 8

 h(49)= 49 % 10 = 9 collision

 R - (key % R)

 7 - (49 % 7)

 7 - 0 =7

 h(58)= 58 % 10 = 8 collision

 7 - (58 % 7)

 7 - 2 = 5

 h(69)= 69 % 10 = 9 collision

 7 - (69 % 7)

 7 – 6 = 1

 89 18 49 58 69

0 69

1

2

3 58 58

4

5

6 49 49 49

7

8 18 18 18 18

9 89 89 89 89 89

24

CHAPTER 3

ENCRYPTION AND DECRYPTION

3.1 ENCRYPTION

 Encryption is a means of securing digital data using one or more mathematical

techniques, along with a password the encryption process to decrypt the information. The

encryption process translates information using an algorithm that makes the original

information unreadable. The process for instance can convert an original text, known as

plaintext into an alternative form known as cipher text. When an authorized user needs to read

the data they may decrypt the data using a binary key. This will convert cipher text back to

plaintext so that the authorized user can access the original information.

3.1.1 HOW DOES ENCRYPTION WORK?

 At the beginning of the encryption process, the sender must decide what cipher

will best disguise the meaning of the message and what variable to use as a key to make the

encoded message unique. The most widely used types of ciphers fail into two categories:

Symmetric and Asymmetric ciphers.

3.1.2 SYMMETRIC CIPHERS

 Symmetric ciphers, also referred to as secret key encryption, use a single key.

The key is sometimes referred to as a shared secret because the sender or computing system

doing the encryption must share the secret key with all entities authorized to decryption is

usually much faster than asymmetric encryption. The most widely used symmetric key cipher

is the Advanced Encryption Standard, which was designed to protect government-classified

information.

There are basically two types of symmetric ciphers

 1. Substitution cipher

 2. Transposition cipher

25

1. SUBSTITUTION CIPHER

 A substitution is a technique in while each letter or bit of the plaintext is substituted

or replaced by some other letter number or symbol to produce cipher text.

For Example: ABC → XYZ

Types of Substitution cipher

 a) Caesar cipher

 b) Monoalphabetic cipher

 c) Polyalphabetic cipher

 d) Playfair cipher

 e) One time pad cipher

 f) Hill cipher

a) Caesar cipher

 1. Letters are replaced by letters or symbols.

 2. The earlier known and simplest method used be Julius Caesar.

 3. Replacing each letter of the alphabet with the letter standing three places further down

alphabet.

Formula

 1.For each plaintext letter ‘P’ substitution the cipher letter C.

 2.C = E(P,K) mod 26 = (P + K) mod 26 and P = D(C,K) mod 26 = (C – K) mod 26.

TABLE : 1

A B C D E F G H I J K L M

0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z

13 14 15 16 17 18 19 20 21 22 23 24 25

26

Example

Encrypt ‘NESO ACADEMY’ using Caesar cipher

Solution

Encryption

Plain text : NESO ACADEMY

N E S O A C A D E M Y

Q H V R D F D G H P B

C = (P + K) mod 26

 = (13 + 3) mod 26

 = 16 mod 26

 = 16

C = Q

Cipher text : QHVRDFDGHPB

Decryption

Cipher text : QHVRDFDGHPB

Q H V R D F D G H P B

N E S O A C A D E M Y

P = (C – K) mod 26

 = (16 – 3) mod 26

 = 13 mod 26

 = 13

P = N

Plain text : NESO ACADEMY

27

b) Monoalphabetic cipher

 Monoalphabetic cipher substitution are letter of the alphabet with another letter

of the alphabet. However rather than substituting according to a regular pattern any letter can

be substituted for any other letter as long as each letter has a unique substitute left and vice

versa.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

D E A B C U W V F Y Z X G T H S R I J Q P K L O N M

Example

Encrypt the message “ HELLO” using Monoalphabetic cipher

Solution:

Encryption

Plain text message : HELLO

Cipher text message: VCXXH

Decryption

Cipher text message : VCXXH

Plain text message : HELLO

c) Polyalphabetic cipher

 1. Polyalphabetic cipher is any cipher based on substitution alphabets.

 2. The vignere cipher is probably the best known example of polyalphabetic cipher.

 3. Vignere cipher is a method of encryption alphabetic text.

Thus technique used for both encryption and decryption the message.

Encryption formula

 Converging (A – Z) into number (0-25). The plaintext (p) and key are called modulo 26.

 Eⱼ = (Pⱼ + Kⱼ) mod 26

28

Decryption formula

 Dⱼ = (Eⱼ - Kⱼ + 26) mod 26

Example

The plaintext is “JAVATPOINT’’, and the key “BEST”

Solution

Encryption

Eⱼ = (Pⱼ + Kⱼ) mod 26

Plain text : JAVATPOINT

KEY = BESTBESTBE

J = 9 and B = 1

E₁ = (P₁+ K₁) mod 26

 = (J + B) mod 26 (using table:1)

 = (9 + 1) mod 26 = 10 mod 26

E₁ = 10

Plaintext J A V A T P O I N T

Plaintext

value(P)

9 0 21 0 19 15 14 8 13 19

Key B E S T B E S T B E

Key

value(K)

1 4 18 19 1 4 18 19 1 4

Cipher

text

value(E)

10 4 13 19 20 19 6 1 14 23

Cipher

text

K E N T U T G B O X

Cipher text : KENTUTGBOX

29

Decryption

If any case(Dⱼ) value becomes negative (-ve), in this case, we will add 26 in the negative

value.

K = 10 and B = 1

Dⱼ = (Eⱼ - Kⱼ + 26) mod 26

 =(E₁ - K₁ + 26) mod 26 = (K – B +26) mod 26 (by using Table : 1)

 = (10 – 1 + 26) mod 26 = (35) mod 26

 = 9

 = J

Cipher

text

K E N T U T G B O X

Ciphertext

value (E)

10 4 13 19 20 19 6 1 14 23

Key B E S T B E S T B E

Key

value(k)

1 4 18 19 1 4 18 19 1 4

Plaintext

value (P)

9 0 21 0 19 15 14 8 13 19

Plaintext J A V A T P O I N T

Plaintext : JAVATPOINT

d) Playfair cipher

 Playfair cipher is a digraph substitution cipher. It employs a table where one letter is

omitted and the letter are arranged is 5 x 5 grid.

Rules

1. Diagrams

2. Repeating letters – Filler letter

30

3. Same column |↓| wrap around

4. Same row |→| wrap around

5. Rectangle |↔| swap

Example

 The Plaintext “ATTACK “ and the Key MONARCHY

Solution

Encryption

 Plain text : AT TA CK

 Cipher text : RS SR DE

Cipher text : RSSRCE

DECRYPTION

Cipher text : RS SR DE

Plain text : AT TA CK

Plain text : ATTACK

e) One time pad cipher

 1. One time pad (OTP) also called Vernamcipher or the perfect cipher is a crypto

algorithm where plaintext is combined with a random key.

 2. They key is at least as long as the message or data that must be encrypted.

 3. Each key is used only one and both sender and receiver must destroy their key after

use.

M O N A R

C H Y B D

E F G I/J K

L P Q S T

U V W X Z

M O N A R

C H Y B D

E F G I/J K

L P Q S T

U V W X Z

31

 4. There should only two copies of the key: one for sender and one for receiver.

Example

The Plain text “ACTIVE” and key “CELOAI”

Solution

ENCRYPTION (+)

Plain text → A C T I V E

 key → C E L O A I

 0 2 19 8 21 4 (using Table : 1)

 2 4 11 14 0 8

 ───────────────

 2 6 30 22 21 12

 -26

 ───

 4

 Cipher text → C G E W V M

DECRYPTION (-)

Cipher text → C G E W V M , key → C E L O A I

 2 6 4 22 21 12 (using Table:1)

 2 4 11 14 0 8

 ────────────

 0 2 -7 8 21 4

 +26

 ───

 19

32

 Plain text → A C T I V E

f) Hill cipher

 In classical cryptography the Hill cipher is a polygraphic substitution cipher based

on linear algebra. Invented by Lester S. Hill in 1929, it was the first polygraphic cipher in

which it was practical to operate on more than three symbols at once.

Encryption formula

 C = KP mod 26

Decryption formula

 P = K¯¹C mod 26 where K¯¹ =
1

|𝐾|
 adj K

Example

Plain text is CD. Find out Cipher text of given plain text using cipher text. Key matrix = [
2 3
3 4

]

Solution

Encryption

 Plain text = CD (C = 2,D = 3) (using Table : 1)

 Key matrix = [
2 3
3 4

]

 C = KP mod 26

 C = [
2 3
3 4

] [
2
3

] mod 26

 = [
13
18

] mod 26

 = [
13
18

]

 = [
𝑁
𝑆

]

Cipher text = NS

33

Decryption

Find out inverse matrix of given key matrix.

 P = K¯¹C mod 26

 K¯¹ =
1

|𝐾|
𝑎𝑑𝑗𝐾

 |k| = |
2 3
3 4

| = 8 – 9 = -1

 Adj K =[
4 −3

−3 2
]

 K¯¹ =
1

−1
[

4 −3
−3 2

]

 = [
−4 3
3 −2

]

Cipher text = (N = 13 , S = 18) (using table : 1)

Key inverse matrix = [
−4 3
3 −2

]

P = [
−4 3
3 −2

] [
13
18

] mod 26

 = [
2
3

] mod 26

 = [
2
3

]

 = [
𝐶
𝐷

]

Plain text = CD

2. TRANSPOSITION CIPHER

 In transposition technique, there is no replacement of alphabets or numbers occurs

instead their position are changed or reordering of position of plain text is done to produce

cipher text.

 For example ABCDE → BADEC

34

Types of Transposition cipher

a) Rail fence

b) Row Transposition cipher

a) Rail fence

 The plaintext is written down as a sequence of diagonals and then read off as a sequence

of rows.

Example

Encrypt the message “PLEASE SAVE ME” with a rail fence of depth 2

Solution

Encryption

 Plain text : PLEASE SAVE ME

 Depth : 2

 P E S S V M

 L A E A E E

Cipher text : PESSVMLAEAEE

Decryption

Cipher text : PESSVMLAEAEE

 P E S S V M

 L A E E E

Plaintext : PLEASESAVEME

Plain text : PLEASE SAVE ME

b) Row Transposition cipher

 We write the message is a rectangle, row by row and read the message off, column

by column but permute the order of column.

35

Example

Encrypt the message “ATTACK POSTPONED UNTILL TWO AM”

Solution

Encryption

Plain text : ATTACK POSTPONED UNTILL TWO AM

 3 2 1 6 5 4

Cipher text : TSDTWTOELVAPNIMKOTAZCPNOYATUWX

Decryption

Cipher text :TSDTWTOELVAPNIMKOTAZCPNOYATUWX

 3 2 1 6 5 4

T T A K C A

S O P O P T

D E N T N U

T L I A O W

W V M Z Y X

Plain text : ATTACKPOSTPONEDUNTILTWOAMVWXYZ

Plain text : ATTACK POSTPONED UNTIL TWO AM

3.1.3 ASYMMETRIC CIPHER

 Asymmetric ciphers also known as public key, encryption use two different – but

logically linked keys. This type of cryptography often uses prime numbers to create keys since

A T T A C K

P O S T P O

N E D U N T

I L T W O A

M V W X Y Z

36

it is computationally different to factor large number and reverse engineer the encryption. The

Shamir Adelman (RSA) encryption algorithm currently the most widely used the public key

algorithm. With RSA, the public or the private key can be used to encrypt a message whichever

key is not used for encryption becomes the decryption key.

3.2 DECRYPTION

 The conversion of encrypted data its original form is called decryption. It is

generally a reverse process of encryption. It decodes the encrypted information so that

authorized user can only decrypt the data because decryption requires a secret key or password.

3.2.1 HOW DOES DECRYPTION WORK?

 To understand how decryption typically works, let’s consider the case of a veeam

backup. When typing to recover information from a Veeam backup, an encrypted backup file

and Replication will perform decryption automically in the backdrop or will require a key.

 In case an encryption password is required to gain access to the backup file, if the

replication configuration database and Veeam backup is accessible, the key is no longer

necessary. The passwords from the database are required to open the backup file. The

information is accessible in the backdrop, and data recovery is not much different from that of

the unencrypted data.

3.3 APPLICATION OF MATRICES TO CRYPTOGRAPHY

One of the important applications of inverse of a non-singular square matrix is in cryptography.

Cryptography is an art of communication between two people by keeping the information not

known to others. It is based upon two factors, namely encryption and decryption. Encryption

means the process of transformation of an information (plain form) into an unreadable form

(coded form). On the other hand, Decryption means the transformation of the coded message

back into original form. Encryption and decryption require a secret technique which is known

only to the sender and the receiver.

This secret is called a key. One way of generating a key is by using a non-singular matrix to

encrypt a message by the sender. The receiver decodes (decrypts) the message to retrieve the

original message by using the inverse of the matrix. The matrix used for encryption is called

37

encryption matrix (encoding matrix) and that used for decoding is called decryption matrix

(decoding matrix).

We explain the process of encryption and decryption by means of an example.

3.3.1 EXAMPLE

Suppose that the sender and receiver consider messages in alphabets A − Z only, both assign

the numbers 1-26 to the letters A − Z respectively, and the number 0 to a blank space. For

simplicity, the sender employs a key as post-multiplication by a non-singular matrix of order 3

of his own choice. The receiver uses post-multiplication by the inverse of the matrix which has

been chosen by the sender.

Let the encoding matrix be

Let the message to be sent by the sender be “WELCOME”.

Since the key is taken as the operation of post-multiplication by a square matrix of order 3, the

message is cut into pieces (WEL), (COM), (E), each of length 3, and converted into a sequence

of row matrices of numbers:

[23 5 12] , [3 15 13] , [5 0 0].

Note that, we have included two zeros in the last row matrix.

 The reason is to get a row matrix with 5 as the first entry.

Next, we encode the message by post-multiplying each row matrix as given below:

38

So the encoded message is [45 − 28 −23] [46 -18 3] [5 −5 5]

The receiver will decode the message by the reverse key, post-multiplying by the inverse of A.

So the decoding matrix is

The receiver decodes the coded message as follows:

39

 So, the sequence of decoded row matrices is [23 5 12] , [3 15 13], [5 0 0].

Thus, the receiver reads the message as “WELCOME”.

40

CHAPTER 4

ALGORITHMS USED IN CRYPTOGRAPHY

4.1 TRIPLE DES

Triple DES is an encryption technique which uses three instance of DES on same plain text. It uses

there different types of key choosing technique in first all used keys are different and in second two

keys are same and one is different and in third all keys are same. 3DES is an improvement over des,

but each has their benefits and opportunities for improvements.

4.1.1 The encryption-decryption process is as follows

• Encrypt the plaintext blocks using single DES with key K1.

• Now decrypt the output of step 1 using single DES with key K2.

• Finally, encrypt the output of step 2 using single DES with key K3.

• The output of step 3 is the ciphertext.

• Decryption of a ciphertext is a reverse process. User first decrypt using K3, then encrypt

with K2, and finally decrypt with K1.

4.2 TWOFISH

Twofish is a symmetric block cipher; a single key is used for encryption and decryption. It has a

block size of 128 bits, and accepts a key of any length up to 256 bits.

4.2.1 Features

• 128 bit block cipher

• Uses 16 rounds of Feistel network

• Key length of 128 bit,192 bits and 256 bits

• No weak keys

41

4.3 AES

The Advanced Encryption Standard (AES) is a specification for the encryption of electronic data

AES is six times faster than Triple DES.AES is much faster than RSA.

4.3.1 Features

• Symmetric key symmetric block cipher

• 128-bit data, 128/192/256-bit keys

• Stronger and faster than Triple-DES

• Provide full specification and design details

• Software implementable in C and Java

AES performs all its computations on bytes rather than bits. Hence, AES treats the 128 bits of a

plaintext block as 16 bytes. These 16 bytes are arranged in four columns and four rows for

processing as a matrix he number of rounds in AES is variable and depends on the length of the

key. AES uses 10 rounds for 128-bit keys, 12 rounds for 192-bit keys and 14 rounds for 256-bit

keys. Each of these rounds uses a different 128-bit round key, which is calculated from the original

AES key.

4.4 SHA-256

SHA-256 is a one-way function that converts a text of any length into a string of 256 bits. This is

known as a hashing function. SHA256 stands for Secure Hash Algorithm 256-bit and it’s used for

cryptographic security.

SHA-256 generates an almost-unique 256-bit (32-byte) signature for a text. SHA-256 is one of the

successor hash functions to SHA-1. It is one of the strongest hash functions available. SHA-256 is

not much more complex to code than SHA-1, and has not yet been compromised in any way. The

256-bit key makes it a good partner-function for AES.

42

4.5 BLOCKCHAIN

It’s decentralized nature and cryptographic algorithm make it immune to attack. In

fact, hacking a Blockchain is close to impossible. In a world where cyber security has become a

key issue for personal, corporate, and national security, Blockchain is a potentially revolutionary

technology.

4.5.1 Features

1. Cannot be Corrupted

2. Decentralized Technology

3. Enhanced Security

4. Distributed Ledgers

5. Consensus

6. Faster Settlement

One of the application of blockchain is bitcoin.

43

4.6 VISUAL CRYPTOGRAPHY

Visual cryptography is a cryptographic technique which allows visual information (pictures, text,

etc.) to be encrypted in such a way that decryption can be done just by sight reading.

4.6.1 Features

1) The independence of pixel’s encryption.

2) Easy matrix generation.

3) Simple operations.

Visual Cryptography is a special encryption technique to hide information in images in such a way

that it can be decrypted by the human vision if the correct key image is used. Visual Cryptography

uses two transparent images. One image contains random pixels and the other image contains the

secret information. It is impossible to retrieve the secret information from one of the images. Both

transparent images and layers are required to reveal the information.

4.6.2 Applications

• Safe websites

• Secure online transactions

• For encryption of files

• Military communications

• Encryption in WhatsApp

• Sim card Authentication

• Electronic Money

44

4.7 ELLIPTIC CURVE CRYPTOSYSTEM

We start by giving a short introduction to the mathematical concept of elliptic curves, independent

of their cryptographic applications. ECC is based on the generalized discrete logarithm problem.

Hence, what we try to do first is to find a cyclic group on which we can build our cryptosystem.

Of course, the mere existence of a cyclic group is not sufficient. The DL problem in this group

must also be computationally hard, which means that it must have good one-way properties.

 We start by considering certain polynomials (e.g., functions with sums of exponents

of x and y), and we plot them over the real numbers.

Example 1

 Let’s look at the polynomial equation x2+y2= r2 over the real number R. If we plot all the pairs

(x,y) which fulfill this equation in a coordinate system, we obtain a circle as shown in the figure.

 Plot of all points (x, y) which fulfill the equation x2 +y2 = r2

We now look at other polynomial equations over the real numbers.

Example 2

A slight generalization of the circle equation is to introduce coefficients to the two terms x2 and

y2, i.e., we look at the set of solutions to the equation a · x2 +b · y2 = c over the real numbers. It

turns out that we obtain an ellipse, as shown in the figure.

45

Plot of all points (x,y) which fulfil the equation ax2+by2 = c.

4.7.1 DEFINITION

From the two examples above, we conclude that we can form certain types of curves from

polynomial equations. By “curves”, we mean the set of points (x,y) which are solutions of the

equations.

• Elliptic curve cryptography is a key based technique for encrypting data. ECC focuses

on pairs of public and private keys for decryption and encryption.

• It provides equal security with smaller key size as compared to non ECC algorithms.

• It make use of elliptic curves.

• Elliptic curves are defined by some mathematical function fx = y2 = x3 + ax = b.

• Symmetric to x-axis.

• If we draw a line, it will touch a maximum of 3 parts.

• The definition of elliptic curve requires that the curve is nonsingular. Geometrically

speaking, this means that the plot has no self-intersections or vertices.

• For cryptographic use we are interested in studying the curve over a prime field as

in the definition. However, if we plot such an elliptic curve over Zp, we do not get

anything remotely resembling a curve. However, nothing prevents us from taking

an elliptic curve equation and plotting it over the set of real numbers.

46

4.7.2 GROUP OPERATIONS OF ELLIPTIC CURVE

We denote the group operation with the addition symbol2 “+”. “Addition” means that given two

points and their coordinates, say P = (x1,y1) and Q = (x2,y2), we have to compute the coordinates

of a third point R such that:

 P+Q = R

 (x1,y1)+(x2,y2) = (x3,y3)

As we will see below, it turns out that this addition operation looks quite arbitrary.

Luckily, there is a nice geometric interpretation of the addition operation if we

consider a curve defined over the real numbers. For this geometric interpretation,

we have to distinguish two cases: the addition of two distinct points (named point

addition) and the addition of one point to itself (named point doubling).

Point Addition P+Q

 This is the case where we compute R = P+Q and P ≠Q. The construction works as follows: Draw

a line through P and Q and obtain a third point of intersection between the elliptic curve and the

line. Mirror this third intersection point along the x-axis. This mirrored point is, by definition, the

point R.

Point Doubling P+P

This is the case where we compute P+Q but P=Q. Hence, we can write R = P+P = 2P. We need a

slightly different construction here. We draw the tangent line through P and obtain a second point

of intersection between this line and the elliptic curve. We mirror the point of the second

intersection along the x-axis. This mirrored point is the result R of the doubling.

47

 We might wonder why the group operations have such an arbitrary looking form.

Historically, this tangent-and-chord method was used to construct a third point if two points were

already known, while only using the four standard algebraic operations add, subtract, multiply and

divide. It turns out that if points on the elliptic curve are added in this very way, the set of points

also fulfill most conditions necessary for a group, that is, closure, associativity, existence of an

identity element and existence of an inverse.

 Of course, in a cryptosystem we cannot perform geometric constructions. However, by

applying simple coordinate geometry, we can express both of the geometric constructions from

above through analytic expressions, i.e., formulae. As stated above, these formulae only involve

the four basic algebraic operations. These operations can be performed in any field, not only over

the field of the real numbers. In particular, we can take the curve equation from above, but we

now consider it over prime fields GF(p) rather than over the real numbers. This yields the

following analytical expressions for the group operation.

4.7.3 ELLIPTIC CURVE POINT ADDITION AND POINT DOUBLING

48

Note that the parameter s is the slope of the line through P and Q in the case of point addition, or

the slope of the tangent through P in the case of point doubling.

PROBLEM - 1
On a elliptic curve y2 = x3 – 36 find a point P + Q and 2P

Solution

Let p = (-3,9), Q = (-2,8), a - -3

 X3 = (
8−9

−2+3
)2 – (-3) – (-2)

 = 12 +3 + 2

 X3 = 6

 Y3 = -9 + (
8−9

−2+3
)(-3-6)

 = -9-1(-9)

 Y3 = 0

 P + Q = (6,0)

Now to find 2P

 X3 = (
3(9)+(−36)

2×9
)2 – 2(-3)

 = (
27−36

18
)2 + 6

 =
1

4
 + 6

 X3 =
25

4

 Y3 = -9 + (
3×9−36

18
) (−3 −

25

4
)

 Y3 =
−35

8

 2P = (
25

4
,

−35

8
)

49

CHAPTER 5

MAGIC OF MATH IN CRYPTOGRAPHY

THE PERCEPTION

REALITY

5.1 CLOCK MATH

Cryptography is based on math that everyone understands: Clock math!

• Clocks have a finite range of numbers, which loop around rather than

continuing to infinity.

• If we can understand the math of clocks, we can understand math that

secures our computers and networks!

5.1.1 HOW ENCRYPTION WORKS

1. Choose message m to be encrypted.

50

2. Choose a number r from the clock.

• Must be chosen at random.

• Every number must have equal chance!

3.Add r to m.

• The result, c called the ciphertext, is the encryption of message m with key r.

5.1.2 CHOOSING SECRETS IN PUBLIC

5.2 GENERATING RANDOM NUMBERS DETERMINISTICALLY
1. It sounds like an oxymoron.

• How can a deterministic process generates random number?

2. Yet this is the foundation of almost all cryptography. Every encryption algorithm is an

algorithm that can take a small key, of say 16 characters and use it to produce an endless

sequence of random bits.

• These bits can then be used to encrypt the messages of any size or multiple messages.

• HDs full of data can be encrypted with 1 random value this long : “abcdefghijklmnop”

51

5.2.1 TURNING ONE RANDOM NUMBER INTO MANY

 Seed = 7 , M = 253 even or odd? output bit

 49 = 7^2 mod 253 odd 1

 124 = 49^2 mod 253 even 0

196 = 124^2 mod 253 even 0

213 = 196^2 mod 253 odd 1

 82 = 213^2 mod 253 even 0

 146 = 82^2 mod 253 even 0

 64 = 146^2 mod 253 even 0

 48 = 64^2 mod 253 even 0

5.3 DIVIDING IN CLOCK MATH
1. What does it mean to “divide”?

• Is it possible to divide on a clock?

2. We can!By multiplying by an “inverse”

• Division by N = multiplying by (1/N)

• E.g.: (x/3) = (x *1/3)

3. Despite there being no fractions,there are inverses in clock math.An inverse is a

number that when multiplied gives 1.

• 3 * 1/3 = 1

• E.g.: 3 * 4(mod 11) = 1

52

5.4 MANIPULATING SECRET CONTENTS

In 1978, it was discovered that an encryption algorithm called RSA let people multiply two

encrypted values together without decrypying them.

Then, in 1999, it was discovered that an encryption algorithm called Paillier let people add

two encrypted values together without decrypting them.

53

5.5 UNIVERSAL FUNCTIONS

5.6 APPLICATIONS OF FULLY HOMOMORPHIC ENCRYPTION

(FHE)
1. Having a genetic test done without revealing our DNA

• Encrypt each base pair, send encrypted bits to be processed

• We get back and encrypted bit, which will decrypt to 1 if we have the

disease, 0 if not

▪ Prototypes of this have already been tested

2. Systems that can handout encryption keys without seeing them

3. Millions of others, literally everything we can think of can be done !

• But there is a down side : efficiency it’s much slower and less efficient to

run a computation on encrypted data (each encrypted bit is 10000 bits

inside)

▪ A 750 MB genome that fitsn on a CD becomes 7.5 TB (would

fill a large HD)

54

APPLICATIONS OF CRYPTOGRAPHY IN CYBER

SECURITY

SECRECY IN TRANSMISSION

Some existing secrecy systems for transmission access a private key system for converting

transmitted data because it is the quickest approach that functions with rational guarantee and

low overhead.

If the multiple conversing parties is minute, key distribution is implemented periodically with

a courier service and key preservation based on physical security of the keys over the method

of use and destruction after new keys are disseminated.

SECRECY IN STORAGE

Secrecy in storage is frequently preserved by a one-key system where the user provide the

key to the computer at the commencement of a session, and the system creates concern of

encryption and decryption during the phase of normal use.

AUTHENTICATION OF IDENTITY

Authenticating the identity of individuals or systems to each other has been a difficulty for a

very long time. Simple passwords have been used to test identity. More compound protocols

such as sequence of keywords exchanged between sets of parties are generally display in the

movies or on television.

CREDENTIALING SYSTEMS

A credential is generally a file that introduces one party to another by referencing a usually

known trusted party. When credit is used for, references are usually requested. The credit of

the references is determined and they are contacted to discover out the tested of the applicant.

Credit cards are generally used to credential an individual to achieve more credit cards.

55

APPLICATIONS OF CRYPTOGRAPHY IN DATA PRIVACY

INTEGRITY IN TRANSMISSION

Some users of communication systems are not as much worried concerning secrecy as about

integrity. In a computer funds transfer, the sum sent from one account to another is usually

public knowledge.

If an operating tapper can bring in a false transfer, funds can be shared illegally. An inaccuracy

in an individual bit can cause millions of dollars to be wrongly credited or debited.

Cryptographic methods are generally used to provide that intentional or accidental modification

of transmitted data does not cause flawed actions to appear.

INTEGRITY IN STORAGE

The central meaning of assuring integrity of accumulated data has previously been access

control. Access control contains systems of locks and keys, guards, and other approaches of a

physical or logical feature.

The recent advent of computer viruses has altered this to an important degree, and the use of

cryptographic checksums for assuring the integrity of stored data is becoming broad.

ELECTRONIC SIGNATURES

Electronic signatures are a means of monetary a lawfully binding transaction among two or

more parties. It can be as functional as a physical signature, electronic signatures should be at

least as hard to fake at least as simple to use, and accepted in a court of law as binding upon

some parties to the operation.

The necessity for these electronic signatures is especially intense in business dealings wherein

the parties to an agreement are not in the similar physical vicinity.

56

CONCLUSION

How math secures the Internet

• Hiding data that everyone can see.

• Agreeing on secrets in public.

• Speech that can’t be impersonated.

Math that will change the world

• Protecting data without having it.

• Checking proofs we can’t see.

• Working on data that we can’t access.

57

REFERENCES

[1] ANSI X9.31-1998, American National Standard X9.31, Appendix A.2.4, Public Key

Cryptography Using Reversible Algorithms for the Financial Services Industry (rDSA).

Technical report, Accredited Standards Committee X9, Available at http://www.x9.org, 2001.

 [2] J.L. Carter and M.N. Wegman. New hash functions and their use in authentication and set

equality. Journal of Computer and System Sciences, 1981.

[3] Manuel Blum and Shafi Goldwasser. An efficient probabilistic public-key encryption

scheme which hides all partial information, In CRYPTO ’84: Proceedings of the 4th Annual

International Cryptology Conference, Advances in Cryptology, 1984.

[4] Dan Boneh and Richard J. Lipton. Algorithms for black-box fields and their application to

cryptography (extended abstract). In CRYPTO ’96: Proceedings of the 16th Annual

International Cryptology Conference, Advances in Cryptology, Springer, 1996.

[5] ANSI X9.62-1999. The Elliptic Curve Digital Signature Algorithm (ECDSA), Technical

report, American Bankers Association, 1999.

[6] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications, Cambridge

University Press, New York, NY, USA, 2004.

FOURIER TRANSFORMS: STUDY, APPLICATIONS IN HEALTH
AND DATA SCIENCES AND CODING THROUGH SOFTWARES

Project Report submitted to

ST.MARY'S COLLEGE (AUTONOMOUS), THOOTHUKUDI

Affiliated to

MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI

In partial fulfillment of the requirement for the award of degree of

Bachelor of Science in Mathematics

NAME

JOAN MORAIS. R
MARIA ABITHAA VICTORIA. C
MARIA BENJAMINI. A
MONISHA ROSE. G
YAMINI. S

Submitted by

Under the Guidance of

REG.NO.

19AUMT17
19AUMT21
19AUMT23
19AUMT28
19AUMT50

Dr. Sr. S. KULANDAI THERESE M.Sc., B.Ed., M.Phil., Ph.D.

Assistant Professor of Mathematics

St. Mary's College (Autonomous). Thoothukudi.

Department of Mathematics

St. Mary's College (Autonomous), Thoothukudi

(2021 - 2022)

CERTIFICATE

We hereby declare that the project report entitled "FOURIER TRANSFORMS:
STUDY, APPLICATIONS IN HEALTH AND DATA SCIENCES AND CODING
THROUGH SOFTWARES" being submitted to St. Mary's College
(Autonomous), Thoothukudi affiliated to Manonmaniam Sundaranar
University, Tirunelveli in partial fulfillment for the award of degree of
Bachelor of Science in Mathematics and it is a record of work done during the
year 2021 - 2022 by the following students :

NAME

JOAN MORAIS. R
MARIA ABITHAA VICTORIA. C
MARIA BENJAMIN!. A
MO NISHA ROSE. G
YAMINI.S

Signature of the Guide
Dr. S. KULANDAI THERESE

M.Sc.,B.Ed.,M.Phll.,Ph.D ..
Aaslstant Professor,

Department of MathemaUca.
Sl Mary's Colege (AutonomoUI).

TooohJkudl · 628 001 .

Signature ~fuaminer

2

REG.NO.

19AUMT17
19AUMT21
19AUMT23
19AUMT28
19AUMT50

\f't-J ~(,~ ~ u.l\,,u, ~
Dr .Signature.bf t'lt~ja-00 Mary'--1

M -·· c. ,M.f: hil ., O.t::d ., Ph.D.~
w~ad r, /'.l~st r-_! ·_lfcs~,)f (Jf M1them,.\t\CS
s(f:.1~1l '· ;.:; Un\l~go (A\.lto nomoµs)
·

1
' ' ' '1:l'b(,otb L' kli.di-628 001.

LtM~
Signature of the Principal

Prtnclpa1
St. Mary's College (Autonomous)

Thoothukudi-628 001.

DECLARATION

We hereby declare that the project reported entitled "FOURIER
TRANSFORMS: STUDY, APPLICATIONS IN HEALTH AND DATA SCIENCES
AND CODING THROUGH SOFTWARES", is our original work. It has not been
submitted to any university for any degree or diploma.

Jo'P
(JOAN MORAIS. R)

0 .

!>-~~UV-:
(MARIA BENJAMIN!. A)

G. Mon·,sha. 'Rme &·Y~-
(MO NISHA ROSE. G)

C-N~ia v4J,~Vi~
(MARIAABITHAA VICTORIA. C)

3

(YAMINI.S)

1

ACKN<)WI J~IJGEMENT

rirst or :ill, we thank I.ore! Alml ijht y l'or ::-. l10wmi11g li lt: bl ec;slng~ tu 11nd(:rgo

this proi<'l'l.

With imnwnsc pleasure, we regis ter our deep sense 1Jf gra t itudc to our guidt

Dr. Sr. S. Kulandai Therese M.Sc., H.Ed., M.Phil., Ph.D. and the Head of the

Department, Dr. V. L. Stella Arputha Mary M.Sc., M.Phil., B.Ed., Ph.D. for

havi ng imparted necessary guidelin e~ throughou t the period of our studies.

We thank our beloved Principal, Rev. Dr. Sr. A.S.J. Lucia Rose M.Sc., M.Phil.,

Ph.D., PGDCA for providing us the help to carry out our project work

successful1y.

Finally, we thank all those who extended their helping hands regarding this

project.

4

FOURIER TRANSFORMS

5

PREFACE

The topic of our Project "FOURIER TRANSFORMS : STUDY, APPLICATIONS
IN HEALTH AND DATA SCIENCES AND CODING THROUGH SOFTWARES",
focuses on underlying concepts of the discipline and behavioural aspects of
signals in time domain and frequency domain. Fourier Transform named af-
ter Joseph Fourier, is a mathematical transformation employed to transform
signals between time (or spatial) domain and frequency domain. The Fourier
Transform allows us to perform tasks that would be impossible to perform any
other way.
Important properties, standard formulae, definitions, relevant examples and
references have also been discussed to scaffold the readers on the necessary
concepts. After brief learning, it was a natural progression to apply the learned
concepts and practices in real life. Fourier Transform has multitude of applica-
tions in almost all areas of life which have been discussed in our project. The
Project is structured into five chapters :

Chapter 1 presents briefly the idea of What is a Fourier Transform and it’s
Types.

Chapter 2 deals with the most important Applications of Fourier Transform and
the softwares which can be used to calculate all types of Fourier Transforms.

Chapter 3 introduces the definitions of Fourier Transform, it’s Inverse, Fourier
Cosine and Sine Transform and it’s Inverses respectively.

Chapter 4 focuses on Properties, Fourier Integral Theorem, Alternative Form
of Fourier Complex Integral Formula, Standard Fourier Transform Pairs, Deriv-
ing Fourier Transform from Fourier Series and Relationship between Fourier
Transform and Laplace Transform.

Chapter 5 deals with Finite Fourier Sine and Cosine Transform, it’s Inverses
and Finite Fourier Transforms of Derivatives.

6

CONTENT

1 Chapter 1

1.1 Introduction .. 9

1.2 Types of Fourier Transform ... 10

2 Chapter 2

2.1 Applications of Fourier Transform 11

2.2 Softwares that can be used to calculate all types
of Fourier Transforms ... 18

3 Chapter 3

3.1 Fourier Transform ... 22

3.2 Inverse Fourier Transform .. 24

3.3 Fourier Cosine Transform ... 26

3.4 Inverse Fourier Cosine Transform 27

3.5 Fourier Sine Transform ... 28

3.6 Inverse Fourier Sine Transform 29

4 Chapter 4

4.1 Fourier Integral Theorem .. 30

4.2 Alternative Form of Fourier
Complex Integral Formula .. 34

4.3 Standard Fourier Transform Pairs 35

7

4.4 Deriving Fourier Transform
from Fourier Series ... 36

4.5 Relationship between Fourier
Transform and Laplace Transform 37

4.6 Properties of Fourier Transform 38

5 Chapter 5

5.1 Finite Fourier Transforms of Derivatives 48

5.2 Finite Fourier Sine Transform .. 49

5.3 Finite Fourier Cosine Transform 50

5.4 Inverse Finite Fourier Sine Transform 50

5.5 Inverse Finite Fourier Cosine Transform 51

6 Conclusion ... 53

7 References .. 54

8

FOURIER TRANSFORMS : STUDY, APPLICATIONS IN HEALTH
AND DATA SCIENCES AND CODING THROUGH SOFTWARES

1.1 Introduction

“Profound study of nature is the most fertile source of mathematical
discoveries.”

- Joseph Fourier

Jean Baptiste Joseph Fourier (1768 – 1830) was
a French mathematician and Physicist, best known
for initiating the investigation of Fourier series, which
eventually developed into Fourier analysis and Har-
monic analysis, and their applications to problems of
Heat transfer and Vibrations. The Fourier Transform
and Fourier’s law of conduction are also named in his
honour. Fourier is also generally credited with the dis-
covery of the Greenhouse effect.

What is Fourier Transform?

In mathematics, Fourier Transform is a mathematical technique
that transforms a function of time, x(t), to a function of frequency, X (ω)

It is a mathematical transform that decomposes
functions depending on space or time into functions
depending on spatial or temporal frequency. The term Fourier transform refers
to both the frequency domain representation and the mathematical operation
that associates the frequency domain representation to a function of space or
time. The Fourier transform can be formally defined as an improper Riemann
integral, making it an integral transform.

9

The representation of periodic signals as
a linear combination of harmonically related
complex exponentials can be extended to de-
velop a representation of periodic signals as
linear combination of complex exponentials.
This leads to Fourier Transforms. Also, Fourier
Transform is a tool that breaks a waveform (a

function or signal) into an alternate representation, characterized by sine and
cosines. The Fourier Transform shows that any waveform can be re-written
as the sum of sinusoidal functions. The more concentrated f (x) is, the more
spread out its Fourier transform f (ϵ) must be.

It is closely related to the Fourier Series and it is an extended form of Fourier
Analysis. Fourier Series is mainly used for periodic signals whereas Fourier
Transform is used for non-periodic signals.

Dirichlet’s Conditions (Conditions for existence of Fourier
transform)

1. f (t) should be absolutely integrable (i.e.)
∞∫

−∞
| f (t)|d t < ∞.

2. The function must have finite number of maxima and minima.

3. The function must have finite number of discontinuities.

The choice of a particular transform is decided by the nature of the boundary
conditions and the convenience of inverting the transform function f̄ (s) to give
f (x).

1.2 TYPES OF FOURIER TRANSFORM

• Continuous Fourier Transform

• Discrete - Time Fourier Transform

• Discrete Fourier Transform

• Discrete Fourier Transform over a Ring

• Fourier Transform on Finite Groups

• Fourier Analysis

• Fast Fourier Transform

10

2.1 APPLICATIONS OF FOURIER TRANSFORM

1. Rapid diagnosis of COVID-19 using FT-IR ATR spectroscopy
and machine learning

Attenuated Total Reflection - Fourier Transform InfraRed (ATR-FTIR) Spec-
troscopy associated with machine learning in oropharyngeal swab suspension
fluid is applicable to predict COVID-19 positive samples.

The study included samples
of 243 patients from two Brazil-
ian States. Samples were trans-
ported by using different vi-
ral transport mediums (liquid
1 or 2). Clinical COVID-19 di-
agnosis was performed by the
Reverse Transcription - Poly-
merase Chain Reaction (RT-
PCR). Researchers built a classi-
fication model based on Partial Least Squares (PLS) associated with cosine k-
Nearest Neighbours (KNN). Their analysis led to 84% and 87% sensitivity, 66%
and 64% specificity, and 76.9% and 78.4% accuracy for samples of liquids 1 and
2, respectively. Based on this proof-of-concept study, they believe this method
could offer a simple, label-free, cost-effective solution for high-throughput
screening of suspect patients for COVID-19 in health care centres and emer-
gency departments.

This technique has shown promise as a di-
agnostic or screening tool in several diseases
such as cancer, diabetes, hypertension, and
physiological stress.

Recently, ATR-FTIR has already been in-
vestigated as a screening/diagnostic tool in
medicine. In 2019, the use of this technique was
reported in the screening of patients with brain

11

cancer, achieving sensitivity of 93.2% and specificity of 92.8% in the identifi-
cation of high-risk patients indicated for Definitive Diagnostic Tests (more ex-
pensive), thus saving time and cost. In infectious diseases, a similar study was
done to discriminate patients with Human immunodeficiency virus (HIV) in-
fection by ATR-FTIR also associated with Linear Discriminant Analysis (LDA)
in plasma samples. Interestingly, this analysis proved to be a possible strategy
for discrimination against different spectra of HIV infection and co-infection
with the hepatitis C virus (AIDS, HIV + HCV or AIDS + HCV).

2. Fourier Transform on Data Science

• Animated Visualization using Fourier Transform.

• Clean Up Data Noise with Fourier Transform in Python.

• Image Processing and Removal of Image Elements with Python - Appli-
cation of Fourier Transformation.

One of the more advanced
topics in image processing has
to do with the concept of Fourier
Transformation. Put very briefly,
some images contain system-
atic noise that users may want
to remove. If such noise is reg-
ular enough, employing Fourier
Transformation adjustments may
aid in image processing.

3. Fourier Transform on Analysis of Differential Equations

Some problems, such as cer-
tain differential equations, be-
come easier to solve when the
Fourier transform is applied. In
that case the solution to the
original problem is recovered

using the inverse Fourier transform. The operation of differentiation in the
time domain corresponds to multiplication by the frequency, so some differ-
ential equations are easier to analyze in the frequency domain. Perhaps the
most important use of the Fourier transformation is to solve partial differential
equations.

12

4. Fourier Transform Spectroscopy

Fourier-transform spectroscopy is a measurement technique whereby spectra
are collected based on measurements of the coherence of a radiative source,
using time-domain or space-domain measurements of the radiation and elec-
tromagnetic.

The Fourier transform is also used in
Nuclear Magnetic Resonance (NMR) and
in other kinds of spectroscopy, e.g. In-
frared (FTIR). In NMR an exponentially
shaped Free Induction Decay (FID) sig-
nal is acquired in the time domain and
Fourier-transformed to a Lorentzian line-
shape in the frequency domain. The
Fourier transform is also used in Mag-
netic Resonance Imaging (MRI) and
Mass Spectrometry.

5. Fourier Transform on Signal Processing

The Fourier transform is used for
the spectral analysis of time-series. The
subject of statistical signal processing
does not, however, usually apply the
Fourier transformation to the signal it-
self. Even if a real signal is indeed
transient (Lasting only for a short time;
Impermanent), it has been found in
practice advisable to model a signal by
a function which is stationary in the
sense that its characteristic properties
are constant over all time. The Fourier transform of such a function does not
exist in the usual sense, and it has been found more useful for the analysis of
signals to instead take the Fourier transform of its auto correlation function.
For video signals other types of spectral analysis must also be employed, still
using the Fourier transform as a tool.

6. Fourier Transform on Quantum mechanics

The Fourier transform is useful in quantum mechanics. The Fourier transform
can be used to pass from one way of representing the state of the particle, by a
wave function of position, to another way of representing the state of the parti-
cle: by a wave function of momentum. The other use of the Fourier transform

13

in both quantum mechanics and quantum field theory is to solve the appli-
cable wave equation. Fourier methods have been adapted to also deal with
non-trivial interactions.

7. Fourier Transform on Circuit Analysis

There are many linear circuits used in Electronic engineering field .These cir-
cuits include various components like capacitor, inductor ,resistor etc. Every
Electronic circuit can be modelled using mathematical equations. To perform
frequency analysis of the circuit Fourier Transform is used. Fourier Transform
helps us to analyse the behavior of circuit when different inputs are applied.

8. Fourier Transform on Cell phones

Communication is all based on Mathematics. The communication includes au-
tomatic transmission of data over wires and radio circuits through signals. Cell
phones are one of the most prominent communication device. The principle
of Fourier Transform is used in signal, which can be represented as the sum of
a collection of sine and cosine waves with various frequencies and amplitudes.
This collection of waves can then be manipulated with relative ease. Our mo-
bile phone has performing Fourier Transform. Every mobile device - such as
netbook, tablet and phone have been built in high speed cellular connection,
just like Fourier Transform. Humans very easily perform it mechanically every-
day.For example, when you are in a room with a great deal of noise and you
selectively hear your name above the noise, then you just performed Fourier
transform.

9. Fourier Transform on Image Processing

The Fourier Transform is used in a
wide range of applications such as im-
age analysis, image filtering, image re-
construction and image compression.
The Fourier Transform is an important
image processing tool which is used to
decompose an image into its sine and
cosine components. The output of the
transformation represents the image in
the Fourier or frequency domain, while the input image is the spatial domain
equivalent. In the Fourier domain image, each point represents a particular
frequency contained in the spatial domain image.

10. Fourier Transform on Analysis of Linear Time Invariant
(LTI) Systems

14

A signal is any waveform (function of time). This could be anything in the real
world - an electromagnetic wave, the voltage across a resistor versus time, the
air pressure variance due to your speech (i.e. a sound wave), or the value of Ap-
ple Stock versus time. The family of Fourier Transforms are specifically devel-
oped for analysing frequency contents of the signals for which there is no def-
inition of linearity or time invariance. Hence we can define the Fourier trans-
form of any signal, as long as it’s integrable (i.e. stable).

11. Fourier Transform on Radio Astronomy

Radio astronomers are particularly avid users of Fourier transforms because
Fourier transforms are key components in data processing (e.g., periodicity
searches) and instruments (e.g., antennas, receivers, spectrometers) and they
are the cornerstones of interferometry and aperture synthesis.

Radio Frequency Interference (RFI)
makes the process of detecting and an-
alyzing pulsars extremely difficult. This
has forced astronomers to be creative
in identifying and determining the spe-
cific characteristics of these unique ro-
tating neutron stars. Astrophysicists
have utilized algorithms such as the
Fast Fourier Transform (FFT) to predict
the spin period and harmonic frequen-
cies of pulsars. Dedispersion and the
pulsar frequency are critical for predict-

ing multiple characteristics of pulsars and correcting the influence of the Inter-
stellar Medium (ISM). Hence, Discrete Fourier Transform is a useful technique
for detecting radio signals and determining the pulsar frequency.

12. Fourier Transform on Astronomy

Fourier transforms are performed to learn
about the spectral characteristics of a data set.
Thus in astronomy, when looking for periodic-
ities in a time series, we Fourier transform the
data and look for peaks in the spectrum. If the
data are regularly sampled we can make use of
the Fast Fourier Transform to decrease the com-
putation time.

13. Fourier Transform on Seismology

15

Fourier transform is fundamental to
seismic data analysis. It applies to al-
most all stages of processing. A seis-
mic trace represents a seismic wavefield
recorded at a receiver location. The dig-
ital form of a seismic trace is a time se-
ries which can be completely described
as a discrete sum of a number of sinu-
soids — each with a unique peak ampli-

tude, frequency, and a phase-lag (relative alignment). The analysis of a seismic
trace into its sinusoidal components is achieved by the Forward Fourier Trans-
form. Conversely, the synthesis of a seismic trace from the individual sinusoidal
components is achieved by the Inverse Fourier Transform.
Seismic research has always been a common user for the Discrete Fourier
Transform (and the FFT). If you look at the history of the FFT you will find that
one of the original uses for the FFT was to distinguish between natural seismic
events and nuclear test explosions because they generate different frequency
spectra.

