CRYPTOGRAPHY IN CYBER SECURITY AND DATA

PRIVACY
Project Report submitted to

ST.MARY'S COLLEGE (AUTONOMOUS), THOOTHUKUDI

AfTiliated to
MANONMANIAM SUNDARANAR UNIVERSITY,
TIRUNELVELI
In partial fulfillment of the requirement for the award of degree of
Bachelor of Science in Mathematics

Submitted by

NAME REG.NO.

MAHESWARI.B 19AUMT20

MUKILA.R 19AUMT?29

RASHIBA.J 19AUMT3S

SAHAYA PERINBA PRAKASI.K 19AUMT37

SNEHA.T 19AUMT44
Under the Guidance of

Dr. Sr. S. KULANDAI THERESE M.Sc., B.Ed., M.Phil., Ph.D.

Assistant Professor of Mathematics

St. Mary’s College (Autonomous), Thoothukudi.

Department of Mathematics

St. Mary’s College (Autonomous), Thoothukudi
(2021 -2022)

CERTIFICATE

oject report entitled “CRYPTOGRAPHY IN CYBER

We hereby declare that the pr
SECURITY AND DATA PRIVACY” being submitted to St. Mary’s College

(Autonomous). Thoothukudi affiliated to Manonmaniam Sundaranar University,

Tirunelveli in partial fulfillment for the award of degree of Bachelor of Science in

Mathematics and it is a record of work done during the year 2021 - 2022 by the following

students :
NAME REG.NO.
MAHESWARILB 19AUMT20
MUKILA.R 19AUMT?29
RASHIBA.J 19AUMT35
SAHAYA PERINBA PRAKASILK 19AUMT37
SNEHA.T 19AUMT44
VS et Avpudne
Signature of the Guide Sigpature gfthg HQDBtha Mary
Dr. 8. KULANDAI THERESE " MSc.MPhi., BEd., PhD.
M.Sc.,B.Ed.,M.Phil,Ph.D., Y ! ' !
Assietant Professor, Head & Asst Professor of Mathematics
. Depamng;\;deaﬂm. N St. Mary's College (Autonomous)
t. Mar omous i
m mn(eugf-‘ezs ot ‘ ~ Thoothukudi 628 001.
Signature? Examiner Signature of the Principal
Principal

St. Mary's College (Autonomous)
Thoothukudi-628 001.

DECLARATION

\We hereby declare that the project reported herewith, entitled “ CRYPTOGRAPHY IN
CYBER SECURITY AND DATA PRIVACY?™, is true to the best of our knowledge

Ithas not been submitted to any university for any degree or diploma.

(MAHESWARI.B) (MUKILA.R)

T. Roshiba K. ﬁi\:@ Porinbon Rotkas

(RASHIBA.)) (SAH ERINBA PRAKASI.K)

T-8 nehoo

(SNEHA.T)

ACKNOWLEDGEMENT

First and foremost, we thank God Almighty for showering his blessings upon us, to undergo
this project successfully.

With immense pleasure, we register our deep sense of gratitude to our guide Dr. Sr. S.
Kulandai Therese M.Sc., B.Ed., M.Phil., Ph.D. and the Head of the Department, Dr.
V. L. Stella Arputha Mary M.Sc., M.Phil., B.Ed., Ph.D. for having imparted

necessary guidelines throughout the period of our studies.

We thank our beloved Principal, Rev. Dr. Sr. A.S.J. Lucia Rose M.Sc., M.Phil.,
Ph.D., PGDCA for providing us the help to carry out our project effectively.

Last but not the least, we thank all those who extended their helping hands, to accomplish this
project.

O e e

CRYPTOGRAPHY IN CYBER
SECURITY AND DATA PRIVACY

PREFACE

The topic of our Project “CRYPTOGRAPHY” is the art of concealing information to induce
secrecy in the communication and transmission of sensitive data is termed cryptography.
Diving deep into the etymology of the word ‘cryptography’ shows that this word finds its origin
in ancient Greek. Derived from words kryptos meaning “hidden” or “secret”
and graphy meaning “writing”, cryptography literally means writing something secretly.