14. Fourier Transform on Radio Detection And Ranging
(RADAR)

The Fourier- transformation has become a
fundamental method in the signal processing
procedures, since the radar echo contains a va-
riety of informations in the signal form. This
information is convicted by the Fourier- trans-
formation into a data format which can be used
by the computer-aided signal processing. With
help of the Fast Fourier analysis whole signal
forms of radar echoes can be stored as only few data by the digital signal pro-
cessing. These data can be used by the process of the identification of radar
targets like fingerprints.
The signal received by a pulsed radar is a time sequence of pulses for which the
amplitude and phase are measured. Doppler processing techniques are based
on measuring the spectral (frequency) content of this signal. The frequency
content of this time-domain signal is obtained by taking its Fourier transfor-
mation, thus turning it into a frequency-domain signal or spectrum of the time-
domain signal.

16

15. Fourier Transform on Music

Fourier Transform helps in determining
the constituent pitches in a musical wave-
form. While applying a Constant-Q trans-
form (a Fourier-related transform) to the wave-
form of a C major piano chord, the first
three peaks on the left correspond to the
frequencies of the fundamental frequency of
the chord (C, E, G). The remaining smaller
peaks are higher-frequency overtones of the
fundamental pitches. A pitch detection al-
gorithm could use the relative intensity of
these peaks to infer which notes the pianist
pressed.

17

2.2 SOFTWARES THAT CAN BE USED TO
CALCULATE ALL TYPES OF FOURIER TRANSFORMS

• Python

• MATLAB

• "WolframAlpha - Computational Intelligence" - Free Online Fourier Trans-
form Calculator

• CoCalc

1. Python

Different types of Fourier Transform can be calculated through Python Coding
within some minutes. Let us try to understand this through simple coding for
calculating Fourier Transform (Continuous time and frequency).

Fourier Transform (Continuous time and frequency)

This occurs when the functional form of your time series is known analytically
(i.e. you have a formula x(t) = ... for it) and goes from −∞ to ∞.

x(f) =
∞∫

−∞
x(t)e−2πi f t d t

Program

Write a Program Coding to find the Fourier Transform of the funtion kte−kt 2

using Python in terms of the final variable f.

Coding

In [1] : import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
plt.style.use([’science’, ’notebook’])
import sympy as smp
from skimage import color
from skimage import io
from scipy.fft import fftfreq
from scipy.fft import fft, ifft, fft2, ifft2
In [2] : t, f = smp.symbols(’t, f’, real=True)
In [3] : t, f = smp.symbols(’t, f’, real=True)

18

k = smp.symbols(’k’, real=True, positive=True)
x = smp.exp(-k * t**2) * k * t
x
Out [3] : kte−kt 2

In [4] : from sympy.integrals.transforms import fourier _transform
In [5] : x _FT = fourier _transform(x, t, f)
x _FT
Out [5] :

− iπ
3
2 f e−π2 f 2

kp
k

Like the above example, we can calculate any type of Fourier Transform using
Python. Plots can also be plotted for Fourier Transforms.

2. MATLAB

Different types of Fourier Transform can be calculated through MATLAB Cod-
ing. Let us try to understand this through simple coding for calculating Fourier
Transform of Unit impulse (Dirac delta) Function in MATLAB.

Note that fourier(f) returns the Fourier Transform of f. By default, the func-
tion symvar determines the independent variable, and w is the transformation
variable.

Program

Write a Program to calculate the Fourier Transform of Unit impulse (Dirac delta)
Function using MATLAB.

Coding

> f = dirac(t);
> f _FT = fourier(f)

f _FT =
1

19

3. "WolframAlpha - Computational Intelligence" - Free Online
Fourier Transform Calculator

"WolframAlpha" is an Free Online Fourier Transform Calculator through which
all types of Fourier Transforms can be calculated instantly. All you need to know
is which function to transform, initial variable and transform variable.

4. CoCalc

Different types of Fourier Transform can be calculated through CoCalc Coding
also.

Program

Write a Program to obtain Fourier Transformation Plot for the function

f1(t) = 12sin(2π(3t))+11sin(2π(4t))+10sin(2π(5t))+9sin(2π(6t))

Coding

from sage.plot.bar _chart import BarChart
var(’t’)
f1(t) = 12*sin(2*pi*(3*t)) + 11*sin(2*pi*(4*t)) + 10*sin(2*pi*(5*t)) + 9*sin(2*pi*(6*t))
plot(f1, (t, -1, 2))

20

Output

21

3.1 Fourier Transform

Fourier transform of f (x) is denoted by f̄ (s) or F { f (x)}.
F is the Fourier transform operator.
Fourier transform of f (x)

f̄ (s) = F { f (x)} =
∞∫

−∞
f (x)e−i sx d x

Example on how to calculate Fourier Transform for a given
function

Example 1

Find the Fourier transform of f (x) , defined as f (x) =

{
1, for |x| < a

0, for |x| > a

and hence find the value of
∞∫
0

si n x

x
d x.

Solution:

F { f (x)} =
a∫

−a

e−i sx d x

=
a∫

−a

(cos sx − i si n sx)d x

= 2

a∫
0

cos sx d x,
[

by the property of definite integrals
]

= 2

s
si n as

Taking Fourier inverse transforms,

F−1
{2

s
si n as

}
= f (x)

i.e.,

1

2π

∞∫
−∞

2

s
si n ase i xs d s = f (x)

22

i.e.,

1

π

∞∫
−∞

1

s
si n as(cos xs + i si n xs)d s = f (x)

i.e.,

2

π

∞∫
0

1

s
si n as cos xs d s = f (x)

[
Since,

1

s
si n as si n xs is odd

]

i.e., ∞∫
0

1

s
si n as cos xs d s =

{
π
2 , for |x| < a

0, for |x| > a

Substituting a = 1 and x = 0 , so that |0| < 1, we get

∞∫
0

si n s

s
d s = π

2

Changing the dummy variable s into x , we get

∞∫
0

si nx

x
d x = π

2

Example on how to calculate Fourier Transform for Unit Step
Function and Unit Impulse Function

Example 2

Find the Fourier transform of the unit step function and unit impulse function.

Solution:

(i) The unit step function is defined as

ua(x) =
{

0, for x < a

1, for x ≥ a

∴ F {ua(x)} =
∞∫

a

e−i sx d x =
[

e−i sx

−i s

]∞
a
= 1

i s
e−i as

In particular

F {u0(x)} = 1

i s
or

−i

s

23

(ii) The unit impulse function or Dirac Delta function δa(x) is defined as
limϵ→0[f (x)], where

f (x) =
{

1
ϵ , f or a − ϵ

2 ≤ x ≤ a + ϵ
2

0, elsewhere

F { f (x)} =
a− ϵ

2∫
a− ϵ

2

1

ϵ
e−i sx d x

= 1

ϵ

[
e−i sx

−i s

]a− ϵ
2

a+ ϵ
2

= 1

i ϵ s

{
e−i s(a− ϵ

2) −e−i s(a+ ϵ
2)

}
= e−i as

[
sin

[
ϵS
2

][
ϵS
2

]]

∴ F {δa(x)} = lim
ϵ→0

[
e−i as ·

{sin
[
ϵS
2

]
ϵS
2

}]
In particular

F {δa(x)} = 1

3.2 Inverse Fourier Transform

Inverse Fourier transform of f̄ (s)

F−1{ f̄ (s)} = 1

2π

∞∫
−∞

f̄ (s)e i xs d s

Some authors define the Fourier transform pair as:

F { f(x)} = f̄ (s) = 1p
2π

∞∫
−∞

f (x)e−i sx d x and

F−1{ f̄ (s)} = f (x) = 1p
2π

∞∫
−∞

f̄ (s) ·e i xs d s

24

Example on how to calculate Inverse Fourier Transform for a
given function

Example 3

Find the inverse Fourier transform of f̄ (s) given by

f̄ (s) =
{

a −|s|, for |s| ≤ a

0, for |s| > a.

Hence show that
∞∫
0

si n2 x

x2
d x = π

2
.

Solution:

F−1{ f̄ (s)} = 1

2π

∞∫
−∞

f̄ (s)e i xs d s

= 1

2π

a∫
−a

{a −|s|}(cos xs + i si n xs)d s

= 1

π

a∫
0

(a − s)cos xs d s

[Since,{a −|s|}si n xs is odd]

= 1

π

[
(a − s)

si n xs

x
− cos xs

x2

]a

0

= 1

πx2
(1− cos ax)

= a2

2π

 si n
ax

2
ax

2


2

∴ F

 a2

2π

 si n
ax

2
ax

2


2
= f̄ (s)

i.e.,

a2

2π

∞∫
−∞

 si n
ax

2
ax

2


2

e−i sx d x =
{

a −|s|, for |s| ≤ a

0, for |s| > a

25

Taking a = 2 and letting s → 0, we get

∞∫
−∞

[
si n x

x

]2

d x =π

Since the integrand is an even function of x , we get

∞∫
0

[
si n x

x

]2

d x = π

2

3.3 Fourier Cosine Transform

Fourier cosine transform of f (x) is denoted by f̄C (s) or FC { f (x)}.
FC is the Fourier cosine transform operator.
Fourier cosine transform of f (x)

f̄C (s) = FC { f (x)} =
∞∫

0

f (x)cos sx d x

Example on how to calculate Fourier Cosine Transform for a
given function

Example 4

Find the Fourier transform of e−a2x2
. Hence

(i) Prove that e
−x2

2 is self-reciprocal with respect to Fourier Transforms; and
(ii) Find the Fourier cosine transform of e−x2

Solution:

F {e−a2x2
} =

∞∫
−∞

e−a2x2 ·e−i sx d x

=
∞∫

−∞
e
−

[
ax+

(
i s
2a

)]2

·e
−s2

4a2 d x

= e
−s2

4a2 · 1

a

∞∫
−∞

e−t 2
d t ,

[on substituting sx + i s

2a
= t]

=
p
π

a
e

−s2

4a2 (1)

26

(i) Had we assumed the definition of the Fourier transform as

F { f (x)} = 1p
2π

∞∫
−∞

f (x)e i sx d x

(1) would have become

F {e−a2x2
} = 1

a
p

2
e

−s2

4a2

Substituting a = 1p
2

in (2), we get

F {e
−x2

2 } = e
−s2

2

and so

F−1{e
−s2

2 } = e
−x2

2

i.e., e
−x2

2 is reciprocal with respect to Fourier transforms.

(ii) From (1), we have

∞∫
−∞

e−a2x2
(cos sx − i sin sx)d x =

p
π

2a
e

−s2

4a2

Equating the real parts on both sides, we get

∞∫
0

e−a2x2
cos sx d x =

p
π

2a
e

−s2

4a2

or

FC {e−a2x2
} =

p
π

2a
e

−s2

4a2

3.4 Inverse Fourier Cosine Transform

Inverse Fourier cosine transform of f̄C (s)

F−1
C { f̄C (s)} = 2

π

∞∫
0

f̄C (s)cos xs d s

27

Some authors define the Fourier cosine transform pair as:

FC { f(x)} = f̄C (s) =
√

2

π

∞∫
0

f (x)cos sx d x and

F−1
C { f̄C (s)} = f (x) =

√
2

π

∞∫
0

f̄C (s)cos xs d s

3.5 Fourier Sine Transform

Fourier sine transform of f (x) is denoted by f̄S(s) or FS{ f (x)}.
FS is the Fourier sine transform operator.
Fourier sine transform of f (x)

f̄S(s) = FS{ f (x)} =
∞∫

0

f (x) si n sx d x

Example on how to calculate Fourier Sine Transform for a given
function

Example 5

Find the Fourier Sine Transform of e−ax(a > 0). Hence find FS{xe−ax} and FS{ e−ax

x }.
Deduce the value of ∞∫

0

si n sx

x
d x.

Solution:

FS(e−ax) =
∞∫

0

e−ax si n sx d x

=
[

e−ax

s2 +a2
(−a si n sx − s cos sx)

]∞
0

= s

s2 +a2

i.e.,

∞∫
0

e−ax si n sx d x = s

s2 +a2
(1)

28

Differentiating both sides of (1) with respect to a, we get

∞∫
0

−xe−ax si n sx d x =− 2as

(s2 +a2)2

i.e.,

FS(xe−ax) = 2as

(s2 +a2)2

Integrating both sides of (1) with respect to a between a and ∞,

∞∫
0

(
e−ax

−x

)∞
0

si n sx d x =
[
−cot−1

(a

s

)]∞
a

i.e.,

∞∫
0

(
e−ax

x

)
si n sx d x = cot−1

(a

s

)
i.e.,

FS

(
e−ax

x

)
= cot−1

(a

s

)
, a > 0 (2)

Taking limits on both sides of (2) as a → 0, we get

FS

(
1

x

)
= cot−1(0) = π

2

Thus

∞∫
0

si n sx

x
= π

2
, s > 0.

3.6 Inverse Fourier Sine Transform

Inverse Fourier sine transform of f̄S(s)

F−1
S { f̄S(s)} = 2

π

∞∫
0

f̄S(s) si n xs d s

29

Some authors define the Fourier sine transform pair as:

FS{ f(x)} = f̄S(s) =
√

2

π

∞∫
0

f (x) si n sx d x and

F−1
S { f̄S(s)} = f (x) =

√
2

π

∞∫
0

f̄S(s) si n xs d s

4.1 Fourier Integral Theorem

If f (x) is piecewise continuous, has piecewise continuous derivatives in every
finite interval in (−∞,∞) and absolutely integrable in (−∞,∞), then

f (x) = 1

2π

∞∫
−∞

∞∫
−∞

f (t) ·e i s(x−t) d t d s or equivalently

f (x) = 1

π

∞∫
0

∞∫
−∞

f (t)cos{s(x − t)}d t d s.

Proof:

When f (x) satisfies the conditions given in the theorem, we can prove that f (x)
can be expanded as a infinite series of the form.

f (x) =
∞∑

n=−∞
cne

i nπx
l (1)

in (−l , l) however large l may be, where

cn = 1

2l

l∫
−l

f (t)e
−i nπt

l d t (2)

Substituting sn = nπ

l
and inserting (2) in (1), we have

f (x) =
∞∑

n=−∞
1

2l

l∫
−l

f (t)e i sn (x−t)d t

= 1

2π

l∫
−l

[∞∑
n=−∞

f (t)e i sn (x−t) · π
l

]
d t

30

on interchanging summation and integration.

= 1

2π

l∫
−l

[∞∑
n=−∞

f (t)e i sn (x−t)∆Sn

]
d t

Since

∆sn = sn+1 − sn = (n +1)π

l
− nπ

l
= π

l

Taking limits as ∆Sn → 0 or equivalently l →∞ we get

f (x) = 1

2π

∞∫
−∞

[∞∫
−∞

f (t)e i s(x−t) d s
]

d t (3)

f (x) = 1

2π

∞∫
−∞

∞∫
−∞

f (t)e i s(x−t) d t d s (4)

[Since, the limits of integration are constants]
From (3)

f (x) = 1

2π

∞∫
−∞

f (t)

∞∫
−∞

[cos s(x − t)+ i sin s(x − t)]d s d t

= 1

2π

∞∫
−∞

f (t) ·2

∞∫
0

cos s(x − t)d s d t

[Since, cos s(x−t) is an even function and sin s(x−t) is an odd func-
tion of s in (−∞,∞)]

f (x) = 1

π

∞∫
0

∞∫
−∞

f (t)cos s(x − t)d t d s (5)

[Since, the limits of the integration are constants]
From (5), we have

f (x) = 1

π

∞∫
0

∞∫
−∞

f (t)[cos sx cos st + si n sx · si n st]d t d s

= 1

π

∞∫
0

cos sx

 ∞∫
−∞

f (t)cos st d t

 d s + 1

π

∞∫
0

si n sx

 ∞∫
−∞

f (t) si n st d t

 d s (6)

31

If f (x) [or f (t)] is even,
f (t)cos st is an even function of t and f (t) si n st is an odd function of t . Hence,
by the property of define integrals, we get the following from (6)

f (x) = 2

π

∞∫
0

∞∫
0

f (t)cos sx cos st d t d s (7)

The R.H.S of (7) is called the Fourier Cosine Integral of f (x), provided f (x) is
even.
If f (x) [or f (t)] is odd, f (t)cos st is an odd function of t and f (t) si n st is an
even function of t .
Hence, by the property of definite integrals, we get the following from (6)

f (x) = 2

π

∞∫
0

∞∫
0

f (t) si n sx si n st d t d s (8)

The R.H.S of (8) is called the Fourier Sine Integral of f (x), provided f (x) is odd.

Example on how to find Fourier Integral Representation for a
given function using Fourier Integral Theorem

Example 6

Find the Fourier integral representation of f (x) defined as

f (x) =


0, for x < 0
1
2 , for x = 0

e−x , for x > 0

Verify the representation at x = 0.

Solution:

32

Fourier (complex) integral representation is given by

f (x) = 1

2π

∞∫
−∞

∞∫
−∞

f (t)e−i st e i sx d t d s

= 1

2π

∞∫
−∞

e i sx

 0∫
−∞

+
∞∫

0

f (t)e−i st d t

 d s

= 1

2π

∞∫
−∞

e i sx

 ∞∫
0

e−(1+i s)t d t

 d s [on using the given values of f(t)]

= 1

2π

∞∫
−∞

e i sx
{ e−(1+i s)t

−(1+ i s)

}t=∞

t=0
d s

= 1

2π

∞∫
−∞

e i sx · 1

1+ i s
d s

= 1

2π

∞∫
−∞

(1− i s)

1+ s2
(cos xs + i si n xs)d s

= 1

2π

∞∫
−∞

1

1+ s2
[{cos xs + s si n xs}+ i {si n xs − s cos xs}]

= 1

π

∞∫
0

(cos xs + s si n xs

1+ s2

)
(1)

by property of definite integrals, as the real part is even and the imaginary part
is odd.
Substituting x = 0 in the integral representation (1), we get

f (0) = 1

π

∞∫
0

d s

1+ s2
= 1

π

[
t an−1s

]∞
0
= 1

2

Thus the integral representation (1) holds good for x = 0 also.

33

4.2 Alternative Form of Fourier Complex Integral Formula

The Fourier integral formula for f (x) is

f (x) = 1

2π

∞∫
−∞

∞∫
−∞

f (t)e i s(t−x) d t d s

Proof:

f (x) = 1

π

∞∫
0

∞∫
−∞

f (t)cos s(x − t)d t d s

= 1

π

∞∫
0

∞∫
−∞

f (t)cos s(t −x)d t d s

= 1

2π

∞∫
0

∞∫
−∞

f (t)
[

e i s(t−x) +e−i s(t−x)
]

d t d s

= 1

2π

∞∫
0

∞∫
−∞

f (t)e i s(t−x) d t d s + 1

2π

∞∫
0

∞∫
−∞

f (t)e−i s(t−x) d t d s

Substituting s =−s
′

in the second integral, we get

f (x) = 1

2π

∞∫
0

∞∫
−∞

f (t)e i s(t−x) d t d s + 1

2π

0∫
−∞

∞∫
−∞

f (t)e i s
′
(t−x)d t d s

′

= 1

2π

∞∫
−∞

∞∫
−∞

f (t)e i s(t−x) d t d s

[on changing s
′

into s and combining the two integrals] (1)

(1) provides an alternative formula for f (x). Comparing this with the Fourier
Complex integral formula derived in (4) of Fourier integral theorem, we note
that x and t can be interchanged in the exponential function.

34

4.3 Standard Fourier Transform Pairs

S.No. x(t) X(t) X(ω)

1. δ(t) 1 1

2. r ect (t) si nc(f) si nc
(ω

2π

)
3. tr i (t) si nc2(f) si nc2

(ω
2π

)
4. si nc(t) r ect (f) r ect

(ω
2π

)
5. cos(2πat)

1

2

[
δ(f +a)+δ(f −a)

]
π [δ(ω+2πa)+δ(ω−2πa)]

6. sin(2πat)
j

2

[
δ(f +a)−δ(f −a)

]
jπ [δ(ω+2πa)−δ(ω−2πa)]

7. e−at u(t)
1

a + j 2π f

1

a + jω

8. t ne−at u(t)
1

(a + j 2π f)n+1

1

(a + jω)n+1

9. e−a|t | 2a

a2 +4π2 f 2

2a

a2 +ω2

10. e−πt 2
e−π f 2

e

−ω2

4π

11. sg n(t)
1

jπ f

2

jω

12. u(t)
1

2
δ(f)+ 1

j 2π f
πδ(ω)+ 1

jω

13. e−at cos2πbtu(t)
a + j 2π f

(a + j 2π f)2 + (2πb)2

a + jω

(a + jω)2 + (2πb)2

14. e−at sin2πbtu(t)
2πb

(a + j 2π f)2 + (2πb)2

2πb

(a + jω)2 + (2πb)2

15. eat u(−t)
1

a − j 2π f

1

a − jω

35

4.4 Deriving Fourier Transform from Fourier Series

x(t) =
∞∑

k=−∞
X [k]e j kωt

x(t) =
∞∑

k=−∞
X [k]e j k 2π

T t
[

Since,ω= 2π

T

]
(1)

Let δ f = 1

T

(1) =⇒ x(t) =
∞∑

k=−∞
X [k]e j k2π∆ f t

X [k] = 1

T

t0+T∫
t0

x(t)e− j kωt d t

X [k] = 1

T

t0+T∫
t0

x(t)e j k2π∆ f t d t (2)

where, X (ω) =
∞∫

−∞
x(t)e− jωt d t

The above equation is known as Fourier Transform Equation.
Substituting equation (2) in equation (1), we get,

x(t) =
∞∑

k=−∞

∆ f

t0+T∫
t0

x(t)e− j 2πk∆ f t d t

 .e j k2π∆ f t

Let t0 =−T

2

x(t) = lim
T→∞

∞∑
k=−∞


T
2∫

− T
2

x(t)e− j 2πk∆ f t d t

 .e j k2π∆ f t

When T →∞,
∑→

∫
,∆ f → d f , k∆ f → f ,continuous variable function.

x(t) =
∞∫

−∞
d f

∞∫
−∞

x(t)e− j 2π f t d t .e j 2π f t

x(t) =
∞∫

−∞
[X (ω)] e jωt dω

36

The above equation is known as Fourier Inverse Transform Equation.

4.5 Relationship between Fourier Transform and Laplace
Transform

Let f (t) be defined as f (t) =
{

e−xtφ(t), t ≥ 0

0, t < 0

Then

F
{

f (t)
}
=

∞∫
−∞

f (t)e−i y t d t

where y is the Fourier transform variable.

=
0∫

−∞
0 ·e−i y t d t +

−∞∫
0

e−xtφ(t)e−i y t d t

=
∞∫

0

e−stφ(t)d t
[
where s = x + i y

]
i .e., F

{
f (t)

}
= L

{
φ(t)

}

37

4.6 PROPERTIES OF FOURIER TRANSFORM

Property 1 - Linearity Property

F is a linear operator, i.e. F [(c1 f1(x)+ c2 f2(x))] = c1F { f1(x)}+ c2F { f2(x)}, where
c1 and c2 are constants.

Proof :

F
[

c1 f1(x)+ c2 f2(x)
]
=

∞∫
−∞

[c1 f1(x)+ c2 f2(x)]e−i sxd x

= c1

∞∫
−∞

f1(x)e−i sxd x + c2

∞∫
−∞

f2(x)e−i sxd x

= c1F { f1}(x)+ c2F { f2(x)}

Property 2 - Change of Scale Property

If F { f (x)} = f̄ (s), then F { f (ax)} = 1

|a| f̄
[s

a

]
Proof:

F { f (ax)} =
∞∫

−∞
f (ax)e−i sxd x

=
∞∫

−∞
f (t)e

−i st
a .

d t

a
, [on substituting ax = t and assuming that a > 0.]

= 1

a
f̄
[s

a

]
But

F { f (ax)} =
−∞∫
∞

f (t)e
−i st

a .
d t

a
, if a < 0

=− 1

a
f̄
[s

a

]
∴ F { f (ax)} = 1

|a| f̄
[s

a

]
Similarly,

FC { f (ax)} = 1

a
· f̄C

[s

a

]
and

FS{ f (ax)} = 1

a
· f̄S

[s

a

]
38

Property 3 - Shifting Property (Shifting in x)

If F { f (x)} = f̄ (s), then F { f (x −a)} = e−i as f̄ (s)

Proof:

F { f (x −a)} =
∞∫

−∞
f (x −a)e−i sx d x

=
∞∫

−∞
f (t)e−i s(t+a) d t , [on substituting t = x −a]

= e−i as f̄ (s)

Property 4 - Shifting in Respect of s

If F { f (x)} = f̄ (s), then F {e−i ax f (x)} = f̄ (s +a)

Proof:

F {e−i ax f (x)} =
∞∫

−∞
e−i ax f (x)e−i sx d x

=
∞∫

−∞
f (x)e−i (s+a)x d x

= f̄ (s +a)

F {e i ax f (x)} =
∞∫

−∞
e i ax f (x)e−i sx d x

=
∞∫

−∞
f (x)e−i (s−a)x d x

= f̄ (s −a)

39

Property 5 - Modulation Theorem

If F { f (x)} = f̄ (s), then F { f (x)cos ax} = 1

2

[
f̄ (s +a)+ f̄ (s −a)

]
Proof:

F
{

f (x)cos ax
}
= 1

2
F

[
f (x)(e i ax +e−i ax)

]
= 1

2

[
F { f (x)e i ax}+F { f (x)e−i ax}

]
= 1

2

[
f̄ (s −a)+ f̄ (s +a)

]
Property 6 - Conjugate Symmetry Property

If F { f (x)} = f̄ (s), then F { f ∗(−x)} = [f̄ (s)]∗, where * denotes complex conjugate.

Proof:

f̄ (s) =
∞∫

−∞
f (x)e−i sxd x

∴ [f̄ (s)]∗ =
∞∫

−∞
f ∗(x)e i sxd x

=
∞∫

−∞
f ∗(−t)e−i st d t , [On Substituting x =−t]

= F { f ∗(−x)}

40

Property 7 - Transform of Derivatives

If f (x) is continuous, f
′
(x) is piecewise continuously differentiable, f (x) and

f
′
(x) are absolutely intergrable in (−∞,∞) and limx→±∞ [f (x) = 0], then F { f

′
(x) =

i s f̄ (s)} where f̄ (s) = F { f (x)}

Proof:

By the first three conditions given, F { f (x)} and F { f
′
(x)} exist.

F { f
′
(x)} =

∞∫
−∞

f
′
(x)e−i sx d x

=
[

e−i sx f (x)
]∞
−∞

+ i s

∞∫
−∞

e−i sx f (x)d x,

[on substituting by parts]

= 0+ i s F { f (x)}, [by the given condition]

= i s f̄ (s)

Example on how to solve Differential Equations using Fourier
Transforms

Example 7

Solve the differential equation

d 2 y

d x2
+3

d y

d x
+2y = e−x , x > 0

using Fourier transforms, given that y(0) = 0 and y ′(0) = 0.

Solution:

Taking Fourier complex transforms on both sides of the given differential equa-
tion, we have

(i s)2 ȳ(s)+3(i s) ȳ(s)+2 ȳ(s) = F (e−x), x > 0

= F {U (x) ·e−x},

[where U(x) is the unit step function]
i.e.,

41

[(i s)2 +3(i s)+2] ȳ(s) =
∞∫

0

e−(1+i s)x d x = 1

1+ i s

∴ ȳ(s) = 1

(i s +1)2(i s +2)

= −1

i s +1
+ 1

(i s +1)2
+ 1

i s +2
[by partial fractions.]

∴ y =−F−1
{ 1

i s +1

}
+ F−1

{ 1

(i s +1)2

}
+

{ 1

i s +2

}
=−U (x)e−x +U (x) . xe−x + U (x) .e−2x

Since

F {U (x)xe−x} =
∞∫

0

xe−(1+i s)x d x

=
[

x
{ e−(1+i s)x

−(1+ i s)

}
−

{e−(1+i s)x

(1+ i s)2

}]∞
0

= 1

(1+ i s)2

i.e.,
y =−e−x + xe−x + e−2x , x > 0

Example on how to solve Partial Differential Equations using
Transform of Derivatives and Fourier Cosine Transform

Example 8

Solve the equation
∂u

∂t
=α2 ∂2u

∂x ∂x
, satisfying the boundary conditions

∂u

∂x
(0, t) =

k, t ≥ 0 and u(x, t) → 0 as x →∞ and the initial condition u(x,0) = 0.

Solution:

We know that,

If f (0, y) is given but
∂ f

∂x
(0, y) is not known in a boundary value problem, Fourier

sine transform is used. On the other hand, if
∂ f

∂x
(0, y) is given but f (0, y) is not

known, Fourier cosine transform is used.

42

Since x > 0 and
∂u

∂x
(0, t) is given, we take Fourier cosine transforms of the

equation with respect to x.
Thus

∂

∂t
ūC (s, t) =α2

[
−s2ūC (s, t)− ∂u

∂x
(0, t)

]
i.e.,

∂

∂t
ūC (s, t)+α2s2ūC (s, t) = kα2 (1)

Transform of the initial condition is

ūC (s,0) = 0 (2)

Solving (1) and using (2), we get

ūC (s, t) = Ae−α2s2t − k

s2
(3)

Using (2) in (3), we get A = k

s2

∴ ūC (s, t) = k

s2
(e−α2s2t −1)

Taking the inverse cosine transforms, we get

u(x, t) = 2k

π

∞∫
0

1

s2
(e−α2s2t −1)cos xs d s

Property 8 - Derivatives of the Transform

If F { f (x)} = f̄ (s), then −i F {x f (x)} = d

ds
f̄ (s)

Proof:

f̄ (s) =
∞∫

−∞
e−i sx f (x)d s

d

d s
f̄ (s) =

∞∫
−∞

d

d s
[e−i sx f (x)]d x

= (−i)

∞∫
−∞

e−i sx[x f (x)]d x

=−i ·F {x f (x)}

43

Extending, we get
dr

dsr
f̄ (s) = (−i)r F {xr f (x)}

Convolution Product

∞∫
−∞

f (x −u)g (u)du

is called the convolution product or simply the convolution of the functions
f (x) and g (x) and is denoted by f (x)∗g (x).

Property 9 - Convolution Theorem

The Fourier transform of the convolution of two functions is the product of
their Fourier transforms.
i.e., if F { f (x)}= f̄ (s) and F {g (x)}=ḡ (s), then

F { f (x)∗g (x)} = f̄ (s) · ḡ (s)

Proof:

F { f (x)∗g (x)} =
∞∫

−∞
f (x)∗g (x)e−i sx d x

=
∞∫

−∞

 ∞∫
−∞

f (x −u)g (u)du

e−i sx d x

=
∞∫

−∞
g (u)

 ∞∫
−∞

f (x −u)e−i sx d x

 du [on changing the order of integration.]

=
∞∫

−∞
g (u)[e−i us f̄ (s)]du, [by the shifting property.]

= f̄ (s) ·
∞∫

−∞
g (u)e−i su du

= f̄ (s) · ḡ (s)

Inverting, we get

F−1{ f̄ (s) · ḡ (s)} = f (x)∗g (x)

= F−1{ f̄ (s)}∗F−1{ḡ (s)}

44

Property 10 - Parseval’s Identity or Energy Theorem

If F { f (x)} = f̄ (s), then

∞∫
−∞

| f (x)|2 d x = 1

2π

∞∫
−∞

| f̄ (s)|2 d s

Proof:

By convolution theorem,

f (x)∗ g (x) = F−1{ f̄ (s) · ḡ (s)}

i.e.,

∞∫
−∞

f (u) · g (x −u)du = 1

2π

∞∫
−∞

f̄ (s)ḡ (s)e i xs d s (1)

Substituting x = 0 in (1), we get

∞∫
−∞

f (u)g (−u)du = 1

2π

∞∫
−∞

f̄ (s)ḡ (s)d s (2)

(2) is true for any g (u); take g (u) = [f (−u)]∗ and hence g (−u) = [f (u)]∗, where
[f (u)]∗ is the complex conjugate of f (u).
Also

ḡ (s) = F {g (x)} = F { f (−x)}∗ = [F f (x)]∗ = [f̄ (s)]∗

[by conjugate symmetric property]
Using these in (2), we get

∞∫
−∞

f (u)[f (u)]∗ du = 1

2π

∞∫
−∞

f̄ (s)[f̄ (s)]∗ d s

i.e., ∞∫
−∞

| f (u)|2 du = 1

2π

∞∫
−∞

| f̄ (s)|2 d s,

or ∞∫
−∞

| f (x)|2d x = 1

2π

∞∫
−∞

| f̄ (s)|2 d s.

[on changing the dummy variable]

45

Example on how to calculate Fourier cosine and sine
transforms of a given function using Parseval’s Identity

Example 9

Using Parseval’s identity for Fourier cosine and sine transforms of e−ax ,
evaluate

(i)

∞∫
0

d x

(a2 + x2)2
and (i i)

∞∫
0

x2

(a2 + x2)2
d x

Solution

(i) FC (e−ax) =
∞∫

0

cos sx d x = a

s2 + a2

By Parseval’s identity,

∞∫
0

| f (x)|2 d x = 2

π

∞∫
0

| f̄C (s)|2 d s

∞∫
0

e−2ax d x = 2

π
a2

∞∫
0

d s

(s2 + a2)2

i.e., ∞∫
0

d s

(s2 + a2)2
= π

2a2
·
[

e−2ax

−2a

]∞
0

= π

4a3
, if a > 0

Changing the dummy variable s into x, we get the first result.

ii) Now

FS(e−ax) =
∞∫

0

e−ax si n sx d x = s

s2 +a2

By Parseval’s identity,

∞∫
0

| f (x)|2 d x = 2

π

∞∫
0

| f̄S(s)|2 d s

46

i.e.,

2

π

∞∫
0

s2

((s2 +a2))2
d s =

∞∫
0

e−2ax d x

∞∫
0

x2d x

(x2 +a2)2
= π

4a
, if a > 0 [on changing the dummy variables.]

Property 11 - Parseval’s Identity for Fourier Cosine and Sine
Transforms

If f̄C (s), ḡC (s) are the Fourier cosine transforms and f̄S(s), ḡS(s) are the Fourier
sine transforms of f (x) and g (x) respectively, then

(i)

∞∫
0

f (x) g (x)d x =
∞∫

0

f̄C (s) ḡC (s)d s =
∞∫

0

f̄S(s) ḡS(s)d s

(i i)

∞∫
0

| f (x)|2 d x =
∞∫

0

| f̄C (s)|2 d s =
∞∫

0

| f̄S(s)|2 d s

Proof:

(i)

∞∫
0

f̄C (s) ḡC (s)d s =
∞∫

0

f̄C (s)

√
2

π

∞∫
0

g (x)cos sx d x

 d s

=
∞∫

0

g (x)

√
2

π

∞∫
0

f̄C (s)cos xs d s

 d x,

(changing the order of integration)

=
∞∫

0

f (x) g (x)d x

(ii) Replacing g (x) = f ∗(x) in (i) and noting that FC { f ∗(x)}

= { f̄C (s)}∗ andFS{ f ∗(x)} = { f̄S(s)}∗, we get

∞∫
0

f (x)

f ∗(x)d x =
∞∫

0

f̄C (s) { f̄C (s)}∗ d s =
∞∫

0

f̄S(s) { f̄S(s)}∗ d s

i.e.,

∞∫
0

| f (x)|2 d x =
∞∫

0

| f̄C (s)|2 d s =
∞∫

0

| f̄S(s)|2 d s

47

Property 12

If FC { f (x)} = f̄C (s) and FS{ f (x)} = f̄S(s), then

(i)
d

d s
{ f̄C (s)} =−FS{x f (x)}and

(i i)
d

d s
{ f̄S(s)} = FC {x f (x)}.

Proof:

(i) f̄C (s) =
∞∫

0

f (x)cos sx d x

d

d s
{ f̄C (s)} =

∞∫
0

f (x){−x si n sx}d x

=−
∞∫

0

{x f (x)} si n sx d x

=−FS{x f (x)}

(i i) f̄S(s) =
∞∫

0

f (x) si n sx d x

d

d s
{ f̄S(s)} =

∞∫
0

f (x){x cos sx}d x

=
∞∫

0

{x f (x)}cos sx d x

= FC {x f (x)}

5.1 Finite Fourier Transforms of Derivatives

(i) FS{ f ′(x)} =−nπ

l
f̄C (n)

(i i) FC { f ′(x)} = (−1)n f (l)− f (0)+ nπ

l
f̄S(n)

(i i i) FS{ f ′′(x)} =−n2π2

l 2
f̄S(n)+ nπ

l
{ f (0)− (−1)n f (l)}

(i v) FC {F ′′(x)} =−n2π2

l 2
f̄C (n)+ (−1)n f ′(l)− f ′(0)

48

Proof:

FS{ f ′(x)} =
l∫

0

f ′(x) si n
nπx

l
d x

=
l∫

0

si n
nπx

l
d{ f (x)}

=
{

f (x) si n
nπx

l

}l

0
− nπ

l

l∫
0

f (x)cos
nπx

l
d x

=−nπ

l
f̄C (n)

FC { f ′(x)} =
π
2∫

0

1 · cos nx d x −
π∫

π
2

1 · cos nx d x

=
[

si n nx

n

]π
2

0
−

[
si n nx

n

]π
π
2

= 1

n

{
si n

nπ

2
−0− si n nπ+ si n

nπ

2

}
= 2

n
si n

nπ

2
, n ̸= 0

FS{ f ′′(x)} =
π
2∫

0

si n nx d x −
π∫

π
2

si n nx d x

=− 1

n

(
cos nx

)π
2

0
+ 1

n

(
cos nx

)π
π
2

= 1

n

{
1−2cos

nπ

2
+ (−1)n

}
5.2 Finite Fourier Sine Transform

Finite Fourier Sine Transform of f (x) in (0, l) is denoted by f̄S(n) or FS{ f (x)}.
If the function f (x) is piecewise continuous in the interval (0,l), then the Fourier
sine transform of f (x) in (0, l)

f̄S(n) = FS{ f (x)} =
l∫

0

f (x) si n
nπx

l
d x

49

5.3 Finite Fourier Cosine Transform

Finite Fourier Cosine Transform of f (x) in (0, l) is denoted by f̄C (n) or FC { f (x)}.
If the function f (x) is piecewise continuous in the interval (0,l), then the Fourier
cosine transform of f (x) in (0, l)

f̄C (n) = FC { f (x)} =
l∫

0

f (x)cos
nπx

l
d x

Example on how to calculate Finite Fourier Sine and Cosine
Transforms of a given function

Example 10

Find the Finite Fourier Sine and Cosine Transforms of
[

1− x

π

]2
sin(0,π).

Solution:

Fs

{[
1− x

π

]2}
=

π∫
0

[
1− x

π

]2
sin nx d x

=
{[

1− x

π

]2 [−cosnx

n

][−2

π

][
1−x

π

][−sinnx

n2

]
+ 2

π2

cosnx

n3

}π
0

= 1

n
+ 2

π2n3

{
(−1)n −1

}
FC

{[
1− x

π

]2}
=

π∫
0

[
1− x

π

]2
cos nx d x

=
{[

1− x

π

]2 sin nx

n
−

[
− 2

π

][
1− x

π

][−cos nx

n2

]
+ 2

π2

[−sin nx

n3

]}π
0

= 2

πn2
, n ̸= 0

5.4 Inverse Finite Fourier Sine Transform

Inverse finite sine fourier transform of f̄S(n) is denoted by F−1
S { f̄S(n)}

If f̄S(n) is the finite Fourier cosine Transform of f (x) in (0, l), then the Inverse
Finite Fourier Sine Transform of f̄S(n)

f (x) = 2

l

∞∑
n=1

f̄S(n)sin
nπx

l

50

Example on how to calculate Inverse Finite Fourier Sine
Transform of a given function

Example 11

Find f (x), if its finite sine transform is given by f̄S(n) = 1− cos nπ

n2π2
in 0 < x <π.

Solution:

The inverse finite Fourier sine transform is given by

f (x) = 2

π

∞∑
n=1

f̄S(n) si n nx

= 2

π

∞∑
n=1

[
1− cos nπ

n2π2

]
si n nx

= 2

π3

∞∑
n=1

{1− (−1)n

n2

}
sin nx

= 4

π3

∞∑
n=1,3,5...

1

n2
si n nx

= 4

π3

∞∑
n=1

1

(2n −1)2
si n (2n −1)x

5.5 Inverse Finite Fourier Cosine Transform

Inverse finite cosine fourier transform of f̄C (n) is denoted by F−1
C { f̄C (n)}

If f̄C (n) is the finite Fourier sine Transform of f (x) in (0, l), then the Inverse
Finite Fourier Cosine Transform of f̄C (n)

f (x) = 1

l
f̄C (0) + 2

l

∞∑
n=1

f̄C (n)cos
nπx

l

Example on how to calculate Inverse Finite Fourier Cosine
Transform of a given function

Example 12

Find f (x) if its finite cosine transform is given by

f̄c (n) = 1

(2n = 1)2
cos

2nπ

3
i n 0 < x < 1

51

Solution:

The inverse finite Fourier cosine transform in (0, l) is given by

f (x) = l

l
f̄C (0)+ 2

l

∞∑
n=1

f̄C (n)cos
nπx

l

Here l = 1 and f̄C (0) = 1

∴ f (x) = 1+2
∞∑

n=1

1

(2n = 1)2
cos

2nπ

3
cosnπx

52

CONCLUSION

Fourier Transform has multitude of applications in almost all areas of life. Right
from the cell phones that we use in our day to day life to Radio Astronomy,
fourier transform plays a vital role in developing today’s modern world of tech-
nology.

Fourier transform clearly shows us that any waveform can be re-written as the
sum of sinusoidal functions. In other words, wherever there is a waveform
which is absolutely integrable with finite number of maxima, minima and dis-
continuities, fourier transform can be definitely applied.

Among all it’s tremendous applications, the most important contribution of
fourier transform is the rapid diagnosis of COVID 19 using FT-IR ATR spec-
troscopy combined with machine learning. It offered a simple, free-label and
cost-effective solution for high-throughput screening of suspect patients for
COVID-19 in health care centres and emergency departments. So, by making
effective researches on fourier transform, mankind will be much benefited.

53

REFERENCES

References

[1] Integral Transforms and Their Applications by Lokenath Debnath and
Dambaru Bhatta, Chapman and Hall/CRC, 3rd Edition, November 7, 2014,
ISBN-13 : 978-1482223576.

[2] Fourier Transform and Its Applications by Ronald Newbold Bracewell,
McGraw-Hill, 2nd Edition, January 1, 1978, ISBN-13 : 978-0070070134.

[3] Fundamentals of Fourier Transform Infrared Spectroscopy by Brian C.
Smith, CRC Press, 2nd Edition, March 9, 2011, ISBN-13 : 978-1420069297.

[4] The Fourier Transform: A Tutorial Introduction by James V Stone, Sebtel
Press, Annotated Edition, April 11, 2021, ISBN-13 : 978-1916279148.

[5] Fourier Series, Fourier Transform and Their Applications to Mathematical
Physics by Valery Serov, Springer, 1st 2017 Edition, December 18, 2017,
ISBN-13 : 978-3319652610.

54

STUDIES ON

FUZZY GRAPH THEORY

Project Report submitted to

ST.MARY’S COLLEGE (AUTONOMOUS), THOOTHUKUDI

Affiliated to

MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI

In partial fulfillment of the requirement for the award of degree of

Bachelor of Science in Mathematics

Submitted by

NAME REG.NO.

ARUNA. A 19AUMT05
ASHINA PARVEEN. S 19AUMT06
HEMALATHA .B 19AUMT13
MARIAMMAL. P 19AUMT24
SANTHANA SUNDARI. M 19AUMT39

Under the Guidance of

Dr. G. PRISCILLA PACIFICA M.Sc., B.Ed., M.Phil., Ph.D., SET

Assistant Professor of Mathematics

St. Mary’s College (Autonomous), Thoothukudi.

Department of Mathematics

St. Mary’s College (Autonomous), Thoothukudi

(2021 - 2022)

CERTIFICATE

We hereby declare that the project report entitled"STUDIES ON FUZZY GRAPH
THEORY" being submitted to St. Mary's College (Autonomous), Thoothukudi
affiliated to Manonmaniam Sundaranar University, Tirunelveli in partial ful-
fillment for the award of degree of Bachelor of Science in Mathematics and it
is a record of work done during the year 2021 2022 by the following students

NAME REG.NO.

ARUNA. A 19AUMTO05
ASHINA PARVEEN. S 19AUMTO06
HEMALATHA. B 19AUMT13

MARIAMMAL. P 19AUMT24

SANTHANA SUNDARI.M 19AUMT39

Pall. Paufia
7.0:22. Signature of the Guide

VSrella Apuths Man
Dr. V.DaLHE RE PHAHODIary-

M.Sc.,M.Phil., B.Ed., Ph.D.,
Head & Asst Professor of Mathematics

St. Mary's College (Autonomous)
Thoothukudi-628 001.

CAN
Signature ofthe Examiner SigintheofhePfiicipal

Principal
St. Mary's College (Autonomous)

Thoothukudi-628 001.

DECLARATION

We hereby declare that the project reported entitled "STUDIES ON FUZZY GRAPH
THEORY", is our original work. It has not been submitted to any university for

any degree or diploma.

As hina &axveon.s

AArua
(ARUNA. A) ASHINA PARVEEN. S)

B. Henalathua P. MaaioMmal

CHEMALATHA.B) (MARIAMMAL. P)

M:Santhana Sund and
(SANTHANA SUNDARI. M)

ACKNOWLEDGEMENT

First of all, we thank Lord Almighty for showering his blessings to undergo
this project.

With immense pleasure, we register our deep sense of gratitude to our guide
Dr. G.PRISCILLA PACIFICA M.Sc., B.Ed., M.Phil., Ph.D., SET and the Head of
the Department, Dr. V. L. Stella Arputha Mary M.Sc., M.Phil., B.Ed., Ph.D. for

having inparted necessary guidelines throughout the period of our studies.

We thank our beloved Principal, Rev. Dr. Sr. A.S.J. Lucia Rose M.Sc., M.Phi.,

Ph.D., PGDCA for providing us the help to carry out our project work success-
fully.

Finally, we thank all those who extended their helping hands regarding this

project

STUDIES

ON

FUZZY GRAPH THEORY

CONTENTS
INTRODUCTION

1 PRELIMINARIES2

2 FUZZY REGULAR GRAPHS

2.1 Introduction ... 12

2.2 Fuzzy Regular Graphs 12

2.3 Adjacency Matrices of fuzzy Regular Graphs ... 16

2.4 Product of Fuzzy Regular Graphs 17

3 MATCHING IN FUZZY GRAPHS

3.1 Introduction ... 19

3.2 Fuzzy Matching Sets .. 20

3.3 The Linear Programming Formulation 21

3.4 Perfect Fuzzy Set ... 23

3.5 Weighted Matching in Fuzzy Graph 25

4 S-MORPHISM IN FUZZY GRAPHS

4.1 Introduction .. 27

4.2 S-Morphism in Fuzzy Graph 27

4.3 Equivalent Condition For S-Morphism 30

5 APPLICATIONS 33

6 CONCLUSION 35

7 REFERENCES 36

INTRODUCTION

 In 1973, Kaufmann defined Fuzzy Graphs for the first time. Then Azriel Rosenfeld

developed the theory of fuzzy graphs in 1975. Fuzzy Graph theory, a combination of graph

theory and fuzzy set theory have been applied in various fields of science and engineering. We,

now have several fuzzy areas like fuzzy Algebra, fuzzy Topology, fuzzy logic and fuzzy

optimization. Fuzzy sets were proposed in order to give a degree of membership to an element

in a given set. The traditional logical membership has only two choices, namely that an element

belongs to a set or does not belong to that set. The crisp set theory is based on this logic and all

results in pure mathematics are derived on this logic. The basic concepts of fuzzy sets can be

found in the book “Fuzzy sets and Fuzzy logic” by George Klir and Bo Yuan. The fuzzy graph

theory can be used in a wide range of domains in which information is incomplete or imprecise,

such as bioinformatics.