The idea of cryptography is to convey a private message or piece of information from the sender
party to the intended recipient without getting the message intruded on by a malicious or
untrusted party. In the world of cryptography, this suspicious third party that is trying to sneak
into a private communication to extract something sensitive out of it is called
an adversary.Cryptography protects us from these unwanted adversaries by offering a range of
algorithms required to hide or protect our message in the best way possible and transmit it
comfortably over a not-so-secure network.

Chapter 1 presents briefly the idea of What is Cryptography, history of cryptography and
its types.

Chapter 2 deals with one of the types of cryptography ‘Hashing’ and explains briefly the
types of Hashing.

Chapter 3 focuses on the most important applications of cryptography that is Encryption
and Decryption and application of matrices to cryptography.

Chapter 4 deals with the algorithms used in cryptography such as Triple DES, twofish,
AES, SHA256, how do block chains work,Visual cryptography and elliptic curve

cryptosystems.

Chapter 5 deals with the ‘Magic of math in Cryptography’.

CONTENT

Introduction

1 Cryptography

1.1 Definition

1.2 History of cryptography

1.3 Cryptography in everyday life
1.4 Types of cryptography

2 Hash functions

2.1 Basics of hash functions

2.2 Hashing
Encryption and Decryption

3.1 Encryption
3.2 Decryption

3.3 Application of matrices to cryptography
4 Algorithms used in cryptography

4.1 Triple DES

4.2 Twofish

4.3 AES

4.4 SHA-256

4.5 Blockchain

4.6 Visual cryptography

4.7 Elliptic curve crypyosystem
5 Magic of math in Cryptography

5.1 Clock math

10

10

10

11

15

19

24

36

36

40

40

41

41

42

43

44

49

5.2 Generating random numbers deterministically
5.3 Dividing in clock math
5.4 Manipulating secret contents
5.5 Universal functions
5.6 Applications of FHE
Applications of cryptography in cyber security
Applications of cryptography in data privacy

Conclusion

References

50
o1
52
53
53
54

55

56

57

INTRODUCTION

Claude E . Shannon is considered by many to be the father of
mathematical cryptography . Shannon worked for several years at Bell Labs and
during his time there , he produced an article entitled “ A mathematical theory
of cryptography ”. The first recorded use of cryptography for correspondence was
by the Spartans, who as early as 400 bc employed a cipher device called the

scytale for secret communication between military commanders.

CHAPTER 1
CRYPTOGRAPHY
1.1 DEFINITION

Cryptography is the study of secure communications techniques that allow only the
sender and intended recipient of a message to view its contents. The term is derived from the Greek
word kryptos, which means hidden.

1.2 HISTORY OF CRYPTOGRAPHY

As civilizations evolved, human beings got organized in tribes, groups and kingdoms.
This led to the emergence of ideas such as power, battles, supremacy and politics. These ideas
further fueled the natural need of people to communicate secretly with selective recipient which
in turn ensure the continuous evolution of cryptography as well. The roots of cryptography are
found in Roman and Egyptian civilizations.

1.2.1 HIEROGLYPH

The first known evidence of cryptography can be traced to the use of ‘Hieroglyph’.
Some 4000 years ago, the Egyptians used to communicate by messages written in hieroglyph.

ANCIENT EGYPT

HIEROGLYPHICS
VDAl
A B C D E F G
O 4022 @
H | J K L M N
NOd= ol
O P @ R S T U
U a D BB
V W X Y 2

1.3 CRYPTOGRAPHY IN EVERYDAY LIFE

Today, cryptography is used to protect digital data. It is a division of computer science
that focuses on transforming data into formats that cannot be recognized by unauthorized users.
An example of basic cryptography is a encrypted message in which letters are replaced with other
characters.

¢ Cryptography in everyday life ° contains a range of situations where the use of
cryptography facilitates the provision of a secure service : cash withdrawal from an ATM, Pay TV,
email and file storage using Pretty Good Privacy (PGP) freeware, secure web browsing and use of
a GSM mobile phone.

10

1.4 TYPES OF CRYPTOGRAPHY
Cryptography can be broken down into three different types:

1.4.1 SYMMETRIC-KEY CRYPTOGRAPHY (Secret key cryptography)

Both the sender and receiver share a single key. The sender uses this key to encrypt
plaintext and send the cipher text to the receiver. On the other side the receiver applies the same
key to decrypt the message and recover the plain text.

EXAMPLE OF SYMMETRIC KEY CRYPTOGRAPHY
Blowfish

8bits 8bits 8bits 8 bits

S-box | | S-box | | S-box | | S-box
1 2 3 4
32|bits 32|bits 32lbits 32|bits
11
Ll

fd)
3

1T

7

Blowfish is a symmetric block cipher that can be used as a drop-in replacement for DES or IDEA.
It takes a variable-length key, from 32 bits to 448 bits, making it ideal for both domestic and
exportable use. Blowfish is an alternative to DES Encryption Technique.

11

Features
e Block cipher: 64-bit block

e Variable key length: 32 bits to 448 bits
e Much faster than DES and IDEA
e Unpatented and royalty-free

e No license required

Working

The above diagram shows Blowfish’s F-function. The function splits the 32-bit input into four
eight-bit quarters, and uses the quarters as input to the S-boxes. The outputs are added modulo232
and XORed to produce the final 32-bit output.

1.42 ASYMMETRIC-KEY CRYPTOGRAPHY (Public key cryptography)

Public key cryptography is a very advanced form of cryptography. This is the most
revolutionary concept in the last 300-400 years. In Public-Key Cryptography two related keys
(public and private key) are used. Public key may be freely distributed, while its paired private
key, remains a secret. The public key is used for encryption and for decryption private key is used.

EXAMPLE OF ASYMMETRIC KEY CRYPTOGRAPHY

RSA algorithm

It is asymmetric cryptography algorithm. Asymmetric actually means that it works on two different
keys i.e. Public Key and Private Key. As the name describes that the Public Key is given to
everyone and Private key is kept private.

RSA Component Features

e Public/private key generation.
e Encrypt with either public or private key.

e Decrypt with matching public or private key.

12

Create digital signatures.

Verify digital signatures.

Encrypt and decrypt in-memory strings or byte arrays of any size.

Encode encrypted output to Base64, Hex, Quoted-Printable, or URL-encoding

Export public/private key pairs to XML.

Import key pair from .snk file.

Import public/private key pairs from XML.

Import/Export only public-part or private-part of key pair.

PKCS v1.5 padding for encryption and signatures.

OAEP Padding Scheme for Encryption/Decryption

Create/verify signatures with little-endian or big-endian byte ordering.

Supports key sizes ranging from 512 bits to 4096 bits.

Supports hash algorithms: MD5, SHA-1, SHA-2 (SHA-256, SHA-384, SHA-512), and

more...

Thread safe.

13

1.4.3 HASH FUNCTIONS

No key is used in this algorithm. A fixed-length hash value is computed as per the
plain text that makes it impossible for the contents of the plain text to be recovered. Hash

functions are also used by many operating systems to encrypt passwords.
Examples of Hash Function

SHA

The Secure Hash Algorithm (SHA) hash functions are a set of cryptographic hash functions
designed by the National Security Agency (NSA) and published by the NIST as a U.S. Federal

Information Processing Standard .

e SHA stands for Secure Hash Algorithm.

o Because of the successful attacks on MD5, SHA — 0 and theoretical attacks on SHA — 1,
NIST perceived a need for an alternative, dissimilar cryptographic hash, which became SHA
-3.

e In October 2012, the National Institute of Standards and Technology (NIST) chose the

Keccak algorithm as the new SHA- 3 standard.

This type is explained briefly in the following chapter.

14

CHAPTER 2

HASH FUNCTIONS
2.1 BASICS OF HASH FUNCTIONS

Each key is associated with the values it is mapped to some numbers in the
range of 0 to table size -1.