 Applications of fuzzy logic and fuzzy graph theory in Decision – making, Pattern

recognition, Image processing, Control system, Neutral networks, Genetic algorithm and in

many other areas have been significant results.

The Project consists of four chapters.

 In chapter 1, we have discussed about the basic concepts of fuzzy graphs, strength of

connectedness between two vertices, path and bridges.

 In chapter 2, we have discussed about Fuzzy Regular Graphs and derive several results with

respect to regularity.

 In chapter 3, we have discussed about the concept of Matching in Fuzzy Graphs.

 In chapter 4, we have discussed about the concept of morphism, based on the strength of

connectedness between two vertices.

 1

0.3 0.5

0.2

0.4 0.6

 CHAPTER 1

 PRELIMINARIES

Definition 1.1: Let S be any non-empty set. A fuzzy subset of S is a mapping

:S [0, 1], where [0,1] denotes the closed interval of the set of real

numbers. We say  as a fuzzy subset of S

Definition 1.2: Let  be a fuzzy subset of S. We let  t { xS /  (x)  t }

forall t [0,1] . The sets  t are called level sets or t-cuts of 

Definition 1.3: We define the supp() as the set { xS /  (x)  0}. The height

of  is defined as h()  { (x) / x S } where  denotes supremum.

Definition 1.4: Let  and  be two fuzzy subsets of S. Then,

    if  (x)   (x) for all xS

(2) μ ⊂ ν if μ (x) ≤ ν (x) for all x∈S and there exists one x∈S

such that μ (x) < ν (x) .

(3) μ = ν if μ (x) = ν (x) for all x∈S

Definition 1.5: Let μ and ν be two fuzzy subsets of S. Then μ 𝖴ν is the fuzzy

subset of S defined by(μ 𝖴ν)(x) = max{μ (x), ν (x)} for all x∈S and μ ∩ν is

the fuzzy subset of S defined by(μ ∩ν)(x) = min{μ (x), ν (x)} for all x∈S .

Definition 1.6 : A fuzzy graph G = (V, ,) is a nonempty set V together

with a pair of functions  : V  [0, 1] and  : V  V  [0, 1] such that for all

x,y in V , we have  (x,y)  x)  y). For simplicity, we denote the fuzzy graph

by G =   or by (G,  

Example 1.7: Let V= {a,b,c,d,e}. The values of  are given in brackets in the

following figure. The nonzero edge weights are given along the edges

a(0.7)

b(0.5) e(0.6)

c(0.8) 0.4 d(0.9)

 Fig :1

 2

Definition 1.8: The fuzzy graph H = (,) is called a partial fuzzy sub graph of

 G = (V, ,) if    and   . ((i.e) (x)   (x) and (x,y) ≤  (x,y))

for all x,y V. We say the partial fuzzy subgraph (,) spans the fuzzy graph

( ,) if  =  . In this case, we call (,) a spanning fuzzy subgraph of ( ,).

Definition 1.9: Let G = (V,  ,) be a fuzzy graph. For any fuzzy subset  of V

such that    the partial subgraph of ( ,) induced by  is the maximal

partial fuzzy subgraph of ( ,) that has the fuzzy vertex set .

(i.e) (x,y) = (x)  (y)   (x,y) for all x,y V.

Matrix representation of a fuzzy graph.

A fuzzy graph can be represented by an adjacency matrix where rows and

columns are indexed by the vertex set V and the (i,j)th entry is (x,y) and where

(x, x) = (x).

Since  is a fuzzy relation on  it follows that any diagonal element of  is

larger than or equal to the elements in its column. For computational purposes,

we omit the diagonal entries. The fuzzy graph given in the figure 1.5.7 has

matrix representation

3

.4 y .6

yS

x z (  ) (x,z)=sup{ .2,.4,.5}=.5

Fig (2)

As Composition of fuzzy relations is associative, we can talk about    =  2

and other powers of .

We define ∞ (x,y) = sup { k (x,y) / k =1,2,3…..}. The composition can be

computed, similar to matrix multiplication, where the addition is replaced by 

and the multiplication is replaced by  . We define 0 (x,y) = 0 if x  y and

0 (x,y) =(x) otherwise.

y

.5
.2

.5 y .7

The Composition of two fuzzy relations is defined as follows.

The composition of two fuzzy relations  and  of S  S is defined by

(  ) (x,z) = sup { (x,y)  (y,z) }

4

Definition 1.10: A path in a fuzzy graph ( ,) is a sequence of distinct vertices

x0, x1, x2 ,xn such that (xi-1 , xi)  0, 1 i  n. The strength of the

path is defined as {(xi-1,xi)  i= 1,2…..n} where  denotes the minimum.

Here ‘n’ is the length of the path. A single vertex is a path of length 0. A

strongest path joining any two vertices has strength   (x, y) .

Definition 1.11: A partial fuzzy subgraph ( ,) is said to be connected if for

all x, y  supp(),   (x, y) >0.

Definition 1.12: Let G = (V,  ,) be a fuzzy graph. Let x, y be two distinct

vertices and let G be the partial fuzzy subgraph of G obtained by deleting the

edge (x,y). That is, G =(,  ) where  (x, y) = 0 and   =  for all other pairs.

We say that (x,y) is a bridge in G if   (u, v)    (u, v) for some u,v. In other

words, deleting the edge (x,y) reduces the strength of connectedness between

some pair of vertices.

Example 1.13:

a

b c
0.5

1.0 1.0

Fig(3)

5

Here the edge ‘ab’ is a bridge, while ‘bc’ is not a bridge.

Definition 1.14: G = ( ,) is called a tree if (supp(),supp()) is a tree.

G = ( ,) is called a fuzzy tree if ( ,) has a fuzzy spanning subgraph (,)

which is a tree such that  (u,v)  supp() but not in supp() we have

(u,v)   (u,v). That is, there exists a path in (,) between u and v whose

strength is greater than (u,v).

Definition 1.15: G = ( ,) is called a cycle if (supp(),supp()) is a cycle. G

= ( ,) is called a fuzzy cycle if ( ,) if (supp(),supp()) is a cycle and

there does not exist a unique (x,y)  supp() such that

(x,y) = {(u,v)  (u,v)  supp()}.

Example 1.16:

a a

0.5

c b

c

1.0 0.5 1.0 1.0

b

Fig(4)

Fig (5)

0.5

6

b

c
a

0.5 1

e d

 Fig(6)

Definition 1.17: The complement [12] of a fuzzy graph G = (V, ,) is

defined as G = (V, , ) where  (x,y) = (x) (y)- (x,y).

Example 1.18:

(.5) u (.6)v

.5
(.5) u

(.6)v

.3

(.4)x .3

.2

(.3)w

.1

(.4)x .3

.1

(.3)w

G G

It is shown in [12], that G = G and that for a self-complementary fuzzy

graph (G = G), we have   (u, v) =
1
((u)  (v)) .

u v
2 u v

1
1

1 1

.3
.4

Fig (7)
Fig (8)

7

Definition 1.19: The Cartesian product of two fuzzy graphs (G1,1,1) and

(G2,2,2) is defined as the fuzzy graph (G1G2, 12, 12) where G1G2 has

the vertex set V1V2, and the edge set is given by

E = { ((u, u2), (u, v2)) / u V1 & u2v2 E2 }  { ((u1,w), (v1,w) / w V2 &

u1v1 E1 }

with

(12) (u1,u2) = 1(u1)  2(u2) ;

(12) ((u, u2), (u, v2)) = 1(u)  2(u2 ,v2) and

(12) ((u1,w), (v1,w)) = 2(w)  1(u1 ,v1)

Definition 1.20: The Composition of two fuzzy graphs (G1,1,1) and

(G2,2,2) is defined as the fuzzy graph (G1[G2], 1•2,1• 2) where G1[G2]has

the vertex set V1V2, and the edge set is given by

E = {((u, u2), (u, v2)) / u V1 & u2v2 E2 }{ ((u1, u2),(v1 , v2) /u1v1 E1 ,u2

,v2  V2 } with

(1• 2) (u1,u2) = 1(u1)  2(u2) ;

(1 • 2) ((u, u2), (u, v2)) = 1(u)  2(u2 ,v2) and

(1 • 2) ((u1, u2),(v1 , v2)) = 2(u2)  2(v2)  1(u1 ,v1)

8

Definition 1.21: The Tensor product of two fuzzy graphs (G1,1,1) and

(G2,2,2) is defined as the fuzzy graph (G1  G2, 1  2,1  2) where the

vertex set V1V2, and the edge set is given by

E = {((u1, u2), (v1, v2)) / u1v1 E1 ,u2v2  E2 } with

(1   2) (u1,u2) = 1(u1)  2(u2) ; and

(1   2) ((u1, u2),(v1 , v2)) = 1(u1 ,v1)  2(u2 ,v2).

Definition 1.22: Let G = (V,X) be a graph where V={v1,v2,----- ,vn} and

Vi = {vi, xi1,xi2, ------- ,xiqi} where xijX and xij has vi as a vertex j=1,2,3……qi ,

i=1,2,3…n. Let S= {S1,S2,----- ,Sn} . Let T = { (Si , Sj)/ Si , Sj S, Si  Sj   }.

Then (S,T) is an intersection graph. For this graph define fuzzy subsets  , of S

and T by  (Si) = (vi) Si and  (Si , S j) =  (vi , v j) (Si , S j)T . Then, (S,T) is

called an intersection graph.

Definition 1.23: The line graph of a graph G is by definition intersection

graph Where L(G) = {Z,W} where Z= { {x}U{ux, vx} / x X, ux, vxV, x= (ux,

vx) } and W= { (Sx, Sy) / Sx  Sy   , xX, x  y}. Define the fuzzy subsets

, of Z and W by  (Sx) =  (x) and  (Sx , S y) =  (x)   (y). Then (,) is a

fuzzy sub graph of L(G).called the fuzzy line sub graph corresponding to (, ) .

The following theorems will be used in subsequent chapters.

9

Theorem 1.24: The following are equivalent

(1) (x,y) is a Bridge

(2)   (x, y) <   (x,y)

(3) (x,y) is not the weakest edge of any cycle

Theorem 1.25: Let G = ( ,) be a cycle. Then ( ,) is a fuzzy cycle if and

only if ( ,) is not a fuzzy tree.

Strong arcs in fuzzy graphs

Definition 1.26: The maximum of strengths of all paths from x to y is called

CONNG (x,y). We say G is connected if CONNG (x,y).> 0 for all x,y

Definition 1.27: We call the arc (x,y) strong in G if (x,y) > 0 and (x,y) 

CONNG-(x,y) (x,y).where G-(x,y) is obtained by removing the edge (x,y).

Definition 1.28: A path from x to y is called strong if every edge in it is strong

10

Note 1.29: An arc of maximum weight is strong but the converse is not true

(consider a fuzzy cycle, in which every arc is strong, even the weakest edge

Note 1.30: A path of maximum strength need not be a strong path.

Example 1.31:
u

t

v .5 w

The two paths u,w,t and u,v,w,t have maximum strength .25 but u,v,w,t is not a

strong path since the arc (v,w) is not strong.

1 1

.25

11

CHAPTER 2

FUZZY REGULAR GRAPHS

u v

by  (G) and the maximum of the degrees of the vertices is denoted by (G).

§2.1: Introduction

In this chapter, we see the concept of fuzzy regular graphs. We derive

several results concerning fuzzy regular graphs. We prove if G is a fuzzy

regular graph then so is its complement. We prove that Cartesian product,

Tensor product, Composition of two fuzzy regular graphs is fuzzy regular. We

derive a necessary and sufficient condition for a fuzzy graph to be fuzzy regular.

We prove the existence of a fuzzy regular graph containing the given fuzzy

graph as an induced fuzzy sub graph. Then, we define s-regular fuzzy graphs

and derive a necessary and sufficient condition for a fuzzy graph to be s-regular.

Finally we introduce another type of regularity called pseudo-regular graphs and

relate them with fuzzy regular graphs and regular graphs.

§2.2. Fuzzy regular graphs

Definition 2.2.1: Let G = (V, ,) be a fuzzy graph. The degree of a vertex v is

defined as d(v) =   (u,v) The minimum of degrees of the vertices is denoted

12

.3

.3

¼

7/12

1/3

Definition 2.2.2: A fuzzy graph is called fuzzy regular if d(u) = d(v) for all

u,vV ,u  v

Example 2.2.3

x
.5

w

.5 .5

u v

Example 2.2.4

y

w

2/3

u

½

v

x

1/3

1/4

Fig:10

Fig:11
13

Example 2.2.5: We give an example of a crisp graph which cannot be fuzzy

regular. The graph in the following can never be fuzzy regular

G is fuzzy

Proof: By definition of G ,  (x,y) = µ(x)  µ(y) - ρ(x,y) = 1- ρ(x,y).

By taking the sum over the vertices y adjacent to x, we get d (x) = p-1-k, where

p is the number of vertices, we get the result.

Theorem 2.2.7: A necessary and sufficient condition for a fuzzy graph G to be

fuzzy regular is that δ (G) + δ(G) = p-1 where p is the no of vertices.

Here after, we assume µ(x) = 1 for all the vertices x.

The following results are based on this assumption.

Theorem 2.2.6: If G(µ,ρ) is a fuzzy regular graph of degree k, then

regular of degree p-k-1

Fig:12

14

Proof: Suppose G is fuzzy regular of degree k then

p-k-1.

G is fuzzy regular of degree

δ (G) + δ(G) = k+p-k-1 = p-1

Conversely, assume δ (G) + δ(G) = p-1. Suppose G is not fuzzy regular then G

has two vertices u and v such that a = d(u) and b = d(v) with a < b.

 δ (G) ≤ a. Now in G , d(v) =p-1-b

 δ(G) ≤ p-1-b

 δ (G) + δ(G) ≤ a+ p-1-b < p-1 as b-a >0

which is a contradiction to our assumption.

Theorem 2.2.8: For every fuzzy graph G(µ,ρ) , there exists a fuzzy regular

graph H containing G as an induced fuzzy sub graph

Proof: Suppose G is not fuzzy regular let G' be another copy of G. We construct

G1 from G and G' by adding the edges vi vi
’
 for all vertices for which d(vi) < ∆

(G). Now assign the weight to edge vi vi
’
 by defining

ρ(vi ,vi
’
) = min { 1, ∆ (G)- d(vi)}

Now G is an induced subgraph of G1 with

δ (G1) =min {1, min {1, ∆ (G)- d(vi)}}

Clearly, δ (G) < δ (G1) ≤ ∆ (G).

15

If G1 is fuzzy regular then G1 is the desired graph. Otherwise, we

continue this procedure till we get the required fuzzy regular graph. This

process will stop in at most n steps.

Definition 2.3.1: Let G = (V, ,) be a fuzzy regular Graph. The adjacency

matrix of a such a fuzzy graph with 'n' vertices is a n X n matrix, whose (i,j)
th

entry is ρ(vi ,vj).

2.3.2: Fuzzy regular graphs and doubly stochastic matrices.

Let G = (V, ,) be a fuzzy regular Graph. By dividing the weight of each edge

by the common degree (i.e) we normalize the weights of the edges we get a

fuzzy regular graph in which d(v)=1 for each vertex v . . Since d(v) = 1 for each

vertex v, the sum of elements in each row and in each column of the adjacency

matrix becomes one. Therefore, the adjacency matrix of such a fuzzy regular

graph becomes a doubly stochastic matrix in which all the elements along the

principal diagonal are zero. (i.e) Corresponding to each fuzzy regular graph on

'n' vertices we have a doubly stochastic matrix in which all the elements along

the principal diagonal are zero. Conversely, given a doubly stochastic matrix in

which all the elements along the principal diagonal are zero, we can associate a

§2.3 Adjacency matrices of fuzzy regular graphs

16

fuzzy regular graph in which the degree of each vertex is one. The following

results are obvious for fuzzy regular graphs in which, d(v)=1 for each vertex v.

Result 2.3.3: An odd cycle is fuzzy regular if and only if the weights of all

edges are equal to ½.

Result 2.3.4: An even cycle is fuzzy Regular if and only if the weights of

alternate edges are equal and the sum of weights of any two adjacent edges is

one.

Result 2.3.5: A cycle which is fuzzy regular is a fuzzy cycle.

Theorem 2.4.1: If (G1,1) and (G2,2) are fuzzy regular graphs of degree k1 ,k2

respectively then,

(i) Their Cartesian product is also fuzzy regular of degree k1+ k2

(ii) Their composition is also fuzzy regular of degree k2+ p2k1

(iii) Their Tensor product is also fuzzy regular of degree k1k2

§2. 4: Product of fuzzy regular graphs

In this section, we show that the products of fuzzy regular graphs are also fuzzy

regular. We assume  (x) = 1 for all vertices x. We will represent (G1,1,1) and

(G2,2,2) simply as (G1 , 1) and (G2 , 2). Let them have p1, p2 vertices. Then

we have the following theorem.

17

Proof : i) Let u1 ,v1  V1 and u2 ,v2  V2 For a fixed (u1, u2)  V1V2

 (12) ((u1, u2), (v1, v2)) = 
v 2

(12) ((u1, u2), (u1, v2)) +

 (12) ((u1, u2), (v1, u2))
v1

=  2(u2 ,v2) +  1(u1 ,v1)
v 2 v1

ii)  (1  2) ((u1, u2), (v1, v2))

 (1 2) 2) ((u1, u2), (v1, u2))

u1 v1

iii)  (1  2) ((u1, u2), (v1, v2)) =   1(u1 ,v1) . 2(u2 ,v2)
v1 v 2

=( 1(u1 ,v1)). ( 2(u2 ,v2))

v1 v 2

= d(u1) d(u2)

= k1 k2

= k2+ p2k1

= d(u2) + p2 . d(u1)

=  2(u2 ,v2) +  p2 1(u1 ,v1)
v2 v1

v2

=  2(u2 ,v2) +   1(u1 ,v1)
v2v1

=  (1 2) ((u1, u2), (u1, v2)) +

v 2

= d(u2) in G2 + d(u1) in G1

= k2+ k1

18

CHAPTER 3

MATCHING IN FUZZY GRAPHS

$ 3.1 Introduction.

A fuzzy matching involving the vertex weight, the edge weight and the

incidence of edges on a vertex. We define a fuzzy matching in a fuzzy graph

and the fuzzy matching number of a fuzzy graph. The determination of fuzzy

matching number is based on the solution of a 0,1 linear programming problem

associated with it. We also define fuzzy perfect matching number of a fuzzy

graph and derive three results for perfect fuzzy matching. We also define a new

weight function for the edges of a fuzzy graph. This weight function depends on

both the vertex weight and the edge weight.

Fig :13

19

.
.2

  

$ 3.2 Fuzzy Matching sets

Definition 3.2.1: Let G = (V, ,) be a fuzzy graph with vertex set V. Let E

denote the set of edges of nonzero weights. A subset M of E is called a fuzzy

Matching if for each vertex u, we have  (u,v)   (u)

vV
(u,v)M

Definition 3.2.2: Let G = (V, ,) be a fuzzy graph. We define the fuzzy

matching Number F(G) as

F (G) = Max


 (u, v) / M is aFuzzyMatching in G

 and the edge set for

M (u,v)M 


which the maximum is attained as fuzzy matching set.

Example 3.2.3 :

1 .3 .5

.5 .4

1 .3 .5

The Fuzzy matching set is

.5 .4

.7 .2
.4

.7 4

F(G) = 1.2
Fig: 14 Fig: 15

20

e(.3)

$ 3.3 The Linear programming formulation

We can formulate the finding of the fuzzy matching number as a 0,1

programming problem. Let E denote the incidence matrix of the fuzzy graph

G = (V, ,) having n vertices and m edges. Then E is a n  m matrix whose

(i , j)
th

 entry is  (ej) if the j
th

 edge is incident on vj and 0 otherwise.

If X = (x1, x2,……….,xn)
T
 and V=((v1),(v2),…..,(vn))

T
 and

W = ( (e1), (e2),….., (em)) then the Linear 0 ,1 programming problem is

Maximze WX

subject to

EX  V

Where, each xi is either 1 or 0.

This is a zero-one Programming problem which can be solved by Additive

Algorithm or by Branch and Bound Algorithm. We can also consider the dual

of the above linear programming problem as a Vertex cover problem for the

given fuzzy graph. For illustration consider the following graph.

U(.9) a(.5) V(.5)

d(.4) b(.5)

X(.7)

c(.3)

W(.6)

Fig: 16

21

.5 0 0 4 00

5 .5 0 0 where the edges 0 5 3 0 0
00.34 3

The incidence matrix of the above graph is

a,b,c.d and e represent the columns and the vertices U,V,W,X represent the

edges.

The fuzzy matching problem is Maximize (5 .5.3 4 3) c subject to

5 0 04

5 5 0 03
'o.5 3 0 0

0 0 .3 4 3

The fuzzy matching corresponds to the solution a-1, c=1, d=land the fuzzy

matching number is 1.2. Now comes the interesting part. Consider the dual of

the above problem. The dual can be put in the form

.5.5 0 0

0 5 .5

Minimize (9 5 6 7)subject to 0 0 3

40 0
0 3 0

. The solution

is u=1, w=1. Note that the constraint can be put in the form

22

(1 10 0
0110
00 1 1

10 0
o 1o 1

which, is the corresponding L.P.P of finding the

independence number for the crisp graph.

$3.4 Perfect Matching Fuzzy Set

Definition 3.4.1: A fuzzy matching M is called a perfect fuzzy matching if for

each vertex u, we have

2Puv) =H ()
VEV

(u.v)EM

Example 3.4.2

4 9 4

5 6 6

Fig: 18 Fig:17

The perfect Fuzzy Matching with F(G) = 1.8

23



Theorem 3.4.3: Let a fuzzy graph G = (V, ,) have a perfect fuzzy matching.

Then

F (G) =

1
 (u)

2 uV

Proof: We have  (u, v)   (u) . Since at every vertex we attain the Maximum
vV
(u,v)M

possible value for  (u,v) , this sum is the maximum over all possible fuzzy
vV
(u,v)M

matchings for that vertex. Taking the sum over all the vertices on both sides we

get the result.

Theorem 3.4.4: Let G = (V, ,) be a M-strong graph. Let G have a perfect

fuzzy matching M. Then the Components of the induced crisp

subgraph of M are either K2 or K1,s

Proof : Let M be a perfect fuzzy matching. Take an edge e from M. If no other

edges of M is incident with e than we have a component K2 . If not, let its end

vertices be u and v. Then either u is saturated by e or v is saturated by e.

Without loss of generality, take u. Then no other edge of M is incident with u.

Now we may have edges of M incident at v other than e. However in this case

the edges of M, incident to v will have weights which are less than weight of the

vertex v. Therefore such vertices will have weight of the respective edges in M

24

as G is M-strong. In such cases, these vertices will be saturated by the edges of

M and we cannot have edges in M incident to these vertices. Therefore In this

case we have K1,s. .Hence, the result folloes..

Theorem 3.4.5: Let a fuzzy graph G = (V, ,) have a perfect fuzzy matching

M. Suppose  (v) is the same for all the vertices v then the

components of M are K2 or disjoint cycles.

Proof : If a component of M is not K2 then the edges of M will grow at both

ends of such edges. But  (v) is same for all the vertices v will

ensure that the growth is at both ends and we get a cycle. Again

these cycles will be disjoint as  (v) is the same for all vertices.

$ 3.5 Weighted matching in fuzzy graph:

Given a fuzzy graph we define a new function W : E  [0 ,1] by

W (x,y) =
2  (x, y)

 (x)   (y)

In case  (x) =1 for all vertices x then this reduces to just the weight of the edge.

This weight function involves both the weight of the vertex and the weight of

the edge. Then we can find the maximum weighted matching for the

corresponding weighted graph. In case of fuzzy bipartite graphs we can find a

25

maximum weighted matching by solving the corresponding assignment problem.

26

 CHAPTER 4

 s-MORPHISM IN FUZZY GRAPHS

§ 4.1: Introduction

 In this chapter, we see another concept of morphism, based on the strength

of connectedness between two vertices. The strength of a path plays a crucial role

in determining the connectedness between two vertices. Here, we define an s-

morphism between two fuzzy graphs, which is based on the strength of

connectedness between two vertices. This s- morphism preserves the strength

between two vertices, and two graphs which are s-morphic need not have the same

number of edges, even though they must have same number of vertices. This s-

morphism can also be expressed in terms of matrices, which give rise to

 various interpretations of a fuzzy graph. After defining the s-morphism, we prove

that it is an equivalence relation among the class of all fuzzy graphs with n

vertices. We also prove that this s - morphism preserves tree structures, bridges

 and strong edges.

§ 4.2: s-Morphism in fuzzy graph

Definition 4.2.1: :Let (G1 ,μ1 , ρ1) and (G2 ,μ2, ρ2) be two fuzzy graphs.

They are said to be s-morphic if there exists a bijection f: V1 → V2 such that

 ρ1
∞ (u,v) = ρ2

∞ (f (u), f (v)) ∀ u,v ∈ V1 .

Example

Example 4.1and 4.2

27

 Fig (21) Fig (22)

 The map defined by. f(a) =u

 f(b)=z

 f(c)= y

 f(d)= x

 f(e)= v

is a s-morphism.

Given a fuzzy graph G we can compute its strength matrix as follows. We

define the product of two adjacency matrices A and B as C=AB

 where Cij= maxₖ { (aik , bkj)}

28

It has been proved that ,if M is the adjacency matrix of a fuzzy graph of

order p then there exists a positive integer q ≤ p-1 such that

 Mq = Mq+1 = Mq+2 = − − − − . It has also been proved that the strength of the path

connecting Vi and Vj is the (i,j)th entry of Mq .

The strength matrices of the above two graphs example 4.3 and 4.4 are respectively

Example

∞ .4 .4 .4 .4

.4 ∞ .5 .5 .4 and

.4 .6 ∞ .5 .4

.4 .6 .5 ∞ .4

.4 ..4 .4 .4 ∞

∞ .5 .5 .4 .4

.5 ∞. .6 .4 .4

.5 .6 ∞. .4 .4 respectively

 .4 .4 .4 ∞. .4

.4 .4 .4 .4 ∞.

29

§ 4.3: Equivalent condition for s-morphism

We give an equivalent condition for two fuzzy graphs to be s-morphic.

“The fuzzy graphs(G1, μ1, ρ1) and (G2, μ2, ρ2) are s-isomorphic iff there exists a

permutation matrix P such that AP=PB (or A= PBP-1) where A, B are strength

matrices of the fuzzy graphs G1 , G2 respectively”.

 Here, the multiplication is the usual multiplication of matrices.

 0 0 0 1 0

In the above example 4.4, the permutation matrix is P= 0 0 1 0 0

 0 1 0 0 0

 1 0 0 0 0

 0 0 0 0 1

 Remark 4.3.1: Multiplying a matrix by a permutation matrix on the right interchanges the

column, while multiplying on left interchanges rows. Also,

Permutation matrices are real orthogonal matrices. (i.e) P t= P-1

Remark 4.3.2: If two fuzzy graphs are s-isomorphic then they must have equal

number of vertices but they need not have the same number of edges.

Refer Example 4.4.

Theorem 4.3.3: For a given positive integer n, “s-isomorphism”is

anequivalence relation in the class of fuzzy graphs on n vertices.

Proof :

We use the condition the fuzzy graphs(G1, μ1, ρ1) and (G2, μ2, ρ2) are s-isomorphic

30

 if and only if there exists a permutation matrix P such that AP=PB or A= PBP-1

where A, B are strength matrices of the graphs G1,G2 respectively.

Clearly G1 is s-morphic to itself as we can take P to be the identity matrix.

Let G1 be s-morphic to G2. Then A= PBP-1

 = P-1 B P as P = P-1 .

Hence G2 is s-morphic to G2.

Let G1,G2 and G3 be three fuzzy graphs with strength matrices A,B,C respectively.

Let G1 be s-morphic to G2 and G2 be s-morphic to G3 .Then there exists a

permutation matrix P such that AP=PB and there exists a permutation matrix Q

such that BQ=QC.

Now, AP =PB ⇒APQ = PBQ

 =PQC

But PQ is again a permutation matrix which implies that G1 is s-morphic to G3.

Hence, the result follows.

Theorem 4.3.4: If two trees are s-morphic then they are isomorphic in the crispsense also.

Proof : Let T1, T2 be two trees which are s-morphic. Then they must have equal

number of vertices. In a tree there exists only one path between any two vertices.

Also, the strength of two adjacent vertices is equal to the weight of the edge joining

them. Hence adjacency will be preserved. Therefore, T1, T2 must be isomorphic

in the crisp sense also.

Note: However the result is not true in case of fuzzy trees, as given by the

example 4.3

31

Theorem 4.3.5: Let two fuzzy graphs(G 1 ,μ1 , ρ1) and (G2 ,μ 2 , ρ2) be s-isomorphic

.Then there exists a bijection f : V1 → V2 such that ρ∞ (u,v) = ρ∞ (f (u), f (v))

∀u,v ∈V1 and let. Let (u,v) be a bridge. If (f(u),f(v)) is also an edge, then

(f(u),f(v)) is a bridge.

Proof : Let f : V1 → V2 be an s-Morphism from G1 to G2

Let (u,v) be a bridge in G1 . Then there exists two vertices u and v such that ρ 1
ꞌ∞

(x,y) < ρ∞ (x,y) for some pair of vertices x and y and where ρ1 '(u, v) = 0and

 ρ 1
ꞌ = ρ for all other vertices.

Now, ρ 1
ꞌ∞(x,y) < ρ1

∞(x,y) ⇒ ρ2
ꞌ∞ (f(x),f(y))< ρ2

∞ (f(x),f(y))as f is an s-morphism

 ⇒ (f(u),f(v)) is a bridge in G2.

Theorem 4.3.6: Let two fuzzy graphs(G1 ,μ1 , ρ1) and (G2 ,μ 2 , ρ2) be s-isomorphic.

If (u,v) is a strong edge in G1 and if (f(u).f(v)) is an edge in G2 then (f(u),f(v)) is also a

strong edge in G2 .

Proof: Let (u,v) be a strong edge in G1 ⇒ ρ1
∞ (u,v) = ρ 1(u,v)

 ⇒ ρ 2 (f(u), f(v)) = ρ1 (u, v) as strength is preserved.

Also, ρ2 (f(u), f(v) ≥ ρ 2 (f(u), f(v))

 ⇒ ρ 1
∞ (u,v) ≥ ρ 2 (f(u), f(v))

 ⇒ (f(u),f(v)) is strong edge .

32

APPLICATIONS OF FUZZY GRAPH IN VARIOUS FIELDS

➢ Utility of Fuzzy Graph in Medical Field

 Utilizations of Artificial Intelligence Techniques occurred in numerous zones

including medication, for example, determination, treatment of sickness, tolerant interest, and

expectation of illness chance and so on. Fuzzy logic approach, as opposed to a certain or

parallel rationale, utilizes a rationale and decision mechanism which doesn't have certain limits

like human rationale. At the point when an individual is given a clinical assessment, a wide

assortment of parameters, called side effects in clinical language, can be found out and

estimated. Because of the intricacy of the human body, it is beyond the realm of imagination

to expect to give a sensible utmost for the quantity of built up criteria. Fuzzy set theory rationale

is a scientific control that we use every day and causes us to arrive at the structure in which we

decipher our own practices. Fuzzy set theory in which esteems among genuine and bogus that

is halfway valid and in part bogus are resolved. Fuzzy set theory express the vulnerabilities of

life, for example, warm and cool which are in the middle of hot and cold scientifically. At the

point when a specialist begins treatment of a patient he utilizes his own understanding,

information from books, and mental capacity.

➢ Exploit of Fuzzy Graph in Traffic Light Control

 The control strategy of the traffic light relies generally upon the quantity of vehicles

in the crossing point line. On the off chance that the traffic stream in the crossing point line is

high, at that point there is a chance of mishap. At the point when the quantity of vehicles in the

crossing point line is low then there might be less chance of mishap. The idea of mishap and

number of vehicles in each line could be fuzzy. This shouldn’t be numerical, is related to the

ideal security level for the traffic. Here we describe each traffic stream with a fuzzy edge whose

enrolment esteem relies upon the quantity of vehicles in that way. Two fuzzy nodes are

neighbouring on the off chance that the relating traffic streams cross one another; at that point

there is a chance of mishap. Plausibility of mishap worth will rely upon node enrolment esteem.

The most extreme security level is achieved when all paths are viewed as in crossing point with

one another and the quantity of vehicles in each line is likewise high. So Graph will be a

complete graph. Right now, chromatic number is the quantity of paths and the control approach

of the lights guarantee that just a single development is permitted in any space of the cycle.

Then again, the base security level is achieved when the crossing point edge set is unfilled,

right now, chromatic number is 1 and all developments are permitted at any moment.

33

➢ Utilize of Fuzzy Graph in Neural Networks

 Neural systems are disentangled models of the organic sensory system and in this

way have drawn their motivation from the sort of registering performed by a human mind.

Neural systems exhibit trademark, for example, mapping abilities or example affiliation,

speculation, vigor, adaptation to internal failure, and resemble and rapid data handling. Fuzzy

neural systems and neural fuzzy frameworks are ground-breaking procedures for different

computational and control applications. The region is still under an extraordinary deluge from

both hypothetical and applied research. There is no orderly or brought together methodology

for fusing the ideas of fuzziness and neural handling. Fuzzy sets can be utilized to delineate

different parts of Neural Computing. That is, fuzziness might be presented at the info yield

signals, synaptic loads, and collection activity and actuation capacity of individual neurons to

make it fluffy neuron. Applying fuzzy techniques into the activities of neural systems

establishes a significant push of neuron-fuzzy computing. A fuzzy neuron has a similar

fundamental structure as the counterfeit neuron with the exception of that its segments and

parameters are depicted through the arithmetic of fuzzy logic.

34

CONCLUSION:

The study of fuzzy graphs made in this report is far from being complete. We

sincerely hope that the wide ranging applications of graph theory and the

interdisciplinary nature of fuzzy set theory, if properly blended together could

pave a way for a substantial growth of fuzzy graph theory. Research on the

theory of fuzzy sets has been witnessing an exponential growth; both within

mathematics and in its applications. This ranges from traditional mathematical

subjects like logic, topology, algebra, analysis etc. to pattern recognition,

information theory, artificial intelligence, operations research, neural

networks, planning etc. Consequently, fuzzy set theory has emerged as a

potential area of interdisciplinary research. We hope that the growth of fuzzy

graph theory will be further accelerated by the development of fuzzy software

and fuzzy hardware.

35

BIBLIOGRAPHY

[1] Abraham kandel, Fuzzy Mathematical Techniques with

Applications. Addison Wesley Publishing Company.

[2] Bhattacharya P."Some Remarks on Fuzzy Graphs", Pattern Recognition

Letters 6:297-302,1987.

3] Bhutani K.R and Rosenfeld A, Strong Arcs in Fuzzy Graphs, Information

Sciences 152 (2003), 319-322.

[4] Craine W.L., Characterization of Fuzzy interval Graphs., Fuzzy Sets and

Systems 68:181-193, 1994.

[5] Goetschel R., Jr., Introduction to Fuzzy hypergraphs and hebbian

Structures, Fuzzy Sets and Systems 84: 235-254, 1996.

6 Kaufimann A., Introduction to the Theory of Fuzzy Sets, Academic Press,

NewYork, 1975.

[7] Klir G.J. and Yuan B, Fuzzy Sets and Fuzzy Logic: Theory and

Applications, Prentice Hall of India, 2002.

[8] Mordeson J.N. and Peng, C.S, Operations on Fuzzy Graphs, Information

Sciences 79:159-170, 1994.

9] Rosenfeld A., Fuzzy Graphs. In: Zadeh K.S, Fu and Shimura M, Eds., Fuzy

Sets and Their Applications, Academic Press, New York, 77-95, 1975.

[10] Vaidyanathan M, Ramakrishnan P.V, Matching in Fuzzy graphs,

Proceedings of National Conference on Discrete Mathematics and its

Applications, NCDMA, sep 27-29,2007 Thiagarajar College of Engineering,

Madurai.

36

1

 A STUDY ON FUZZY THEORIES

Project Report submitted to

ST. MARY’S COLLEGE (AUTONOMOUS), THOOTHUKUDI

Affiliated to

MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI

In partial fulfillment of the requirement for the award of degree of

Bachelor of Science in Mathematics

Submitted by

NAME REG.NO

AROCKIA CATHRINE SHARUBALA. E 19AUMT04

CAROLIN BELCIA. R 19AUMT08

MAHALAKSHMI. M 19AUMT19

PAULIN PACKIAM. B 19AUMT33

SHIBANIA. C 19AUMT43

Under the Guidance of

Dr. V. L. STELLA ARPUTHA MARY, M.Sc., B.Ed., M.Phil., Ph.D.

Head of the department of Mathematics

St. Mary’s College (Autonomous), Thoothukudi.

 Department of Mathematics

 St. Mary’s College (Autonomous), Thoothukudi

 (2021 - 2022)

CERTIFICATE

We hereby declare that the project report entitled "A STUDY ON FUZZY THEORIES "

being submited to St. Mary's College (Aulonomous). Thoothukudi afiliuted to
Manonmaniam Sundaranar University, Tirunelveli in partial fulfilment for the award of

degree of Bachelor of Science in Mathematies and it is a record of work done during the year

2021 2022 by the following students:

NAME REG. NO.

AROCKIA CATHRINE SHARUBALA.E 19AUMT04

CAROLIN BELCIA. R 19AUMTO8

MAHALAKSHMI. M 19AUMT19

PAULIN PACKIAM. B 19AUMT33

SHIBANIA.C 19AUMT43

VSrelLa Apuhy Maay
Signature of the HOR Dr. V.L. Stella Arputha Mary

M.Sc. M.Phil., B.Ed., Ph.D.,
Head &Asst Professor of Mathematics

St. Mary's College (Autonomous)
Thoothukudi-628 001.

V.Sne lla A-Pulhg Ma
Signature of the Guide

Signature of the Examiner Signature of the Principal

Princlpal
St, Mary's College (Autononsus)

Thoothukudl 628 001.

DECLARATION

We hereby declare that the project reported entitled "A STUDY ON FUZZY THEORIES", is

Our original work. It has not been submitted to any university for any degree or diploma.

E AAdea athsuie sharuluda PCo Rslu
(AROCKIA CATHRINE SHARUBALA. E) (CAROLIN BELCIA. R)

.Paulin Pockia M-Mahalaesmi
(MAHALAKSIIMI. M) (PAULIN PACKIAM. B)

C.Shibania
(SHIBANIA. C)

3

5

 A STUDY ON

 FUZZY

 THEORIES

6

 INTRODUCTION

 The term ‘FUZZY’ refers to ‘lacking in clarity’ or ‘vagueness’. Fuzziness occurs

when the boundary of a piece of information is not clear-cut. For example, moving the

camera causes fuzzy photos.

Fuzzy set theory: Fuzzy set theory was proposed by Prof. Lotfi A. Zadeh in 1965 as

an extension of the classical notion of a set. With the proposed methodology, Zadeh

introduced a mathematic method with which decision making using fuzzy descriptions

of some information becomes possible. Fuzzy set theory is at once a generalization as

well as extension of Crisp set theory. Thus, the basic theme and ideas of Crisp set

theory will be reflected in Fuzzy set theory.

Fuzzy relation: From a historical perspective, the first fuzzy relation was mentioned

in the year 1971 by Lotfi A. Zadeh. Fuzzy relation can be utilized in databases.

Fuzzy matrix: Fuzzy matrices were introduced for the first time by Thomason who

discussed the convergence of power of fuzzy matrix. Fuzzy matrices play a vital role in

scientific development.

Fuzzy logic: Fuzzy logic is a logic. Logic refers to the study of methods and principles

of human reasoning. Any event that changes continuously we cannot define it as a true

or false in such cases we can solve it by fuzzy logic. It deals with vagueness and

imprecise information. It was proposed by Lotfi A. Zadeh in his paper ‘Fuzzy Logic

and Approximate Reasoning, Synthes, 30,1975’.

7

 CONTENT

1. Fuzzy Set Theory

1.1. Fuzzy Set…………………………………………………………………8

1.2. Operations on Fuzzy Sets……………………………………………….10

1.3. Certain Numbers Associated with a Fuzzy Sets………………………...13

1.4. The Power of Fuzzy set………………………………………………....17

1.5. Extension Principle…………………………………………………..…18

2. Fuzzy Relation

2.1. Definition……………………………………………………………..….23

2.2. Operations on Fuzzy Relations…………………………………………..25

2.3. α-Cut of a Fuzzy Relations………………………………………………26

2.4. Composition of Fuzzy Relations…………………………………………27

2.5. Projections of Fuzzy Relations…………………………………………..30

3. Fuzzy Matrix

3.1. Definition ……………………………………………………………….32

3.2. Addition of matrices…………………………………………………….32

3.3. Max - Min Composition of Matrices……………………………………34

3.4. Matrix Multiplication……………………………………………………35

4. Fuzzy Logics

4.1. Logic Connectives………………………………………………………38

4.2. Three Valued Logics……………………………………………………40

4.3. N- Valued Logic for N≥4……………………………………………….42

4.4. Infinite Valued Logics…………………………………………………..42

4.5. Fuzzy Logics……………………………………………………….……43

5. Conclusion…………………………………………………………………….45

6. Reference……………………………………………………………………...46

8

 1. FUZZY SET THEORY

 The concept of set is the building block of mathematics. In fact, the whole edifice

of mathematics is constructed out of it. This concept is so fundamental and all-pervading

that it is absolutely essential to have a firm and clear understanding of the theory of sets.

 A set means any well-defined collection of objects. This, however, is not at all

defined it is what is called an undefined term. Another undefined term is a

member or an element of a set. We express the relation between an object and a set to

which it belongs by writing a ϵ A. The symbol ϵ is read as “belongs to “, “lies in” etc.

Crisp Set:

 Crisp set is a collection of unordered distinct elements, which are derived from

Universal set. In the context of fuzzy sets theory, we often refer crisp sets.

Characteristic function:

 Crisp Set Theory can also be studied via characteristic function.

Definition:

 Let U be a fixed non-empty set, to be called the universal set or universe of discourse

or simply domain. Define,

 F: U → {0,1}

 f is called characteristic function on U. The set of all such functions is denoted as

CH(U). Each element of CH(U) is called a CH on U.

1.1. FUZZY SETS:

 The concept of a fuzzy set is an extension of the concept of a crisp set. Just as a

crisp set on a universal is defined by its characteristic function from U to {0,1}, a fuzzy

set on a domain U is defined by its membership function from U to [0,1]. Let U be a non

- empty set to be called the universal set or the universe of discourse or simply a domain.

Then by a fuzzy set on U is meant a function,

 A: U → [0,1].

 ‘A’ is called the membership function, A(x) is called the membership grade of x. A

= {(x, A(x)): x ϵ U}. We represent the unit interval [0,1] by I.

9

Membership Function:

 The membership function fully defines the fuzzy set. A membership function

provides a measure of the degree of similarity of an element to a fuzzy set. It can be

either be chosen by the user arbitrarily, based on the user’s experience or be designed

using machine learning methods.

 Example:

 Consider U= {a, b, c, d} and A: U → I defined by

 A(a) = 0.0, A(b) = 0.7,

 A(c) = 0.4, A(d) = 1

 Then A is a fuzzy set on U.

 A = {(a,0), (b,0.7), (c,0.4), (d,1)}

 Fuzzy Power Set:

 Let U be a domain. The set of all fuzzy sets on U is denoted by PF(U)

 is called the Fuzzy Power Set of U.

 PF(U) = {A| A: U  I}

 1.1.1 RELATION BETWEEN FUZZY SETS:

 Let U be a domain and A, B be fuzzy sets on U.

 Containment or Inclusion:

 A is said to be included or contained in B if and only if A(x)≤B(x) for

 all x in U. We write as A⊆B. We also say that A is a subset of B.

 Equality:

 A is said to be equal to B or same as B if and only if A⊆B and B⊆A,

 i.e.) A(x) = B(x), for all x ϵ U.

 We write as A=B.

 These two relations satisfy the following properties:

 Let A, B, C be fuzzy sets on U. Then,

1. A⊆A.

10

2. A⊆B and B⊆A imply A⊆C.

3. A⊆B and B⊆A imply A=B.

4. A=A

5. A=B imply B=A.

6. A=B and B=C imply A=C.

1.2. OPERATIONS ON FUZZY SETS:

 Let U be a domain and A, B be fuzzy sets on U. Then,

 Union:

 Union of A and B, denoted by A∪B, is defined as that fuzzy set on U for which,

 (A∪B) (x) = max (A(x), B(x)), for every x ϵ U.

 Intersection:

 Intersection of A and B, denoted by A ∩ B is defined as that fuzzy set on U for which,

 (A∩B) x = min (A(x), B(x)), for every x ϵ U.

 Complement:

 Complement of A, denoted by A′, defined as they fuzzy set on U for which,

 (𝐀′)𝐱 = 𝟏 − 𝐀(𝐱), for every x in U.

 Example:

1) Let U= {a, b, c, d} be the domain and A and B be fuzzy sets on U as given a

 a b c d

 A 0.5 0.8 0.0 0.3

 B 0.2 1.0 0.1 0.7

 For A∪B,

 (A∪B) (a) = max [A(a), B(a)]

 = max [0.5, 0.2]

 = 0.5

 (A∪B) (b) = max [A(b), B(b)]

11

 = max [0.8, 1.0]

 = 1.0

 (A∪B) (c) = max [A(c), B(c)]

 = max [0.0, 0.1]

 = 0.1

 (A∪B) (a) = max [A(c), B(c)]

 = max [0.3, 0.7]

 = 0.7

Thus,

 a b c d

 AUB 0.5 1.0 0.1 0.7

 For A ∩ B,

 (A ∩ B) (a) = min [A(a), B(a)]

 = min [0.5, 0.2]

 = 0.2

(A ∩ B) (b) = min [A(b), B(b)]

 = min [0.8, 1.0]

 = 0.8

(A ∩ B) (c) = min [A(c), B(c)]

 = min [0.0, 0.1]

 = 0.0

(A ∩ B) (d) = min [A(d), B(d)]

 = min [0.3, 0.7]

 = 0.3

Thus,

12

 a b c d

 A ∩ B 0.2 0.8 0.0 0.3

For A′,

A′(a) = 1 - A(a)

 = 1 - 0.5

 = 0.5

A′(b) = 1 - A(b)

 = 1 - 0.8

 = 0.2

A′(c) = 1 - A(c)

 = 1 - 0.0

 = 1.0

A′(d) = 1 - A(d)

 = 1 - 0.3

 = 0.7

 Thus,

 a b c d

A′ 0.5 0.2 1.0 0.7

For B′,

B′(a) = 1 - B(a)

 = 1 - 0.2

 = 0.8

B′(b) = 1 - B(b)

 = 1 - 1.0

 = 0.0

B′(c) = 1 - B(c)

 = 1 - 0.1

 = 0.9

13

B′(d) = 1 - B(d)

 = 1 - 0.7

 = 0.3

 Thus,

 a b c d

𝐵′ 0.2 1.0 0.1 0.3

1.3. CERTAIN NUMBERS ASSOCIATED WITH A FUZZY SETS:

 Let A be a fuzzy set on U. Then by the scalar cardinality of A, we mean then

number ∑A(x) where the summation is over all the elements of U or more generally,

the summation is over the support of A[supp(A)]. This makes sense only when U is

a finite set or more generally, the support of A is finite. This number is denoted by

|A| or SC (A).

Example:

1) A = (0.1, 0.8, 0.2)

 SC(A) = 1.1

i)Height of a fuzzy set:

 Let A be a fuzzy set on U. Then the height of A is defined to be that number ht (A)

which is such that:

i) A(x) ≤ ht (A), for all x in supp(A).

ii) A(x) = ht (A) for all least one x in supp(A).

 This can be compactly expressed as follows:

 ht (A) = max {A(x)| x in supp(A)}.

When supp(A) is finite. When supp (A) is not finite, we write,

 ht (A) = supremum {A(x)| x in supp(A)}.

And include the condition A(x) = ht(A) for at least one x, explicitly in order

to exclude certain pathological cases like the following fuzzy set:

 A(x) = 1 - ⅇ−𝑥 , for x≥0

14

 A(x) = 0, for x≤0.

For this fuzzy set, height is 1, but there is no value of x for which A(x)=1 and also that

ht(A) always lies between 0 and 1.

Example:

1. If A = (0.0, 0.2, 0.8)

 Then ht(A)=0.8

2. If A = (0.0, 0.2, 0.6)

 Then ht (A)=0.6

ii)Normal fuzzy set:

 Let A be a fuzzy set on U. Then A is said to be normal if A(x) = 1 for at least one

x in U. In other word, ht(A) = 1.

Example:

1. All non-empty crisp sets are normal.

 Certain fuzzy set can be converted into a normal fuzzy set. This procedure is called

normalization of a fuzzy set.

iii)Normalization of a fuzzy set:

 Let A be a non-empty fuzzy set on U. Let 𝐴𝑁(𝑥) = A(x)/ht(A) for all x in U. Then

𝐴𝑁 is a fuzzy set on U, called the normalized version of A. Note that ht(𝐴𝑁)=1,so that

𝐴𝑁 is normal. Note that 𝐴𝑁 is always a fuzzy set. This process associates a fuzzy set

with a given fuzzy set. Note also that if A is normal, then 𝐴𝑁 = 𝐴 , i.e., an already

normal fuzzy set is not affected by normalization.

Example:

1. For A = (0.0, 0.2, 0.8), ht(A)=0.8 and hence 𝐴𝑁 = (0.0, 0.25, 1.0)

2. For A = (0.0, 0.2, 1.0), ht(A)=1 and hence 𝐴𝑁 = (0.0, 0.2, 1.0)

iv)Support of a fuzzy set:

 Let A be a fuzzy set on U. The set { xϵU | A(x)>0} is called the support of A and

is denoted by supp(A).

Remark:

1. supp(A) is a crisp set on U, for all fuzzy set A.

2. supp(A) = A for any crisp set A.

15

3. for a genuine fuzzy set A, A ⊂ supp(A)

 Before giving the definition of 𝛼-cuts of a fuzzy set, we deal with level set

associated with a fuzzy set.

v) Level set associated with a fuzzy set:

 With every fuzzy set A on U, we associate L(A), a crisp subset on I=[0,1] called

its level set. L(A) is defined as follows:

 L(A) = { 𝛼 𝜖 𝐼 / 𝐴(𝑥) = 𝛼, 𝑓𝑜𝑟 𝑠𝑜𝑚ⅇ 𝑥𝜖𝑈}.

Example:

1. Let A = {0.8, 0.0, 1.0, 0.4}

 Then L(A) = {0.4, 0.8, 1.0}.

2. Let A be given by

 A(x) = 1 - ⅇ−𝑥 , for x≥0

 A(x) = 0, for x≤0.

Then, L(A) = [0,1]

vi)𝜶-Cuts of a fuzzy set:

Given a fuzzy set A on U and a number 𝛼 in I, such that 0< 𝛼≤1. We can

associate crisp set with A, denoted by 𝐴𝛼 and defined as

 𝐴𝛼 = {xϵU | A(x)≥ 𝛼}. 𝐴𝛼 is called the 𝛼-cuts of A. Thus, for each 𝛼 , we

obtain an 𝛼-cuts of A.

Example:

Let U be the set {a, b, c, d} and A be given by A = (0.8,1.0,0.3,0.1). Then,

 𝐴1.0 = (0,1,0,0) = {b}

 𝐴0.8 = (1,1,0,0) = {a, b}

 𝐴0.3 = (1,1,1,0) = {a, b, c}

 𝐴0.1 = (1,1,1,1) = U

More generally,

 When 0 <𝛼 ≤ 0.1, 𝐴𝛼 = 𝐴0.1

 When 0.1 <𝛼 ≤ 0.3, 𝐴𝛼 = 𝐴0.3

16

 When 0.3<𝛼 ≤ 0.8, 𝐴𝛼 = 𝐴0.8

 When 0.8<𝛼 ≤ 1.0, 𝐴𝛼 = 𝐴1.0

This happens when the domain U is a countable set.

vii) Fuzzy cardinality of a fuzzy set:

 We now introduce an important concept associated with a given fuzzy

 set namely, its fuzzy cardinality.

 Let A be a non-empty fuzzy set on U and supp(A) be finite. Its fuzzy cardinality,

denoted by FC(A), is defined as the fuzzy set on N ((the set of all-natural numbers.) given

by ∑ 𝛼/ SC (𝐴𝛼) that is

 FC(A) = ∑ 𝛼 /nα where nα= SC (𝐴𝛼) and ∑ runs over all 𝛼 in L(A).

Example:

1.For A= (0, 0.3, 0.2, 0.8, 0.1), L(A) = {0.1, 0.2, 0.3, 0.8}. Thus the 𝛼 −Cuts of A are

𝐴0.1 = {0,1,1,1,1}; 𝐴0.2= {0,1,1,1,0};

 𝐴0.3 = {0,1,0,1,0}; 𝐴0.8= {0,0,0,1,0};

Further, SC (𝐴0.1)=4

 SC (𝐴0.2)=3

 SC (𝐴0.3)=2

 SC (𝐴0.8)=1

Thus, FC(A) =
0.8

1
+

0.3

2
+

0.2

3
+

0.1

4

2.If A={a} is a crisp singleton set, then L(A) = {1}. Hence, there is only one non-empty

𝛼-cut, 𝐴1.0 = {a}. Therefore, SC (𝐴1.0) = 1 and FC(A) =1.0/1. Thus, FC(A) = {1} is a

crisp singleton on N. The fuzzy cardinality gives a mapping from PF(U) to PF(N).

 viii)Fuzzification of a fuzzy set:

 We now take up the method of fuzzification of a given fuzzy set. Let U

 be a domain and for every x in U let a fuzzy set K(x) on U be given, then for any fuzzy

set A on U, we define the fuzzification of A,

 F(A) = ∑A(x)K(x)

17

Here, ∑ stands for the union over elements of U and A(x)F(x) stands for usual product of

numbers. Note, that F(A) is a fuzzy set on U. The collection {K(x)| x ϵ U} is called the

kernel of fuzzification.

 Example:

 Let U be {a,b,c,d},

 A=
0.3

𝑎
+

0.6

𝑏

 K(a) =
0.7

𝑎
+

0.4

𝑏

 K(b) =
0.4

𝑎
+

1.0

𝑏
+

0.4

𝑐

 K(c) =
0.2

𝑏
+

0.8

𝑐

Then

 K(A) = A(a)K(a) + A(b)K(b) + A(c)K(c)

 = 0.3×[
0.7

𝑎
+

0.4

𝑏
] + 0.6 × [

0.4

𝑎
+

1.0

𝑏
+

0.4

𝑐
] + 0

 ==
0.24

𝑎
+

0.6

𝑏
+

0.24

𝑐

1.4.THE POWER OF A FUZZY SET:

 For a fuzzy set A on U, and a positive real number 𝛼, we define the 𝛼-th power of A

(denoted by 𝐴𝛼),

 𝐴𝛼(x)= [𝐴(𝑥)]𝛼 for all x in U

The following special cases are quite important in applications:

i)Concentration of A:

 It is denoted by con(A) and is given by

 con(A)(x) = [𝐴(𝑥)]2 for x in U

 con(A)(x) = 𝐴2 for x in U

That is, con(A) = 𝐴2

ii) Dilation of A:

18

 This is denoted by Dil(A) and is given by Dil(A) == [𝐴(𝑥)]0.5 for all x in U.

That is,

 Dil(A) = 𝐴0.5

iii)Contrast Intensification of a Fuzzy set:

 The contrast intensification of a fuzzy set A, denoted by Int(A), is defined as:

 Int(A)(x) = 2[𝐴(𝑥)]2 for 0≤A(x)≤0.5

 = 1-2[1- 𝐴(𝑥)2] for 0.5≤A(x)≤1

1.5. EXTENTION PRINCIPLE:

 The extension principle is a basis principle by means of which certain mathematical

concepts pertaining to the crisp side can be generalized to the fuzzy framework (Notable

exception are union, intersection and complement operators of crisp sets.)

 The extension principle was introduced by Zadeh in his paper ‘The Concept of a

Linguistic Variable and its Application to Approximate Reasoning’. A further

elaboration of this principle was presented by R.R. Yager in ‘A Characterization of the

Extension Principle’. The details of this principle are as follows:

 Let f be a function from 𝑈1 × 𝑈2 × 𝑈3 × ⋯ × 𝑈𝑛 (a Cartesian product of n domains)

to V. Let 𝐴1, 𝐴2, 𝐴3,..…, 𝐴𝑛 be fuzzy sets on 𝑈1,𝑈2,𝑈3, ⋯ ,𝑈𝑛 respectively. Then,

extension principle indicates a method of associating a fuzzy set B on V based on the

given information or inputs. This fuzzy set B is given by

 B(v) = 0, if 𝑓−1(𝑣) is empty

 = max [min {𝐴1(𝑢1), 𝐴2(𝑢2), ….,𝐴𝑛(𝑢𝑛)}] if 𝑓−1(𝑣) is empty where

the max is taken over all n-tuples (𝑢1,𝑢2,𝑢3, ⋯ ,𝑢𝑛) in 𝑈1 × 𝑈2 × 𝑈3 × ⋯ × 𝑈𝑛 whose

image is v under f, i.e., all n-tuples such that f(𝑢1,𝑢2,𝑢3, ⋯ ,𝑢𝑛)=v.

We write,

 B = f(A) or B = 𝑓 ∘ 𝐴

Where, A = 𝐴1 × 𝐴2 × 𝐴3 × ⋯ × 𝐴𝑛 and

A (𝑢1,𝑢2,𝑢3, ⋯ ,𝑢𝑛) = min [𝐴1(𝑢1), 𝐴2(𝑢2), ….,𝐴𝑛(𝑢𝑛)] is a fuzzy set on

 U = 𝑈1 × 𝑈2 × 𝑈3 × ⋯ × 𝑈𝑛 .

19

 A is called the cartesian product of the fuzzy sets 𝐴1, 𝐴2, 𝐴3,..…, 𝐴𝑛. The fuzzy set B is

called the image of A under f.

 We close this section with two examples illustrating the extension principle. The first

one is a straightforward example which helps to clarify and fix the concepts. The second

one illustrates the idea of extending the addition of real numbers to ‘addition’ of fuzzy

sets.

Example 1

Consider the three domains U, V, and W where U = {a, b, c}, V = {x, y, z} and

W = {p, q, r}. Consider the function f: U×V →W

 where f(a,x) = f(a,y) = f(c,y) = p,

 f(a,z) = f(b,x) = f(b,z) = q and

 f(b,y) = f(c,x) = f(c,z) = r. This can be expressed compactly in the form of a

table:

 U V

 F

 x

 y

 z

a

b

c

 p

 q

 r

 p

 r

 p

 q

 q

 r

Consider the fuzzy sets A and B on U and V respectively, where

 A =
0.2

𝑎
+

0.7

𝑏
+

0.5

𝑐

 B =
0.5

𝑥
+

0.3

𝑦
+

1.0

𝑧

Then, the values of C(p), C(q) and C(r), where C = f(A×B) the image fuzzy set on W, are

given by

 𝑖) 𝑓−1(𝑝) = {(a, x), (a, y), (c, y)}

 C(p) = max [min {𝐴(𝑎), 𝐵(𝑥)},min{A(a), B(y)}, min{A(c), B(y)}]

20

 = max [min {0.2, 0.5}, min {0.2, 0.3}, min {0.5, 0.3}]

 = max [0.2, 0.2, 0.3]

 C(p) = 0.3

 ii) 𝑓−1(𝑞) = {(a, z), (b, x), (b, z)}

 C(q) = max [min {𝐴(𝑎), 𝐵(𝑧)},min{A(b), B(x)}, min{A(b),B(z)}]

 = max [min {0.2, 1.0}, min {0.7, 0.5}, min {0.7, 1.0}]

 = max [0.2, 0.5, 0.7]

 C(q) = 0.7

 iii) 𝑓−1(𝑟) = {(b, y), (c, x), (c, z)}

 C(r) = max [min {𝐴(𝑏), 𝐵(𝑦)},min{A(c), B(x)}, min{A(c),B(z)}]

 = max [min {0.7, 0.3}, min {0.5, 0.5}, min {0.5, 1.0}]

 = max [0.3, 0.5, 0.5]

 C(r) = 0.5

 Thus,

 C =
0.3

𝑝
+

0.7

𝑞
+

0.5

𝑟

Example 2

Consider the three domains U, V and W where U=V=W=N, the set of natural numbers.

 Let f: U×V → W be given by f (m, n) = m + n, i.e., f is the addition operation on

natural numbers.

 Let A and B be fuzzy sets on U and V respectively, given by

 A =
0.2

2
+

0.8

3
+

0.7

4
 and

 B =
0.7

3
+

0.6

4
+

0.5

5

 Observe that supp(A) = {2, 3, 4} and supp(B) = {3, 4, 5}. Thus, the various pairs in

U×V that are to be considered lie in supp(A) × supp(B). These pairs and their images

under f are given in the following table:

21

 i) 𝑓−1(7) = {(2, 5), (3, 4), (4, 3)}

 C (7) = max [min {𝐴(2), 𝐵(5)},min{A (3), B (4)}, min {A (4), B(3)}]

 = max [min {0.2, 1.0}, min {0.7, 0.5}, min {0.7, 1.0}]

 = max [0.2, 0.5, 0.7]

 C (7) = 0.7

 ii) 𝑓−1(5) = {(2, 3)}

 C (5) = max [min {𝐴(2), 𝐵(3)}]

 = max [min {0.2, 0.7}]

 = max [0.2]

 C (5) = 0.2

 iii) 𝑓−1(6) = {(2, 4), (3, 3)}

 C (6) = max [min {𝐴(2), 𝐵(4)},min{A (3), B (3)}]

 = max [min {0.2, 0.6}, min {0.8, 0.7}]

 = max [0.2, 0.7]

 C (6) = 0.7

 iv) 𝑓−1(8) = {(4, 4), (3, 5)}

 C (8) = max [min {𝐴(4), 𝐵(4)},min {A (3), B (5)}]

 = max [min {0.7, 0.6}, min {0.8, 0.5}]

 = max [0.6, 0.5]

 C (8) = 0.6

 v) 𝑓−1(9) = {(4, 5)}

 f 3 4 5

 2

 3

 4

 5

 6

 7

 6

 7

 8

 7

 8

 9

22

 C (9) = max [min {𝐴(4), 𝐵(5)}]

 = max [min {0.7, 0.5}]

 = max [0.5]

 C (9) = 0.5

Therefore,

 C =
0.2

5
+

0.7

6
+

0.7

7
 +

0.6

8
+

0.5

9

Since f represents addition, C=f (A, B) can be written as:

 C = A+B

Where ‘+’ denotes addition of fuzzy sets or if we prefer, can be called fuzzy addition.

23

2.FUZZY RELATION

2.1 DEFINITION:

 Fuzzy relation defines the mapping of variables from one fuzzy set to

another. Like crisp relation, we can also define the relation over fuzzy set.

 Let A be a fuzzy set on universe X and B be a fuzzy set on universe Y, then the

Cartesian product between fuzzy sets A and B will result in a fuzzy relation R which is

contained with the full Cartesian product space or it is subset of cartesian product of

fuzzy subsets. Formally, we can define fuzzy relation as,

R = A x B

And

R ⊂ (X x Y)

 where the relation R has membership function,

 μR(x, y) = μA x B(x, y) = min(μA(x), μB(y)

An n-ary fuzzy relation R is a fuzzy set on U₁ x U₂x…………….x𝑈𝑛 where

U₁. U₂.......,𝑈𝑛 are domains.

A 2-ary fuzzy relation is also called a binary fuzzy relation. A binary fuzzy

relation (BFR) looks like

R = ∑
𝑹(𝒖,𝒗)

(𝒖,𝒗)

where (u, v) varies over U x V.

 We say that R is from U to V and is indicated by R: U→V

 A 3-ary fuzzy relation is also called a ternary fuzzy relation. A 3-ary fuzzy

relation looks like

T=∑
𝒕(𝒖,,𝒗,𝒘)

(𝒖,𝒗,𝒘)

where the triplets (u, v, w) vary over U x V x W.

24

Example

1. Let U = {a, b, c} and V = {x, y}. Then a binary fuzzy relation on U x V is given

by

 R x y

 a 0.6 1.0

 b 0.3 0.5

 c 0.4 0.2

This is called the tabular or matrix representation of R and it is very useful when

dealing with binary fuzzy relations.

2. U = {a, b, c}, V= {x, y} and W= {&, *}. Then a fuzzy relation on

 U x V x W is given by

𝑇 =
0.21

(𝑎, 𝑥, &)
+

0.38

(𝑏, 𝑦, &)
+

0.9

(𝑎, 𝑦,∗)

 We can express T which is a ternary fuzzy relation in the tabular form: one

matrix for & and one for *.

 & x y

 a 0.21 0

 b 0 0.38

 c 0 0

 * x y

 a 0 0.9

 b 0 0

 c 0 0

3. U and V be the set of real numbers. Then the relation 'y is smaller than x' is a

binary fuzzy relation on U×V.A representation of this fuzzy relation is given

by

25

𝑅(𝑥, 𝑦) = 0 𝑖𝑓 𝑦 ≥ 𝑥

 =
1

1 + (𝑥 − 𝑦)−2
 𝑖𝑓 𝑦 < 𝑥

2.2. OPERATIONS ON FUZZY RELATIONS :

 Let U₁, U₂, ………., 𝑈𝑛 be domains and let U = U₁ x U₂ x……….x

𝑈𝑛.Then U is also a domain, by definition of cartesian product and u ∈ U looks like u =

(u1, u2,un), an n-tuple. We thus have PF(U) = PF (U₁ x U₂x…….x 𝑈𝑛). This equality

shows that every n-ary fuzzy relation (FR) on U₁x U₂x……. ×𝑈𝑛, is a fuzzy set on U

and vice-versa.

Let U be U₁× U₂×.......... × 𝑈𝑛.

1.Equality:

 For R, S in PF(U), we say R = S if and only if R(u) = S(u) for all u in U

2. Containment:

 For R, S in PF(U), we say R ⊆ S if and only if R(u) ≤ S(u) for all u in U.

3.Union:

For R, S in PF(U), the union of R and S, denoted by R∪S, is defined by

 (R∪S)(u) = max[R(u), S(u)] for every u in U.

Example:

Let A =[
0 1 0
1 0 0
0 0 1

]

 B =[
0 0 1
0 1 0
0 0 1

]

 (A∪ 𝐵)(𝑢) = [
0 1 1
1 1 0
0 0 1

]

4.Intersection:

 For R, S in PF(U), the intersection of R and S, denoted by R∩S, is defined by

(R∩S)(u) = min[R(u), S(u)] for every u in U.

Example:

26

Let A =[
0 1 0
1 0 0
0 0 1

] B =[
0 0 1
0 1 0
0 0 1

]

 (A ∩ 𝐵)(𝑢) = [
0 0 0
0 0 0
0 0 1

]

5.Complement:

 For R in P(FU). R' is defined by R'(u) = 1-R(u) for every w in U.

Example:

Let A =[
0 1 0
1 0 0
0 0 1

]

 A’(u) = [
0 1 1
1 1 0
0 0 1

]

2.3. α-CUTS OF A FUZZY RELATION:

 Let R be a fuzzy relation (FR) on U× V and 𝛼 be such that 0 < α ≤ 1. Then, the

α-cut of R, denoted by Rα is defined by

𝑅𝛼 = { (𝑢, 𝑣) ∣ 𝑅(𝑢, 𝑣) ≥ 𝛼}

 Note that Rα is a crisp set on U x V and hence is a crisp (binary) relation on U×V.

The α-cuts of R satisfy the following property, called the decomposition theorem

or resolution form of R. Let R be a fuzzy relation on U x V. Then R=∑(αRα) where

 ∑ is taken over all α. The following example illustrates the above point.

 Let R be a fuzzy relation on U ×V given by the matrix

R = [
0.7 0.4
0.4 0.0

]

Then, R0.4 =[
1 1
1 0

] and R0.7 =[
1 0
0 0

]

(0.4× R0.4) ∪ (0.7× R0.7) = [
0.4 0.4
0.4 0

] ∪ [
0.7 0
0 0

]

 = [
0.7 0.4
0.4 0.0

]

27

 This verifies the above theorem.

Remark:

 The α-cut decomposition can be obtained directly by applying the maximum

principle. Again, consider R as above. Consider the largest entry 0.7 of R and write R

as:

R= 0.7×[
1 0
0 0

] ∪ [
0.4 0.4
0.4 0

]

Now, apply this principle again to obtain

R=0.7x [
1 0
0 0

] ∪ 0.4x[
1 1
1 0

]

which is the α-cut decomposition of R.

2.4. COMPOSITION OF FUZZY RELATIONS:

 Composition of two relations can be defined in several ways.

 • Max-min composition

 • Max product composition

Max-min Composition of Two Fuzzy Relations:

 Let R be a binary fuzzy relation (BFR) on U x V and S be a BFR on V× W. Then,

the max-min composition of R and S (that is, composition of R followed by S) is a BFR

on U×W, denoted by SοR and is given by

(SoR) (u, w) = max [min {R (u, v), S (v, w)}]

where the maximum is taken over all v in V.

 2. More generally, let R be in PF (U x V) and S be in PF (V x W). where now

U=U₁ x U₂ × ……. ×Uk

V = V₁ x V₂ ×…......× Vm

and W = W₁ x W₂ x…….x 𝑊𝑛

Then, the max-min composition of R and S, denoted by SoR, is a fuzzy relation on U×

Wand is given by

(SoR) (u, w) = max {min (R (u, v). S (v, w)}]

Where now

u = (𝑢1, 𝑢2,.............,𝑢𝑘)

 v = (𝑣1, 𝑣2,………..,𝑣𝑚)

28

w = (𝑤1, 𝑤2, , 𝑤𝑛)

The maximum is taken over all v in V.

Note that R is a (k+ m)-ary fuzzy relation, S is an (m + n)-ary fuzzy relation and Vis

the common domain (or, called the linking domain) of R and S. This is called the

compatibility condition for composition. And finally. SοR is a (k+ n)-ary fuzzy

relation.

Examples:

 Consider the fuzzy relations R on U x V and S on V x W, where U = {a, b, c}

V = {x, y, z} and W= {&, *} given in matrix form by

R = [
1.0 0.4 0.5
0.3 0.0 0.7
0.6 0.8 0.2

] S = [
0.7 0.1
0.2 0.9
0.8 0.4

]

Then SoR can be defined and it is fuzzy relation on U × W. Now

(SoR) (a, &) = max [min {R (a, v), S (v. &)}], for every v in V

= max [min {R (a, x), S (x, &)}, min {R (a, y), S (y, &)}, min {R (a, z), S (z, &)}]

= max [min (1, 0.7), min (0.4, 0.2), min (0.5, 0.8)]

 = max (0.7, 0.2, 0.5]

 = 0.7

(SoR) (a, ∗) = max [min {R (a, v), S (v, *)}], for every v in V

= max [min {R (a, x), S (x, *)}, min {R (a, y), S (y, *)}, min {R (a, z), S (z, *)}]

= max [min (1.0, 1.0), min (0.4, 0.9), min (0.5, 0.4)]

 = max [1, 0.4, 0.4]

 = 0.4

(SoR) (b, &) = max [min {R (b, v), S (v, &)}], for every v in V

= max [min {R (b, x), S (x, &)}, min {R (b, y), S (y, &)}, min {R (b, z), S (z, &)}]

= max [min (0.3, 0.2), min (0.0, 0.2), min (0.7, 0.8)]

= max [2, 0.0 ,0.7]

= 0.7

29

 (SoR) (b, ∗) = max [min {R (b, v), S (v, *)}], for every v in V

= max [min {R (b, x), S (x, *)}, min {R (b, y), S (y, *)}, min {R (b, z), S (z, *)}]

= max [min (0.3, 0.1), min (0.0, 0.9), min (0.7, 0.4)]

 = max [0.1, 0.0 ,0.4]

 = 0.4

(SoR) (c, &) = max [min {R (c, v), S (v, &)}], for every v in V

= max [min {R (c, x), S (x, &)}, min {R (c, y), S (c, &)}, min {R (c, z), S (z, &)}]

= max [min (0.6, 0.7), min (0.8, 0.2), min (0.2, 0.8)]

= max [0.6, 0.2 ,0.2]

= 0.6

 (SoR) (c, ∗) = max [min {R (c, v), S (v, *)}], for every v in V

= max [min {R (c, x), S (x, *)}, min {R (c, y), S (y, *)}, min {R (c, z), S (z, *)}]

= max [min (0.6, 0.1), min (0.8, 0.9), min (0.2, 0.4)]

 = max [0.1, 0.8 ,0.2]

 = 0.8

SοR = [
0.7 0.4
0.7 0.4
0.6 0.8

]

The Max-product composition:

It can be defined as:

 If R is a fuzzy relation on U×V and S is a fuzzy relation on V×W then

the max product composition of R followed by S, denoted again by

(SοR) (u,w) = max [R (u,v)*S (v,w)]

Where ‘*’ is the ordinary product of real numbers and ‘max’ is taken over all elements

v in V

 This special case deals with the composition, of a fuzzy relation, as explained in the

following definition.

 Let A be a fuzzy set on U and R be a fuzzy relation on U×V, where

30

V =V1× V2 ×………….× Vn .Then the composition of A followed by R, also called the

image of A under R, denoted by RοA and defined as

(RοA) (v) = max [min {A(u), R(u,v)}]

Where ‘max’ is taken over all u in U. RοA is an n-ary fuzzy relation on V (in case n=1

it is a fuzzy set on V). We can in a similar way, define the max – product composition

of A and R

2.5. PROJECTIONS OF FUZZY RELATION:

Definition:

 Let R be a BFR on U×V. Then, by the first projection of R or the projection of

R on U or the shadow of R on U, we mean the fuzzy set on U given by

 max {R (u, v)∣ for all v in V}.

 We denote this projection by Proj[R : U] or by [R↑U] or simply R1, (that is.

R projected on to the first domain). Similarly, we can talk about the projection of R on

V, defined by max {R (u, v) all u in U}. This is denoted by Proj[R: V] or [R ↓ V] or

R2. (that is, projection on the second domain).

EXAMPLE:

 Let U = {a,b,c} and V = {x,y}.Here R is given by

R =[
0.6 1.0
0.3 0.5
0.4 0.2

]

To determine R1, we need to compute R1(a), R1(b), R1(c).

 R1(a) = max {R(a,v)∣for all v in V}

 = max {R(a,x), R(a,y)}

 = max {0.6,1}

 = 1

R1(b) = max {R(b,v)∣for all v in V}

 = max {R(b,x), R(b,y)}

 = max {0.3,0.5}

 = 0.5

R1(c) = max {R(c,v)∣for all v in V}

 = max {R(c,x), R(c,y)}

31

 = max {0.4,0.2}

 = 0.4

 R 1= (1, 0.5, 0.4)

Similarly, we have by looking at column maxima

R2(x) = max {R(x,u)∣for all u in U}

 = max {R(x,a), R(x,b), R(x,c)}

 = max {0.6, 0.3, 0.4}

 = 0.6

R2(y) = max {R(y,u)∣for all u in U}

 = max {R(y,a), R(y,b), R(y,c)}

 = max {1.0, 0.5, 0.2}

 = 1.0

 R 2= (0.6, 1)

32

 3. FUZZY MATRICES

 Fuzzy matrix, we mean a matrix over a fuzzy algebra. We confine with matrices over

the fuzzy algebra ℱ = [0,1] under the max-min operations and with the usual ordering on real

numbers. Fuzzy matrices have quite different properties from matrices over a field, due to

fact that addition in a fuzzy algebra does not form a group, every fuzzy linear transformation

on Vn can be represented by a unique fuzzy matrix. One of the most important ways to study

a fuzzy matrix is to consider its row space that subspace of Vn spanned by its rows.

3.1. DEFINITION :

Let ℱmn denote the set of all m×n matrices over ℱ. If m=n in shorts we write

ℱn elements of ℱmn are called membership value matrices, binary fuzzy relation matrices

(or) in short, fuzzy matrices. Matrices over the Boolean algebra {0,1} are special type of

fuzzy matrices.

 Let A= (aij) ϵ ℱmn . Then the element aij is called (i,j) entry of . Let Ai*(A*j) denote

the ith row (column) of A. The row space ℝ(A) of A is the subspace of Vn generated by the

rows {Ai*} of A. The column space ℘(A) of A is the subspace of Vm generated by the

columns {A*j} of A.The null space or Kernel of A is the {x/xA = 0} . Note that a row

(column) vector is just an element of Vn (𝑉𝑉).

 The n×m zero matrix O is the matrix all of whose entries are zero. The n×n identity

matrix I is the matrix (δij) such δij = 1 if i=j and δij=0 if i≠j. Then n×m universal matrix J is

the matrix all of whose entries are 1.

 Since the order of a matrix is clear from the context, most of the time suppress the

order of the matrix.

3.2. ADDITION OF MATRICES:

 Let A = (aij) ϵ ℱmn and B = (bij) ϵ ℱmn . Then the A + B = (sup{aij,bij}) ϵ ℱ mn is

called the sum of A and B.

Example:

If A =[
0.5 0 1
0.8 0.2 0.3
0 0.6 0.1

]

33

 B=[
0.2 0.4 0.6
0.5 0.3 0.3
0.7 0.8 0

]

 A+B = (sup {aij,bij})

A+B= [
0.5 0 1
0.8 0.2 0.3
0 0.6 0.1

] + [
0.2 0.4 0.6
0.5 0.3 0.3
0.7 0.8 0

]

A+B=[

sup {𝑎11 , 𝑏11} sup {𝑎12 , 𝑏12} sup {𝑎13 , 𝑏13}

sup {𝑎21 , 𝑏21} sup {𝑎22 , 𝑏22} sup {𝑎23 , 𝑏23}

sup {𝑎31 , 𝑏31} sup {𝑎32 , 𝑏32} sup {𝑎33 , 𝑏33}
]

 =[

sup {0.5,0.2} sup {0,0.4} sup {1,0.6}
sup {0.8,0.5} sup {0.2,0.3} sup {0.3,0.3}

sup {0,0.7} sup {0.6,0.8} sup {0.1,0}
]

A+B= [
0.5 0.4 1
0.8 0.3 0.3
0.7 0.8 1

]

 Let A = (aij) ϵ ℱmn and C ϵ ℱ then the fuzzy multiplication, that is scalar

multiplication with scalars restricted to ℱ is defined as

CA =(inf{c,aij}) ϵ ℱm

 For the universal matrix J, CJ = (inf {C,1}) is the constant matrix all of whose

entries are C. Further under component wise multiplication.

 CJ ʘ A = (inf {c,aij}) = CA

PREPOSITION:

The set ℱmn is a fuzzy vector space under the operations defined as

 A+B = (sup{aij,bij}) and CA = (inf {c,aij}) for A = (aij) , B= (bij) ϵ ℱmn

Proof :

For ,

 A,B,C ϵ ℱmn ,

34

A+B = B+A ϵ ℱmn (Commutativity)

A+(B+C) = (A+B) + C (Associativity)

For all A ϵ ℱmn , there exists an element 0 ϵ ℱmn such that A+0 = A

.

For C ϵ ℱ ,

c(A+B) = cJ ʘ (A+B)

 = (cJ ʘ A) + (cJ ʘ B)

 = cA + cB

For c1 , c2 ϵ ℱ,

(c1+c2) A = (c1 + c2) J ʘ A

= (c1J + c2J) ʘ A

= (c1 J ʘ A) + (𝑐2J ʘ A)

= c1A + c2A

Hence ℱmn is a vector space over ℱ. In particular for m=1

3.3. MAX - MIN COMPOSITION OF MATRICES:

 For A = (aij) ϵ ℱmp and B = (bij) ϵ ℱpn , the max-min produce

 AB = (sup inf {aik, bjk}) ϵ ℱmn.

The product AB defined if and only if the number of columns of A is the

same as the number of rows of B. A are said to be comfortable for multiplication.

35

 Example:

 A=[
0.8 0.1
0.2 1

]

 B=[
0.6 0.5
0.4 0.3

]

 AB=[
0.8 0.1
0.2 1

] [
0.6 0.5
0.4 0.3

]

 =[
[0.8 0.1](0.6

0.4
) [0.8 0.1](0.5

0.3
)

[0.2 1](0.6
0.4

) [0.2 1](0.5
0.3

)
]

 =[
𝑠𝑢𝑝{𝑖𝑛𝑓{0.8,0.6}, 𝑖𝑛𝑓{0.8,0.5}} 𝑠𝑢𝑝{𝑖𝑛𝑓{0.8,0.5}, 𝑖𝑛𝑓{0.1,0.3}}
𝑠𝑢𝑝{𝑖𝑛𝑓{0.2,0.6}, 𝑖𝑛𝑓{1,0.4}} 𝑠𝑢𝑝{𝑖𝑛𝑓{0.2,0.5}, 𝑖𝑛𝑓{1,0.3}}

]

 =[
𝑠𝑢𝑝{0.6,0.1} 𝑠𝑢𝑝{0.5,0.1}
𝑠𝑢𝑝{0.2,0.4} 𝑠𝑢𝑝{0.2,0.3}

]

 AB=[
0.6 0.5
0.4 0.3

]

3.4. MATRIX MULTIPLICATION:

 Matrix multiplication is not in general commutative, that is, AB ≠ BA. Further AB =

0 need not imply A = 0 (or) B = 0 as in the case of real matrices

Example:

A=[
0.8 0.1
0.2 1

]

B=[
0.6 0.5
0.4 0.3

]

C=[
0.6 0.2
0.7 0.3

]

 AB= (sup{inf{aik ,bkj}}) ϵ ℱmn

 AB=[
0.8 0.1
0.2 1

] [
0.6 0.5
0.4 0.3

]

36

 =[
[0.8 0.1](0.6

0.4
) [0.8 0.1](0.5

0.3
)

[0.2 1](0.6
0.4

) [0.2 1](0.5
0.3

)
]

 =[
𝑠𝑢𝑝{𝑖𝑛𝑓{0.8,0.6}, 𝑖𝑛𝑓{0.1,0.4}} 𝑠𝑢𝑝{𝑖𝑛𝑓{0.8,0.5}, 𝑖𝑛𝑓{0.1,0.3}}

𝑠𝑢𝑝{𝑖𝑛𝑓{0.2,0.6}, 𝑖𝑛𝑓{1,0.4}} 𝑠𝑢𝑝{𝑖𝑛𝑓{0.2,0.5}, 𝑖𝑛𝑓{1,0.3}}
]

 =[
𝑠𝑢𝑝{0.6,0.1} 𝑠𝑢𝑝{0.5,0.1}

𝑠𝑢𝑝{0.2,0.4} 𝑠𝑢𝑝{0.2,0.3}
]

 AB=[
0.6 0.5
0.4 0.3

]

 BA=[
[0.6 0.5](0.8

0.2
) [0.6 0.5](0.1

1
)

[0.4 0.3](0.8
0.2

) [0.4 0.3](0.1
1

)
]

 =[
𝑠𝑢𝑝{𝑖𝑛𝑓{0.6,0.8}, 𝑖𝑛𝑓{0.5,0.2}} 𝑠𝑢𝑝{𝑖𝑛𝑓{0.6,0.1}, 𝑖𝑛𝑓{0.5,1}}

𝑠𝑢𝑝{𝑖𝑛𝑓{0.4,0.8}, 𝑖𝑛𝑓{0.3,0.2}} 𝑠𝑢𝑝{𝑖𝑛𝑓{0.4,0.1}, 𝑖𝑛𝑓{0.3,1}}
]

 =[
𝑠𝑢𝑝{0.6,0.2} 𝑠𝑢𝑝{0.1,0.5}

𝑠𝑢𝑝{0.4,0.2} 𝑠𝑢𝑝{0.1,0.3}
]

 BA=[
0.6 0.5
0.4 0.3

]

 BC=[
0.6 0.5
0.4 0.3

] [
0.6 0.2
0.7 0.3

]

 =[
[0.6 0.5](0.6

0.7
) [0.6 0.5](0.2

0.3
)

[0.4 0.3](0.6
0.7

) [0.4 0.3](0.2
0.3

)
]

 =[
𝑠𝑢𝑝{𝑖𝑛𝑓{0.6,0.6}, 𝑖𝑛𝑓{0.5,0.7}} 𝑠𝑢𝑝{𝑖𝑛𝑓{0.6,0.2}, 𝑖𝑛𝑓{0.5,0.3}}

𝑠𝑢𝑝{𝑖𝑛𝑓{0.4,0.6}, 𝑖𝑛𝑓{0.3,0.7}} 𝑠𝑢𝑝{𝑖𝑛𝑓{0.4,0.2}, 𝑖𝑛𝑓{0.3,0.3}}
]

 =[
𝑠𝑢𝑝{0.6,0.5} 𝑠𝑢𝑝{0.2,0.3}

𝑠𝑢𝑝{0.4,0.3} 𝑠𝑢𝑝{0.2,0.3}
]

 BC =[
0.6 0.3
0.4 0.3

]

37

 CB =[
0.6 0.2
0.7 0.3

] [
0.6 0.5
0.4 0.3

]

 =[
[0.6 0.2](0.6

0.4
) [0.6 0.2](0.5

0.3
)

[0.7 0.3](0.6
0.4

) [0.7 0.3](0.5
0.3

)
]

 =[
𝑠𝑢𝑝{𝑖𝑛𝑓{0.6,0.6}, 𝑖𝑛𝑓{0.2,0.4}} 𝑠𝑢𝑝{𝑖𝑛𝑓{0.6,0.5}, 𝑖𝑛𝑓{0.2,0.3}}
𝑠𝑢𝑝{𝑖𝑛𝑓{0.7,0.6}, 𝑖𝑛𝑓{0.3,0.4}} 𝑠𝑢𝑝{𝑖𝑛𝑓{0.7,0.5}, 𝑖𝑛𝑓{0.3,0.3}}

]

 =[
𝑠𝑢𝑝{0.6,0.2} 𝑠𝑢𝑝{0.5,0.2}

𝑠𝑢𝑝{0.6,0.3} 𝑠𝑢𝑝{0.5,0.3}
]

 CB =[
0.6 0.5
0.4 0.5

]

 BC =[
0.6 0.3
0.4 0.3

] ≠ [
0.6 0.5
0.4 0.5

]=CB

38

 4. FUZZY LOGIC

 Any event that changes continuously we cannot define it as a true or false

in such cases we can solve it by fuzzy logic. It deals with vagueness and

imprecise information.

4.1. LOGIC CONNECTIVES (Negation, Conjunction, Disjunction)

Truth table for Negation:

 P ˥P

 T F

 F T

 Truth table for conjunction:

 P Q P˄Q

 T T T

 T F F

 F T F

 F F F

Truth table for Disjunction:

 P Q P˅Q

 T T T

 T F T

 F T T

 F F F

39

 P Q ˥P P˄Q P˅Q

 T T F T T

 F T T F T

 T F F F T

 F F T F F

 Conditional or Bi conditional:

 Let P and Q be any two statements. Then the statement P ⟹ Q which is read

as if P then Q or P implies Q is called a conditional statement. The truth tables of

P⟹Q is F when Q has truth values F and P the truth values F and P the truth values

T; in all other cases P⟹ Q has truth values T. P is called antecedent and Q is called

consequent in P Q. The truth table for P⟹Q is given as follows:

 P Q P⟹ Q

 T T T

 T F F

 F T T

 F F T

 For any two statement P and Q the statement P⇔ Q is called a Biconditional.

This is read as P if and only if Q and abbreviated as P iff Q this is also called P is

necessary and sufficient for Q. P⇔ Q has the truth values T whenever both P and

Q have identical truth values. The table is given as follows:

 P Q P⇔ Q

 T T T

 T F F

 F T F

 F F T

40

4.2. THREE-VALUED LOGICS:

 The classical logic is two-valued: the values being True and False. Aristotle, who

was the founder of the two-valued logic, felt that this assumption is not justified and

raised doubts about this assumption of two truth values.

To tackle such situations. Lukasiewicz suggested in 1920. a 3-valued logic. In this

logic everything is same as in the 2-valued logic, except that there are three truth values:

The May be and False. These linguistic values are usually represented by 1,
1

2
 and 0.2

respectively. In this 3-valued logic, denoted by L3. the truth value of any statement can be

either 1 or
1

2
 or 0. i.e. T(p) = 1 or

1

2
 or 0. We define three operations on the statements p,

q, r denoted by p ˅q,p˄q and ¬p analogous to the three operations OR, AND and NOT of

classical logic. These are defined by their truth values as follows

 T (p ˅q) = max {T(p), T(q)}

 T (p ˄q) = min {T(p), T(q)}

T(¬p) = 1- T(p)

Lukasiewicz also defined the implication operation by

 T(p→q) = 1 - T(p) + T(q), if T(p) > T(q)

Or simply as: = 1 , if T(p) ≤ T(q)

 Using this formula, we can write down the truth table of →. This is given in the

table,

→ 1 1

2

 0

 1 1 1

2

 0

1

2

 1 1

2

1

2

 0 1 1 1

41

 This 3-valued logic has many distinguishing and surprising features. One of them is

that the WFF [p∨ (¬p)] is NOT a tautology (Note, however, that [p ∨ (¬p)] is a tautology

in the classical logic). This can be seen by writing the truth table of this WFF as given in

Table

 P ¬p [p ∨(¬p)]

 1 1 1

1

2

1

2

1

2

 1 1 1

Thus, we see that the last column of the table does not have all the entries equal to 1

A 0 0 0 1

2

1

2

1

2

1 1 1

B 0 1

2

1 0 1

2

 1 0 1

2

1

˄ 0 1

2

0 1

2

1

2

1

2

0 1

2

1

˅ 0 1

2

1 1

2

1

2

1

2

1 1

2

1

→ 1 1

2

1 1

2

1

2

1

2

0 1

2

1

A 0 0 0 1

2

1

2

1

2

 1 1 1

B 0 1

2

 1 0 1

2

 1 0 1

2

 1

˄ 0 0 0 0 1

2

1

2

 0 1

2

 1

˅ 0 1

2

 1 1

2

1

2

1

2

 1 1 1

42

→ 1 1 1 0 1 1 0 1

2

 1

One thing is common for Lukasiewicz and Bochvar logics, namely, the definition

of T(¬p)

T(¬p) = 1- T(p)

 But, this is not true for Heyting's logic.

4.3. N-VALUED LOGICS FOR N ≥ 4:

 Once the 3-valued logics were accepted and their usefulness realized, further

generalizations took place. Several n-valued logics for n≥4 were developed in the 1930's .

For a given value of n, consider the set T(n) called the truth value set, where

T(n) = {0,
1

(𝑛−1)
,

2

(𝑛−1)
, …

𝑛−2

(𝑛−1)
, 1}

 Using this set. Lukasiewicz proposed the first generalization of L, denoted by Ln

using the following equations as definitions:

 T(¬p) = 1- T(p)

T (p ˅q) = max {T(p), T(q)}

T (p ˄q) = min {T(p), T(q)}

T(p→q) =min {1, 1 - (p) + T(q)}

T(p↔q) = 1-[T(P)-T(q)]

Note that, for n = 2, T(n)= (0, 1) and the above definitions reduce to the truth table

of the classical logic. Similarly, for n = 3, T(n)= (0,
1

2
, 1) and L, reduces to Ly.

Thus. L, is an appropriate generalization of both the 2-valued classical logic L, and

the 3-valued logic L3

 4.4. INFINITE-VALUED LOGICS

The natural generalization of n-valued logics is the infinite-valued logics, wherein

infinite sets are used as truth value sets. Two of the commonly used infinite sets are:

1. T(infinity)= all rational numbers in the unit interval [0, 1]

2. T (1) =l= all real numbers in the unit interval [0, 1]

43

Of course, there are other infinite sets, which are subsets of [0, 1] and which can be used

as truth value sets. For example.

 S1= {0,1,
1

2
,

1

3
,

1

4
, … … . .

2

3
,

3

4
.

4

5
, … . . }

 S2 = {0,1,
1

2
, (

1

2
) , (

1

2
) , … … . . (

1

2
) , 1 − (

1

2
) , … . . }

Nee that we can also express S, and S. in a compact way as follows:

 S1= {0,1, ,
1

𝑛
, 1−, 𝑛 = 1,2,3 … . . }

S1= {0,1,
1

2
,

1

3
,

1

4
, … … . .

2

3
,

3

4
.

4

5
, … . . }

 Lukasiewicz proposed two infinite valued logics, denoted by L (infinity) and L

(1) L(infinity) is based on 7infinity) and L (1) is based on 7(1) as their truth value sets

respectively. Both of them are based on the same sets of definitions (Refer Eq. (1)). Note

that L (1) is a genuine generalization of L(infinity) and L(infinity) is a genuine.

generalization of L

 4.5. FUZZY LOGICS:

 In its widest sense, fuzzy logic encompasses the logics developed so far and even

more. In fact, L₂ is a fuzzy logic in this sense. But for the present, it is enough to consider

logic in the following narrower sense: fuzzy logic is any logic having 7= [0, 1] as its

truck value set, we have already come across an example of fuzzy logic in the previous

section, namely. L (1) Most of the fuzzy logics (including L (1)) are based on the

following definitions for the logical connectives ˅, ˄ and ¬

 T (P ˅ q) = max [T(p), T(q)]

 T (P ˄ q) = min [T(p), T(q)]

 T(¬p) = 1- T(p)

Where p,q are fuzzy propositions and T(p),T(q) take values in 1.note that we have not

specified the connectives → each specification of → gives rise to a different fuzzy logic.

That is these fuzzy logics differ in the definition of →. In L(1),we have

 T (P→q) =min [1, 1-T(p), T(q)]

Zadeh proposed the following definition:

44

 T (p→ q) =max {min [T(p), T(q)], 1 – T(p)}

There are plenty of definition available in the literature for → some of them are:

Let a = T(p) and b = T(q). then

1. T (p → q) = 1, if a ≤ b and 0, otherwise

2. T (P → q) = 1, if a ≤ b and b, otherwise

3. T (P → q) = min {1, b/a}

4. T (p→ q) = min {1, [b(1-a)]/ [a (1 – b)}

Each one of the above definitions give rise to different fuzzy logic.