A Hash function is a key to address transformation
Key % Table size
Example
Table size =10
Key =75
Hash key = Key % Table size
=75% 10
=5

If input keys are random integers then this function is very simple and distribute the keys. If the
table size is 10 and all the keys end in zero, then this hash function is a wrong choice.

2.1.1 TYPES OF HASH FUNCTIONS

1. Division method

2. Mid square method

3. Folding method

4. Multiplication method

1. Division Method

This is the most simple and easiest method to generate a hash value. The hash function
divides the value k by M and then uses the remainder obtained.

Formula
h(K) =k mod M
Here,
K is the key value, and
M is the size of the hash table.

It is best suited that M is a prime numbers as that can make sure the keys are more uniformly
distributed. The hash function is dependent upon the remainder of a division.

15

Example

k = 12345
M =95
h(12345) = 12345 mod 95
=90
Pros

1. This method is quit good for any value of M.
2. The division method is very fast since it requires only a single division operation.

Cons

1. This method leads to poor performance since consecutive keys map to consecutive hash
values in the hash table.
2. Sometimes extra care should be taken to choose value of M.

2. Mid square method

The mid square method is very good hashing method. It involves two steps to compute
the hash value.

1. Square the value of the key k i.e. k?
2. Extract the middle r digits as the hash value.

Formula
h(K) = h(k x k)
here,
k is the key value.

The value of r can be decided based on the size of the table.

Example

Suppose the hash table has 100 memory locations. So r = 2 because two degits are required to map
the key to the memory location.

k=60

k x k=60x60
= 3600

h(60) = 60

16

The hash value obtained is 60.
Pros

1. The performance of this method is good as most or all digits of the result. This is because
all digits in the key contribute to generating the middle digits of the squared result.

2. The result is not dominated by the distribution of the top digit or bottom digit of the original
key value.

Cons

1. The size of the key is one of the limitations of this method, as the key is of big size then its
squre will double the number of digits.
2. Another disadvantage is that there will be collisions but we can try to reduce collisions.

3. Digit folding method
This method involves two steps

1. Divide the key value k into a number of parts i.e. k1, k2, k3, ..., kn, where each part that
can have lesser digits than the other parts.
2. Add the individual parts. The hash value is obtained by ignoring the last carry if any.

Formula

k = k1,k2.k3,k4,....kn

s = k1+k2+k3+k4+...kn

h(k)=s

here,

s is obtained by adding the parts of the key k
Example

k =12345

kl1=12,k2=34,k3=5

s = k1+k2+k3
=12+34+5
=51

h(k) =51

17

4. Multiplication method

This method involves the following steps

Choose a constant value A such that0 < A < 1.

Multiply the key value with A.

Extract the fractional part of kA.

Multiply the result of the above step by the size of the hash table i.e. M.

a ~ W N oE

The resulting hash value is obtained by taking the floor of the result obtained in step 4.
Formula

h(K) = floor (M (kA mod 1))

Here,

M is the size of the hash table.

K is the key value.

A'is a constant value.
Example

k =12345

A =0.357840

M =100

h(12345) = floor[100 (12345*0.357840 mod 1)]
= floor[100 (4417.5348 mod 1)]
= floor[100 (0.5348)]
= floor[53.48]

=53

18

Pros

The advantages of the multiplication method is that it can work with any value of between 0 and

1, although there are some values that tend to give better results than the rest.
Cons

The multiplication method is generally suitable when the table size is the power of two, then the

whole process of computing the index by the key using multiplication hashing is very fast.
2.2 HASHING

The implementation of hash table is called as hashing. It can perform insertion, deletion
and find operations in a constant average time.

2.2.1 COLLISION RESOLUTION TECHNIQUES
1. Open Hashing
a. Separate chaining
2. Closed Hashing
a. Linear Probing
b. Quadratic Probing
c. Double Hashing
1. Open Hashing
a. Separate chaining

e Retrieval of an item, r, with hash address, i, is simply retrieval from the
linked list at position i.

e Deletion of an item, r, with hash address, i, is simply deleting r from the
linked list at position i.