 Each one of the fuzzy logics is to be considered as a model for real life situation and

the choice will depend on the characteristic of the problem considered and the intuition

experience and the ingenuity of the problem solver

 Given A in PF(U), consider the proposition p where p: x is a member of A. Then

 T(P) = A (x)

 Similarly, if B is in PF(U), then we get the proposition q where q: x is a member of B

and T(q) B(x). Then

 T (p ˅q) = max[T(p), T(q)]

 = max[A(x), B(x)]

 = (AUB)(x)

 Thus, the proposition corresponding to A∪B is p ˅q. Similarly, we can show that

A∩B corresponds to p ˄q and A' corresponds to ¬p.

45

CONCLUSION:

 Fuzzy theories have been used in day-to-day life. Fuzzy set theory has been shown

to be a useful tool to describe situations in which the data are imprecise or vague. Fuzzy

sets handle such situations by attributing a degree to which a certain object belongs to a

set. Fuzzy logic has been successfully used in numerous fields such as control systems

engineering, image processing, power optimization. Fuzzy relation equations, which are

obtained by the composition of binary fuzzy relations, are used in this work as a tool for

evaluating student mathematical modelling skills. Fuzzy matrix frame work have been

utilized in several different approaches to model the medicine diagnostic process and

decision-making process.

46

 REFERENCES

1. Zadeh, L.A. Fuzzy Sets, Info. and Control, 8, 1965.

2. Klir and Bo Yuvan, Fuzzy Sets: Theory and Applications, PHI< 1997.

3. Ross, T., Fuzzy Logic with Engineering Applications, McGraw Hill, 1995.

4. Kruse, R., Gebhardt J. and Klawonn, F., Foundations of Fuzzy Systems, John

Wiley and Sons, 1994.

5. Bezdek. J. Spillman. B and Spillman. R. (1978). ‘A fuzzy relation space for group

decision theory’, Fuzzy Sets Sys. 1: 255 - 268

6. Blin.J.M. (1974). ‘Fuzzy relations in group decision theory.’ J. Cyberntics.4 17-

22.

7. Cho. H.H. (1993). ‘Regular matrices in the semigroup of Hall matrices. Lin. Alg.

Appl. 191: 151-163

8. Cho. H.H. (1993). ‘Regular fuzzy matrices and fuzzy equations. ‘Fuzzy Sets Sys,

105: 445 - 451.

INTRODUCTION TOR SOFTWARE

Project Report submitted to

ST. MARY'S cOLLEGE (AUTONOMOUS), THOOTHUKUDI

Affiliated to

MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI

In partial fulfill ment of the requirement for the award of degree of

Bachelor of Science in Mathematics

Submitted by

NAME REG.NO.

BLESSY JEBARANI. AA
19AUMTO7

EMIMA LUKRAGI. J
19AUMT11

MUTHU YOGESWARI. J
19AUMT30

STERLY. B
19AUMT46

VARSHA.S
19AUMT47

Under the Guidance of

Dr. Tmty. A. PUNITHA THARANI, M.Sc., M.Phil., Ph.D.

Associate Professor of Mathematics and COE

St. Mary's College (Autonomous), Thoothukudi.

C

Department of Mathematics

St. Mary's College (Autonomous), Thoothukudi

(2021 2022)

CERTIFICATE

we here by declare that the project report entitled "INTRODUCTION TO R SOFTWARE"

Deing submitted to St. Mary's College (Autonomous), Thoothukudi affiliated to

Manonmaniam Sundaranar University, Tirunelveli in partial fulfillment for the award of

degree of Bachelor of Science in Mathematics and it is a record of work done during the year

2021 2022 by the following students:

REG.NO.
NAME

19AUMTO7
BLESSY JEBARANI. A

19AUMT11

EMIMA LUKRAGI. J
19AUMT30

MUTHU YOGESWARI. J
19AUMT46

STERLY. B
19AUMT47

VARSHA. S

--
Srella Apuks ny

Signature of the HOD

Signature of the Guide

Dr. A. Punitha Tharani
M.Sc., M.Phil., Pn.D

Associate Professor,
Dept.of Mathematics,

StMary's College (Autonomous),
Thoothukudi - 628 001.

Dr. V.L. Stella Arputha Mary
M.Sc.,M.Phil., B.Ed., Ph.D Head & Asst Professor of Mathematis

St. Mary's College (Autonomous)
Thoothukudi-628 001.

A u Rose
Signature of the Principal

Signature ofthe Examiner

Principal
St, Mary's College (Autonon-us)

Thoothukudi 628 001.

2

DECLARATION

We hereby declare that the project reported entitled "INTRODUCTION TO R SOFTWARE", is
our original work. It has not been submitted to any university for any degree or diploma.

A Blessy Jekarani J.Emima lukrag
(EMIMA LUKRAGI. J) (BLESSY JEBARANI. A)

J.Muthu Yogeswau
(MUTHU YOGESWARI.)

8. ta
(STERLY. B)

S.Vaysha
(VARSHA. S)

ACKNOWLEDGEMENT

First of all, we thank Lord Almighty for showering his blessings to undergo this project.

With immense pleasure, we register our deep sense of gratitude to our guide

Dr. Tmty. A. PUNITHA THARANI, M.Sc., M.Phil., Ph.D. for guiding and supporting us in every

part of this project.

We are thankful to Dr. V. L. Stella Arputha Mary M.Sc., M.Phil., B.Ed., Ph.D., Head of the

Department, for having imparted necessary guidelines throughout the period of our studies.

We thank our beloved Principal, Rev. Dr. Sr. A.S.J. Lucia Rose M.Sc., M.Phil., Ph.D., PGDCA

for providing us the help to carry out our project work successfully.

Finally, we thank all those who extended their helping hands regarding this project.

4

5

INTRODUCTION TO R

SOFTWARE

6

CONTENT

 1. INTRODUCTION .. 7

 2. R AS A CALCULATOR .. 10

 3. FUNCTIONS AND MATRIX OPERATIONS .. 14

 4. MISSING DATA AND LOGICAL OPERATORS ... 19

 5. CONDITIONAL EXECUTION AND LOOPS .. 22

 6. DATA MANAGEMENT .. 25

 7. STRINGS – DISPLAY AND FORMATTING ... 35

 8. DATA FRAMES .. 42

 9. STATISTICAL FUNCTIONS .. 49

10. PROGRAMMING IN R .. 62

11. APPLICATIONS ... 64

12. CONCLUSION ... 66

13. REFERENCES .. 67

7

1. INTRODUCTION

R is another emerging name in the Programming world!

R is an open-source programming language that is widely used as a statistical software and

data analysis tool. R generally comes with the Command-line interface. R is available across

widely used platforms like Windows, Linux, and macOS. Also, the R programming language is

the latest cutting-edge tool.

It was designed by Ross Ihaka and Robert Gentleman at the University of Auckland, New

Zealand, and is currently developed by the R Development Core Team. R programming

language is an implementation of the S programming language. It also combines with lexical

scoping semantics inspired by Scheme. Moreover, the project conceives in 1992, with an

initial version released in 1995 and a stable beta version in 2000.

Is it worth learning R in 2022?

In our opinion, absolutely YES! This is still an awesome programming language to learn. With

the increasing demand for machine learning and data science, it is worth learning the R

programming language. Various big tech companies like Facebook, Google, Uber, etc. are

using the R language for their businesses. Learning the R programming language is surely

worthwhile for future career endeavors.

Programming in R
Since R is much similar to other widely used languages syntactically, it is easier to code and

learn in R. Programs can be written in R in any of the widely used IDE like R Studio, Rattle,

Tinn-R, etc. After writing the program save the file with the extension .r.

Introduction to R studio

R Studio is an integrated development environment (IDE) for R. IDE is a GUI, where you can

write your quotes, see the results and also see the variables that are generated during the

course of programming.

R Studio can be downloaded from its Official Website (https://rstudio.com/)

https://rstudio.com/

8

After the installation process is over, the R Studio interface looks like this:

• The console panel (left panel) is the place where R is waiting for you to tell it what to

do, and see the results that are generated when you type in the commands.

• To the top right, you have the Environmental/History panel. It contains 2 tabs:

o Environment tab: It shows the variables that are generated during the course

of programming in a workspace that is temporary.

o History tab: In this tab, you’ll see all the commands that are used till now from

the start of usage of R Studio.

• To the right bottom, you have another panel, which contains multiple tabs, such as

files,
plots, packages, help, and viewer.

o The Files tab shows the files and directories that are available within the

default workspace of R.

o The Plots tab shows the plots that are generated during the course of

programming.

o The Packages tab helps you to look at what are the packages that are already

installed in the R Studio and it also gives a user interface to install new

packages.

o The Help tab is the most important one where you can get help from the R

Documentation on the functions that are in built-in R.

o The final and last tab is that the Viewer tab which can be used to see the local

web content that’s generated using R.

9

Getting help with R:

Before asking others for help, it’s generally a good idea for you to try to help yourself. R
includes extensive facilities for accessing documentation and searching for help. There are
also specialized search engines for accessing information about R on the internet, and general
internet search engines can also prove useful.

• If you need help with a function, then type question mark followed by the name of the
function. For example, ?read.table to get help for function read.table.

• Sometimes, you want to search by the subject on which we want help (e.g., data
input). In such a case, type help.search("data input")

• 'help()' for on-line help, or 'help.start()’ for an HTML browser interface to help.

• The find function tells us what package something is in.

 For example:

 > find("lowess")

 [1] "package:stats"

• The apropos returns a character vector giving the names of all objects in the search
list that match your enquiry.

 For example:

 > apropos("lm")

 [1] ".colMeans" ".lm.fit" "colMeans" "confint.lm"

 [5] "contr.helmert" "dummy.coef.lm" "glm" "glm.control"

 [9] "glm.fit" "KalmanForecast" "KalmanLike" "KalmanRun"

• To see a worked example just type the function name, e.g., lm for linear models:

 >example(lm)

 and we see the printed and graphical output produced by the lm function.

Libraries in R:

R provides many functions and one can also write own. Functions and datasets are organised
into libraries. To use a library, simply type the library function with the name of the library in
brackets. For example: >library(MASS)

Examples of libraries that come as a part of base package in R:

• MASS: package associated with Venables and Ripley’s book entitled Modern Applied
Statistics using S-Plus.

• mgcv : generalized additive models.

10

2. R AS A CALCULATOR

R can be used as a powerful calculator by entering equations directly at the prompt in the
command console. R will evaluate the expressions and respond with the result. While this is
a simple interaction interface, there could be problems if you are not careful. R will normally
execute your arithmetic expression by evaluating each item from left to right, but generally it
follows the BEDMAS order: Brackets (), Exponents ̂ , Division / and Multiplication *, Addition
+ and Subtraction -. Let's start with some simple expressions as examples.

Simple Arithmetic Expressions:

The operators R uses for basic arithmetic are:

+ Addition
- Subtraction
* Multiplication
/ Division
^ Exponentiation

Examples:

 > 2+3

[1] 5

> 2-3

[1] -1

> 2*3

[1] 6

> 3/2

[1] 1.5

> 2^3

[1] 8

> 2*3-4+5/6

[1] 2.8333

Integer Division

 Division in which the fractional part(remainder) is discarded

Usage:

11

%/%

Example:

> c(2,3,5,7) %/% 2

[1] 1 1 2 3

Modulo Division

 x mod y: Modulo operation finds the remainder after division of one number by another.

Usage:

%%

Example:

> c(2,3,5,7) %% 2

[1] 0 1 1 1

Maximum & Minimum

The max(), min() is a built in R- function. max() is used to calculate the maximum of vector
elements or maximum of a particular column of a data frame. min(), is used to calculate the
minimum of vector elements or minimum of a particular column of a data frame.

Usage:

• max(x)

• min(x), where x is a numeric or character arguments.

Example:

> max(1.2, 3.4, -7.8)

[1] 3.4

> min(1.2, 3.4, -7.8)

[1] -7.8

Absolute Value

To calculate the absolute value in R, use the abs() method. The abs() function takes a real
number or numeric value as a vector, matrix, or data frame and returns the absolute value.

12

Usage:

abs(x), where x is a numeric or character arguments.

Example:

> abs(c(-1,-2,-3,4,5))

[1] 1 2 3 4 5

Square Root

sqrt() function in R Language is used to calculate the mathematical square-root of the value
passed to it as argument.

Usage:

sqrt(x), where x is a numeric or character arguments.

Example:

 > sqrt(c(4,9,16,25))

[1] 2 3 4 5

Sum

sum() function in R is used to calculate the sum of vector elements.

Usage:

sum(x), where x is a numeric or character arguments.

Example:

> sum(c(2,3,5,7))

[1] 17

Product

prod() function in R Language is used to return the multiplication results of all the values
present in its arguments.

Usage:

prod(x), where x is a numeric or character arguments.

13

Example:

> prod(c(2,3,5,7))

[1] 210

Round

round() function in R Language is used to round off values to a specific number of decimal
values.

Usage:

round(x), where x is a numeric or character arguments.

Example:

> round(1.23)

[1] 1

round(), floor(), ceiling() Rounding, up and down

log() Logarithms

exp() Exponential function
sin(), cos(), tan(), Trigonometric functions

sinh(), cosh(), tanh(), Hyperbolic functions

Assignments

Assignment operator “=” can be used to assign the value to a variable in an environment.

Example:

> x1 = c(1,2,3,4)

> x2 = x1^2

> x2

[1] 1 4 9 16

14

3. FUNCTIONS & MATRIX OPERATIONS

Functions

A function is a set of statements organized together to perform a specific task. R has a large
number of in-built functions and the user can create their own functions. In R, a function is
an object so the R interpreter is able to pass control to the function, along with arguments
that may be necessary for the function to accomplish the actions. The function in turn
performs its task and returns control to the interpreter as well as any result which may be
stored in other objects.

Usage:

Name = function(Argument1, Argument2, ...)

{

expression

}

where expression is a single command or a group of commands

Function (Single Variable)

> abc = function(x){

x^2

}

> abc(3)

[1] 9

Function (Two Variables)

> abc = function(x,y){

x^2+y^2

}

> abc(-2,-1)

[1] 5

Function (Other Variables)

> abc = function(x){

sin(x)^2+cos(x)^2 + x

15

}

> abc(8)

 [1] 9

Matrix

In R, a matrix is a collection of elements of the same data type (numeric, character, or logical)
arranged into a fixed number of rows and columns. It is a rectangular array with p rows and
n columns. An element in the i-th row and j-th column is denoted by Xij or or X[i, j]. A Matrix
is created using the matrix() function.

 In R, a 4 × 2-matrix X can be created with a following command:

 > x = matrix(nrow=4, ncol=2, data=c(1,2,3,4,5,6,7,8))

 > x

 [,1] [,2]

 [1,] 1 5

 [2,] 2 6

 [3,] 3 7

 [4,] 4 8

Note:

• The parameter nrow defines the row number of a matrix.

• The parameter ncol defines the column number of a matrix.

• The parameter data assigns specified values to the matrix elements.

• The values from the parameters are written column-wise in matrix.

• One can access a single element of a matrix with x[i,j]:

> x[3,2]

[1] 7

• In case, the data has to be entered row wise, then a 4 × 2-matrix X can be created with

 > x = matrix(nrow=4, ncol=2, data=c(1,2,3,4,5,6,7,8), byrow = TRUE)

> x

 [,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

16

[4,] 7 8

Properties of a Matrix

dim() function in R Language is used to get the dimension of the specified matrix, array or
data frame. nrow() function is used to return the number of rows of the specified matrix.
ncol() function is used to return the number of columns of the specified matrix. mode()
function informs the type of an object in the matrix.

Usage:

• dim(x), where x is an R object, for example a matrix, array or data frame.

• nrow(x), where x is a vector, array, data frame.

• ncol(x), where x is a vector, array, data frame.

• mode(x), where x is any R object.

Example:

> dim(x)

[1] 4 2

> nrow(x)

 [1] 4

> ncol(x)

 [1] 2

> mode(x)

[1] "numeric"

Assigning a specified number to all matrix elements:

> x = matrix(nrow=4, ncol=2, data=2)

> x

[,1] [,2]

[1,] 2 2

[2,] 2 2

[3,] 2 2

[4,] 2 2

17

Diagonal Matrix

diag() function in R Language is used to construct a diagonal matrix. t() function in R Language
is used to calculate transpose of a matrix or Data Frame.

Example:

> d = diag(1, nrow=2, ncol=2)

> d

[,1] [,2]

[1,] 1 0

[2,] 0 1

Transpose of a Matrix

t() function in R Language is used to calculate transpose of a matrix or Data Frame.

Example:

> x = matrix(nrow=4, ncol=2, data=1:8, byrow=T)

> x

 [,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

[4,] 7 8

> xt = t(x)

> xt

 [,1] [,2] [,3] [,4]

[1,] 1 3 5 7

[2,] 2 4 6 8

Matrix Operations

There are multiple matrix operations that you can perform in R. The most basic matrix
operations are addition and subtraction. Addition and subtraction of matrices of same
dimensions can be executed with the usual operators + and -.

18

Matrix Multiplication

In R, the operator%*% is used for matrix multiplication satisfying the condition that the
number of columns in the first matrix is equal to the number of rows in second.

Example:

> xtx = t(x) %*% x

> xtx

[,1] [,2]

[1,] 84 100

[2,] 100 120

Inverse of a Matrix

In order to calculate the inverse of a matrix in R, solve() function is used. It finds the inverse
of a positive definite matrix.

Example:

> y=matrix(nrow=2, ncol=2, byrow=T, data=c(84,100,100,120))

> y

 [,1] [,2]

[1,] 84 100

[2,] 100 120

> solve(y)

 [,1] [,2]

[1,] 1.50 -1.25

[2,] -1.25 1.05

19

4. MISSING DATA & LOGICAL OPERATORS

Missing Data

R represents missing observations through the data value NA. We can detect missing values
using is.na. NA is a placeholder for something that exists but is missing. NULL stands for
something that never existed at all.

Example:

 > x = NA

> is.na(x)

 [1] TRUE

> x = c(11, NA, 13)

 > is.na(x)

[1] FALSE TRUE FALSE

Logical Operators and Comparisons
The following table shows the operations and functions for logical comparisons (True or
False). TRUE and FALSE are reserved words denoting logical constants.

Operator Executions

 > Greater than

 >= Greater than or equal

 < Less than

 <= Less than or equal

 == Exactly equal to

 ! = Not equal to

 ! Negation(not)

 &, && and

 |, || or

 Xor() either…or(exclusive)

 isTRUE(x) Test if x is TRUE

 TRUE true

 FALSE false

• The shorter form performs element-wise comparisons in almost the same way as arithmetic
operators.

20

• The longer form evaluates left to right examining only the first element of each vector.
Evaluation proceeds only until the result is determined.

• The longer form is appropriate for programming control-flow and typically preferred in if
clauses (conditional).

Examples:

> 8 > 7

[1] TRUE

• Is 8 less than 6?

> isTRUE(8<6)

[1] FALSE

> x = 5

> (x < 10) && (x > 2)

[1] TRUE

• Is x greater than 10 or x is greater than 5?

> (x > 10) || (x > 5)

[1] FALSE

• Is x equal to 10 and is y equal to 20?

> x = 10

> y = 20

> (x == 10) & (y == 20)

[1] TRUE

Examples using & and |

> x = 1:6

> (x > 2) | (x < 5)

[1] TRUE TRUE TRUE TRUE TRUE TRUE

[1] 1 2 3 4 5 6

> x = 1:6

> (x > 2) & (x < 5)

21

[1] FALSE FALSE TRUE TRUE FALSE FALSE

> x[(x > 2) & (x < 5)]

[1] 3 4

The longer form evaluates left to right examining only the first element of each vector

> x = 1:6

> (x > 2) && (x < 5)

[1] FALSE

is equivalent to:

> (x[1] > 2) & (x[1] < 5)

 [1] FALSE

Note: x[1] is only the first element in x

Truth Table

A truth table is a display of the inputs to, and the output of a Boolean function organized as a
table where each row gives one combination of input values and the corresponding value of
the function.

Statement 1
::
(x)

Statement 2
::
(y)

Outcomes
::
x and y

Outcomes
::
x or y

True True True True

True False False True

False True False True

False False False False

22

5. CONDITIONAL EXECUTION & LOOPS

Control structures in R:

• Control statements,

• Loops,

• Functions.

Conditional Execution

Conditional execution controls whether or not the core will execute an instruction. If they
match then the instruction is executed, otherwise the instruction is ignored. The condition
attribute is postfixed to the instruction mnemonic, which is encoded into the instruction.
Conditionals are expressions that perform different computations or actions depending on
whether a predefined Boolean condition is TRUE or FALSE. Conditional statements include
if(), the combination if()/esle(), and ifelse().

Usage:

if (condition) {executes commands if condition is TRUE}

if (condition) {executes commands if condition is TRUE} else { executes commands if condition
is FALSE }

Example:

> x = 5

> if (x==3) { x = x-1 } else { x = 2*x }

> x [1] 1

Interpretation:

• If x = 3, then execute x = x – 1.

• If x ≠ 3, then execute x = 2*x.

In this case, x = 5, so x ≠ 3. Thus x = 2*5

ifelse Execution

The ifelse function is used to assign one object or another depending on whether the first
argument, test, is TRUE or FALSE.

Usage: ifelse(test, yes, no)

Example:

> x = 1:10

23

>x

[1] 1 2 3 4 5 6 7 8 9 10

> ifelse(x<6, x^2, x+1)

[1] 1 4 9 16 25 7 8 9 10 11

Interpretation:

• If x < 6 (TRUE), then x = x2 (YES).

• If x ≥ 6 (FALSE), then x = x + 1 (NO).

• So, for x = 1, 2, 3, 4, 5, we get x = x2=1, 4, 9, 16, 25

• For x=6, 7, 8, 9, 10, we get x= x+1 = 7, 8, 9, 0, 11

Loops

Repetitive commands are executed by loops

•for loop

•while loop

•repeat loop

For Loop

For loop in R Programming Language can be used to execute a group of statements repeatedly
depending upon the number of elements in the object. It is an entry-controlled loop. In this
loop the test condition is tested first, then the body of the loop is executed, the loop body
would not be executed if the test condition is false.

Usage:

for (var in vector) {commands to be executed}

Here, var takes on each value of vector during the loop.

Example:

> for (i in c(2,4,6,7)) { print(i^2) }

[1] 4

[1] 16

[1] 36

[1] 49

While Loop

24

A "While" Loop is used to repeat a specific block of code an unknown number of times, until
a condition is met.

Usage: while(condition){ commands to be executed as long as condition is TRUE }

Example:

> i = 1

> while (i<5) {

+ print(i^2)

+ i = i+2

+}

 [1] 1

 [1] 9

Repeat Loop

Repeat loop in R is used to iterate over a block of code multiple number of times. And also, it
executes the same code again and again until a break statement is found. Additionally, the
command next is available, to return to the beginning of the loop (to return to the first
command in the loop).

Usage: repeat{ commands to be executed }

Example:

> i = 1

> repeat{

 + i = i+1

 + if (i < 10) next

 + print(i^2)

 + if (i >= 13) break

+}

 [1] 100

 [1] 121

 [1] 144

 [1] 169

25

6. DATA MANAGEMENT

Sequences

seq() function in R Language is used to create a sequence of elements in a Vector. It takes the
length and difference between values as optional argument.

Usage:

seq(from,to,by)

Example:

> seq(from=-4, to=4)

[1] -4 -3 -2 -1 0 1 2 3 4

Sequence with constant increment:

Example:

> seq(from=20, to=10, by=-2)

[1] 20 18 16 14 12 10

Downstream sequence with constant increment:

Example:

> seq(from=3, to=-2, by=-0.5)

[1] 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2

Sequences with a predefined length:

Sequences with a predefined length with default increment +1.

Examples:

> seq(to=10, length=10)

[1] 1 2 3 4 5 6 7 8 9 10

> x=50

> seq(0, x, x/10)

[1] 0 5 10 15 20 25 30 35 40 45 50

26

Index-Vector

Vector elements are accessed using indexing vectors, which can be numeric, character or
logical vectors. You can access an individual element of a vector by its position (or "index"),
indicated using square brackets.

Example:

> x = c(9,8,7,6)

> ind = seq(along=x)

> ind

[1] 1 2 3 4

> x[ind[2]]

[1] 8

Generating Sequence of Alphabets

letters are used to find sequence of lowercase alphabets. To create a sequential uppercase
alphabet in R, use the LETTERS constant. The LETTERS is a character constant in R that
generates an uppercase alphabet, and you can use it with different functions to extract the
result as per your requirement.

Usage:

• letters[from_index:to_index]

• LETTERS[from_index:to_index]

Examples:

> letters

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n"

[15] "o" "p" "q" "r" "s" "t" "u" "v" "w" "x" "y" "z“

> letters[1:3]

[1] "a" "b" "c"

> LETTERS

[1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N"

[15] "O" "P" "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

> LETTERS[21:23]

[1] "U" "V" "W“

27

Repeats

Command rep() is used to replicate the values in a vector.

Usage:

• rep(x, times=n)

• rep(x, each=n)

Example:

> rep(1:4, each = 2, times = 3)

[1] 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4

Repetition of elements in a matrix:

> x = matrix(nrow=2, ncol=2, data=1:4, byrow=T)

> x

 [,1] [,2]

[1,] 1 2

[2,] 3 4

> rep(x, 3)

[1] 1 3 2 4 1 3 2 4 1 3 2 4

Repetition of characters:

> rep(c("a", "b", "c"), 2)

[1] "a" "b" "c" "a" "b" "c"

Sorting

To sort a data frame in R, use the order() function. By default, sorting is ASCENDING. Prepend
the sorting variable by a minus sign to indicate DESCENDING order.

Usage:

sort(x, decreasing = FALSE, ..,), where x is a sequence of numeric, complex, character or logical

vectors.

Example:

> y = c(8,5,7,6)

> y

28

[1] 8 5 7 6

> sort(y)

[1] 5 6 7 8

> sort(y, decreasing = TRUE)

[1] 8 7 6 5

Ordering

The order() function in R is very useful in sorting a particular data value according to a specific
variable. It will arrange the data or orders the data based on given parameters.

Usage:

order(x, decreasing = FALSE, ..,), where x is a sequence of numeric, complex, character or
logical vectors.

Example:

> y = c(8,5,7,6)

> y

[1] 8 5 7 6

> order(y)

[1] 2 4 3 1

> order(y, decreasing = TRUE)

[1] 1 3 4 2

Lists

Lists are the R objects which contain elements of different types like − numbers, strings,
vectors and another list inside it. A list can also contain a matrix or a function as its elements.
List is created using list() function. Lists can be indexed by position.

For example: x[[5]] refers to the fifth element of x.

Difference between a vector and a list:

• In a vector, all elements must have the same mode.

• In a list, the elements can have different modes.

List can contain any kind. An example of a list that contains different object types:

29

> z1 = list(c("water", "juice", "lemonade"), rep(1:4, each=2), matrix(data=5:8, nrow=2, ncol=2,
byrow=T))

> z1

[[1]]

[1] "water" "juice" "lemonade"

[[2]]

[1] 1 1 2 2 3 3 4 4

[[3]]

[,1] [,2]

[1,] 5 6

[2,] 7 8

Access the elements of a list using the operator [[]]

Following commands work.

> z1[[1]]

[1] "water" "juice" "lemonade"

Suppose we want to extract "juice".

z1[[1]][2]

[1] "juice"

Mode

Every object has a mode.

The mode indicates how the object is stored in memory: as a

• number,

• character string,

• list of pointers to other objects,

• function etc.

OBJECT EXAMPLE MODE

Number 1.234 numeric
Vector of numbers c(5, 6, 7, 8) numeric

Character string "India" character
Vector of character strings c("India", "USA") character

30

Factor factor(c("UP", "MP")) numeric
List list("India", "USA") list

Data frame data.frame(x=1:2,
y=c("India", "USA"))

list

Function print function

Usage:

mode(x), where x is a numeric or character arguments.

Example:

> mode(c(5,6,7,8))

[1] "numeric"

> mode(c("India", "USA"))

[1] "character"

> mode(list("India", "USA"))

[1] "list"

> mode(print)

[1] "function"

Vector Indexing
Vector elements are accessed using indexing vectors, which can be numeric, character or
logical vectors. You can access an individual element of a vector by its position (or "index"),
indicated using square brackets.

Example:

> x = 1:10

>x

[1] 1 2 3 4 5 6 7 8 9 10

> x[(x > 5)]

[1] 6 7 8 9 10

> x[(x%%2==0)]

[1] 2 4 6 8 10

31

Logical Vector

A logical vector is a vector that only contains TRUE and FALSE values. In R, true values are
designated with TRUE, and false values with FALSE. When you index a vector with a logical
vector, R will return values of the vector for which the indexing vector is TRUE.

Example:

> x[5] = NA

> x

[1] 1 2 3 4 NA 6 7 8 9 10

> y = x[!is.na(x)]

> y

[1] 1 2 3 4 6 7 8 9 10

Vector of Negative integers

A negative of a vector represents the direction opposite to the reference direction. It means
that the magnitude of two vectors is same but they are opposite in direction.

> x = 1:10

> x

[1] 1 2 3 4 5 6 7 8 9 10

> x[-(1:5)]

[1] 6 7 8 9 10

String Vector

names() function in R Language is used to get or set the name of an Object. This function takes
object i.e., vector, matrix or data frame as argument along with the value that is to be assigned
as name to the object. The length of the value vector passed must be exactly equal to the
length of the object to be named.

Usage:

names(x), where x is an R object.

Example:

> z = list(a1 = 1, a2 = "c", a3 = 1:3)

> z

32

$a1

[1] 1

$a2

[1] "c"

$a3

[1] 1 2 3

> names(z)

[1] "a1" "a2" "a3"

Empty Index

In R Programming Language an empty index can be created by simply not passing any value
while creating a regular index using the x[] function.

Example:

> x = 1:10

>x

[1] 1 2 3 4 5 6 7 8 9 10

> x[]

[1] 1 2 3 4 5 6 7 8 9 10

Matrix created from Lists

List can be heterogeneous (mixed modes). We can start with a heterogeneous list, give it
dimensions, and thus create a heterogeneous matrix that is a mixture of numeric and
character data.

Example:

> ab = list(1, 2, 3, "X", "Y", "Z")

> dim(ab) = c(2,3)

> print(ab)

 [,1] [,2] [,3]

[1,] 1 3 "Y"

[2,] 2 "X" "Z"

33

Factors

Factors in R Programming Language are data structures that are implemented to categorize
the data or represent categorical data and store it on multiple levels. They can be stored as
integers with a corresponding label to every unique integer. Factors are the data objects
which are used to categorize the data and store it as levels. They can store both strings and
integers. They are useful in data analysis for statistical modeling.

Usage:

• factor(x)

• factor(x,levels), where x is a numeric or character arguments.

Example:

> x = factor(c("juice", "juice", "lemonade",

"juice", "water"))

>x

[1] juice juice lemonade juice water

Levels: juice lemonade water

The single levels are ordered alphabetically:

juice --- lemonade --- water

Unclass Function

All objects in R have a class, reported by the function class. For simple vectors this is just the
mode, for example "numeric", "logical", "character" or "list", but "matrix", "array", "factor"
and "data.frame" are other possible values. unclass() is used to temporarily remove the
effects of class. The command unclass shows, an integer is assigned to every factor level.

Usage:

unclass(x), where x is an R object.

Example:

> x = factor(c("juice", "juice", "lemonade", "juice", "water"))

> unclass(x)

[1] 1 1 2 1 3

attr(,"levels")

[1] "juice" "lemonade" "water"

34

Ordered Factor

The levels of factors are stored in alphabetical order, or in the order they were specified to
factor if they were specified explicitly. Sometimes the levels will have a natural ordering that
we want to record and want our statistical analysis to make use of. The ordered() function
creates such ordered factors but is otherwise identical to factor.

Example:

> income = ordered(c("high", "high", "low", "medium", "medium"), levels=c("low", "medium",
"high"))

> income

[1] high high low medium medium

Levels: low < medium < high

Turning a vector into a factor:

A vector can be turned into a factor with the command as.factor(). However, it converts a
vector into a factor and uses value labels as factor levels.

Usage:

as.factor(x), where x is a vector of data, taking a small number of distinct values.

Example:

> x = c(4, 5, 1, 2, 3, 3, 4, 4, 5, 6)

> x = as.factor(x)

> x

[1] 4 5 1 2 3 3 4 4 5 6

Levels: 1 2 3 4 5 6

35

7. STRINGS - DISPLAY & FORMATTING

Any value written within a pair of single quote or double quotes in R is treated as a string.
Internally R stores every string within double quotes, even when you create them with single
quote.

Formatting and Display of strings

A common task when working with character strings involves printing and displaying them on
the screen or on a file. R provides a series of functions for printing strings. Some of the
printing functions are

• print(x), where x is an object used to select a method.

• format(x), where x is any R object, typically numeric.

• cat(x), where x is an R object

• paste(x), where x is a one or more R objects, to be converted to character vectors.

Print Function

In R there are various methods to print the output. Most common method to print output in
R program, is the print() function.

Example:

> print(sqrt(2), digits=16)

[1] 1.414213562373095

Limitations:

• The print function has a significant limitation that it prints only one object at a time.
Trying to print multiple items gives error message:

 Example:

> print("The zero occurs at", 2*pi, "radians.")

Error in print.default("The zero occurs at", 2 * pi, "radians."): invalid 'quote' argument

• The only way to print multiple items is to print them one at a time

 Example:

> print("The zero occurs at"); print(2*pi);

print("radians")

[1] "The zero occurs at"

[1] 6.283185

[1] "radians"

36

Format Function

The function format() allows you to format an R object for pretty printing. Essentially, format()
treats the elements of a vector as character strings using a common format. This is especially
useful when printing numbers and quantities under different formats.

Usage:

format(x, trim = FALSE, digits = NULL, nsmall = 0L, justify = c("left", "right", "centre", "none"),
width = NULL, ...)

Example:

> print(format(0.5, digits=10, nsmall=15))

[1] "0.500000000000000"

Cat Function
The function cat() converts its arguments to character strings, concatenates them, separating
them by the given sep= string, and then prints them. cat puts a space between each item by
default. One must provide a newline character (\n) (newline) to terminate the line. cat is
useful for producing output in user defined functions.

Example:

> cat(1:10, sep = "_")

1_2_3_4_5_6_7_8_9_10

The cat function is an alternative to print that lets you combine multiple items into a
continuous output as well as it can also print simple vectors.

> cat("The zero occurs at", 2*pi, "radians.", "\n")

The zero occurs at 6.283185 radians.

> evenno = c(2,4,6,8,10)

> evenno

[1] 2 4 6 8 10

> cat("The first few even numbers are:", evenno, "...\n")

The first few even numbers are: 2 4 6 8 10 …

Paste Function

The paste() function concatenates several strings together. It creates a new string by joining
the given strings end to end. The result of paste() can be assigned to a variable. paste inserts
a single space between pairs of strings. A desired line break can be achieved with "\n"

37

(newline). The collapse parameter defines a top-level separator and instructs paste to
concatenate the generated strings using that separator:

Usage:

paste (..., sep = " ", collapse = NULL).

Example:

> x = paste("Ex", 1:5, sep="_", collapse="")

> x[1]

[1] "Ex_1Ex_2Ex_3Ex_4Ex_5"

> names = c("Prof. Singh", "Mr. Venkat", "Dr. Jha")

> paste(names, "is", "a good", "person.", collapse=", and ")

[1] "Prof. Singh is a good person., and Mr. Venkat is a good person., and Dr. Jha is a good
person.”

Splitting
The strsplit() in R programming language function is used to split the elements of the specified
character vector into substrings according to the given substring taken as its parameter.

Usage:

strsplit(x, split, fixed = FALSE, ...)

Example:

> x = "The&!syntax&!of&!paste&!is!&available!&inthe online-help"

> x

[1] "The&!syntax&!of&!paste&!is!&available!

&inthe online-help"

> abc = strsplit(x,"!&")

> abc

[[1]]

[1] "The&!syntax&!of&!paste&!is" "available!&inthe online-help"

Note: To access single components:

> abc[[1]][1]

[1] "The&!syntax&!of&!paste&!is"

38

String Manipulation Functions
Here are the functions available for string manipulation in R:

• nchar(x)

• tolower(x)

• toupper(x), where x is a character vector, or a vector to be coerced to a character
vector

nchar Function

With the help of this nchar() function, we can count the characters. This function consists of
a character vector as its argument which then returns a vector comprising of different sizes
of the elements of x. nchar() is the fastest way to find out if elements of a character vector
are non-empty strings or not.

Example:

> x = "R course 24.07.2017"

> nchar(x)

[1] 19

tolower and toupper Functions

The tolower() function is used to convert the string characters to the lower case. The
toupper() function is used to convert the string characters to upper case.

Usage:

• tolower(x)

• toupper(x), where x is a character vector, or a vector to be coerced to a character
vector

Example:

> x = "R course will start from 24.07.2022"

> tolower(x)

[1] "r course will start from 24.07.2022"

> toupper(x)

[1] "R COURSE WILL START FROM 24.07.2022"

Operations with Strings

39

R has various functions for regular expression-based match and replaces. Some functions
(e.g., grep, grepl, etc.) are used for searching for matches and functions whereas sub and gsub
are used for performing replacement.

• sub()

• gsub()

• grep()

sub and gsub Functions

The sub() and gsub() function in R is used for substitution as well as replacement operations.
The sub() function will replace the first occurrence leaving the other as it is. On the other
hand, the gsub() function will replace all the strings or values with the input strings.

Usage:

sub(old, new, string)

gsub(old, new, string)

Example:

> y = "Mr. Singh is the smart one. Mr. Singh is funny, too."

> y

[1] "Mr. Singh is the smart one. Mr. Singh is funny, too."

> sub("Mr. Singh","Professor Jha", y)

[1] "Professor Jha is the smart one. Mr. Singh is funny, too."

> gsub("Mr. Singh","Professor Jha", y)

[1] "Professor Jha is the smart one. Professor Jha is funny, too."

grep Function

grep() function in R Language is used to search for matches of a pattern within each element
of the given string. If its value is TRUE, it returns the matching elements vector, else return
the indices vector. value = FALSE is default.

Usage:

grep(pattern, x, value=TRUE/FALSE)

Examples:

grep(pattern, x, value = TRUE) returns a character vector containing the selected elements
of x.

40

> x = c("R Course", "exercises", "include examples of R language")

> grep("ex", x , value=T)

[1] "exercises" "include examples of R language"

grep(pattern, x, value = FALSE) returns an integer vector of the indices of the elements of x
that yielded a match.

> x = c("R Course", "exercises", "include examples of R language")

> grep("ex", x , value=F)

[1] 2 3

Combining two Strings

The c() in R programming language function is used to combine two strings.

Example:

> x = "R course 24.07.2022"

> y = "Number of participants: 25"

> c(x,y)

[1] "R course 24.07.2022" "Number of participants: 25"

eval Function

eval() function in R Language is used to evaluate an expression passed to it as argument.

Usage:

eval(x), where x is an object to be evaluated

Example:

> eval("6+8")

[1] "6+8"

> eval(6+8)

[1] 14

> eval("6+8 is Fourteen")

[1] "6+8 is Fourteen"

https://www.geeksforgeeks.org/introduction-to-r-programming-language/

41

The eval() function evaluates an expression, but "6+8" is a string, not an expression whereas
6+8 is not an expression so it evaluates.

parse Function

parse() function in R language is used to convert an object of character class to an object of
expression class. parse() with text=string is used to change the string into an expression.

Usage:

parse(x), where x is an object of character class.

Example:

> eval("6+8")

[1] "6+8"

> class("6+8")

[1] "character"

> eval(parse(text="6+8"))

[1] 14

> class(parse(text="6+8"))

[1] "expression"

42

8. DATA FRAMES

A data frame is a table or a two-dimensional array-like structure in which each column
contains values of one variable and each row contains one set of values from each column.
Following are the characteristics of a data frame. The column names should be non-empty.
The row names should be unique. Data frames contain complete data sets that are mostly
created with other programs (spreadsheet-files, software SPSS-files, Excel-files etc.).
Variables in a data frame may be numeric (numbers) or categorical (characters or factors).

Example:

An example data frame painters is available in the library MASS.

> library(MASS)

> painters

 Composition Drawing Colour Expression School

Da Udine 10 8 16 3 A

Da Vinci 15 16 4 14 A

Del Piombo 8 13 16 7 A

Del Sarto 12 16 9 8 A

Fr. Penni 0 15 8 0 A

Here, the names of the painters serve as row identifications, i.e., every row is assigned to the
name of the corresponding painter.

Row Names

All data frames have a row names attribute, a character vector of length the number of rows
with no duplicates nor missing values.

Usage:

rownames(x), where x is an object of class “data.frame”.

Example:

> rownames(painters)

[1] "Da Udine" "Da Vinci" "Del Piombo"

43

[4] "Del Sarto" "Fr. Penni" "Guilio Romano"

[7] "Michelangelo" "Perino del Vaga" "Perugino"

[10] "Raphael" "F. Zucarro" "Fr. Salviata"

[13] "Parmigiano" "Primaticcio" "T. Zucarro"

[16] "Volterra" "Barocci" "Cortona"

[19] "Josepin" "L. Jordaens" "Testa"

[22] "Vanius" "Bassano" "Bellini"

[25] "Giorgione" "Murillo" "Palma Giovane"

Column Names

colnames() method in R is used to rename and replace the column names of the data frame
in R. The columns of the data frame can be renamed by specifying the new column names as
a vector. The new name replaces the corresponding old name of the column in the data frame.

Usage:

colnames(x), where x is an object of class “data.frame”.

Example:

> colnames(painters)

[1] "Composition" "Drawing" "Colour" "Expression" "School"

Variables

The data set contains four numerical variables (Composition, Drawing, Colour and
Expression), as well as one factor variable (School).

Example:

> is.numeric(painters$School)

[1] FALSE

> is.factor(painters$School)

[1] TRUE

> is.numeric(painters$Drawing)

[1] TRUE

> is.factor(painters$Drawing)

[1] FALSE

44

Summary Function

The summary() command will provide you with a statistical summary of your data. The output
of summary command depends on the object you are looking at. It gives the output as the
largest value in data, the least value or mean and median and another similar type of
information.

Usage:

summary(x), where x is an object for which a summary is desired.

Example:

> summary(painters)

 Composition Drawing Colour Expression School

Min. : 0.00 Min. : 6.00 Min. : 0.00 Min. : 0.000 A :10

1st Qu. : 8.25 1st Qu. : 10.00 1st Qu. : 7.25 1st Qu. : 4.000 D :10

Median :12.50 Median : 13.50 Median :10.00 Median : 6.000 E : 7

Mean :11.56 Mean :12.46 Mean :10.94 Mean : 7.667 G : 7

3rd Qu. :15.00 3rd Qu. :15.00 3rd Qu. :16.00 3rd Qu.: 11.500 B : 6

Max. :18.00 Max. :18.00 Max. :18.00 Max. :18.000 C : 6

 (Other): 8

Test if we are dealing with a data frame:

> is.data.frame(painters)

[1] TRUE

Creating data frames

We can create a data frame in R by passing the variable a,b,c,d into the data. frame() function.
We can R create data frame and name the columns with name() and simply specify the name
of the variables.

Example:

> x = 1:16

> y = matrix(x, nrow=4, ncol=4)

> z = letters[1:16]

> x

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

45

> y

 [,1] [,2] [,3] [,4]

[1,] 1 5 9 13

[2,] 2 6 10 14

[3,] 3 7 11 15

[4,] 4 8 12 16

> z

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p"

> datafr = data.frame(x, y, z)

> datafr

x X1 X2 X3 X4 z

1 1 1 5 9 13 a

2 2 2 6 10 14 b

3 3 3 7 11 15 c

4 4 4 8 12 16 d

5 5 1 5 9 13 e

6 6 2 6 10 14 f

7 7 3 7 11 15 g

8 8 4 8 12 16 h

9 9 1 5 9 13 i

10 10 2 6 10 14 j

11 11 3 7 11 15 k

12 12 4 8 12 16 l

13 13 1 5 9 13 m

14 14 2 6 10 14 n

15 15 3 7 11 15 o

16 16 4 8 12 16 p

46

Structure of the data

Data structures in R programming are tools for holding multiple values. R's base data
structures are often organized by their dimensionality (1D, 2D, or nD) and whether they're
homogeneous (all elements must be of the identical type) or heterogeneous (the elements
are often of various types).

Usage:

str(x), where x is any R object about which you want to have some information.

Example:

> str(painters)

'data.frame' : 54 obs. of 5 variables:

$ Composition: int 10 15 8 12 0 15 8 15 4 17 ...

$ Drawing : int 8 16 13 16 15 16 17 16 12 18 ...

$ Colour : int 16 4 16 9 8 4 4 7 10 12 ...

$ Expression : int 3 14 7 8 0 14 8 6 4 18 ...

$ School : Factor w / 8 levels "A", "B", "C", "D"..: 1 1 1 1 1 1 1 1 ...

Note: int means integer.

How to extract variable from a data frame?

▪ Extract a variable from data frame using $

▪ Variables can be extracted using the $ operator followed by the name of the variable.

Suppose we want to extract information on variable School from the data set painters.

> painters$School

[1] A A A A A A A A A A B B B B B B C C C C C C D D D D D

[28] D D D D D E E E E E E E F F F F G G G G G G G H H H H

Levels: A B C D E F G H

How to extract data from a data frame?

▪ The data from a data frame can be extracted by using the matrix-style [row, column]
indexing.

Suppose, if we want to extract information on the first painter Da Udine on the variable
Composition from the data set painters.

47

> painters["Da Udine", "Composition"]

[1] 10

Subsets of a Data Frame

A Data Frame is a two-dimensional data structure, i.e., data is aligned in a tabular fashion in
rows and columns. It is the process of selecting a set of desired rows and columns from the
data frame.

Usage:

subset(x), where x is an object to be subsetted.

Example:

> subset(painters, School=='F')

 Composition Drawing Colour Expression School

Durer 8 10 10 8 F

Holbein 9 10 16 13 F

Pourbus 4 15 6 6 F

Van Leyden 8 6 6 4 F

Splitting of a data frame

Using the 'product' and 'condition' variables, divide the data frame into groups. Use the
unsplit() function to restore the original data frame from the split() method. The unsplit()
method has the following syntax. Use the split() function in R to split a vector or data frame.

Usage:

split(x), where x is a vector or data frame containing values to be divided into groups.

Example:

Following command splits painters with respect to School (A,B,C,… categories)

> splitted = split(painters, painters$School)

> splitted

$A

 Composition Drawing Colour Expression School

Da Udine 10 8 16 3 A

Da Vinci 15 16 4 14 A

48

Del Piombo 8 13 16 7 A

Del Sarto 12 16 9 8 A

Fr. Penni 0 15 8 0 A

Guilio Romano 15 16 4 14 A

Michelangelo 8 17 4 8 A

Perino del Vaga 15 16 7 6 A

Perugino 4 12 10 4 A

Raphael 17 18 12 18 A

$B

 Composition Drawing Colour Expression School

F. Zucarro 10 13 8 8 B

Fr. Salviata 13 15 8 8 B

Parmigiano 10 15 6 6 B

Primaticcio 15 14 7 10 B

T. Zucarro 13 14 10 9 B

Volterra 12 15 5 8 B

And so on.

49

9. STATISTICAL FUNCTIONS
Suppose there are 10 persons coded into two categories as male and female.

 M, F, M, F, M, M, M, F, M, M.

Use a1 and a2 to refer to male and female categories. There are 7 male and 3 female persons,
denoted as n1 = 7 and n2 = 3. The number of observations in a particular category is called
the absolute frequency.

The relative frequencies of a1 and a2 are

This gives us information about the proportions of male and female.

Absolute and Relative Frequencies
Table uses the cross-classifying factors to build a contingency table of the counts at each
combination of factor levels. In R, the command table() creates the absolute frequency of
the variable of the data file.

Usage:

• table(x)

• table(x)/length(x), where x is one or more objects which can be interpreted as factors
or a list.

Example:

• ABSOLUTE FREQUENCY

> gender = c(1, 2, 1, 2, 1, 1, 1, 2, 1, 1)

> gender

[1] 1 2 1 2 1 1 1 2 1 1

> table(gender)

1 2

7 3

• RELATIVE FREQUENCY

> table(gender)/length(gender)

50

 1 2
0.7 0.3

Partition Values

The Partition Values are the measures used in statistics for dividing the total number for
dividing the total number of observations of a distribution into certain number of equal parts.

Quartile: Divides the data into 4 equal parts.

Decile: Divides the data into 10 equal parts.

Percentile: Divides the data into 100 equal parts.

Quantile

The generic function quantile produces sample quantiles corresponding to the given
probabilities. The smallest observation corresponds to a probability of 0 and the largest to a
probability of 1.

Usage:

• quantile(x, ...)

• quantile(x, probs = seq(0, 1, 0. 25),...), where x is a numeric vector.

Example:

> marks = c(68, 82, 63, 86, 34, 96, 41, 89, 29, 51, 75, 77, 56, 59, 42)

> quantile(marks)

 0% 25% 50% 75% 100%

29.0 46.5 63.0 79.5 96.0

> quantile(marks, probs=c(0,0.25,0.5,0.75,1))

 0% 25% 50% 75% 100%

29.0 46.5 63.0 79.5 96.0

Variability

Variability (also known as Statistical Dispersion) is one of the features of descriptive statistics.
Variability shows the spread of a data set around a point.

Data: 𝑥1, 𝑥2, … , 𝑥𝑛 where 𝑥 is a data vector.

51

To find the variability of this data:

> marks = c(68, 82, 63, 86, 34, 96, 41, 89, 29, 51, 75, 77, 56, 59, 42)

• Variance

Usage: var(x), where x is a numeric vector, matrix or data frame.

Example:

> var(marks)

[1] 439.3143

• Range

maximum(𝑥1, 𝑥2, … , 𝑥𝑛) - minimum(𝑥1, 𝑥2, … , 𝑥𝑛)

USAGE: max(x) - min(x), where x is any numeric or character objects.

• Interquartile Range

Third quartile(𝑥1, 𝑥2, … , 𝑥𝑛) - First quartile(𝑥1, 𝑥2, … , 𝑥𝑛)

Usage: IQR(x), where x is a numeric vector.

Example:

> IQR(marks)

[1] 33

• Quartile Deviation

 [Third quartile(𝑥1, 𝑥2, … , 𝑥𝑛) - First quartile(𝑥1, 𝑥2, … , 𝑥𝑛)]/2 = Interquartile range/2

Usage: IQR(x)/2, where x is a numeric vector.

Example:

> IQR(marks)/2

[1] 16.5

Correlation

52

Let x,y be the two data vectors

Data: 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛)

• Covariance

Usage: cov(x,y): covariance between x and y

Example:

> cov(c(1,2,3,4), c(1,2,3,4))

[1] 1.666667

> cov(c(1,2,3,4), c(-1,-2,-3,-4))

[1] -1.666667

• Correlation Coefficient

Measures the degree of linear relationship between the two variables.

Usage: cor(x,y): correlation between x and y

Example:

• Exact positive linear dependence

> cor(c(1,2,3,4), c(1,2,3,4))

[1] 1

• Exact negative linear dependence

> cor(c(1,2,3,4), c(-1,-2,-3,-4))

[1] -1

53

Graphics and Plots

The graphics package is an R base package for creating graphs. The plot function is the most
basic function to create plots in R. With this plotting function you can create several types of
plots, like line charts, bar plots or even boxplots, depending on the input.

Bar Plots

A bar plot is used to display the relationship between a numeric and a categorical variable.
Each entity of the categoric variable is represented as a bar. The size of the bar represents its
numeric value.

Usage:

barplot(x), where x refers to the vector of values for which the barplot is desired.

Example:

> gender = c(1, 2, 1, 2, 1, 1, 1, 2, 1, 1)

> gender

[1] 1 2 1 2 1 1 1 2 1 1

> barplot(gender)

Pie Diagram

A pie chart is a representation of values as slices of a circle with different colors. The slices are
labeled and the numbers corresponding to each slice is also represented in the chart. In R the
pie chart is created using the pie() function which takes positive numbers as a vector input.

Usage:

54

pie(x), where x refers to a vector of values for which the Pie diagram is desired.

Example:

> pie(gender)

Histogram

A histogram represents the frequencies of values of a variable bucketed into ranges.
Histogram is similar to bar chat but the difference is it groups the values into continuous
ranges. Each bar in histogram represents the height of the number of values present in that
range. R creates histogram using hist() function.

Usage:

hist(x), where x refers to a vector of values for which the histogram is desired.

Example:

> hist(gender)

55

Boxplot

Boxplots are a measure of how well distributed is the data in a data set. It divides the data set
into three quartiles. This graph represents the minimum, maximum, median, first quartile and
third quartile in the data set.

Usage:

boxplot(x), where x refers to the vector of values for which the boxplot is desired.

Example:

> marks = c(68, 82, 63, 86, 34, 96, 41, 89, 29, 51, 75, 77, 56, 59, 42)

> boxplot(marks)

56

Scatter Plot

A scatter plot is a set of dotted points to represent individual pieces of data in the horizontal
and vertical axis. A graph in which the values of two variables are plotted along X-axis and Y-
axis, the pattern of the resulting points reveals a correlation between them.

Usage:

• plot(x, y)

• plot(x, y, type)

type

“p" for points “b" for both

“l" for lines “c" for the lines part alone of “b"

“o" for both ‘overplotted’ “s" for stair steps.

“h" for ‘histogram’ like (or ‘high-density’) vertical lines

Parameters:

• x: This parameter sets the horizontal coordinates.

• y: This parameter sets the vertical coordinates.

• xlab: This parameter is the label for horizontal axis.

• ylab: This parameter is the label for vertical axis.

• main: This parameter main is the title of the chart.

• xlim: This parameter is used for plotting values of x.

• ylim: This parameter is used for plotting values of y.

• axes: This parameter indicates whether both axes should be drawn on the plot.

Examples:

57

Daily water demand in a city depends upon weather temperature. We know from experience
that water consumption increases as weather temperature increases. Data on 27 days is
collected as follows:

Daily water demand (in million litres), Temperature (in centigrade)

> water = c(33710, 31666, 33495, 32758, 34067, 36069, 37497, 33044, 35216, 35383, 37066,
38037, 38495, 39895, 41311, 42849, 43038, 43873, 43923, 45078, 46935, 47951, 46085,
48003, 45050, 42924, 46061)

> temp = c(23,25,25,26,27,28,30,26,29,32,33,34,35,38,39,42,43,44,45,45.5,

45,46,44,44,41,37,40)

> plot(water, temp)

> plot(water, temp, "l")

58

> plot(water, temp, "b")

> plot(water, temp, "o")

59

> plot(water, temp, "h")

> plot(water, temp, "s")

60

> plot(water, temp, xlab=" Daily Water Consumption ", ylab=" Day Temperature ",
main="Daily Water Consumption versus Day Temperature")

61

Smooth Scatter Plot

In statistical, several Scatter plot smoothing methods are available to fit a function through
the points of a scatterplot to best represent the relationship between the variables.

Usage:

scatter.smooth(x,y), where x, y refers to the arguments that provide the x and y coordinates
for the plot.

Example:

>scatter.smooth(water,temp)

More Functions:

• contour() for contour lines

• dotchart() for dot charts (replacement for bar charts)

• image() pictures with colors as third dimension

• mosaicplot() mosaic plot for (multidimensional) diagrams of categorical variables
(contingency tables)

• persp() perspective surfaces over the x–y plane

62

10. R PROGRAMMING

Steps to write a programme:

♦ A programme is a set of instructions or commands which are written in a sequence of

operations i.e., what comes first and what comes after that.

♦ The objective of a programme is to obtain a defined outcome based on input variables.

♦ The computer is instructed to perform the defined task.

♦ Computer is an obedient worker but it has its own language.

♦ We do not understand computer’s language and computer does not understand our

language.

♦ The software helps us and works like an interpreter between us and computer.

♦ We say something in software’s language and software informs it to computer.

♦ Computer does the task and informs back to software.

♦ The software translates it to our language and informs us.

♦ Programme in R is written as a function using function.

♦ Write down the objective, i.e., what we want to obtain as an outcome.

♦ Translate it in the language of R.

♦ Identify the input and output variables.

♦ Identify the nature of input and output variables, i.e., numeric, string, factor, matrix

etc.

♦ Input and output variables can be single variable, vector, matrix or even a function

itself.

♦ The input variables are the component of function which are reported in the argument

of function()

♦ The output of a function can also be input to another function.

♦ The output of an outcome can be formatted as per the need and requirement.

Tips

❖ Loops usually slower the speed of programmes, so better is to use vectors and

matrices.

❖ Use # symbol to write comment to understand the syntax.

❖ Use the variable names which are easy to understand.

❖ Don’t forget to initialize the variables.

63

Example:

Suppose we want to compute

At a Glance:

> f = function(x)

{

if(x>0) {exp((x+log(1+x^3))/x^2)}

 else if(x==0) {10}

 else {(2+x^3)/x}

}

Output:

> f(8)

[1] 1.249201

> f(-4)

[1] 15.5

> f(0)

[1] 10

64

APPLICATIONS

Real-Life uses of R
R applications are not enough until you don’t know how people/companies are using the R

programming language.

1. Facebook – Facebook uses R to update status and its social network graph. It is also

used for predicting colleague interactions with R.

2. Ford Motor Company – Ford relies on Hadoop. It also relies on R for statistical analysis

as well as carrying out data-driven support for decision making.

3. Google – Google uses R to calculate ROI on advertising campaigns and to predict

economic activity and also to improve the efficiency of online advertising.

4. Foursquare – R is an important stack behind Foursquare’s famed recommendation

engine.

5. Microsoft – Microsoft uses R for the Xbox matchmaking service and also as a statistical

engine within the Azure ML framework.

6. Mozilla – It is the foundation behind the Firefox web browser and uses R to visualize

web activity.

7. New York Times – R is used in the news cycle at The New York Times to crunch data

and prepare graphics before they go for printing.

8. Thomas Cook – Thomas Cook uses R for prediction and also Fuzzy Logic Systems to

automate price settings of their last-minute offers.

9. National Weather Service – The National Weather Service uses R at its River Forecast

Centers. Thus, it is used to generate graphics for flood forecasting.

10. Twitter – R is part of Twitter’s Data Science toolbox for sophisticated statistical

modeling.

https://data-flair.training/blogs/fuzzy-logic-systems/

65

Pros and Cons of R

R is one of the most popular languages for statistical modeling and analysis. But like every
other programming language, R has its own set of benefits and limitations. R is a continuously
evolving language. This means that many of the cons will gradually fade away with the future
updates of R.

Advantages of R:

• R is the most comprehensive statistical analysis package. As new technology and

concepts often appear first in R.

• As R programming language is an open source. Thus, you can run R anywhere and at

any time.

• R programming language is suitable for GNU/Linux and Windows operating system.

• R programming is cross-platform which runs on any operating system.

• In R, everyone is welcome to provide new packages, bug fixes, and code

enhancements.

Disadvantages of R:

• In the R programming language, the standard of some packages is less than perfect.

• Although, R commands give little pressure to memory management. So R

programming language may consume all available memory.

• In R basically, nobody to complain if something doesn’t work.

• R programming language is much slower than other programming languages such as

Python and MATLAB.

We got to know the positive aspects of R Language which place us a step ahead towards
generating our interest in learning R. We also inferred many of its weaknesses but, most of
them are under the correction phase through several upgrades and further development. We
believe that many of the limitations will be eradicated in future.

66

CONCLUSION

As a conclusion, R is the most popular analytic tool for data analysis and statistics, having

approximately 2 million users. It is ideal for all data analytics operations.

Being an open-source language, it is continuously expanding, people from all over the world

are contributing to its development.

The platform independence, diversity of packages, and robust graphical features add an

advantage to this primary tool in the analytics industry.

Due to a shortfall of data analysts, various jobs are available for R programmers in the Data

Analyst Industry. Both novice and professionals have a place in this industry.

Apart from the IT industry, several other industries are using data to transform problems into

solutions -

• Financial Sectors

• Banks

• Health Organizations

• Manufacturing companies

• Academia

• Governmental departments

Companies like Facebook, Google, Twitter are adopting R to meet their analytical goals.

Emerging startups are moving on the same path.

The adoption of R in data-driven companies is increasing rapidly and will flourish in the years

to come.

However, these organizations expect their new employees to be up to date with R. They want

them to be familiar with R and its use for Data Analytics. With so many advantages, this

language will continue to grow in popularity in the world of statistical computing and data

analytics.

67

REFERENCES

1. Introduction to Statistics and Data Analysis - With Exercises, Solutions and Applications in

R - By Christian Heumann, Michael Schomaker and Shalabh, Springer, 2016.

2. The R Software-Fundamentals of Programming and Statistical Analysis -Pierre Lafaye de

Micheaux, Rémy Drouilhet, Benoit Liquet, Springer 2013.

3. A Beginner's Guide to R (Use R) By Alain F. Zuur, Elena N. Ieno, Erik H.W.G. Meesters,

Springer 2009.

4. https://www.geeksforgeeks.org/r-programming-language-introduction

QUEUEING THEORY

Project Report submitted to

ST.MARY's COLLEGE (AUTONOMOUS), THOOTHUKUDI

Affiliated to

MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI

In partial fulfilment of the requirement for the award of degree of

Bachelor of Science in Mathematics

Submitted by

NAME REG.NO.
MEGI. B 19AUMT26

PRAVEENA. S 19AUMT34

RASIKA. T 19AUMT36

VARSIGA AROCKIYA FRANCIS. A 19AUMT48
VINNARASI. M 19AUMT49

Under the Guidance of

Dr.A. PUNITHA THARANI M.Sc., M.Phil., Ph.D.

Associate Professor of Mathematics and COE

St. Mary's College (Autonomous), Thoothukudi.

Department of Mathematics

St. Mary's College (Autonomous), Thoothukudi

(2021 2022)

CERTIFICATE

We hereby declare that the project report entitled "QUEUEING THEORY" being
submitted to St. Mary's College (Autonomous), Thoothukudi affiliated to

Manonmaniam Sundaranar University, Tirunelveli in partial fulfilment for the

award of degree of Bachelor of Science in Mathematics and it is a record of work done

during the year 2021 -2022 by the following students:

NAME REG.NO.

MEGI. B 19AUMT26

PRAVEENA. S 19AUMT34

RASIKA. T 19AUMT36

19AUMT48 VARSIGA AROCKIYA FRANCIS. A

VINNARASI. M 19AUMT49

V rel A-puhs Na
Signature of the HOD

Signature of the Guide

Dr. A. Punitha Tharani Dr. V.L. Stella Ar
M.Sc.,M.Ph

Head &Asst Professor

St. Mary's College
Thoothukud

M.Sc., M.Phil., Ph.D.,
Associate Professor,
Dept.of Mathematics,

StMary's College (Autonomous),
Thoothukudi - 628 001.

due Rose
Signature of the Principal

Principal
St, Mary's College (Autononrus)

Thoothukudl 628 001.

CAD
Signature of the Examiner

DECLARATION

We hercby declare that the project report entitled "QUEUEING THEORY", is our

original work. It has not been submitted to any university for any degree or diploma.

BMeq 3Haveona
(MEGI. B) (PRAVEENA. S)

A Vaugea
(VARSIGA AROCKIYA FRANCIS. A)

T Rasa
(RASIKA. T)

M. VinunaYas
(VINNARASI. M)

 ACKNOWLEDGEMENT

First of all, we thank Lord Almighty for showering his blessings to undergo this project.

With immense pleasure, we register our deep sense of gratitude to our guide

Dr. A. Punitha Tharani M.Sc., M.Phil., Ph.D. for having imparted necessary

guidelines throughout the period of our studies.

We thank our beloved Principal, Rev. Dr. Sr. A.S.J. Lucia Rose M.Sc., M.Phil., Ph.D.,

PGDCA and the Head of the Department, Dr. V. L. Stella Arputha Mary M.Sc.,

M.Phil., B.Ed., Ph.D. for providing us the help to carry out our project work

successfully.

Finally, we thank all those who extended their helping hands regarding this project.

CONTENT

1.Introduction 1

2.Definitions 3

3.Notation 3

4.Queuing system

 a)Element of Queuing 4

 b)Deterministic Queuing system 9

 c)Probability Distribution in queuing system 10

 5.Classification of Queuing System 16

 6.Definition of transient and study states 16

 7.poisson’s Queuing system

 a)Model I 17

 b)Model II 24

 c)Model III 24

 d)Model IV 29

 e)Model V 32

 f)Model VI 35

 g)Model VII 37

 8. Limitation of Queuing theory 38

 9. Application of Queuing theory 39

 10. Conclusion 40

 11.Reference 41

1

 QUEUING THEORY

INTRODUCTION

Queuing theory is a branch of mathematics that studies and models the act of

waiting in lines. This paper will take a brief look in to the formulation of the queuing

theory along with examples of the models and applications of their use.The goal of

the paper is to provide the reader with enough background in order to properly model

a basic queuing system in to one of the categories we will look at ,when possible.

Also, the reader should begin to understand the basic ideas of how to determine use

full information such as average waiting times from a particular queuing system

A common situation that occurs in everyday life is that of queuing or waiting

in a line. Queues (waiting lines) are usually seen at bus stops, ticket booths, doctors'

clinics, bank counters, traffic lights and so on queues are also found in workshops

where the machines wait to be repaired; at a tool crib where the mechanics wait to

receive tools; in a warehouse where items wait to be used, incoming calls wait to

mature in the telephone exchange, trucks wait to be unloaded, airplanes wait either to

take off or land and so on.

In general, a queue is formed at a queuing system when either customers

(human beings or p entities) requiring service wait due to the fact that the number of

customers exceeds the number of service facilities, or service facilities do not work

efficiently and take more time than prescribed to serve a customer. Queuing theory

can be applied to a variety of operational situations where it is not possible to

accurately predict the rate (or time) of customers and service rate (or time) of service

facility or facilities. In particular, it can be used to determine the level of service (either

the service rate or the number of service facilities) that balances the following two

conflicting costs:

(i) cost of offering the service

(ii) cost incurred due to delay in offering service

The first cost is associated with the service facilities and their operation, and

the second represents the cost of customer's waiting time. Obviously, an increase in

the existing service facilities would reduce the customer's waiting time.

2

Conversely, decreasing the level of service would result in long queue(s). This

means an increase (decrease) in the level of service increases (decreases) the cost of

operating service facilities but decreases (increases)the cost of waiting. Figure

illustrates both types of costs as a function of level of service. The optimumservice

level is one that minimizes the sum of the two costs.

Since cost of waiting is difficult to estimate, it is usually measured in terms of

loss of sales or goodwillwhen the customer is a human being who has no sympathy

with the service. But, if the customer is a machine waiting for repair, then cost of

waiting is measured in terms of cost of lost production. Many practical situations in

which study of queuing theory can provide solution to waiting line problems are listed

in Table

Situation Customers Service Facilities
Petrol

pumps

(station)

Automobiles Pumps/Passionel

Hospitals Patients Doctors/Nurses/Rooms

Airport Aircraft Runways

Post office Letters Sorting System

3

 DEFINITIONS

 Customer: A person (or object) arriving at a service station for availing service.

Service station (or Service facility): The place where service is provided to the

customers.

Queue: A line or a sequence of people/objects awaiting their twin to be attended to or

serviced.

Waiting time in queue: The time that a customer spends in the queue before being

taken up for service. It is the difference between the time of arrival of a customer and

the time at which the service station takes-up the service for the customer.

 Line length (or queue size) This refers to the total number of customers in the system

who are actually waiting in the line and not being serviced. Queue length may be

defined as the number of units waiting in a queue or present in a system.

 NOTATIONS

 The notations used for analyzing of a queuing system are as follows:

n = number of customers in the system (waiting and in service)

𝑃0= Probability of n customers in the system

𝛌 = average (expected) customer arrival rate or in the queuing system

 𝛍 = average (expected) service rate or average number of customers served per unit

time at the place of service

𝜆

µ
 = ρ =

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛(1/µ)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑖𝑛𝑡𝑒𝑟 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒(
1

ℷ
)

 𝜌 = traffic intensity or server utilization factor

𝑃0 = probability of no customer in the system, 1-(ℷ/μ)

s = number of service channels (service facilities or servers)

N = maximum number of customers allowed in the system

𝐿𝑠= average (expected) number of customers in the system (waiting and in service)

Job

interviews

Applicants Interviewers

4

𝐿𝑞= average (expected) number of customers in the queue (queue length)

L= average (expected) length of non-empty queue

𝑊𝑠 = average (expected) waiting time in the system (waiting and in service)

𝑊𝑞= average (expected) waiting time in the queue

𝑃𝑊 = probability that an arriving customer has to wait (system being busy),

1-𝑃0= (𝛌/µ).

QUEUEING SYSTEM

The mechanism of a queueing process is very simple. Customers arrive at a

service counter and are attended to by one or more of the servers. As soon as a

customer is served, it departs from the system. Thus a queueing system can be

described as consisting of customers arriving for service, waiting for service if it is

not immediate, and leaving the system after being served. The general framework of

a queueing system is shown below.

ELEMENTS OF A QUEUEING SYSTEM

The basic elements of a queucing system are as follows:

1. Input (or Arrival) Process. This element of queueing system is

concerned with the pattern in which the customers arrive for service. Input source can

be described by following three factors:

5

(a) Size of the queue. If the total number of potential customers requiring

service are only few, then size of the input source is said to be finite. On the other

hand, if potential customers requiring service are sufficiently large in number, then

the input source is considered to be infinite.

Also, the customers may arrive at the service facility in batches of fixed size or

of variable side or one by one. In the case when more than one arrival is allowed to

enter the system simultaneously (entering the system does not necessarily mean

entering into service), the input is said to occur in bulk or in batches. Ships discharging

cargo at a dock, families visiting restaurants, etc. are the examples of bulk arrivals.

(b) Pattern of arrivals. Customers may arrive in the system at known (regular

or otherwise) times, or they may arrive in a random way. In case the arrival times are

known with certainty, the queueing problems are categorized as deterministic models.

On the other hand, if the time betweet successive arrivals (inter-arrival times) is

uncertain, the arrival pattern is measured by either an arrival rate or inter arrival time.

These are characterised by the probability distribution associated with this random

process. The most common stochastic queueing models assume that arrival rate follow

a Poisson distribution and/or the inter-arrival times follow an exponential distribution.

(c) Customer’s behaviour. It is also necessary to know the reaction of a

customer upon entering the system. A customer may decide to wait no matter how

long the queue becomes (patient customer or if the queue is too long to suit him, may

decide not to enter it (impatient customer). Machines arriving at the maintenance shop

in a plant are examples of patient customers. For impatien customers,

(i) if a customer decides not to enter the queue because of its length, he is said

to have balked.

(ii) if a customer enters the queue, but after some time loses patience and

decides to leave, then he is said to have reneged.

(iii) if a customer moves from one queue to another (providing similar/different

services) for his personal economic gains, then he is said to have jockeyed for position.

The final factor to be considered regarding the input process is the manner in

which the arrival pattern changes with time. The input process which does not change

with time is called a stationary input process. If it is time dependent then the process

is termed as transient.

6

2. Queue Discipline. It is a rule according to which customers are selected

for service when queue has been formed. The most common queue discipline is the

"first come, first served (FCFS or the first in, first out" (FIFO) rule under which the

customers are serviced in the strict order at their arrivals. Other queue discipline

include: "last in, first out" (LIFO) rule according to which the last arrival in the system

is serviced first.

This discipline is practised in most cargo handling situations where the last item

loaded is removed first. Another example may be from the production process, where

items arrive at a workplace and are stacked one on top of the other. Item on the top of

the stack is taken first processing which is the last one to have arrived for service.

Besides these, other disciplines “selection for service in random order” (SIRO) rule

according to which the arrivals are serviced randomly irrespective of their arrivals in

the system; and a variety of priority schemes-according to which a customer's service

is done in preference over some other customer.

Under priority discipline, the service is of two types:

 (i) Pre-emptive priority. Under th the customers of high priority are given

service over the low priority customers. That is lower priority customer's service is

interrupted (pre-empted) to start service for a priority customer. The initial service is

resumed again as soon as the highest priority customer has been served.

(ii) Non pre-emptive priority. In this case the highest priority customer goes

ahead in the queue but his service is started only after the completion of the service of

the currently being served customers.

3. Service Mechanism. The service mechanism is concerned with service

time and service facilities. Service time is the time interval from the commencement

of service to the completion of service. If there are infinite number of servers then all

the customers are served instantaneously on arrival and there will be no queue.

If the number of servers is finite, then the customers are served according to a

specific order. Further, the customers may be served in batches of fixed size or of

variable size rather than individually by the same server, such as a computer with

parallel processing or people boarding a bus. The service system in this case is termed

as bulk service system.

7

In the case of parallel channels "fastest server rule" (FSR) is adopted. For its

discussion we suppose that the customers arrive before parallel service channels. If

only one service channel is free. then incoming customer is assigned to free service

channel. But it will be more efficient to assume that an incoming customer is to be

assigned a server of largest service rate among the free ones. Service facilities can be

of the following types:

(a) Single queue-one server, i.e., one queue-one service

channel, wherein the customer waits till the service point is ready to take him in for

servicing.

(b)Single queue-several servers wherein the customers wait in a single

queue until one of the service channels is ready to take them in for servicing.

 (c) Several queues-one server wherein there are several queues and the

customer may join any one of these but there is only one service channel.

8

(d) Several servers. When there are several service channels available to

provide service, much depends upon their arrangements. They may be arranged in

parallel or in series or a more complex combination of both, depending on the design

of the system's service mechanism.

By parallel channels, we mean a number of channels providing identical service

facilities. Further, customers may wait in a single queue until one of the service

channels is ready to serve, as in a barber shop where many chairs are considered as

different service channels; or customers may form separate queues in front of each

service channel as in the case of super markets.

For series channels, a customer must pass through all the service channels in

sequence before service is completed. The situations may be seen in public offices

where parts of the service are doneat different service counters.

4. Capacity of the System. The source from which customers are generated

may be finite or infinite. A finite source limits the customers arriving for service. i.e.,

there is a finite limit to the maximum queue size. The queue can also be viewed as one

with forced balking where a customer is forced to balk if he arrives at a time when

9

queue size is at its limit. Alternatively, an infinite source is forever "abundant" as in

the case of telephone calls arriving at a telephone exchange.

 OPERATING CHARACTERISTICS OF A QUEUEING SYSTEM:

 Some of the operational characteristics of a queueing system, that are of general

interest for the evaluation of the performance of an existing queueing system and to

design a new system are as follows:

1. Expected number of customers in the system denoted by E (n) or L is the

average number of customers in the system, both waiting and in service. Here, n stands

for the number of customers in the queueing system.

 2. Expected number of customers in the queue denoted by E (m) or Lq, is the

average number a customers waiting in the queue. Here m= n-1, i.e, excluding the

customer being served.

3. Expected waiting time in the system denoted by E(v) or W is the average

total time spent by a customer in the system. It is generally taken to be the waiting

time plus servicing time.

4. Expected waiting time in queue denoted by E (w) or Wqis the average time

spent by a customer in the queue before the commencement of his service.

5. The server utilization factor (or busy period) denoted by P (= 𝜆 µ⁄) is the

proportion of time that a server actually spends with the customers. Here, 𝛌 stands for

the average number of custome arriving per unit of time and 𝛍 stands for the average

number of customers completing service per of time.

The server utilization factor is also known as traffic intensity or the clearing

ratio.

 DETERMINISTIC QUEUEING SYSTEM

A queueing system wherein the customers arrive at regular intervals and the

service time for each customer is known and constant, is known as a deterministic

queueing system.

Let the customers come at the teller counter of a bank for withdrawl every 3

minutes. Thus the interval between the arrival of any two successive customers, that

is the inter-arrival time, is exactly 3 minutes. Further, suppose that the incharge of that

10

particular teller takes exactly 3 minutes to serve a customer. This implies that the

arrival and service rates are both equal to 20 customers per hour. In this situation there

shall never be a queue and the incharge of the teller shall always be busy with servicing

of customers.

 Now suppose instead, that the incharge of the teller can serve 30 customers per

hour, i.e.. he takes 2 minutes to serve a customer and then has to wait for one minute

for the next customer to come for service. Here also, there would be no queue, but the

teller is not always busy.

Further, suppose that the incharge of the teller can serve only 15 customers per

hour, i.e., he takes 4 minutes to serve a customer. Clearly, in this situation he would

be always busy and the queue length will increase continuously without limit with the

passage of time. This implies that when the service rate is less than the arrival rate,

the service facility cannot cope with all the arrivals and eventually the system leads to

an explosive situation. In such situations, the problem can be resolved by providing

additional service facilities, like opening parallel counters. We can summarize the

above as follows:

Let the arrival rate be 𝛌 customers per unit time and the service rate be 𝛍

customers per unit time. Then,

(i) if λ > µ, the waiting line (queue) shall be formed and will increase

indefinitely: the service facility would always be busy and the service

system will eventually fail.

(ii) if λ ≤ µ, there shall be no queue and hence no waiting time: the

proportion of time the service facility would be idle is 1-λ/μ.

However, it is easy to visualize that the condition of uniform arrival and

uniform service rates has a very limited practicability. Generally, the arrivals and

servicing time are both variable and uncertain. Thus, variable arrival rates and

servicing times are the more realistic assumptions. The probabilistic queueing models

are based on these assumptions.

PROBABILITY DISTRIBUTIONS IN QUEUEING SYSTEMS

It is assumed that customers joining the queueing system arrive in a random

manner and follow a Poisson distribution or equivalently the inter-arrival times obey

11

exponential distribution. In most of the cases, service times are also assumed to be

exponentially distributed. It implies that the probability of service completion in any

short time period is constant and independent of the length of time that the service has

been in progress.

In this section, the arrival and service distributions for Poisson queues are derived.

The basic assumptions (axioms) governing this type of queues are stated below:

Axiom1. The number of arrivals in non-overlapping intervals are statistically

independent, that is, the process has independent increments.

Axiom 2. The probability of more than one arrival between time t and time t + ∆t is o

(∆t); that is, the probability of two or more arrivals during the small time interval Δt

is negligible

Thus Po (∆t) + P1 (∆t) +o (∆t) = 1.

Axiom 3. The probability that an arrival occurs between time t and time t + ∆t is equal

to λ ∆t + o (∆t).

Thus P₁ (∆t)= λ ∆t + o (∆t).

Where λ is a constant and is independent of the total number of arrivals upto time t .

∆t is an incremental element and o (∆t) represents the terms such that lim
∆𝑡→0

𝜎(∆𝑡)

∆𝑡
= 0

1. Distribution of Arrivals (Pure Birth Process)

The model in which only arrivals are counted and no departure takes place are called

pure birth models. Stated in terms of queueing, birth-death processes usually arise

when an additional customer increases the arrival (referred as birth) in the system and

decreases by departure (referred as death) of serviced customer from the system.

Let Pn (t) denote the probability of n arrivals in a time interval of length t (both waiting

and in service), where n ≥ 0 is an integer. Then Pn(t +∆t) being the probability of n

arrivals in a time interval of length t + ∆t (making use of axiom 1) is as follows:

Pn (t + Δt) = P{n arrivals in time t and one arrival in time ∆t}

+ P {(n-1) arrivals in time t and one arrival in time ∆t}

+ P{(n-2) arrivals in time t and two arrivals in time ∆t}

+………+ P{no arrival in time t and arrivals in time ∆t). for n ≥ 1.

12

Making use of axiom 2 and axiom 3, this difference equation reduces to

Pn (t +∆t) = Pn (t) Po (∆t) + Pn-1(t) P₁ (∆t) + o (∆t)

 = Pn (t) [1 - ʎ∆t - o (∆t)] + P n-1(t) {ʎ ∆t + o (∆t) } + o (∆t)

where the last term, o (∆t), represents the terms

P[(n-k) arrivals in time t and k arrivals in time ∆t] 2≤ k ≤ n

The above equation can be re-written as

Pn(t+∆t) – Pn (t)= -𝛌∆t.Pn(t) +𝛌∆t. P n-1(t) + o (∆t)

Dividing it by ∆t on both sides and then taking the limit as ∆t- 0, the equation

reduces to

𝑑

𝑑𝑡
𝑃𝑛(𝑡) = −𝜆𝑃𝑛(𝑡) + 𝜆𝑃𝑛−1(𝑡). 𝑛 ≥ 1. ………(A)

For the case when n=0.

𝑃0(𝑡 + ∆𝑡) = 𝑃0(𝑡)𝑃0(∆𝑡) = 𝑃0(𝑡)[1 − 𝜆∆𝑡 − 𝑜 (∆𝑡)]

Rearranging the terms and then dividing on both sides by ∆𝑡. taking the limit as ∆𝑡 →

0, we have

𝑑

𝑑𝑡
𝑃𝑜(𝑡) = − ʎ𝑃0 (𝑡) …….(B)

To solve the n+1 differential-difference equations given in (A) and (B), we make use

of the generating function

∅ (𝑧, 𝑡) = ∑𝑃𝑛(𝑡). 𝑧
𝑛.

∞

𝑛=0

in the unit circle |z| ≤ 1.

Now multiplying the differential-difference equations given in (B) and (A) by zº, z¹,

𝑧2… . . 𝑧𝑛. respectively and then taking summation over n from 0 to ∞, we get

∑
𝑑

𝑑𝑡
𝑃𝑛 (𝑡)𝑧

𝑛 = −

∞

𝑛=0

𝜆∅(𝑧, 𝑡) + 𝜆 𝑧 ∅(𝑧, 𝑡).

This can also be written as

13

𝑑

𝑑𝑡
 ∅ (𝑧, 𝑡) = 𝜆(𝑧 − 1)∅(𝑧, 𝑡)

An obvious solution of this differential equation is

∅ (𝑧, 𝑡) = 𝐶 𝑒𝜆(𝑧−1)𝑡.

where C is an arbitrary constant.

To determine the value of C, we use the initial condition that there is no arrival by

time t0 and this gives

∅ (𝑧, 0) = 𝑃𝑜 (0) + ∑𝑃𝑛(0)𝑍
𝑛 = 1

∞

𝑛=1

Now, Pn (0) = 0 for n ≥ 1. Therefore, C = 1.

Hence, ∅ (𝑧, 𝑡) = 𝑒𝜆(𝑧−1)𝑡 . ………..(C)

Now,
𝑑

𝑑𝑧
 ∅ (𝑧, 𝑡)|𝑧=0 = 𝑃1(𝑡).

𝑑2

𝑑𝑧2
 ∅ (𝑧, 𝑡)|𝑧=0 = 2! 𝑃2(𝑡)

𝑑𝑛

𝑑𝑧𝑛
 ∅ (𝑧, 𝑡)|𝑧=0 = 𝑛! 𝑃𝑛(𝑡)

Using the value of ϕ (z, t) as given in equation (C), we get

𝑃0 (𝑡) = 𝑒
−𝜆 𝑡 , 𝑃1 (𝑡) = 𝜆(𝑡)𝑒

−𝜆 𝑡 ,

 𝑃2 (𝑡) =
1

2!
(𝜆𝑡)𝑒−𝜆 𝑡 , 𝑃𝑛 (𝑡) =

1

𝑛!
(𝜆𝑡)𝑛𝑒−𝜆 𝑡 .

The general formula, therefore is

𝑃𝑛(𝑡) =
(𝜆𝑡)𝑛

𝑛!
𝑒−𝜆𝑡 ,for n ≥ 0

which is the well-known Poisson probability law with mean λt. Thus, the random

variable defined as the number of arrivals to a system in time t, has the Poisson

distribution with a mean of 𝜆𝑡 arrival or a mean arrival rate of 𝜆.

2. Distribution of Inter-arrival Times (Exponential Process)

Inter-arrival times are defined as the time intervals between two successive arrivals.

Here, we shall show that if the arrival process follows the Poisson distribution, an

associated random variable defined as the time between successive arrivals (inter-

arrival time) follows the exponential distribution f(t) = 𝜆𝑒−𝜆𝑡and vice-versa.

14

Let the random variable T be the time between successive arrivals; then

P(T> t) = P (no arrival in time t) = P0 (t) = 𝑒−𝜆𝑡

The cumulative distribution function of T denoted by F(t) is given by

F(t) = P(T≤ t)=1─P (T>t)

 = 1- P0 (t) = 1- 𝑒−𝜆𝑡 ,t > 0

The density function f(t) for inter-arrival times, therefore, is

f (t) =
𝑑

𝑑𝑡
 𝐹 (𝑡) = 𝜆𝑒−𝜆𝑡 , t >0

The expected (or mean) inter-arrival time is given by E (t) =∫ t. f(t) dt
∞

0

 = ∫ λ t e−λt
∞

0
dt

 = 1/𝛌

where λ is the mean arrival rate.

Thus, T has the exponentialdistribution with mean 1/ λ. We would intuitively expect

that, if the mean arrival rate is λ, then the mean time between arrivals is 1/𝛌.

Conversely, we can also show that if the inter-arrival times are independent and have

the same exponential distribution then the arrival rate follows the Poisson distribution.

3.Distribution of Departures (PureDeath Process)

The model in which only departures are counted and no other arrivals allowed are

called pure death models.Thequeueing system starts with N customers at time t=0,

where N ≥ 1. Departures occur at the rate of μ customers per unit time. To develop the

differential-difference equations for the probability of n customers remaining after 't'

time units, Pn (t), we make use of similar assumptions as was done for arrivals. Let

the three axioms, given at the beginning of this section, be changed by using the word

service instead of arrival and condition the probability statements by requiring the

system to be non-empty. Let us define

μ∆t = probability that a customer in service at time t will service during time ∆t. For

small time interval ∆t > 0. 𝜇 ∆t gives probability of one departure during ∆t. Using the

same arguments as in pure birth process case, the differential-difference equations for

this can easily be obtained.

15

Pn. (t + ∆t) = Pn(t) {1-μ∆t + o (∆t)} + Pn+1 (t).{μ ∆t + o (∆t)}, 1≤ n ≤ N -1

Po (t + ∆ 𝑡) = 𝑃𝑜 (𝑡) + 𝑃1 (𝑡){ 𝜇 ∆ 𝑡 + 𝑜 (∆𝑡)}, 𝑛 = 0

PN (t + ∆t) = PN (t). (1-μ ∆t + ο (∆t)}, n = N

Re-arranging the above equations, dividing them by ∆t on both sides and then taking

the limits as ∆t  0, we get

𝑑

𝑑𝑡
 𝑃𝑛 (𝑡) = −𝜇 𝑃𝑛 (𝑡) + 𝜇 𝑃𝑛+1 (𝑡) 0 ≤ 𝑛 ≤ 𝑁 − 1, 𝑡 > 0

𝑑

𝑑𝑡
 𝑃0(𝑡) = 𝜇 𝑃1 (𝑡) ; 𝑛 = 0, 𝑡 ≥ 0

𝑑

𝑑𝑡
 𝑃𝑁 (𝑡) = − 𝜇 𝑃𝑁 (𝑡); 𝑛 = 𝑁 , 𝑡 ≥ 0

The solution of these equations with initial conditions :

Pn(0)={
1 ; 𝑛 = 𝑁 ≠ 0
0 ; 𝑛 ≠ 𝑁

can easily be obtained as earlier. The general solution to the above equation so

obtained is

𝑃𝑛(𝑡) =
(𝜇𝑡)𝑁−𝑛𝑒−𝜇𝑡

(𝑁−𝑛)!
 ; 1 ≤ 𝑛 ≤ 𝑁 and P0 (t) = 1- ∑ 𝑃𝑛 (𝑡)

𝑁
𝑛=1

which is known as a truncated Poisson law.

4. Distribution of Service Times

Making similar assumption as done above for arrivals, one could utilize the same type

of process to describe the service pattern. Let the three axioms be changed by using

the word service instead of arrival and condition the probability statements by

requiring the system to be non-empty. Then we can easily show that, the time t to

complete the service on a customer follows the exponential distribution:

𝑠(𝑡) = {
𝜇𝑒−𝜇𝑡 ; 𝑡 > 0
0 ; 𝑡 < 0

Where μ is the mean service rate for a particular service channel. This shows that

follows exponential distribution which mean 1/μ . The number, n, of potential services

in time t will follow the poison distribution given by

16

Φ (n) = P {n service in time T, if servicing is going on throughout T}

 =
(𝜇𝑇)𝑁

𝑛!
𝑒𝜇𝑡

Consequently, we can also show that

P [no service in ∆t] = 1- μ ∆t + o (∆t) and P [one service in ∆t] = μ∆t + o(∆t)

CLASSIFICATION OF QUEUEING MODELS

Generally queueing model may be completely specified in the following symbolic

form :

(a/b/c) : (d/e).

The first and second symbols denote the type of distributions of inter-arrival times and

inter-service times, respectively. Third symbol specifies the number of servers,

whereas fourth symbol stands for the capacity of the system and the last symbol

denotes the queue discipline.

If we specify the following letters as:

M = Poisson arrival or departure distribution.

E = Erlangian or Gamma inter-arrival for service time distribution.

GI = General input distribution,

G= General service time distribution.

then (M/𝐸𝑘/1) : (∞/FIFO) defines a queueing system in which arrivals follow Poisson

distribution service times are Erlangian, single server, infinite capacity and “ first in,

first out” queue discipline.

 DEFINITION OF TRANSIENT AND STEADY STATES

A queueing system is said to be in transient state when its operating characteristic

(like input, mean queue length, etc.) are dependent upon time.

If the characteristic of the queueing system becomes independent of time, then

the steady state condition is said to prevail

If Pn(t) denotes the probability that there are n customers in the system at time

t,then in the steady state case, we have

17

 lim
𝑡→∞

𝑃𝑛(𝑡) = 𝑃𝑛(independent of t)

Due to practical viewpoint of the steady state behaviour of the systems, the

present chapter is simply focused on studying queueing systems under the existence

of steady-state conditions. However the differential-difference equations which can

be used for deriving transient solutions will be presented.

POISSON QUEUEING SYSTEM

 Queues, that follow the poison arrivals (exponential inter-arrival time) and

Poisson service (exponential service time) are called Poisson queues. In this section,

we shall study a number of Poisson queues with different characteristics.

Model 1 ((M/M/1): (∞/FIFO). This model deals with a queucing system having

single service Thennet. Poisson input, Exponential service and there is no limit on the

system capacity while the inmers are served on a "first in, first out" basis.

The solution procedure of this queueing model can be summarized in the

following three steps:

Step 1. Construction of Differential Difference Equations. Let pn(t)be the

probability that there are n customers in the system at time t. The probability that the

system has n customers at time (t+Δt) can be expressed as the sum of the joint

probabilities of the four mutually exclusive and collectively exhaustive events as

follows :

Pn(t+Δt)=Pn(t).P [no arrival in Δt].P[no service completion in Δt]

 +pn(t).P[one arrival in Δt].P[one service completed in Δt]

 +Pn+1(t).P[no arrival in Δt].P[one service completed inΔt]

 +Pn-1(t).P[one arrival in Δt].p[one service completed inΔt]

This is re-written as:

Pn(t+ Δt)= pn(t)[1 – λΔt + o(Δt)][1 - µΔt+o(Δt)] + Pn(t)[λΔt][µΔt]

 +Pn+1(t)[1 – λΔt +o(Δt)][µΔt + o(Δt)]+pn-1(t)[λΔt + o(Δt)][1 -µt + o(Δt)]

Or Pn(1+Δt) – pn(t) = -(λ + µ)ΔtPn(t) + µΔtPn+1(t) + o(Δt)

Since Δt is very small, terms involving (Δt)2 can be neglected. Dividing the above

equation by Δt on both sides and then taking limit as Δt 0, we get

18

 d/dt(pn) = -(λ + µ)pn(t) + µPn+1 (t)+ λPn-1(t) ; n ≥ 1

Similarly, if there is no customer in the system at time (t + Δt), there will be no service

completion during Δt . Thus for n= 0 and t ≥ 0, we have only two probabilities instead

of four. The resulting equation is

 Po(t+ Δt)= po(t){1 – λΔt + o(Δt)} + P1(t){µΔt +o(Δt)}{1 – λΔt + o(Δt)}

or Po(t+Δt) – po(t) = -λΔtP0(t) + µΔtP1(t) + o(Δt).

Dividing both sides of this equation by Δt and then taking limit as Δt 0,we get

 d/dt(po(t)) = -λpo(t) + µP1(t) ; n = 0

Step 2. Deriving the Stendy-State Difference Equations. In the steady-state. Pn(t)

is independent of time t and λ <µ when t ∞ .Thus Pn (t) Pn and

Consequently the differential-difference equations obtained in Step 1 reduce to

 0 = -(λ + µ)pn + µPn+1 + λPn-1 ; n≥ 1

and 0=-λPn + µP1 ; n = 0

These constitute the steady-state difference equations.

Step 3.Solution of the Seady-State Difference Equations. For the solution of the

above difference equations there exist three methods, namely, the iterative method,

use of generating functions and the use of linear operaters.Out of these three the first

one is the most straightforward and therefore the solution of the above equation will

be obtained here by using the iterative method.

Using iteratively, the difference-equation yield

 P1 =
𝜆

𝜇
 Po , P2 =

𝜆+𝜇

𝜇
P1 -

𝜆

𝜇
Po = (

𝜆

𝜇
)
2
Po

 P3 = (
𝜆+𝜇

𝜆
)P2 -

𝜆

𝜇
 𝑃1= (

𝜆

𝜇
)
3
Po , and in general Pn = (

𝜆

𝜇
)
𝑛

Po .

Now, Pn+1 =
𝜆+𝜇

𝜇
Pn -

𝜆

𝜇
Pn-1 , n ≥ 1 .

Substituting the values of Pn and Pn-1 , the equation yields

 Pn+1 =
𝜆+𝜇

𝜇
(
𝜆

𝜇
)
𝑛

Po -
𝜆

𝜇
(
𝜆

𝜇
)
𝑛−1

Po = (
𝜆

𝜇
)
𝑛+1

Po

Thus, by the principle of mathematical induction, the general formulae for Pn, is valid

for n ≥ 0

19

To obtain the value of Po ,we make use of the boundary condition ∑ 𝑃∞
𝑛=0 n = 1

⸫ 1 = ∑ (
𝜆

𝜇
)∞

𝑛=0
nPo = Po ∑ (

𝜆

𝜇
)∞

𝑛=0
n ; since Pn = (

𝜆

𝜇
)nPo

 = Po
1

1−𝜆/𝜇
, since (

𝜆

𝜇
)< 1

This gives Po = 1 - (
𝜆

𝜇
).

Hence, the steady- state solution is

 Pn = (
𝜆

𝜇
)n(1 −

𝜆

𝜇
)= ρn(1-ρ) ; ρ = (

𝜆

𝜇
)< 1, and n ≥ 0.

This expression gives us the probability distribution of queue length.