Example

Load the keys 23, 13, 21, 14, 7, 8, and 15, in this order, in a hash table of size 7 using
separate chaining with the hash function:

h(key)=key % 7

h(23)=23%7 =2

19

h(13)=13%7=6
h(21)=21%7=0
h(14)=14% 7 =0 collision
h(7) =7%7 =0 collision
h(8) =8%7 =1
h(15)=15% 7 =1 collision

0 [l |
1 e [1 [15] 7]

2 —23 /]

3

4

5

6 | —>[13 7]

2. Closed Hashing

a. Linear Probing

In linear probing, fis a linear function of i, typically f(i) = i. This means to trying cells
sequentially (with wraparound) in search of an empty cell.

Example

Table size = 10

hash(key) = key % 10

f(i) =i

Inserted keys: 89, 18, 49, 58, 69
h(89)=89 % 10 =9
h(18)=18% 10 =38
h(49)= 49 % 10 = 9 collision
i=1, f(1)=1

20

h(58)=58 % 10 = 8 collision

i=1, f(1)= 1
i=2, f(2)= 2
i=3, f(3)= 3
h(69)= 69 % 10 = 9 collision
i=3, f(3)= 3
89 18 49 58 69
0 49 49 49
1 58 58
2 69
3
4
5
6
7
8 18 18 18 18
9 |89 89 89 89 89

b. Quadratic Probing
In quadratic probing, f is a quadratic function of i, typically f(i)= i2.
Example
Table size = 10
hash(key) = key % 10
f(i)=i?
Inserted keys: 89, 18, 49, 58, 69
h(89)=89 % 10 =9
h(18)=18 % 10 =8
h(49)= 49 % 10 = 9 collision
i=1, f(1)=1%=1
h(58)=58 % 10 = 8 collision

21

i=1, f(1)= 1%=1

i=2, f(2)=2%=4
h(69)=69 % 10 = 9 collision
i=2, f(2)=2%=4
89 18 49 58 69
0 49 49 49
1
2 58 58
3 69
4
5
6
7
8 18 18 18 18
9 89 89 89 89 89

c. Double Hashing
Hash function
hash(key)= key % table size
When collision occurs use a second hash function
Hashz(key) =R - (key % R)
R is a greatest prime number smaller than table size
Example
Table size = 10
hash(key) = key
f(i)=i
hashz(key) = R - (key % R)
R=7
inserted keys: 89, 18, 49, 58, 69
h(89)=89 % 10 =9

22

h(18)=18 % 10 =8

h(49)=49 % 10 = 9 collision
R - (key % R)
7-(49%7)
7-0=7

h(58)=58 % 10 = 8 collision
7-(58%7)
7-2=5

h(69)=69 % 10 = 9 collision
7-(69%7)
7-6=1

89 18 49 58 69
0 69
1
2
3 58 58
4
5
6 49 49 49
>
8 18 18 18 18
9 89 89 89 89 89

23

CHAPTER 3

ENCRYPTION AND DECRYPTION

3.1 ENCRYPTION

Encryption is a means of securing digital data using one or more mathematical
techniques, along with a password the encryption process to decrypt the information. The
encryption process translates information using an algorithm that makes the original
information unreadable. The process for instance can convert an original text, known as
plaintext into an alternative form known as cipher text. When an authorized user needs to read
the data they may decrypt the data using a binary key. This will convert cipher text back to
plaintext so that the authorized user can access the original information.

3.1.1 HOW DOES ENCRYPTION WORK?

At the beginning of the encryption process, the sender must decide what cipher
will best disguise the meaning of the message and what variable to use as a key to make the
encoded message unique. The most widely used types of ciphers fail into two categories:
Symmetric and Asymmetric ciphers.

3.1.2 SYMMETRIC CIPHERS

Symmetric ciphers, also referred to as secret key encryption, use a single key.
The key is sometimes referred to as a shared secret because the sender or computing system
doing the encryption must share the secret key with all entities authorized to decryption is
usually much faster than asymmetric encryption. The most widely used symmetric key cipher
is the Advanced Encryption Standard, which was designed to protect government-classified

information.
There are basically two types of symmetric ciphers

1. Substitution cipher

2. Transposition cipher

24

1. SUBSTITUTION CIPHER

A substitution is a technique in while each letter or bit of the plaintext is substituted

or replaced by some other letter number or symbol to produce cipher text.
For Example: ABC — XYZ
Types of Substitution cipher
a) Caesar cipher
b) Monoalphabetic cipher
c) Polyalphabetic cipher
d) Playfair cipher
e) One time pad cipher
f) Hill cipher
a) Caesar cipher
1. Letters are replaced by letters or symbols.
2. The earlier known and simplest method used be Julius Caesar.

3. Replacing each letter of the alphabet with the letter standing three places further down

alphabet.
Formula
1.For each plaintext letter ‘P’ substitution the cipher letter C.
2.C=E(P,K) mod 26 = (P + K) mod 26 and P = D(C,K) mod 26 = (C — K) mod 26.

TABLE : 1

A B C D E F G H I J K L M
0 1 2 3 4 5 6 7 8 9 10 11 12
N @) P Q R S T U \Y W X Y 4

13 14 15 16 17 18 19 20 21 22 23 24 25

25

Example
Encrypt ‘NESO ACADEMY’ using Caesar cipher
Solution

Encryption

Plain text : NESO ACADEMY

N E S) A C A D

Q H \Y R D F D G

C = (P +K) mod 26
= (13 + 3) mod 26
=16 mod 26
=16
C=Q
Cipher text : QHVRDFDGHPB
Decryption

Cipher text : QHVRDFDGHPB

Q H \Y R D F D G H

N E S) A C A D E

P =(C-K)mod 26
= (16 —3) mod 26
=13 mod 26
=13
P=N
Plain text : NESO ACADEMY

26

b) Monoalphabetic cipher

Monoalphabetic cipher substitution are letter of the alphabet with another letter
of the alphabet. However rather than substituting according to a regular pattern any letter can
be substituted for any other letter as long as each letter has a unique substitute left and vice

VErsa.

A/B|IC/IDIE|IF|G|H|I|J|K|ILIM/IN|O|P|Q|R|S|T|U|V|W

DIEIA|IB|[CIUW|VIFIY|Z|X|G|IT|H|S|R|I |J|Q|P|K]|L

Example

Encrypt the message “ HELLO” using Monoalphabetic cipher

Solution:

Encryption

Plain text message : HELLO

Cipher text message: VCXXH

Decryption

Cipher text message : VCXXH

Plain text message : HELLO

¢) Polyalphabetic cipher
1. Polyalphabetic cipher is any cipher based on substitution alphabets.
2. The vignere cipher is probably the best known example of polyalphabetic cipher.
3. Vignere cipher is a method of encryption alphabetic text.

Thus technique used for both encryption and decryption the message.

Encryption formula

Converging (A — Z) into number (0-25). The plaintext (p) and key are called modulo 26.
E;= (P;+ K;) mod 26

27

Decryption formula
D; = (E; - K;+ 26) mod 26

Example
The plaintext is “JAVATPOINT”’, and the key “BEST”
Solution
Encryption
E;=(P; +K;) mod 26
Plain text : JAVATPOINT
KEY =BESTBESTBE
J=9 andB=1
E: =(P:+Ki) mod 26

=(J+ B) mod 26 (using table:1)

=(9+1)mod26 =10mod 26

E: =10
Plaintext | J A V A T P 0] I N T
Plaintext |9 0 21 0 19 15 14 8 13 19
value(P)
Key B E S T B E S T B E
Key 1 4 18 19 18 19
value(K)
Cipher 10 4 13 19 20 19 6 1 14 23
text
value(E)
Cipher K E N T U T G B @) X

text

Cipher text : KENTUTGBOX

28

Decryption

If any case(D;) value becomes negative (-ve), in this case, we will add 26 in the negative

value.
K=10and B=1
D; =(E;- K;+26) mod 26
=(E: - Ki +26) mod 26 = (K- B +26) mod 26 (by using Table : 1)