Characteristic of Model I

(i)Probability of queue size being greater than or equal than or equal to k, the number

of customer is given by

 P(n ≥k) =∑ 𝑃𝑘
∞
𝑘=𝑛 = ∑ (1 − 𝜌)𝜌∞

𝑘=𝑛
k = (1-ρ)ρn∑ 𝜌∞

𝑘=𝑛
k-n = (1-ρ)ρn ∑ 𝜌∞

𝑘−𝑛=0
k-n

 =(1-ρ)ρn∑ 𝜌∞
𝑥=0

x =
(1−𝜌)𝜌𝑛

1−𝜌
 = ρn

(ii)Average number of customer in the system is given by

E(n) = ∑ 𝑛𝑃∞
𝑛=0 n = ∑ 𝑛(1 − 𝜌)∞

𝑛=0 ρn = (1 – ρ) ∑ 𝑛𝜌𝑛∞
𝑛=0 = ρ(1 – ρ)∑ 𝑛𝜌𝑛−1∞

𝑛=0

 = ρ(1-ρ)∑
𝑑

𝑑𝜌
∞
𝑛=0 ρn = ρ(1 – ρ)

𝑑

𝑑𝜌
∑ 𝜌𝑛∞
𝑛=0 , since ρ < 1

 =ρ(1-ρ)
1

(1−𝜌)2
 =

𝜌

1−𝜌
 =

𝜆

𝜇− 𝜆
 .

(iii)Average queue length is given by

 E(m) = ∑ 𝑚𝑃∞
𝑚=0 n , where m = n – 1

being the number of customer in the queue excluding the customer which is in service.

⸫ E(m) = ∑ (𝑛 − 1)∞
𝑛=1 Pn = ∑ 𝑛𝑝∞

𝑛=1 n – ∑ 𝑃𝑛
∞
𝑛=1

 = ∑ 𝑛𝑃∞
𝑛=0 n - [∑ 𝑃𝑛 − 𝑃𝑜∞

𝑛=0]

20

 =
𝜌

1−𝜌
 – [1-(1-ρ)] =

𝜌

1−𝜌
 – ρ

 =ρ2/ (1-ρ) = 𝛌2/(𝛍 – 𝛌) .

(iv)Average length of non-empty queue is given by

 E(m|m > 0) =
𝐸(𝑚)

𝑃(𝑚>𝑜)
 =

𝜆2

𝜇(𝜇−𝜆)
 ×

1

(
𝜆

𝜇
)2

 =
𝜇

𝜇−𝜆
 .

 Since P (m > 0) = P(n > 1) = ∑ 𝑃𝑛
∞
𝑛=0 – Po – P1 = (

𝜆

𝜇
)
2

(v)The fluctuation (variance) of queue length is given by

 V(n) =∑ [𝑛 − 𝐸(𝑛)]2∞
𝑛=0 Pn = ∑ 𝑛2∞

𝑛=0 Pn – [E(n)]2

Using some algebraic transformation and the value of Pn the result reduces to

V(n) = (1 – ρ)
𝜌+𝜌2

(1− 𝜌)3
 - [

𝜌

1−𝜌
]
2
 =

𝜌

(1− 𝜌)2
 =

𝜆µ

(µ− 𝜆)2
 .

Waiting Time Distribution for Model I.

 The Waiting time of a customer in the system is, for the most part, a

continuous random variable except that there is a non zero probability that the delay

will be zero, that is a customer entering service immediately upon arrival.Therefore,

if we denote the time spent in the queue by w and ψw(t) denotes its cumulative

probability distribution then from the complete randomness of the Poisson

distribution, we have

Ψw(0) = P(w = 0) (No customers in the system upon arrival)

 =Po = (1 –ρ).

It is now required to find ψw(t) for t > 0

 Let there be n customers in the system upon arrival then in order for a customer

to go into service at a time between 0 and t , all the n customers must have been served

by time t. Let s1, s2, s3,……,sn denote service times of n customers respectively. Then

W= ∑ 𝑠𝑖
𝑛
𝑖=1 , (n ≥ 1) and w = 0 (n = 0).

The distribution function of waiting time, w, for a customer who has to wait is given

by

21

P(w ≤ t) = P[∑ 𝑠𝑖 ≤ 𝑡
𝑛
𝑖=1] ; n ≥ 1 and t > 0.

 Since, the service time for each customer is dependent and identically distributed,

therefore its probability density function is given by µe-µt(t > 0), where µ is the mean

service rate. Thus

Ψn(t) = ∑ 𝑝𝑛
∞
𝑛=1 × P(n – 1 customer are served at time t) ×P(1 customer is served in

time Δt)

 =∑ (1 −
𝜆

µ
)∞

𝑛=1 (
𝜆

µ
)
𝑛 (µ𝑡)𝑛−1𝑒−µ𝑡

(𝑛−1)!
 . µΔt.

The expression for ψw(t) , therefore ,can be written as

Ψw(t) = P(w ≤ t) = ∑ 𝑃𝑛
∞
𝑛=1 ∫ Ψ𝑛

𝑡

0
(t) dt

 =∑ (1 − 𝜌)𝜌𝑛∞
𝑛=1 ∫

(µ𝑡)𝑛−1

(𝑛−1)!

𝑡

0
e-µt.µdt = (1-ρ)ρ∫ µ𝑒−µ𝑡

𝑡

0
∑

(µ𝑡𝜌)𝑛

(𝑛=1)!
∞
𝑛=1 . dt

 =(1 – ρ)ρ ∫ µ𝑒−µ𝑡(1− 𝜌)
𝑡

0
dt .

Example 1: A road transport company has one reservation clerk on duty at a time. He

handles information of bus schedules and makes reservations.Customers arrive at a

rate of 8 per hour and the clerk can service 12 customers on an average per hour. After

stating your assumptions, answer the following :

 (i)What is the average number of customer waiting for the service of the clerk?

 (ii) What is the average time a customer has to wait before getting servie?

 (iii) The management is comptemplating to install a computer system to handle the

information and reservation .This is expected to reduce the service time from 5 to 3

minutes. The additional cost of having the new system works out to Rs. 50 per day, If

the cost of goodwill of having to wait is estimated to be 12 paise per minute spent

waiting before being served. Should the company install the computer system?

Assume 8 hours working day .

Solution:

We are given

𝛌 = 8 customers per hour and 𝛍 = 12 customers per hour.

(i) Average number of customers waiting for the service of the clerk(in the system):

22

E(n) =
𝜆

𝜇− 𝜆
 =

8

12−8
 = 2 customers.

 The Average number of customers waiting for the service of the clerk(in the queue)

E(m) =
𝜆2

𝜇(𝜇− 𝜆)
 =

8 ×8

12(12−8)
 or 1.33 customer.

(ii) The Average waiting time of a customer (in the system) before getting service :

E(v) =
1

𝜇−𝜆
 =

1

12−8
 hour or 15 minutes.

The Average waiting time of a customer(in the queue) before getting service:

E(w) =
𝜆

𝜇(𝜇− 𝜆)
 =

8

12(12−8)
 =

1

6
 hours or 10 minutes.

(iii) We now calculate the difference between the goodwill cost of customers with one

system and the goodwill cost of customers with an additional system. This difference

will be compared with the additional cost (of Rs . 50 per day) of installing another

computer system .

An arrival waits for E(w) hours before being served and there are 𝛌 arrivals per hour

. Thus , expected waiting time for all customer in an 8-hours day with one system

 = 8𝛌×E(w) = 8 × 8 ×
1

6
 hrs . or

64

6
 × 60 minutes ,i.e., 640 minutes.

The goodwill cost per day with one system = 640 × Rs. 0.12 = Rs. 76.80

 The expected waiting time of a customer before getting service when there is an

additional computer system is:

 E(w*) =
8

20(20−8)
 =

8

20 ×12
 or

1

30
 hr .

Thus expected waiting time of customer in an 8-hour day with an additional computer

system is

 8λ × E(w*) = 8 × 8 ×
1

30
 hr. = 128 minutes.

The total goodwill cost with an additional computer system

 = 128 × Re. 0.12 = Rs. 15.36

Hence, reduction in goodwill cost with the installation of a computer system

 = Re. 76.80 – Rs. 15.36 = Rs. 61.44

23

Whereas the additional cost of a computer system is Rs.50 per day , Rs.61.44 is the

reduction in goodwill cost when additional computer system is installed, hence there

will be net saving at Rs.11.44 per day. It is ,therefore, worthwhile to install a computer.

Example 2 :In the production shop of a company the breakdown of the machines is

found to be poisson with an average rate 3 machines per hour . Breakdown time at one

machine cost Rs. 40 per hour to the company. There are two choice before the

company for hiring the repaireman. One of the repairman is slow but cheap , the other

fast but expensive . The slow-cheap repairman demands Rs. 20 per hour and will repair

the broken down machines exponentially at the rate of 4 per hour. The fast expensive

repairman demands Rs. 30 per hour and will repair machines exponentially at the

average rate of 6 per hour. Which repairman should be hired ?

Solution . In this problem ,we compare the total expected daily cost for both the

repairman. This would equal the total wages paid plus the downtime cost.

Case 1: Slow-cheap repairman

λ = 3 machines per hour and µ = 4 machines per hour.

 ∴ Average downtime of a machine =
1

µ− 𝜆
 =

1

4−3
 = 1 hour.

 ∴ The downtime of 3 machine that arrive in an hour = 1 × 3 = 3 hours.

 Downtime cost = Rs. 40 × 3 = Rs. 120,

 charges paid to the repairman =Rs 20 × 3 = Rs. 60

 Total cost = Rs. 120 + Rs 60 = Rs 180.

Case 2 : Fast-expensive repairman

 λ = 3 machines per hour and µ = 6 machines per hour

∴ Average downtime of machines =
1

µ− 𝜆
 =

1

3
 hour

∴ The downtime of 3 machines that arrive in an hour =
1

3
 × 3 = 1 hour.

 Downtime cost = Rs. 40 × 1 = Rs. 40,

 charges paid to the repairman = Rs. 30 × 1 = Rs.30

 Total cost = Rs. 40 + Rs. 30 =Rs. 70.

24

From the above two cases , the decision of the company should be to engage the fast-

expensive repairman.

Model II {(M/M/1) : (∞/𝑺𝑰𝑹𝑶)}.This model is essentially the same as Model I,

except that the service discipline follows the SIRO – rule (service in random order)

instead of FIFO – rule. As the derivation of Pn for model I does not depend on any

specific queue discipline, it may be concluded that for SIRO-rule case, we must have

 Pn= (1 – ρ)ρn, n ≥ 0

Consequently , whether the queue discipline follows the SIRO-rule or FIFO-

rule the average number of customers in the system ,E(n) , will remain the same. In

fact E(n) will remain the same as any queue discipline provided, of course, Pn remains

unchanged. Thus, E(v) =
1

𝜆
 E(n) under the SIRO – rule is the same as under the FIFO-

rule .

 This result can be extended to any queue discipline as long as Pn remain

unchanged. Specifically the result applies to the three most common disciplines,

namely, FIFO, LIFO and SIRO. The three queue disciplines differ only in the

distribution of waiting time where the probabilities of long and short waiting times

change depending upon the discipline used.Thus we can use the symbol 𝛍t (general

discipline) to represent the disciplines FIFO, LIFO and SIRO, When the waiting time

distribution is not required.

Model III {(M/M/I) :(N/FIFO)}.This model differs from that of Model I in

the sense that the maximum number of customers in the system is limited to N.

Therefore, the difference equation of Model I are valid for this model as long as n <

N.

 The additional difference equation for n = N, is

 𝑃𝑁(𝑡 + 𝛥𝑡) = 𝑃𝑁(𝑡)[1 − 𝜇𝛥𝑡] + 𝑃𝑁−1(𝑡). [𝜆𝛥𝑡] [1 − 𝜇𝛥𝑡] + 0(Δt).

This gives, after simplification, the differential-difference equation

25

𝑑

𝑑𝑡
.  𝑃𝑁 (𝑡)  =  − 𝜇 𝑃𝑁 (𝑡) +  𝜆 𝑃𝑁−1 (𝑡)

from which the resultant steady-state difference equation is

0 =   − 𝜇 𝑃𝑁  +  𝜆 𝑃𝑁−1 

 The complete set of steady-state difference equations for this model, therefore, can

be written as

𝜇 𝑃1   =   𝜆 𝑃0

𝜇 𝑃𝑛+1   =   (𝜆 + 𝜇)𝑃𝑛 − 𝜆 𝑃𝑛−1 1  ≤  𝑛  ≤  𝑁 − 1

and 𝜇 𝑃𝑁  =  𝜆 𝑃𝑁−1

 Using the iterative procedure (as in Model I), the first two difference

equations give

 𝑃𝑛  = ( 𝜆 /𝜇)𝑛   𝑃0. 𝑛  ≤  𝑁 − 1

 Also, we see that for this value of 𝑃𝑛 , the third (last) difference equation

holds for n = N

 Therefore, we have

𝑃𝑛   =  (𝜆/𝜇)𝑛  𝑃0  =  𝜌𝑛  𝑃0, 𝑛  ≤  𝑁  𝑎𝑛𝑑 (𝜆/𝜇)𝑛  = 𝜌

 For obtaining the value of 𝑃0, we make use of the boundary conditions,

∑ Pn
 𝑁
𝑛=0  = 1. Therefore

1 = 𝑃0∑ ρn 𝑁
𝑛=0  = {

𝑃0
 1−𝜌𝑁+1

1−𝜌
,     (𝜌  ≠  1)

𝑃0 (𝑁 + 1), (𝜌 = 1)

Thus

26

𝑃0  =  

{

1 − 𝜌

1 − 𝜌𝑁+1
,   (𝜌 ≠ 1)

1

𝑁 + 1
, (𝜌 = 1)

Hence,

 𝑃𝑛 = {

(1−𝜌)𝜌𝑛

1−𝜌𝑁+1
  , (𝜌 ≠ 1); 0 ≤ 𝑛 ≤ 𝑁

1

𝑁+1
, (𝜌 = 1)

Remark. The steady-state solution exists even for 𝜌 ≥ 1. Intuitively this makes sense

since the maximum limit prevents the process from ''blowing up''. If N→ ∞ , then the

steady-state solution is

Pn=(1 − 𝜌)𝜌𝑛 ; 𝑛 < ∞

This result is in complete agreement with that of Model I.

Characteristics of Model III

(i) Average number of customers in the system is given by

 𝐸(𝑛) = ∑ 𝑛𝑁 
𝑛=0   𝑃𝑛 =  𝑃0 ∑ 𝑛 𝑁

𝑛=0   𝜌𝑛 = 𝑃0𝜌∑
𝑑

𝑑𝜌
𝜌𝑛𝑁 

𝑛=0 

𝐸(𝑛) = 𝑃0𝜌
𝑑

𝑑𝜌
∑ 𝜌𝑛
𝑁 

𝑛=0 

𝑃0𝜌
𝑑

𝑑𝜌
[
1 − 𝜌𝑁+1

1 − 𝜌
]

 = 𝑃0
𝜌[1 − (𝑁 + 1)𝜌𝑛 +𝑁𝜌𝑁+1]

(1 − 𝜌)2

=
𝜌[1 − (𝑁 + 1)𝜌𝑁  + 𝑁𝜌𝑁+1]

(1 − 𝜌)(1 − 𝜌(𝑁+1))

 Since 𝑃0  =  
1−𝜌

1−𝜌𝑁+1
;  𝜌 ≠ 1

27

(ii) Average queue length is given by

𝐸(𝑚) = ∑(𝑛 − 1)𝑃𝑛

𝑁 

𝑛=1 

=  𝐸(𝑛) − ∑ 𝑃𝑛

𝑁 

𝑛=1 

= 𝐸(𝑛) − (1 − 𝑃0)

 = 𝐸(𝑛) −
𝜌(1−𝜌𝑁)

1−𝜌𝑁+1
 , since 𝑃0  =  

1−𝜌

1−𝜌𝑁+1
,  (𝜌 ≠ 1)

 =
𝜌2[1 − 𝑁𝜌𝑁−1  +  (𝑁 − 1)𝜌𝑁]

(1 − 𝜌)(1 − 𝜌𝑁+1)

(iii) The average waiting time in the system can be obtained by using Little's formula,

that is 𝐸(𝑣)  =  {𝐸(𝑛)}/𝝀 where 𝜆′ is the mean rate of customers entering the system

and is equal to (1 − 𝑃𝑁). The average waiting time in the queue can be obtained by

using the relations

𝐸(𝑊)  =  𝐸(𝑉) − 1/𝜇   𝑜𝑟  𝐸(𝑊)  =  {𝐸(𝑚)}/𝜆′.

EXAMPLES

1.At a railway station, only one train is handled at a time. The railway yard is sufficient

only for two trains to wait while other is given signal to leave the station. Trains arrive

at the station at an average rate of 6 per hour and the railway station can handle them

on an average of 12 per hour. Assuming Poisson arrivals and exponential service

distribution, find the steady-state probabilities for the various number of trains in the

system. Also, find the average waiting time of a new train coming into the yard.

Solution

𝐻𝑒𝑟𝑒, 𝜆  =  6 𝑎𝑛𝑑 𝜇  =  12 𝑠𝑜 𝑡ℎ𝑎𝑡 𝜌  =  6/12  =  1/2  =  0.5

 The maximum queue length is 2, i.e., the maximum number of trains in the

system is 3(=N).

 The probability that there is no train in the system (both waiting and in service) is

given by

28

𝑃0  =  
1 − 𝜌

1 − 𝜌𝑁+1
=

1 − 0.5

1 − (0.5)3+1
  =  0.53

Now, since 𝑃𝑛 = 𝑃0𝜌
𝑛, therefore

𝑃1 = (0.53)(0.5) = 0.27,  𝑃2 =  (0.53)(0.5)2 = 0.13,  𝑎𝑛𝑑 

𝑃3 = (0.53)(0.5)
3 = 0.0 7

Hence, we get

𝐸(𝑛) = 1(0.27) +  2(0.13) + 3(0.07) = 0.74

Thus the average number of trains in the system is 0.74 and each train takes on an

average of
1

12
(= 0.8)  hours for getting service. As the arrival of new train expects to

find an average of 0.74 train in the system before it.

𝐸(𝑊) = (0.74)(0.08) ℎ𝑜𝑢𝑟𝑠  =  0.0592 ℎ𝑜𝑢𝑟𝑠 𝑜𝑟 3.5 minutes

2.Assume that the goods trains are coming in a yard at the rate of 30 trains per day

and suppose that the inter-arrival times follow an exponential distribution. The service

times for each train is assumed to be exponential with an average of 36 minutes. If the

yard can admit 9 trains at a time (there being 10 lines, one of which is reserved for

shunting purpose), calculate the probability that the yard is empty and find the average

queue length.

 Solution: We have

𝜆 =
30

60 × 24
=
1

48
 𝑎𝑛𝑑  𝜇 =

1

16
𝑡𝑟𝑎𝑖𝑛𝑠 𝑝𝑒𝑟 minutes

⸫ 𝜌 = 𝜆/𝜇 = 36/48 = 0.75

The probability that the yard is empty is given by

 𝑃0 =  
1−𝜌

1−𝜌𝑁+1
=  

1−0.75

1−(0.75)10
, since N = 9

29

=  
0.25

0.90
= 0.28

Average queue length is given by

𝐸(𝑚) =
𝜌2[1 − 𝑁 𝜌𝑁−1 + (𝑁−1) 𝜌𝑁]

(1 − 𝜌)(1 − 𝜌𝑁+1)

 =
(0.75)2[1 −  9(0.75)8 + 8(0.75)9]

0.25[(0.75)10]

 = (2.22)
(1 − 0.303)

(1 − 0.005)

= (2.22) (0.70)

= 1.55

Model IV (Generalized Model : Birth-Death Process). This model

deals with a queueing system having single service channel, Poisson input with no

limits on the system capacity . Arrivals can be considered as births to the system ,

whereas a departure can be looked upon as a death. Let

 N = number of customer in the system

 𝜆𝑛 = arrival rate of the customers given n customers in the system

 𝜇𝑛 = departure rate of customers given n customers in the system, and

 𝑃𝑛 = steady-state probability of n customers in the system.

The model determines the values of 𝑃𝑛 in terms of 𝜆𝑛 and 𝜇𝑛 . Now, from the axioms

of Poisson process , we observe that an arrival during the small time interval 𝛥𝑡 is

negligible . This implies that for n > 0 , state n can change only to two possible states

: state n – 1 when a departure occurs at the rate 𝜇𝑛 and state n + 1 when an arrival

occurs at rate 𝜆𝑛. State 0 can only change to state I when an arrival occurs at the rate

of 𝜆𝑜 . Since no departure is possible when the system is empty, 𝜇𝑜 is undefined.

30

 Under steady-state conditions, for n > 0, the rates of flow into and out of state

n must be equal. This is illustrated in the transition-rate diagram given below :

The balance equation is :

 Expected rate of flow into state n = Expected rate of flow out of state n

i.e., 𝜆𝑛−1𝑃𝑛−1 + 𝜇𝑛+1𝑃𝑛+1 = 𝜆𝑛𝑃𝑛 + 𝜇𝑛𝑃𝑛 n ≥ 1

and 𝜇1𝑃1 = 𝜆0𝑃0 n = 0

 Using the iterative procedure (as in Model I), we have

 𝑃1 =
𝜆0

𝜇1
𝑃0 , 𝑃2 =

𝜆1+𝜇1

𝜇2
𝑃1 -

𝜆0

𝜇2
𝑃0 =

𝜆1 𝜆𝑜

𝜇2𝜇1
𝑃0

 𝑃3 =
𝜆2+𝜇2

𝜇3
𝑃2 -

𝜆1

𝜇3
𝑃1=

𝜆2𝜆1 𝜆𝑜

𝜇3𝜇2𝜇1
𝑃0

In general , we can write the following formula

 𝑃𝑛 =
𝜆𝑛−1𝜆𝑛−2……. 𝜆0

𝜇𝑛𝜇𝑛−1……..𝜇1
𝑃0, n ≥ 1 or 𝑃𝑛 = 𝑃0∏

𝜆𝑖

𝜇𝑖+1

𝑛−1
𝑖=0 , n ≥ 1

Now 𝑃𝑛+1 =
𝜆𝑛+𝜇𝑛

𝜇𝑛+1
𝑃𝑛 -

𝜆𝑛+1

𝜇𝑛+1
𝑃𝑛−1 = 𝑃0∏

𝜆𝑖

𝜇𝑖+1

𝑛
𝑖=0

Thus, by mathematical induction the general value of 𝑃𝑛 holds for all n.

To obtain the value of 𝑃0, we use the boundary condition ∑ 𝑃𝑛
∞
𝑛=0 = 1

Or 𝑃0 + ∑ 𝑃𝑛
∞
𝑛=1 = 1, to get

 𝑃0 = (1 + ∑ ∏
𝜆𝑖

𝜇𝑖+1

𝑛−1
𝑖=0

∞
𝑛=1)-1

31

Remark.𝑃0 = 0 if R.H.S is a divergent series . In case R.H.S is convergent , the

value of 𝑃0 will depend on 𝜆𝑖’s and 𝜇𝑖’s.

Special cases

Case I . When 𝜆𝑛= 𝛌 for n ≥ 0 ; and 𝜇𝑛 = 𝛍 for n > 1

 𝑃0 = [1 + ∑ (𝜆/𝜇)𝑛∞
𝑛=1]-1 = 1 – ρ.

In this case ,therefore

 𝑃𝑛 = ρn (1 – ρ), for n ≥ 0.

This result is exactlt the same as that of Model I .

Case II. When 𝜆𝑛 =
𝜆

𝑛+1
 for n ≥ 0 and 𝜇𝑛 = 𝛍 for n > 1.

 𝑃0 = [1 + ∑
𝜆𝑛

𝑛!𝜇𝑛
∞
𝑛=1]-1 = [1 + 𝜌 +

1

2!
𝜌2 +

1

3!
𝜌3 +⋯]-1 = 𝑒−𝑝

⸫ 𝑃𝑛 =
1

𝑛!
𝜌𝑛𝑒−𝑝 for n ≥ 0 and 𝜌 =

𝜆

𝜇
 .

Which is a poisson distribution with mean E(n) = 𝜌.

Case III . When 𝜆𝑛= for n ≥ 0 ; and 𝜇𝑛 =n𝛍 for n > 1,

 𝑃0 = [1 + ∑
𝜆𝑛

𝑛!𝜇𝑛
∞
𝑛=1]-1 = 𝑒−𝑝

⸫ 𝑃𝑛 =
1

𝑛!
𝜌𝑛𝑒−𝑝, for n ≥ 0 and 𝜌 =

𝜆

𝜇
 .

Which is again poisson with mean E(n) = 𝜌 ; and E(m) = 0, E(w) = 0.

 In this case the service rate increases with the increase in queue length and

hence is known as a queueing problem with infinite number of channels , i.e.,

(M/M/∞) : (∞/FIFO). This model is known as a Self-service Model.

EXAMPLE

Problems arrive at a computing centre in Poisson fashion at an average rate of five per

day . The rules of the computing centre are that any man waiting to get his problem

solved must aid the man whose problem is being solved. If the time to solve a problem

with one man has an exponential distribution with mean time of
1

3
 day , and if the

32

average solving time is inversely proportional to the number of people working on the

problem, approximate the expected time in the centre of a person entering the line.

Solution. Here 𝛌 = 5 problems per day, and 𝛍 = 3 problems per day.

It is given that the service rate increases with the increase in the number of person.

⸫ 𝜇𝑛 = n𝛍 when there are n problems and 𝑃𝑛 =
1

𝑛!
𝜌𝑛𝑒−𝑝

E(n) = ∑ 𝑛𝑝𝑛
∞
𝑛=0 = ∑ 𝑛

1

𝑛!
∞
𝑛=0 𝜌𝑛𝑒−𝑝 = 𝑒−𝑝. 𝜌. 𝑒𝑝 = ρ =

5

3
 or 1.67

Now, the average solving time, which is inversely proportional to the number of

people working on the problem, is given by 1/5 day per problem.

⸫ Expected time for a person entering the line is given by

1

5
𝐸(𝑛) =

1

5
×
5

3
 days =

1

3
 days or 8 hours.

Model V {(M/M/C) : (∞/ FIFO)}. This model is a special case of Model IV in

the sense that here we consider C parallel service channels. The arrival rate is 𝛌 and

the service rate per service channel is 𝛍.

 The effect of using C parallel service channel is a proportionate increase in the service

rate of the facility to n𝛍 if n ≤ C and C𝛍 if n>C. Thus, in terms of the generalized

model (Model IV), 𝜆𝑛 and 𝜇𝑛 are defined as

 𝜆𝑛 = 𝛌, n ≥ 0

and 𝜇𝑛 = n𝛍 if 1 ≤ n ≤ C and C𝛍, if n ≥ C.

Utilizing the above values of 𝜆𝑛 and 𝜇𝑛, the steady – state probability of Model IV

becomes

 𝑃𝑛 = {

 λ𝑛𝑃0

nµ(n−1)…(1)µ
; 1 ≤ n ≤ C,

 λ𝑛𝑃0

(Cµ)) (Cµ)…(Cµ)(Cµ)⏟ (C−1)µ (C−2)µ…(1)µ
; n > 𝐶

 =
 λ𝑛𝑃0

𝑛! 𝜇𝑛
 if 1 ≤ n ≤ C and

 λ𝑛𝑃0

𝐶𝑛−𝐶𝐶! 𝜇𝑛
 if n > 𝐶

 =
1

𝑛!
𝜌𝑛𝑃0 if 1 ≤ n ≤ C and

1

𝐶𝑛−𝐶𝐶! 𝜇𝑛
𝜌𝑛𝑃0 if n > 𝐶

33

To find the value of 𝑃0, we use the boundary condition ∑ 𝑃𝑛
∞
𝑛=0 = 1

 ∑ 𝑃𝑛
𝐶−1
𝑛=0 + ∑ 𝑃𝑛

∞
𝑛=𝑐 = 1

Or [∑
1

𝑛!
𝜌𝑛 + ∑

1

𝐶𝑛−𝐶𝐶!
𝜌𝑛∞

𝑛=𝐶
𝐶−1
𝑛=0] 𝑃0 = 1

Or 𝑃0 = [∑
1

𝑛!
𝜌𝑛 + 𝜌𝐶 ∑

1

𝐶𝑛−𝐶𝐶!
(
𝜌

𝐶
)
𝑛−𝐶

∞
𝑛=𝐶

𝐶−1
𝑛=0]

−1

 = [∑
1

𝑛!
(
𝜆

𝜇
)
𝑛
+

1

𝐶!
(
𝜆

𝜇
)
𝐶
.
𝐶𝜇

𝐶𝜇− 𝜆

𝐶−1
𝑛=0]

−1

Remark. The result obtained above is valid only if
𝜆

𝐶𝜇
 < 1; that is, the mean arrival rate

must be less than the mean maximum potential service rate of the system. If C = 1,

then the value of 𝑃0 is in complete agreement with the value of 𝑃0 for Model I.

Characteristics of Model V

(i) P(n ≥ C) = Probability that an arrival has to wait

 = ∑ 𝑃𝑛
∞
𝑛=𝐶 = ∑

1

𝐶𝑛−𝐶𝐶!
(𝜆/𝜇)𝑛∞

𝑛=𝐶 𝑃0 =
(𝜆/𝜇)𝐶 𝐶𝜇

𝐶!(𝐶𝜇−𝜆)
𝑃0

(ii) Probability that an arrival enters the service without wait

 = 1 – P(n ≥ C) or 1 -
𝐶(𝜆/𝜇)𝐶

𝐶!(𝐶−𝜆/𝜇)
𝑃0

(iii) Average queue length is given by

 E(m)=∑ (𝑛 − 𝐶)∞
𝑛=𝐶 𝑃𝑛 = ∑ 𝑥𝑃𝑥+𝑐 , 𝑓𝑜𝑟 𝑥 = 𝑛 − 𝑐

∞
𝑥=0

 = ∑ 𝑥.
1

𝐶!𝐶𝑥
(
𝜆

𝜇
)𝐶+𝑥∞

𝑥=𝐶 𝑃0

 E(m)=
1

𝐶!
(𝜆/𝜇)𝐶 ∑ 𝑥. (

𝜆

𝐶𝜇
)𝑥∞

𝑥=0 𝑃0

 =
1

𝐶!
(𝜆/𝜇)𝐶𝑃0∑ (

𝑑

𝑑𝑦
𝑦𝑥)∞

𝑥=0 . y, where y=
𝜆

𝐶𝜇

 =
1

𝐶!
(𝜆/𝜇)𝐶𝑃0y

𝑑

𝑑𝑦
(
1

1−𝑦
)

 =
𝜆𝜇(

𝜆

𝜇
)
𝐶
𝑃0

(𝐶−1)!(𝐶𝜇−𝜆)2

(iv) Average number of customer in the system is given

E(n) = E(m) +
𝜆

𝜇
 =

𝜆𝜇(
𝜆

𝜇
)
𝐶
𝑃0

(𝐶−1)!(𝐶𝜇−𝜆)2
 +

𝜆

𝜇
.

34

(v) Average waiting time of an arrival is given by

 E(w) =
1

𝜆
 E(m) =

𝜇(
𝜆

𝜇
)
𝐶
𝑃0

(𝐶−1)!(𝐶𝜇−𝜆)2

(vi) Average waiting time an arrival spends in the system is given by

E(v) = E(w) +
1

𝜇
 =

𝜇(
𝜆

𝜇
)
𝐶
𝑃0

(𝐶−1)!(𝐶𝜇−𝜆)2
 +

1

𝜇
 or E(v) = E(n)/𝛌.

(vii) Average number of idle servers is equal to

C – Average number of customers served.

EXAMPLE

A Supermarket has two girls serving at the counters. The customers arrive in a poisson

fashion at the rate of 12 per hour. The service time for each customer is exponential

with mean 10 minutes .Find

(i) the probability that an arriving customer has to wait for service,

 (ii) the average number of customers in the system, and

 (iii) the average time spent by a customer in the super-market

Solution. We are given

 𝛌 = 12 customer per hour, = 10 per hour, C = 2 girls.

⸫ 𝑃0 = [∑
1

𝑛!
(
12

10
)
𝑛
+

1

2!
(
12

10
)
2
.
2×10

20− 12
2−1
𝑛=0]

−1

 =
1

4
 (or 0.25)

(i) Probability of having to wait for service

P(w > 0) =
1

𝐶!
(
𝜆

𝜇
)𝐶

 𝐶𝜇

(𝐶𝜇−𝜆)
𝑃0

 =
1

2
(
12

10
)2

20

(20−12)
×
1

4
 = 0.45

(ii) Average queue length is

E(m) =
𝜆𝜇(

𝜆

𝜇
)
𝐶
𝑃0

(𝐶−1)!(𝐶𝜇−𝜆)2
 =
12×10×(1.2)2×0.25

(2−1)!(20−12)2
 =

27

40

 Average number of customer in the system

 E(n) = E(m) +
𝜆

𝜇
 =

27

40
 +
12

10
 = 1.82 (or 2 customers) approx..

(iii) Average time spent by a customer in supermarket

35

 E(v) = E(n)/𝛌 = 1.82/12 = 0.156 hours or 9.3 minutes.

MODEL VI:{(M/M/C):(N/FIFO)}.This model is essentially the same as model V

except that the maximum number in the system is limited to N where N≥C. Therefore,

utilizing the steady-state probabilities of model IV, with

 𝜆𝑛 = 𝛌 if 0 ≤ n < N; and 0 otherwise

And µn=nµ if 0 ≤ n < C; and Cµ if C≤n<N

 We get

 Pn = {

1

𝑛!
(
𝜆

µ
)
𝑛
𝑃0; 0 ≤ 𝑛 < 𝐶

1

𝐶𝑛−𝐶𝐶!
(
𝜆

𝜇
)𝑛𝑃0; 𝐶 ≤ 𝑛 ≤ 𝑁

Where 𝑃0 = {∑
1

𝑛!

𝐶−1
𝑛=0 (

𝜆

𝜇
)𝑛 + ∑

1

𝐶𝑛−𝐶𝐶!

𝑁
𝑛=𝐶 (

𝜆

𝜇
)𝑛}

−1

 = {
[∑ (

𝜆

𝜇
)𝑛𝐶−1

𝑛=0 +
1

𝐶!
 (
𝜆

𝜇
)𝐶 {1 − (

𝜆

𝐶𝜇
)𝑁−𝐶+1}

𝐶𝜇

𝐶𝜇− 𝜆
]
−1

[∑ (
𝜆

𝜇
)𝑛𝐶−1

𝑛=0 +
1

𝐶!
 (
𝜆

𝜇
)
𝐶
(𝑁 − 𝐶 + 1)]

−1

 ;
𝜆

𝐶𝜇
= 1

Remark. If we take N ∞ and consider 𝛌/C𝛍 < 1, then the reduced result corresponds

to that of Model V. Also, if we take C = 1 then the reduced result corresponds to that

of Model I.

Characteristics of model VI

(i) Average queue length is given by

 E(m)= ∑ (𝑛 − 𝐶)𝑃𝑛
𝑁
𝑛=𝐶 ∑ (𝑛 − 𝐶)𝑁

𝑛=𝐶

(
𝜆

𝜇
)𝑛

𝐶!𝐶𝑛−𝐶
 𝑃0

(ii) Average number of customers in the system is given by

 E(n)=E(m)+C-𝑃0∑
𝐶−1
𝑛=0

(𝐶−𝑛)(𝜌𝐶)𝑛

𝑛!

(iii) Average waiting time in the system can be obtained by using Littles’s

formula, that is,

 E(v)=[E(n)]/𝛌’ where 𝛌’=𝛌’(1-𝑃𝑁) is the effective

arrival rate.

36

Average waiting time in a queue can be obtained by using

 E(w)=E(v)-1/µ or E(w)=[E(m)]/ℷ’.

EXAMPLE

A car servicing station has 3 stalls where service can be offered simultaneously.

The cars wait in such a way that when a stall becomes vacant, the car at the head of

the line pulls up to it. The station can accommodate at most four cars waiting

(seven in the station) at one time. The arrival pattern is Poisson with a mean of one

car per minute during the peak hours. The service time is exponential with mean 6

minutes. Find the average number of cars in the service station during peak hours,

the average number of cars per hour that cannot enter the station because of full

capacity.

Solution. Here 𝜆 = 1 car per minute , 𝜇 = 1/6 car per minute, 𝐶 = 3,

 𝑁 = 7, 𝜌 = 𝜆/𝜇 = 6 and

 𝑃0 =[∑
1

𝑛!

3−1
𝑛=0 6𝑛 + ∑

1×6𝑛

3𝑛−33!
7
𝑛=3]

−1

Expected number of cars in the queue is

E =
(𝐶𝜌)𝐶

𝐶!(1−𝜌)2
 (1-𝜌𝑁−𝐶+1 − (1 − 𝜌)(𝑁 − 𝐶 + 1)𝜌𝑁−𝐶)

 =
(3×6)3×6

3!(−5)2
.
1

1141
 (1 - 65 – (-5)(5)(6)4)

 = 3.09 Cars

Expected number of cars in the service station

 E (𝑛) = 3.09 + 3 - 𝑃0∑
(3−𝑛)

𝑛!
 (6)𝑛2

𝑛=0 6.06 Cars

Expected waiting time a car spends in the system

 E (v) =
6.06

1(1−𝑃7)
 =

0.06

1−
67

3!34
×

1

1141

 = 0.121

Since, 𝑃𝑛 =
1

𝐶!𝐶𝑛−𝐶
(
𝜆

𝜇
)𝑛𝑃0 for C ≤ n ≤ N

Expected number of cars per hour that cannot enter the station is

 60𝛌𝑃𝑁 = 60 × 1 × 𝑃7 = 60×
67

3!34
 ×

1

1141
 = 30.3 cars per hour

37

Model VII {M/M/C} : {C/FIFO}.This model is essentially the same as Model

VI except that here N = C. Therefore, we consider the situation where no

waiting queue is allowed to form. This gives rise to stationary distribution

known as Erlang’s first formula and can be easily obtained by using the result of

Model VI with N = C. Thus, we have

 𝑃𝑛 =
1

𝑛!
(
𝜆

µ
)𝑛𝑃0 if 0 ≤ n ≤ C and 0 otherwise

Where 𝑃0 = [∑
1

𝑛!
(
𝜆

µ
)𝑛𝐶

𝑛=0]
−1

 The resultant formula for 𝑃0 is itself called Erlang’s Loss Formula.

EXAMPLE

 A tax consulting film has three counters in its office to receive people

who have problem concerning their income, wealth and sales taxes. On the

average 48 persons arrive in an 8 hour in a day. Each tax adviser spends 15 on

an average on an arrival. If the arrivals are poissonly distribution and the service

time are according to exponential distribution,

Find

1)The average number of customers in system

2)Average number of customers to be served

3)Average time a customer spends in the system

Solution:

Here C=3, λ=48/8=6 per hour

µ=
1

15
×60=4 per hour

Probability 𝑃0=[∑
1

𝑛!
(
𝜆

µ
)
𝑛

𝐶−1
𝑛=0 +

1

𝐶!
(
𝜆

µ
)
𝐶 𝐶µ

(𝐶µ−𝜆)
]
−1

 =[∑
1

𝑛!
(
𝜆

µ
)
𝑛

𝐶−1
𝑛=0 +

1

3!
(
𝜆

µ
)
3 3µ

(3µ−𝜆)
]
−1

 =
1

[1+
𝜆

µ
+
1

2
(
𝜆

µ
)
2
+
(𝜆/µ)2

6
.
3µ

3µ−𝜆
]

 =
1

[1+
3

2
+
1

2
(
3

2
)
2
+
(3/2)2

6
.
3×4

3×4−6
]

38

 =
1

[1+
3

2
+
9

8
]+
27

48
.
12

12−6

 =
1

29

8
+
9

8

 =
8

39

 = 0.21

1) Average number of customers in the system,

 𝐿𝑠 =
𝜆µ(𝜆/µ)

𝑐

(𝐶−1)!(𝐶µ−𝜆)
2 . 𝑃0 +

𝜆

µ

=
6 × 4 × (3/2)2

2! (12 − 6)2
× (0.21) +

3

2

 =1.74

 2) Average number of customer waiting to be served:

 𝐿𝑞=𝐿𝑠-
𝜆

µ

 =1.74-
3

2

 =0.24

 3) Average time a customer spends in the system:

 𝑊𝑠 =
𝐿𝑠

𝜆
=
1.74

6

 =0.29hour

 =17.4 minutes

 LIMITATION OF QUEUING THEORY

 The problem resolving is based on mathematical distributions and

assuming (the client’s behaviour is predicted, but no one guarantees the

100 per cent accurateness).

 Situations that take place in real life are usually complex and get beyond

the philosophy and mathematics, which means that doubt remains no

matter how accurate you are

 Many companies have multi-channel services when one client has to

receive services from several operators, and this can mean that customers

39

would often have to fall in a new queue soon after they get out of the

previous one

 It takes much effort, time and energy to analyse a particular situation and

solve the problem using the theory (this method is expensive).

APPLICATION OF QUEUING THEORY

(i)Application in communication system

Applicability of queueing theory through Markov process is alsofound in the field

of communication system. This chain is based on the condition that the past,

present and future all of them are independent. The natural laws of jump chain

done within Markov chain process is also one of the examples of the queueing

theory in communication system.

(ii)Applications in Health Care Systems

 Queuing theory is “The mathematical approach to the analysis of

waiting lines in Health care setting”.Queuing system is very beneficial in the

health care systems as well. One of the biggest hurdles in health care

organizations is the fact that patients have to wait in long queues for their turn to

be assisted. Queuing system minimizes the time that customers have to waste in

waiting and utilizing their resources and servers. These servers include the nurses,

hospital beds, doctors and other health care services. When a person chose to stop

waiting in a queue, he complies with the phenomenon of reneging. This decision

is dependent on the length of the queue and the amount of stamina that a patient

has to wait in a line. Health care organizations attain dysfunctional equilibrium

through exceeding server capacity by reneging. This example can be understood

through the example of emergency units in the hospital (Tian & Zhang, n.d). Most

of the patients quit emergency departments without even getting treated for their

health problem due to capacity, arrival rate and utilization. Statistics and data

collected from this amount of number of people leaving, health care organizations

determine the rate of revenue loss. The Same queuing method can also be utilized

to minimize the reneging factor in health care organizations. One way of doing

this is by categorizing patients according to the service they require. Also we use

the telecommunication system to avoid queue length byreserving previously

appointment to consult a doctor.

40

CONCLUSION

With the knowledge of probability theory, input and output models, and

birth- death processes, it is possible to derive many different queuing models,

including but not limited to the ones we observed in this paper. Queuing theory

can be applicable in many real-world situations. For example, understanding

how to model a multiple-server queue could make it possible to determine how

many servers actually needed and at what wage in order to maximize financial

efficiency. Or perhaps a queuing model could be used to study the lifespan of

the bulbs in street lamps in order to better understand how frequently they need

to be replaced.

The applications of queuing theory extend well beyond waiting in line at a

bank. It may take some creative thinking, but if there is any sort of scenario

where time passes before a particular event occurs, there is probably some way

to develop it into a queuing model. Queues are so commonplace in society that

it is highly worthwhile to study them, even if only to shave a few seconds off

one's wait in the checkout line.

41

REFERENCE

1.Samuel Fomundam, Jeffrey Herrmann (2007) A survey of Queuing

theory applications in Healthcare.

2.Operations Research by Kanti Swarup ,P K Gupta , Man Mohan ,

Priynshu Gupta.

3. Wayne L Winston, Operations Research: Applications and

Algorithms, 2nd edition, PWS-Kent Publishing, Boston, 1991.

RECURRENCE RELATIONS ON COMBINATORICS
Project report submitted to

ST.MARY°S COLLEGE (AUTONOMOUS),THOOTHUKUDI.

Afiliated to

MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI

In partial fulfillment of the requirement for the award of degree of

Bachelor of Science in Mathematics

Submitted by

NAME
REG.NO

DasnavisRobanci.A
19AUMT09

Dilany.A
Sangavi.P
Selliammal.R

19AUMT10

19AUMT38

19AUMT41

Spica.J
19AUMT45

Under the guidance of

Dr. V.L.STELLA ARPUTHA MARY M.sc.,M.Phil.,B.Ed.,Ph. D.,

Head & Assistant Professor of Mathematics

St. Mary's College (Autonomous), Thoothukudi.

Department of Mathematics

St. Mary's College (Autonomous),
Thoothukudi

(2021 2022)

CERTIFICATE

We hereby deciare that the project report entitled "RECURRENCE

RELATIONS ON COMBINATORICS being submitted to St. Mary's
College (Autonomous), Thoothukudi affiliated to Manonmaniam Sundaranar
University, Tirunelveli in partial fulfillment for the award of degree of
Bachelor of Science in Mathematics and it is a record of work done during the

year 2021-2022 by the following students:

NAME REG.NO.

DASNAVIS ROBANCI.A 19AUMT09

DILANY.A 19AUMT10

SANGAVIL.P 19AUMT38

SELLIAMMAL.R 19AUMT41

SPICA.J 19AUMT45

vSrea Aaus Ma
Signature of the Guide

Sela Aphs Ma
Dr. VSnature of theHoDTa

Pr BE.
les sor 0! *atreti

St. Aiy s College (Autononmous
Thoothukudi-628 001.

Ra
Signafureof the Principal Signature ofthe Examiner

St. Mary's College (Autonomous)
Thoothukudi - 628 001.

DECLARATION

We hereby declare that the project entitled

RECURRENCE RELATION ON COMBINATORICS" is our original work.

It is not been submitted to any University for any degree or diploma.

R Seliammal Dasnavis Pobanci A

(Dasnavis Robanci.A)
(Selliammal.R)

Spica
(Spica.J)

A Dilany
(Dilany.A)

Sangaun. P

(Sangavi.P)

ACKNOWLEDGEMENT

First of all. we thank Lord Almighty for showering his blessings to undergo

this project.

With immense pleasure, we register our deep sense of gratitude to our guide and

the Head of the Department, Dr. V. L. Stella Arputha Mary M.Sc., M.Phil.,

B.Ed., Ph.D. for having imparted necessary guidelines throughout the period of

our studies.

We thank our beloved Principal, Rev. Dr. Sr. A.S.J. Lucia Rose M.Sc., M.Phil.,

Ph.D., PGDCA for providing us the help to carry out our project work

successfully.

Finally, we thank all those who extended their helping hands regarding this

project.

RECURRENCE RELATION

ON

COMBINATORICS

1

 content

Introduction & Definition

1.1 First order linear Recurrence relation

1.1.1 Fibonacci sequence

1.1.2 Tower of Hanoi

1.2 Method of linear Recurrence relation

1.2.1 Back Tracking method

1.2.2 Forward chaining method

1.2.3 Summation method

1.3 Second order linear Recurrence relation

1.4 The Non-Homogeneous Recurrence relation

1.4.1 Characteristics equation

1.5 Recurrence relation using generating Function.

Reference

2

INTRODUCTION:

 A wide variety of recurrence relations occur in models. Some of these recurrence

relations can be solved using iteration on some other adhoc technique. However, one

important class of recurrence relation can be explicitly solved in a systematic way.

There are recurrence relations that express the terms of a sequence as linear

combinations of previous terms.

 This study of what are called either recurrence relations on difference equations

is the discrete counterpart to ideas applied in ordinary differential equations.

 Our development will not employ any ideas from differential equations but will

start with the notion of a geometric progression. As further ideas are developed, we

shall see some of the many applications that make this topic so important.

 A recurrence relation is an equation that uses recursion to relate terms in a

sequence an array. It is a way to define a sequence on array in terms of itself

.Recurrence relations have applications in many areas of mathematics number

theory- the Fibonacci sequences.

Definition:

 A recurrence relation for the sequence {𝒂𝒏} is an equation that expresses 𝒂𝒏 in

terms of one or more preceding terms of the sequence, viz, 𝒂𝟎, 𝒂𝟏, … , 𝒂𝒏−𝟏, for n ≥

𝐧𝟎. Here 𝑛0 is used to define initial condition and is a non-negative integer.

 A sequence is called as a solution of a recurrence relation if its terms satisfy the

recurrence relation.

 The initial conditions for a sequence specify the terms that precede the first term

where the recurrence relation takes effect.

1.1 THE FIRST-ORDER RECURRENCE RELATION

3

 Suppose n is a natural number, we define 2n as

 2n = 2.2.2………2

 n2’s

 or

 2′= 2, and for k ≥1 , 2k+1 = 2.2k

We write 0!=1 and for k ≥ 0, (k+1)! = (k+1)!k!.

A sequence is a function whose domain is some infinite set of integers (often

N) and whose range is a set of real numbers.

The sequence which is the function f : N→R defined by f(n) =

n2=1,4,9,16,……(1)

The numbers in the list are called the terms of sequence , the terms are denoted

a0, a1,a2,…..

The sequence 2, 4, 8, 16, can be defined recursively like : 𝑎1 = 2 and for

f ≥ 1, 𝑎𝑘+1= 2𝑎𝑘 setting k =1,2,3…. and 𝑎1= 2 in (1) gives 2,4,8….

The equation ak+1 = 2ak in (1), which defines one member of the sequence

in terms of a previous one, is called a recurrence relation. The equation 𝑎1=

2 is called an initial condition.

 For example, we write ,

 𝑎0 = 2 and for k ≥ 0, 𝑎𝑘+1 = 2ak or we say 𝑎1 = 2 and for k ≥ 2, 𝑎𝑘=

2𝑎𝑘−1 .

In (1), for instance, 𝑎𝑛 = 2𝑛 , we say that , 𝑎𝑛 = 2𝑛 is the solution to the

recurrence relation.

A sequence of numbers like 50, 64, 78, 92, where each term is determined

by adding the same fixed number to the previous one, is called an arithmetic

sequence. The fixed number is called the common difference of the sequence.

4

 The arithmetic sequence with first term a and common difference d is the

sequence defined by

 𝑎1 = a and k ≥ 1, 𝑎𝑘+1 = 𝑎𝑘+d

The general arithmetic sequence, takes the form

 a, a + d, a + 2d,

 and for n ≥ 1, the nthterm of the sequence is 𝑎𝑛 = a + (n – 1) d.

 The sum of n terms of the arithmetic sequence with first term a and common

difference d is

 S =
n

2
 [2a + (n – 1) d]

The geometric sequence with first term a and common ratio r is the sequence

defined by

 𝑎1 = a and for k ≥ 1, 𝑎𝑘+1= r𝑎𝑘

 The general geometric sequence, this has the form

 a, ar,𝑎𝑟2, 𝑎𝑟3,…………

 the nth term being 𝑎𝑛 = 𝑎rn−1, the sum S of n terms (r ≠ 1), S = a(1 – rn)/(1

– r)

1.1.1 THE FIBONACCI SEQUENCE

 The Fibonacci sequence,

 f1= 1, f2 = 1 and for k ≥ 2, fk+1= fk+fk−1the nth term

of the Fibonacci sequence is the closed integer to the number

1

√5
(

1+√5

2
)

n

For example, 𝑎1= 1 and for k > 1

 ak = {
 1 + 𝑎𝑘

2

if k is even

1 + 𝑎3𝑘−1 if k is odd

Problem 1(Rabbits and the Fibonacci numbers)

5

 Consider this problem, which was originally posed by Leonardo di

pisa, also known as Fibonacci in the thirteenth century in this book liber abaci.

A young pair of rabbits(one of each sex) is placed on an island. A pair of

rabbits does not breed until they are 2 months old. After they are 2

months old, each pair of rabbits produces another pair each month. Find a

recurrence relation for the number of pair of rabbits on the island after n

months, assuming that no rabbits over die.

 Solution.

 Denote by fn the number of pair of rabbits after n months. We will show

that fn , n=1,2,3……are the terms of the Fibonacci sequence.

 The rabbit population can be modeled using a recurrence relation. At

the end of the first month the number of pairs of rabbits on the island is f1 = 1. Since

this pair does not breed during the second month f2 =1 also. To find the number of

pairs after n months, add the number on the island the previous month, fn−1 and the

number of new born pairs which equals fn−2 , Since each new born pair comes from

a pair of least 2 months old.

 Consequently the sequence {fn} satisfies the recurrence relation and

the initial conditions uniquely determine this sequence the number of pairs of rabbits

on the island after n months is given by the nth fibonacci number.

Problem 2

6

 A person invests Rs. 10,000/- @ 12% interest compounded annually. How

much will be there at the end of 15 years.

Solution.

 Let An represents the amount at the end of n years.

 So at the end of n – 1 years, the amount is An−1.

 Since the amount after n years equals the amount after n – 1 years plus interest for

the nth year.

Thus the sequence {An} satisfies the recurrence relation

 An= An−1 + (0.12) An−1 = (1.12) An−1, n ≥ 1.

With initial condition A0 = 10,000.

 The recurrence relation with the initial condition allow us to compute the value of

An for any n.

 For example, A1 = (1.12) A0

 A2 = (1.12) A1= (1.12)2 A0

 A3= (1.12) A2 = (1.12)3A0

 :

 :

 An = (1.12)n A0

which is an explicit formula and the required amount can be derived from the

formula by putting n = 15.

So, A15 = (1.12)15 (10000).

Problem 3

 Suppose that a person deposits $10,000 in a savings account at a bank yielding 11%

per year with interest compounded annually. How much will be in the account after

30 years ?

7

Solution.

 To solve this problem. Let Pn denote the amount in the account after n years.

 Since the amount in the account after n years equals the amount in the account after

n – 1 years plus interest for the nth year, we see that sequence {Pn } satisfies the

recurrence relation

 𝑃𝑛= 𝑃𝑛−1 + 0.11 𝑃𝑛−1 = (1.11) 𝑃𝑛−1

This initial condition is 𝑃0 = 10,000.

We can use an interative approach to find a formula for Pn.

Note that P1 = (1.11) P0

 P2 = (1.11) P1 = (1.11)2 P0

 P3 = (1.11) P2 = (1.11)3 P0

 ..

 ..

 Pn = (1.11) Pn−1 = (1.11)n P0

when we insert the initial condition P0 = 10,000, the formula Pn= (1.11)n 10,000 is

obtained.

 We can use mathematical induction to establish its validity. That the formula is valid

for n = 0 is a consequence of the initial condition.

Now assume that Pn = (1.11)n 10,000.

 Then, from the recurrence relation and the induction hypothesis.

Pn+1= (1.11) Pn= (1.11) (1.11)n 10,000 = (1.11)n+1 10,000.

This shows that the explicit formula for Pn is valid.

 Inserting n = 30 into the formula Pn = (1.11)n 10,000

 Shows that after 30 years the account contains P30 = (1.11)30 10,000 = $228,922.97

8

Problem 4

Solve the recurrence relation 𝑎𝑛 = 7-𝑎𝑛−1 for n ≥ 1 given that 𝑎2=98

Solution.

 Given recurrence relation is 𝑎𝑛 = 7-𝑎𝑛−1 for n≥ 1 → (1)

The given recurrence relation is a first order linear or homogeneous linear relation.

The generalsolution of first order linear or homogeneous recurrence relation of

 𝑎𝑛 =𝑐𝑛. 𝑎0 → (2)

In eq (1) substituting n+1 in place of n, 𝑎𝑛+1 = 7. 𝑎𝑛+1−1

 𝑎𝑛+1 =7. 𝑎𝑛 → (3)

If 𝑎𝑛=𝑐𝑛 the 𝑎𝑛+1 = 𝑐𝑛+1

 7. 𝑎𝑛= 𝑐𝑛. 𝑐 [𝑎𝑚+𝑛 = 𝑎𝑚 . 𝑎𝑛]

 7. 𝑐𝑛= 𝑐𝑛.c

 C = 7

Substituting c value in eq (2), 𝑎𝑛 =7𝑛. 𝑎0 → (4)

 𝑎2 = 98

Substituting n=2 in eq (4)

 𝑎2 = 72. 𝑎0

 98 = 72. 𝑎0

 𝑎0 =
98

49
 =2

Substitute 𝑎0 value in eq (4)

 𝑎𝑛 = 7𝑛.2

9

1.1.2 TOWER OF HANOI

 Problem 5

 The game of Hanoi Tower is to play with a set of disks of graduated

size with holes in their centers and a playing board having three spokes for holding

the disks.

 The object of the game is to transfer all the disks from spoke A to spoke C by

moving one disk at a time without placing a larger disk on top of a smaller one. What

is the minimal number of moves required when there are n disks?

Solution.

 Let 𝑎𝑛 be the minimum number of moves to transfer n disks from one spoke

to another. In order to move n disks from spoke A to spoke C, one must move the

first n − 1 disks from spoke A to spoke B by 𝑎𝑛−1 moves ,then move the last (also

the largest) disk from spoke A to spoke C by one move, and then remove the n − 1

disks again from spoke B to spoke C by 𝑎𝑛−1 moves. Thus the total number of

moves should be

 𝑎𝑛 = 𝑎𝑛−1 +1+ 𝑎𝑛−1 = 2𝑎𝑛−1 + 1.

 This means that the sequence {𝑎𝑛 |𝑛 ≥ 1} satisfies the recurrence relation

10

 {
𝑎𝑛 = 2𝑎𝑛−1 + 1, 𝑛 ≥ 1
𝑎1 = 1

 (1)

 Applying the recurrence relation again and again, we have

 𝑎1= 2𝑎0 + 1

 𝑎2 = 2𝑎1 + 1 = 2(2𝑎0 + 1) + 1

 = 22 𝑎0 + 2 + 1

 𝑎3 = 2𝑎2 + 1 = 2(22 𝑎0 + 2 + 1) + 1

 = 23 𝑎0+ 22 + 2 + 1

 𝑎4 = 2𝑎3 + 1 = 2(23 𝑎0+ 22 + 2 + 1) + 1

 = 24 𝑎0 + 23 + 22+ 2 + 1

 ⋮

 𝑎𝑛 = 2𝑛 𝑎0+ 2𝑛−1+ 2𝑛−2+ · · · + 2 + 1

 = 2𝑛 𝑎0 + 2𝑛 − 1

Let 𝑎0 = 0. The general term is given by

 𝑎𝑛=2𝑛 − 1, n ≥ 1.

Given a recurrence relation for a sequence with initial conditions. Solving the

recurrence relation means to find a formula to express the general term 𝒂𝒏 of the

sequence.

1.2 METHOD OF LINEAR RECURRENCE RELATION

1.2.1. Back Tracking Method

 In this method, we shall start from 𝑎𝑛 and move backward towards 𝑎1

to find a pattern, if any, to solve the problem.

 To backtrack, we keep on substituting the definition of 𝑎𝑛,

 𝑎𝑛−1, 𝑎𝑛−2 and so on. Until a recognizable pattern appears.

11

1.2.2. Forward Chaining Method

In this method, we begin from initial (terminating) condition and keep on moving

towards the 𝑛𝑡ℎ term until we get a clear pattern.

1.2.3. Summation Method

To solve a first order linear recurrence relation with constant coefficient.In this

method, we arrange the given equation in the following form :

𝑎𝑛– 𝑘𝑎𝑛−1
 = f(n) and then backtrack till terminating condition.

In the process, we get a number of equations. Add these equations in such a way

that all intermediate terms gets cancelled. Finally, we get the required solution.

Problem 6

 Solve the recurrence equation 𝑎𝑛 = 𝑎𝑛−1 + 3 with 𝑎1 = 2.

Solution.

 Backtracking Method :

We have,

 𝑎𝑛 = 𝑎𝑛−1 + 3 with 𝑎1 = 2

 𝑎𝑛= 𝑎𝑛−2 + 3 + 3 (since 𝑎𝑛−1 = 𝑎𝑛−2 + 3)

 = 𝑎𝑛−2 + 2 × 3

 = 𝑎𝑛−3 + 3 + 2 × 3 (since 𝑎𝑛−2 = 𝑎𝑛−3+ 3)

 = 𝑎𝑛−3 + 3 × 3

 = 𝑎𝑛−4+ 3 + 3 × 3 (since 𝑎𝑛−3= 𝑎𝑛−4+ 3)

 = 𝑎𝑛−4+ 4 × 3

 − − − − − − − − − − − −

 − − − − − − − − − − − −

 = 𝑎𝑛−(𝑛−1)+ (n – 1) × 3

 = 𝑎1 + 3(n – 1)

 = 2 + 3(n – 1) (since 𝑎1 = 2 is the terminating condition)

∴ 𝑎𝑛= 2 + 3(n – 1)

12

Forward Chaining Method :

Given, initial condition : 𝑎1= 2

Now ,𝑎1= 2

𝑎2 = 𝑎1+ 3

 𝑎3= 𝑎2 + 3

 = 𝑎1+ 2 × 3

𝑎4 = 𝑎3+ 3

 = 𝑎1+ 2 × 3 + 3

 = 𝑎1+ 3 × 3

 = 𝑎1+ (4 – 1) × 3

 𝑎5=𝑎1+ (5 – 1) × 3

− − − − − − − − − − − −

− − − − − − − − − − − −

𝑎𝑛 = 𝑎1+ (n – 1) 3

∴ 𝑎𝑛= 2 + 3(n – 1)

Summation Method :

The given equation can be rearranged as

 𝑎𝑛– 𝑎𝑛−1 = 3

𝑎𝑛−1 – 𝑎𝑛−2 = 3

𝑎𝑛−2 – 𝑎𝑛−3 = 3

− − − − − − − − − − − −

− − − − − − − − − − − −

𝑎3 – 𝑎2= 3

 𝑎2 – 𝑎1 = 3

We stop here, since 𝑎1 = 2 is given.

Adding all, we get

𝑎𝑛 – 𝑎1 = 3 + 3 + 3 + + (n – 1) times.

 = 3(n – 1)

 ⇒ 𝑎𝑛 = 𝑎1 + 3(n – 1)

13

Problem 7

Solve the recurrence relation an= an−1 + 3 with a1= 2 defines the sequence

2, 5, 8,

Solution.

We backtrack the value of 𝑎𝑛 by substituting the definition of 𝑎𝑛−1, 𝑎𝑛−2, and so

on until a pattern is clear.

𝑎𝑛 = 𝑎𝑛−1 + 3

 = (𝑎𝑛−2+ 3) + 3

 = ((𝑎𝑛−3+ 3) + 3) + 3

Eventually this process will produce 𝑎𝑛 =

𝑎𝑛 – (n – 1) + (n – 1) . 3

 =𝑎1+ (n – 1) . 3

 = 2 + (n – 1) . 3

or

𝑎𝑛 = 𝑎𝑛−1+ 3

 = 𝑎𝑛−2+ 2.3

 = 𝑎𝑛−3+ 3.3

An explicit formula for the sequence is 𝑎𝑛 = 2 + (n – 1) 3

Problem 8

 Write down the first six terms of the sequence defined by 𝑎1= 1, 𝑎𝑘+1 = 3𝑎𝑘 + 1

for k ≥ 1. Guess a formula for 𝑎𝑛 and prove that your formula is correct.

Solution.

The first six terms are

𝑎1 = 1

𝑎2 = 3𝑎1 + 1 = 3(1) + 1 = 4

14

𝑎3 = 3𝑎2 + 1 = 3(4) + 1 = 13

𝑎4 = 40,

 𝑎5= 121,

𝑎6 = 364.

Since there is multiplication by 3 at each step, we might suspect that 3𝑛 is involved

in the answer.

After trial and error, we guess that 𝑎𝑛 =
1

2
(3𝑛 – 1) and verify this by mathematical

induction.

When n = 1, the formula gives,
1

2
(31 – 1) = 1, which is indeed 𝑎1, the first term in the sequence.

Now assume that k ≥1 and that

 𝑎𝑘 =
1

2
(3𝑘 – 1).

We wish to prove that,

 𝑎𝑘+1 =
1

2
(3𝑘+1– 1)

We have,

 𝑎𝑘+1 = 3𝑎𝑘 + 1

 = 3 ½ (3𝑘 – 1) + 1

Using the induction hypothesis,

Hence, 𝑎𝑘+1 =
1

2
 3𝑘+1–

3

2
+1

 =
1

2
(3𝑘+1– 1) as required.

By the principle of mathematical induction, our guess is correct.

Problem 9

 Backtrack to find an explicit formula for the sequence defined by the recurrence

relation 𝑏𝑛 = 2𝑏𝑛−1 + 1 with initial condition 𝑏1 = 7

Solution.

15

We begin by substituting the definition of the previous term in the defining

formula.

 𝑏𝑛 = 2𝑏𝑛−1 + 1

 = 2 (2𝑏𝑛−2 + 1) + 1

 = 2[2 (2𝑏𝑛−3 + 1) + 1] + 1

 = 23 𝑏𝑛−3+ 4 + 2 + 1

 = 23 𝑏𝑛−3+ 22+ 21 + 1.

A pattern is emerging with these rewriting of 𝑏𝑛

(Note : There are no set rules for how to rewrite these expressions and a certain

amount of experimentation may be necessary.)

The backtracking will end at

 𝑏𝑛 = 2𝑛−1 𝑏𝑛−(𝑛−1)+ 2𝑛−2 + 2𝑛−3 + + 22 + 21 + 1

 = 2𝑛−1𝑏1 + 2𝑛−1– 1

 = 7 . 2𝑛−1+ 2𝑛−1 – 1 (using 𝑏1 = 7)

 𝑏𝑛= 8 . 2𝑛−1 – 1 (or) 2𝑛+2– 1

 Problem 10

 Solve the recurrence relation 𝑎𝑛 = 𝑎𝑛−1+ 2, n ≥ 2 subject to initial condition

𝑎1 = 3.

Solution.

We backtrack the value of 𝑎𝑛 by substituting the expression of 𝑎𝑛−1, 𝑎𝑛−2 and so

on,until a pattern is clear.

Given 𝑎𝑛 = 𝑎𝑛−1 + 2 ...(1)

Replacing n by n – 1 in (1), we

obtain

16

Replacing n by n−2 in (1), we obtain

 𝑎𝑛−2 = 𝑎𝑛−3+ 2

So, from (2),

 𝑎𝑛 = (𝑎𝑛−3+ 2) + 2.2

 = 𝑎𝑛−3 + 3.2

In general

 𝑎𝑛 = 𝑎𝑛−𝑘 + k . 2

For k = n – 1, 𝑎𝑛 = 𝑎𝑛−(𝑛−1) + (n – 1) . 2

 =𝑎1 + (n – 1) . 2

 = 3 + (n – 1) . 2

which is an explicit formula

1.3 THE SECOND-ORDER LINEAR Homogeneous Recurrence Relation

with constant coefficients

Let k ∈ Z+ and 𝐶𝑛 (≠ 0), 𝐶𝑛−1, 𝐶𝑛−2 ,...... 𝐶𝑛−𝑘 (≠ 0) be real numbers. If 𝑎𝑛, for n ≥

0, is a discrete function, then

 𝐶𝑛𝑎𝑛 + 𝐶𝑛−1𝑎𝑛−1 + 𝐶𝑛−2𝑎𝑛−2+ + 𝐶𝑛−𝑘𝑎𝑛−𝑘 = f(x), n ≥ k

is a linear recurrence relation (with constant coefficients) of order k. When f(n) =

0, for all n ≥ 0, therelation is called homogeneous ; other wise, it is non-

homogeneous.

The homogeneous relation of order two :

 𝐶𝑛𝑎𝑛 + 𝐶𝑛−1𝑎𝑛−1 + 𝐶𝑛−2𝑎𝑛−2 = 0 , n ≥ 2.

A solution of the form 𝑎𝑛 = C𝑟𝑛, where C ≠ 0 and r ≠ 0 substituting 𝑎𝑛 = C𝑟𝑛 into

 𝐶𝑛𝑎𝑛 + 𝐶𝑛−1𝑎𝑛−1 + 𝐶𝑛−2𝑎𝑛−2 = 0

We obtain 𝐶𝑛𝐶𝑟𝑛 + 𝐶𝑛−1𝐶𝑟𝑛−1 + 𝐶𝑛−2𝐶𝑟𝑛−2 = 0,

with C, r ≠ 0, this becomes

 𝐶𝑛𝑟2 + 𝐶𝑛−1r + 𝐶𝑛−2 = 0,

𝑎𝑛−1 = 𝑎𝑛−2 + 2

𝑎𝑛 = 𝑎𝑛−2 + 2 = (𝑎𝑛−2 + 2) + 2

 = 𝑎𝑛−2 + 2.2

From (1),

...(2)

17

a quadratic equation which is called the characteristic equation.

1.4 THE NON HOMOGENEOUS RECURRENCE RELATIONS

The recurrence relations

 𝑎𝑛 + 𝑐𝑛−1𝑎𝑛−1
 = f(n), n ≥ 1 ... (1)

 𝑎𝑛+ 𝑐𝑛−1𝑎𝑛−1 + 𝑐𝑛−2𝑎𝑛−2 = f(n), n ≥ 2 ... (2)

 Where 𝑐𝑛−1 and 𝑐𝑛−2 are constants,

 𝑐𝑛−1 ≠ 0 in (1), 𝑐𝑛−2 ≠ 0, and f(n) is not identically 0.

 Although there is no general method for solving all non homogeneous relations,

for certain functions

f(n) we shall find a successful technique.

When 𝑐𝑛−1 = – 1, (1) gives, for the non homogeneous relation 𝑎𝑛 – 𝑎𝑛−1 = f(n), we

have

 𝑎1 = 𝑎0 + f(1)

 𝑎2 = 𝑎1 + f(2) = 𝑎0 + f(1) + f(2)

 𝑎3 = 𝑎2 + f(3) = 𝑎0 + f(1) + f(2) + f(3)

 𝑎𝑛 = 𝑎0 + f(1) + + f(n)

 = 𝑎0 + ∑ 𝑓(𝑖)𝑛
𝑖=1

We can solve this type of relation in terms of n, if we find a suitable summation

formula for ∑ 𝑓(𝑖)𝑛
𝑖=1 (a) The non homogeneous first-order relation

𝒂𝒏+ 𝒄𝒏−𝟏𝒂𝒏−𝟏 = k𝒓𝒏

where k is a constant and n∈ 𝑧+

(b) If 𝑟𝑛 is not a solution of the associated homogeneous relation 𝑎𝑛 +𝑐𝑛−1𝑎𝑛−1 =

0, then 𝑎𝑛(P)=A𝑟𝑛 , where A is a constant. When 𝑟𝑛 is a solution of the associated

homogeneous relation, then

 𝑎𝑛(P) = Bn 𝑟𝑛, for B a constant.

(c) The non-homogeneous second order relation

 𝒂𝒏+ 𝒄𝒏−𝟏𝒂𝒏−𝟏 +𝒄𝒏−𝟐𝒂𝒏−𝟐= k𝒓𝒏 .
Where k is a constant .

 1.4.1. Characteristic Equation Method :

18

 This method can be used to solve any constant order linear recurrence

equation with constant coefficient . This recurrence relation may be homogeneous

or non-homogeneous. Before attempting to solve any such problem, let us first,

understand what is characteristic equation for a given recurrence

equation and how to find it.

A recurrence equation of the mentioned type can be arrranged in standard

form as :

 𝑨𝒏 + 𝑪𝟏𝑨𝑵−𝟏+ 𝑪𝟐𝑨𝑵−𝟐+ 𝑪𝟑𝑨𝑵−𝟑 = R.H.S …… (1)

Where 𝐶𝐼, 𝐶2,𝐶3 are constant coefficients and R.H.S. has one of the following

forms :

Form Examples

Homogeneous 0

A constant to the 𝑛𝑡ℎ

power
2𝑛, 𝜋−𝑠 ,2−𝑛 , √2𝑛

A polynomial in n 3, 𝑛2 , 𝑛2 − 𝑛 , 𝑛3+2n - 1

A product of a constant to

the 𝑛𝑡ℎ power and a

polynomial in n

2𝑛 (𝑛2 + 2n – 1), (n – 1) 𝑛6, n 6𝑛

A linear combination of

any of the above
(2𝑛 + 3𝑛/2) (𝑛2 + 2n – 1) + 5

In the recurrence equation (1), assigning R.H.S. = 0, we get

𝑨𝒏 + 𝑪𝟏𝑨𝑵−𝟏+ 𝑪𝟐𝑨𝑵−𝟐+ 𝑪𝟑𝑨𝑵−𝟑 = 0 …… (2)

This equation (2) gives the homogeneous part of the given recurrence equation.

Every recurrence equation has a homogeneous part . If the recurrence relation is

homogeneous then it has only homogeneous part and solving such equation is one

step process. On the other hand, if the given recurrence equation is non-

homogeneous then its homogeneous part is obtained by assigning R.H.S. equal to

zero.

A characteristic equation corresponds to homogeneous part of the given recurrence

relation.

The characteristic equation of (2) is given as :

19

𝑥3 + 𝑐1 𝑥
2 +𝑐2 𝑥 + 𝑐3 = 0 ……. (3)

This has been obtained by the following procedure :

(i) Find the order of the recurrence equation here it is 3.

(ii) Take any variable (say x) and substitute

𝐴𝑛 , 𝐴𝑛−1, 𝐴𝑛−2 , by 𝑥3, 𝑥2, x respectively in the homogeneous part of the

recurrence equation.

Equation so obtained is called characteristic equation of the given recurrence

equation .

Example (1) :

 The characteristic equation of the recurrence equation

 𝑐𝑛=3𝑐𝑛−1 − 2𝑐𝑛−2 is given by

 𝑥2 – 3x + 2 = 0.

Example (2) :

 The characteristic equation of the recurrence equation

𝑓𝑛 = 𝑓𝑛−1+𝑓𝑛−2 is given by

 𝑥2 – x – 1 = 0.

Example (3) :

 The characteristic equation of the recurrence equation

 𝐴𝑛 – 5𝐴𝑛−1 + 6𝐴𝑛−2 = 2𝑛 + n is given by

 𝑥2 – 5x+6 = 0

Theorem 1.1

 If the characteristic equation 𝑥2- 𝑟1x - 𝑟2 = 0 of the recurrence equation 𝑎𝑛 =

 𝑟1𝑎𝑛−1 + 𝑟2𝑎𝑛−2 has two distinct roots 𝑠1 and 𝑠2 then 𝑎𝑛 = u 𝑠1
𝑛 + 𝑣𝑠2

𝑛 is the

closed form formula for the sequence where u and v depend on the initial condition

 Proof.

 Since 𝑠1 and 𝑠2 are roots of

20

 𝑥2- 𝑟1x - 𝑟2 = 0 → (1)

We have

 𝑠1
2- 𝑟1𝑠1- 𝑟2 = 0 → (2)

 𝑠2
2- 𝑟1𝑠2- 𝑟2 = 0 → (3)

Since u and v are dependent on the initial conditions

 We have

 𝑎1= u𝑠1+ v𝑠2

 And 𝑎2 = u𝑠1
2 + v𝑠2

2

Now,

 𝑎𝑛= u𝑠1
𝑛 + v𝑠2

𝑛

 = u𝑠1
𝑛−2 𝑠1

2 + v𝑠2
𝑛−2𝑠2

2

 = u𝑠1
𝑛−2 [𝑟1𝑠1+ 𝑟2] + v𝑠2

𝑛−2 [𝑟1𝑠2+ 𝑟2]

 From (2) and (3)

 = 𝑟1u𝑠1
𝑛−1+ 𝑟2u𝑠1

𝑛−2 + 𝑟1v𝑠2
𝑛−1+ 𝑟2v𝑠2

𝑛−2

 = 𝑟1[u𝑠1
𝑛−1 + v𝑠2

𝑛−1] + 𝑟2 [u𝑠1
𝑛−2 + v𝑠2

𝑛−2]

 = 𝑟1𝑎𝑛−1 + 𝑟2𝑎𝑛−2

(i.e) 𝑎𝑛= u 𝑠1
𝑛 + 𝑣𝑠2

𝑛 is an explicit formula for the given relation .

There are four steps in the process :

Step 1 : Find the homogeneous solution to the homogeneous equation. This results

when you set the R.H.S. to zero. If it is already zero, skip the next two steps and

go directly to the step 4.Your answer will contains one or more undetermined

coefficients whose values cannot bedetermined until step 4.

Step 2 : Find the particular solution by guessing a form similar to the R.H.S. This

step does not

produce any additional undetermined coefficients, nor does it eliminate those from

step 1.

21

Step 3 : Combine the homogeneous and particular solution.

Step 4 : Use boundary or initial conditions to eliminate the undetermined constants

from the step 1.

Problem 11

What is the solutions of recurrence relation 𝑎𝑛 = 𝑎𝑛−1 + 2𝑎𝑛−2 with 𝑎0 = 2 and

𝑎1 = 7 ?

Solution :

 The characteristic equation of the recurrence relation is 𝑟2 – r – 2 = 0.

 Its roots are r = 2 and r = – 1.

Hence, the sequence {𝑎𝑛} is a solution to the recurrence relation if and only if

𝑎𝑛= ∝1 2𝑛 +∝2 (−1)𝑛 for some constants ∝1 and ∝2 .

From the initial conditions, it follows that

𝑎0= 2 = ∝1+ ∝2

𝑎1 = 7 = ∝1 . 2 + ∝2 . (– 1)

Solving these two equations shows that ∝1 = 3 and ∝2 = – 1.

Hence, the solution to the recurrence relation and initial conditions is the sequence

{𝑎𝑛} with

 𝑎𝑛 = 3.2𝑛 – (−1)𝑛 .

Problem 12 `

 What is the solution of the recurrence relation

an = 6an−1– 9an−2 with initial conditions a0 = 1 and a1 = 6 ?

Solution :

The only root of 𝑟2 – 6r + 9 = 0 is r = 3.

Hence, the solution to this recurrence relation is 𝑎𝑛 = ∝1 3𝑛+ ∝2 𝑛3𝑛

for some constants ∝1 and ∝2 .

Using the initial conditions, it follows that

22

 𝑎0= 1 = ∝1

𝑎1 = 6 = ∝1 . 3 ∝2 + . 3

Solving these two equations shows that ∝1 = 1 a𝑛𝑑 ∝2= 1.

Consequently, the solution to this recurrence relation and the initial conditions is

 𝑎𝑛 = 3𝑛+ 𝑛3𝑛

Problem 13

 Find the solution to the recurrence relation

 an = 6 an−1– 11an−2 + 6 an−3 with initial conditions a0 = 2, a1 = 5 and

a2= 15

Solution :

 The characteristic polynomial of this recurrence relation is 𝑟3 – 6𝑟2 + 11r – 6 = 0

The characteristic roots are r = 1, r = 2 and r = 3

Since 𝑟3– 6𝑟2 + 11r – 6 = (r – 1)(r – 2)(r – 3)

Hence, the solutions to this recurrence relation are of the form

 𝑎𝑛= ∝1 . 1𝑛 + ∝2 . 2n +∝3 . 3n.

To find the constants ∝1 , ∝2 and ∝3 .
 use the initial conditions.

This gives 𝑎0 = 2 = ∝1 + ∝2+ ∝3

 𝑎1= 5 = ∝1 + ∝2. 2 + ∝3 . 3

 𝑎2 = 15 = ∝1 + ∝2. 4 + ∝3 . 9

When these three simultaneous equations are solved for ∝1 , ∝2 𝑎𝑛𝑑 ∝3 .we find

that ∝1= 1, ∝2– 1 and ∝3= 2.

 Hence, the unique solution to this recurrence relation and the given initial

conditions is the sequence {𝑎𝑛} with

 𝑎𝑛 = 1 – 2𝑛 + 2 . 3𝑛

Problem 14

 Find the solution to the recurrence relation

 𝑎𝑛 = – 3 𝑎𝑛−1 – 3𝑎𝑛−2 − 𝑎𝑛−3 with initial conditions a0 = 1,

 𝑎1 = – 2 and a2 – 1.

 Solution :

23

 The characteristic equation of this recurrence relation is 𝑟3 + 3𝑟2 + 3r + 1 = 0

Since 𝑟3 + 3𝑟2 + 3r + 1 = (𝑟 + 1)3, there is a single root r = – 1 of multiplicity

three of the characteristic equation.

The solutions of this recurrence relation are of the form

𝑎𝑛 = ∝1,0 (−1)𝑛 + ∝1, 1𝑛(−1)𝑛 + ∝1,0 𝑛2(−1)𝑛

To find the constant ∝1,0 , ∝1,1 , ∝1,2 use the initial conditions.

This gives 𝑎0 = 1 = ∝1,0

 𝑎1 = – 2 = − ∝1,0 - ∝1,1 – ∝1,2

 𝑎2 = – 1= ∝1,0 + 2 ∝1,1 + 4 ∝1,2

The simultaneous solution of these three equations is

 ∝1,0= 1, ∝1,1 = 3, and ∝1,2 = – 2

Hence, the unique solution to this recurrence relation and the given initial

conditions is the sequence {an} with

 𝑎𝑛 = (1 + 3n – 2𝑛2) (−1)𝑛.

1.6 The Method of Generating Function

 One of the uses of generating function method is to find the closed form formula

for a recurrence relation. Before using this method, ensure that the given recurrence

equation is in linear form.

 A non-linear recurrence equation cannot be solved by the Generating Function

Method. Use substitution of variable technique to convert a non linear recurrence

(equation) relation into linear.

 Solving a recurrence (equation) relation using generating function method

involves two steps process.

Step 1: Find generating function for the sequences for which the general term is

given by recurrence relation.

Step 2: Find coefficient of 𝑥2 or
𝑥2

𝑛!
 depending upon whether the generating function

24

The value so obtained will be an algebraic formula for an, expressed in terms of n

which is the position of 𝑎𝑛 is sequence.

 A generating function is a polynomial expression of the form

f(x) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + + 𝑎𝑛𝑥𝑛 +

 in which the coefficients 𝑎𝑖 are all zero after a certain point, a generating function

usually has infinitely many non-zero terms. There is an obvious correspondence

between generating functions and sequences.

𝑎0 ,𝑎1, 𝑎2,

𝑎0+ 𝑎1𝑥 + 𝑎2𝑥2+ 𝑎3𝑥3 + ↔ 𝑎0, 𝑎1, 𝑎2, 𝑎3,
*If f(x) = 𝑎0 + 𝑎1𝑥+ 𝑎2𝑥2+ and

 g(x) = 𝑏0+ 𝑏1𝑥+ 𝑏2𝑥2+ then

f(x) + g(x) = (𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑥 + (𝑎2 + 𝑏2)𝑥2 +

 f(x)g(x) = (𝑎0𝑏0) + (𝑎1𝑏0 + 𝑎0𝑏1)x + (𝑎0𝑏2+ 𝑎1𝑏1 + 𝑎2𝑏0)𝑥2+

The coefficient of 𝒙𝒏 in the product f(x)g(x) is the infinite sum

𝑎0𝑏𝑛 + 𝑎1𝑏𝑛−1 + 𝑎2𝑏𝑛−2+ + 𝑎𝑛𝑏0.

Problem 15

 If f(x) = 1 + x + + 𝑥2...... + 𝑥𝑛 + and

g(x) = 1 –x + 𝑥2 – + 𝑥3...... + (– 1)n 𝑥𝑛+,

find f(x) + g(x) and f(x)g(x).

Solution.

f(x) + g(x) = (1 + x + 𝑥2+ + 𝑥𝑛 +) + (1 –x + 𝑥2 – 𝑥3+ + (– 1)n𝑥𝑛..)

 = (1 + 1) + (1 – 1)x + (1 + 1)𝑥2 + + (1 + (– 1)n) 𝑥𝑛 +

 = 2 + 2𝑥2 + 2𝑥4 +

f(x)g(x) = (1 + x + 𝑥2+ + 𝑥𝑛 +) . (1 – x + 𝑥2 – 𝑥3 + + (– 1)n𝑥𝑛+...)

 = 1 + [1(– 1) + 1(1)] x + [1(1) + 1(– 1) + 1(1)] 𝑥2+

 = 1 + 𝑥2 + 𝑥4+ 𝑥6+

Problem 16

25

 Solve the recurrence relation 𝑎𝑛 = 3𝑎𝑛−1 , n ≥ 1, given 𝑎0 = 1.

Solution.

 Consider the generating function

f(x) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + + 𝑎𝑛𝑥𝑛 + of the sequence 𝑎0, 𝑎1, 𝑎2,

multiplying by 3x and writing the product 3xf(x) below f(x) so that terms involving

𝑥𝑛 match, we obtain

f(x) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2+ + 𝑎𝑛𝑥𝑛+

3xf(x) = 3𝑎0𝑥 + 3𝑎1𝑥2 + 3𝑎𝑛−1𝑥𝑛 +

Subtracting gives

f(x) – 3xf(x) = 𝑎0 + (𝑎1 – 3𝑎0)x + (𝑎2 – 3𝑎1) 𝑥2 + + (𝑎𝑛 – 3𝑎𝑛−1) 𝑥𝑛+

Since 𝑎0 = 1, 𝑎1 = 3𝑎0.

In general, 𝑎𝑛 = 3𝑎𝑛−1, this says that

 (1 – 3x) f(x) = 1.

Thus, f(x)=
1

1−3𝑥

We have
1

1−𝑥
 = 1+ x + 𝑥2+…… (*)

Using (*), f(x) = 1 + 3x + (3𝑥)2 + + (3𝑥)𝑛 +

 = 1 + 3x+ 9𝑥2+ + 3𝑛𝑥𝑛 +

We conclude that 𝑎𝑛, which is the coefficient of 𝑥𝑛in f(x), must equal 3𝑛.

We have 𝑎𝑛 = 3𝑛 as the solution to our recurrence relation.

Problem 17

 Solve the recurrence relation 𝑎𝑛 = 2𝑎𝑛−1 – 𝑎𝑛−2 , n ≥ 2, given 𝑎0 = 3, 𝑎1 = – 2.

Solution.

 Letting f(x) be the generating function of the sequence in question.

We have f(x) = 𝑎0+ 𝑎1𝑥 + 𝑎2𝑥2 + + 𝑎𝑛𝑥𝑛 +

 2xf(x) = 2𝑎0𝑥+ 2𝑎1𝑥2 + + 2𝑎𝑛−1𝑥𝑛 +

 𝑥2 f(x) = 𝑎0𝑥2 + + 𝑎𝑛−2𝑥𝑛 +

Therefore, f(x) – 2xf(x) + 𝑥2f(x)

 = 𝑎0 + (𝑎1 – 2𝑎0)x + (𝑎2 – 2𝑎1 + 𝑎0) 𝑥2+ + (𝑎𝑛 – 2𝑎𝑛−1 +

𝑎𝑛−2) 𝑥𝑛 +

26

 = 3 – 8x.

Since 𝑎0 = 3, 𝑎1 = – 2 and 𝑎𝑛 – 2𝑎𝑛−1 + 𝑎𝑛−2 = 0 for n ≥ 2.

So, (1 – 2x + 𝑥2) f(x) = 3 – 8x

 (1 − 𝑥)2 f(x) = 3 – 8x

 f(x) =
3−8𝑥

(1−𝑥)2

 = (1 + 2x + 3𝑥2 + + (n + 1)𝑥𝑛 +) (3 – 8x)

 = 3 – 2x – 7𝑥2 – 12𝑥3 + + [3(n + 1) – 8n]𝑥𝑛 +

 = 3 – 2x – 7𝑥2 – 12𝑥3 + + (– 5n + 3) 𝑥𝑛 +

Therefore 𝑎𝑛 = 3 – 5n is the desired solution.

Problem 18

 Find the sequence {𝑦𝑥} having the generating function G given by

G(x) =
3

1−𝑥
+

1

1−2𝑥

Solution

We have

 G(x) = 3(1 − 𝑥)−1 + (1 − 2𝑥)−1

 = 3(1 + x + 𝑥2 + + 𝑥𝑛 +) + (1 + 2𝑥1 + 22𝑥2 + + 2𝑛𝑥𝑛+)

 = (3 + 1) + (3 + 2)x + (3 + 22) + + (3 + 2𝑛) 𝑥𝑛 + …..

where

 𝑦𝑛= 3 + 2𝑛

Problem 19

 Suppose a is a real number. Show that
1

1−𝑎𝑥
 is the generating function for a certain

geometric sequence.

Solution

 We have
1

1−𝑥
 = 1 + 𝑥+ 𝑥2+ 𝑥3 + (1)

Replacing x by ax in (1), we see that
1

1−𝑎𝑥
 = 1 + ax + (𝑎𝑥)2 + (𝑎𝑥)3 +

 = 1 + ax + 𝑎2𝑥2 + 𝑎3𝑥3 +

27

From this, we see that
1

1−𝑎𝑥
 is the generating function for the sequence 1, 𝑎1, 𝑎2,

𝑎3, which is the geometric sequence with first term 1 and common ratio a.

Problem 20

 Prove that
1

(1−𝑥)2 = 1 + 2x + 3𝑥2 + 4𝑥3 + + (n + 1)𝑥𝑛 +

Solution

 1 = (1 − 𝑥)2(1 + 2x + 3𝑥2 + + (n + 1)𝑥𝑛 +)

 = (1 – 2x + 𝑥2)(1 + 2x + 3𝑥2 + + (n + 1)𝑥𝑛 +)

 = 1 + [1(2) – 2(1)]x + [1(3) – 2(2) + 1(1)]𝑥2 + + [1(n + 1) – 2(n)

+ 1(n – 1)]𝑥𝑛 +

 1 = 1, since n + 1 – 2n + n = 0.

Expression for Generating Functions

If A(x) = ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 then

 ∑ 𝑎𝑛𝑥𝑛∞
𝑛=𝑘 = A(x) −𝑎0 − 𝑎1𝑥1 −…..−𝑎𝑘−1𝑥𝑘−1

 ∑ 𝑎𝑛−1𝑥𝑛∞
𝑛=𝑘 = 𝑥1(A(x) −𝑎0 − 𝑎1𝑥1 − …..−𝑎𝑘−2𝑥𝑘−2)

 ∑ 𝑎𝑛−2𝑥𝑛 ∞
𝑛=𝑘 = 𝑥2(A(x)−𝑎0 − 𝑎1𝑥1 −……−𝑎𝑘−3𝑥𝑘−3)

 - - - - - - - - - - - - -

 ∑ 𝑎𝑛−𝑘𝑥𝑛∞
𝑛=𝑘 = 𝑥𝑘(A(x))

 Table of Generating Functions

 Sequence 𝒂𝒏 Generating Function A(x)

 C(k,n) (𝟏 + 𝒙)𝒌

 1 𝟏

𝟏 − 𝒙

𝒂𝒏 𝟏

𝟏 − 𝒂𝒙

28

−𝟏𝒏 𝟏

𝟏 + 𝒙

−𝒂𝒏 𝟏

𝟏 + 𝒂𝒙

 C(k-1+n , n) 𝟏

(𝟏 − 𝒙)𝒌

 C(k-1+n, n)𝒂𝒏 𝟏

(𝟏 − 𝒂𝒙)𝒌

 C(k-1+n, n)(−𝒂)𝒏 𝟏

(𝟏 + 𝒂𝒙)𝒌

 n+1 𝟏

(𝟏 − 𝒙)𝟐

 n 𝟏

(𝟏 − 𝒙)𝟐

 (n+2)(n+1) 𝟐

(𝟏 − 𝒙)𝟑

 (n+1)(n) 𝟐𝒙

(𝟏 − 𝒙)𝟑

𝒏𝟐 𝒙(𝟏 + 𝒙)

(𝟏 − 𝒙)𝟑

 (n+3)(n+2)(n+1) 𝟔

(𝟏 − 𝒙)𝟒

 (n+2)(n+1)(n) 𝟔𝒙

(𝟏 − 𝒙)𝟒

𝒏𝟑 𝒙(𝟏 + 𝟒𝒙 + 𝒙𝟐)

(𝟏 − 𝒙)𝟐

 (n+1)𝒂𝒏 𝟏

(𝟏 − 𝒂𝒙)𝟐

 n𝒂𝒏 𝒂𝒙

(𝟏 − 𝒂𝒙)𝟐

𝒏𝟐𝒂𝒏 (𝒂𝒙)(𝟏 + 𝒂𝒙)

(𝟏 − 𝒂𝒙)𝟑

𝒏𝟑𝒂𝒏 (𝒂𝒙)(𝟏 + 𝟒𝒂𝒙 + 𝒂𝟐𝒙𝟐)

(𝟏 − 𝒂𝒙)𝟒

Theorem 1.2

29

 If {𝑎𝑛}𝑛=0
∞ is a sequence of numbers which satisfy the linear recurrence relation

with constant coefficients 𝑎𝑛 + 𝑐1𝑎𝑛−1 + … . + 𝑐𝑘𝑎𝑛−𝑘where 𝑐𝑘 ≠ 0, and n ≥ k,

then the generating function

 A(x) = ∑ 𝒂𝒏𝒙𝒏∞
𝒏=𝟎 equals

𝑷(𝒙)

𝑸(𝒙)
,

 where

 P(x) = 𝑎0 + (𝑎1 + 𝑐1𝑎0)𝑥1 + + (𝑎𝑘−1 + 𝑐1𝑎𝑘−2 + ⋯ +
𝑐𝑘−1𝑎0)𝑥𝑘−1
 Q(x) = 1 + 𝑐1𝑥1 + + 𝑐𝑘𝑥𝑘.

Conversely, given such polynomials P(x) and Q(x), where P(x) has degree less

than k, and Q(x) has degree k, there is a sequence {𝑎𝑛}𝑛=0
∞ whose generating

function is A(x) =
𝑃(𝑥)

 𝑄(𝑥)

Problem 21

 Solve 𝑎𝑛 – 8𝑎𝑛−1 + 21𝑎𝑛−2 – 18𝑎𝑛−3 = 0 for n ≥3.

Solution.

 Here, if A(x) =∑ 𝑎𝑛
∞
𝑛=0 𝑥𝑛 ,then

 ∑ 𝑎𝑛
∞
𝑛=3 𝑥𝑛 – 8 ∑ 𝑎𝑛−1

∞
𝑛=3 𝑥𝑛 + 21 ∑ 𝑎𝑛−2

∞
𝑛=3 𝑥𝑛 – 18 ∑ 𝑎𝑛−3

∞
𝑛=3 𝑥𝑛 = 0,

 (A(x)-𝑎0-𝑎1𝑥1-𝑎2𝑥2) – 8𝑥1(A(x)-𝑎0-𝑎1𝑥1) + 21𝑥2(A(x)-𝑎0) - 18𝑥2A(x) = 0

 A(x) =
𝒂𝟎+(𝒂𝟏−𝟖𝒂𝟎)𝒙𝟏+ (𝒂𝟐− 𝟖𝒂𝟏+𝟐𝟏𝒂𝟎)𝒙𝟐

𝟏−𝟖𝒙𝟏+𝟐𝟏𝒙𝟐−𝟏𝟖𝒙𝟑

Since 1−8𝑥1+21𝑥2 − 18𝑥3= (1−2𝑥1)(1 − 3𝑥1)2

We see that there are constants 𝐶1 , 𝐶2 , 𝐶3 , such that

A(x) =
𝐶1

(1−2𝑥)
 +

𝐶2

(1−3𝑥)
 +

𝐶3

(1−3𝑥)2

A(x) = ∑ [𝐶12𝑛∞
𝑛=0 + 𝐶23𝑛 + 𝐶3𝑛3(𝑛 + 1, 𝑛)]𝑥𝑛

𝑎𝑛= 𝐶12𝑛 + 𝐶23𝑛 + 𝐶3(𝑛 + 1)3𝑛.

30

Conclusion:

First Order homogenous linear recurrence is in fact a geometric sequence

We studied characteristics of second and higher order linear homogenous

recurrence relations with constant coefficients. The non-homogenous recurrence

relations with constant coefficients. Different methods to solve such recurrences.

As most of the algorithms are recursive therefore to give analysis of such

algorithms, we have discussed his powerful technique.

Reference

[1] c.vasudev - Theory and problems on combinatorics – recurrence relation

[2] M.k sen chakaraborthy - Introduction to discrete mathematics - application of

recurrence relation.

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