=(10—-1+26) mod 26 = (35) mod 26

=9

=J

Cipher K E N T U T G B @) X
text

Ciphertext | 10 4 13 19 20 19 6 1 14 23
value (E)

Key B E S T B E S T B E
Key 1 4 18 19 1 4 18 19
value(k)

Plaintext |9 0 21 0 19 15 14 8 13 19
value (P)

Plaintext | J A V A T P O | N T

Plaintext : JAVATPOINT
d) Playfair cipher

Playfair cipher is a digraph substitution cipher. It employs a table where one letter is

omitted and the letter are arranged is 5 x 5 grid.
Rules

1. Diagrams

2. Repeating letters — Filler letter

29

3. Same column ||| wrap around

4. Same row |—| wrap around

5. Rectangle |« | swap

Example

The Plaintext “ATTACK “ and the Key MONARCHY

Solution
Encryption
M |O |N A R
C H |Y B D
E F |G TAREN &
L P |Q |S T
u |V |wW X |Z
Cipher text : RSSRCE
DECRYPTION
M | O N A R
H |Y |B |D
E |F |G |IJ K
L [P [Q [s |T
u |V |W |[X |Z

Plain text : ATTACK

e) One time pad cipher

Plain text : AT TA CK

Cipher text : RS SR DE

Cipher text: RS SR DE

Plaintext : AT TA CK

1. One time pad (OTP) also called Vernamcipher or the perfect cipher is a crypto

algorithm where plaintext is combined with a random key.

use.

2. They key is at least as long as the message or data that must be encrypted.

3. Each key is used only one and both sender and receiver must destroy their key after

30

4. There should only two copies of the key: one for sender and one for receiver.
Example
The Plain text “ACTIVE” and key “CELOAI”
Solution
ENCRYPTION (+)
Plaintext - ACTIVE
key >CELOAI

02 19 8 21 4 (using Table : 1)

24 1114 0 8

2 63022 21 12

-26
4
Cipher text — C GEWV M
DECRYPTION (-)
Ciphertext - C GEW VM | key —- CELOA I

2 6 4 222112 (using Table:1)

2 4 11 14 0 8

0 2 -78 21 4

+26

19

31

Plain text — ACT I VE
) Hill cipher

In classical cryptography the Hill cipher is a polygraphic substitution cipher based
on linear algebra. Invented by Lester S. Hill in 1929, it was the first polygraphic cipher in
which it was practical to operate on more than three symbols at once.

Encryption formula
C = KP mod 26

Decryption formula
P =K 'Cmod26 where K= ﬁ adj K
Example

Plain text is CD. Find out Cipher text of given plain text using cipher text. Key matrix = [g i

Solution

Encryption

Plaintext =CD (C=2,D =3) (using Table: 1)

Key matrix = [§ i]

C =KP mod 26
12 3112
C= [3 4 [3] mod 26

113
=13 8] mod 26

(13
118

=[]

Cipher text = NS

32

Decryption
Find out inverse matrix of given key matrix.
P =K 1C mod 26

- _ 1 .
K1 —madﬂ{

12 3| _q o_.
k=5 ,|=8-9=-1

4 —3]

Adj K:[_3 ,

— [—4 3]
3 -2
Ciphertext=(N=13,S=18) (using table : 1)

Key inverse matrix = [_34 _32]

o= [2l [ial moo e

= g] mod 26
= [3]
=[5

Plain text = CD

2. TRANSPOSITION CIPHER

In transposition technique, there is no replacement of alphabets or numbers occurs
instead their position are changed or reordering of position of plain text is done to produce

cipher text.

For example ABCDE — BADEC

33

Types of Transposition cipher

a) Rail fence

b) Row Transposition cipher

a) Rail fence

The plaintext is written down as a sequence of diagonals and then read off as a sequence

of rows.
Example
Encrypt the message “PLEASE SAVE ME” with a rail fence of depth 2
Solution
Encryption
Plain text : PLEASE SAVE ME
Depth : 2
P ES SV M
L A E A E E
Cipher text : PESSVMLAEAEE
Decryption
Cipher text : PESSVMLAEAEE
P ES S V M
L A E E E
Plaintext : PLEASESAVEME

Plain text : PLEASE SAVE ME
b) Row Transposition cipher

We write the message is a rectangle, row by row and read the message off, column

by column but permute the order of column.

34

Example
Encrypt the message “ATTACK POSTPONED UNTILL TWO AM”
Solution

Encryption

Plain text : ATTACK POSTPONED UNTILL TWO AM

3 2 1 6 5 4
A T |T |[A |C |K
P O |S T P @)
N |E D (U |N |T
| L (T |W O |A
M [V |W X |Y |Z

Cipher text : TSDTWTOELVAPNIMKOTAZCPNOYATUWX
Decryption
Cipher text : TSDTWTOELVAPNIMKOTAZCPNOYATUWX

3 2 1 6 5 4

T |T |[A |[K |[C |A
S O |P O [P T
D |E N | T N |U
T L |1 A |0 |W
W |V |[M|Z |Y | X

Plain text : ATTACKPOSTPONEDUNTILTWOAMVWXYZ

Plain text : ATTACK POSTPONED UNTIL TWO AM

3.1.3 ASYMMETRIC CIPHER

Asymmetric ciphers also known as public key, encryption use two different — but
logically linked keys. This type of cryptography often uses prime numbers to create keys since

35

it is computationally different to factor large number and reverse engineer the encryption. The
Shamir Adelman (RSA) encryption algorithm currently the most widely used the public key
algorithm. With RSA, the public or the private key can be used to encrypt a message whichever

key is not used for encryption becomes the decryption key.
3.2 DECRYPTION

The conversion of encrypted data its original form is called decryption. It is
generally a reverse process of encryption. It decodes the encrypted information so that

authorized user can only decrypt the data because decryption requires a secret key or password.
3.2.1 HOW DOES DECRYPTION WORK?

To understand how decryption typically works, let’s consider the case of a veeam
backup. When typing to recover information from a Veeam backup, an encrypted backup file

and Replication will perform decryption automically in the backdrop or will require a key.

In case an encryption password is required to gain access to the backup file, if the
replication configuration database and Veeam backup is accessible, the key is no longer
necessary. The passwords from the database are required to open the backup file. The
information is accessible in the backdrop, and data recovery is not much different from that of
the unencrypted data.

3.3 APPLICATION OF MATRICES TO CRYPTOGRAPHY

One of the important applications of inverse of a non-singular square matrix is in cryptography.
Cryptography is an art of communication between two people by keeping the information not
known to others. It is based upon two factors, namely encryption and decryption. Encryption
means the process of transformation of an information (plain form) into an unreadable form
(coded form). On the other hand, Decryption means the transformation of the coded message
back into original form. Encryption and decryption require a secret technique which is known

only to the sender and the receiver.

This secret is called a key. One way of generating a key is by using a non-singular matrix to
encrypt a message by the sender. The receiver decodes (decrypts) the message to retrieve the

original message by using the inverse of the matrix. The matrix used for encryption is called

36

encryption matrix (encoding matrix) and that used for decoding is called decryption matrix

(decoding matrix).
We explain the process of encryption and decryption by means of an example.

3.3.1 EXAMPLE

Suppose that the sender and receiver consider messages in alphabets A — Z only, both assign
the numbers 1-26 to the letters A — Z respectively, and the number O to a blank space. For
simplicity, the sender employs a key as post-multiplication by a non-singular matrix of order 3
of his own choice. The receiver uses post-multiplication by the inverse of the matrix which has

been chosen by the sender.

Let the encoding matrix be

NN
I

N -
| |

o
O

Let the message to be sent by the sender be “WELCOME”.

Since the key is taken as the operation of post-multiplication by a square matrix of order 3, the
message is cut into pieces (WEL), (COM), (E), each of length 3, and converted into a sequence

of row matrices of numbers:

[23512],[31513],[500].

Note that, we have included two zeros in the last row matrix.
The reason is to get a row matrix with 5 as the first entry.

Next, we encode the message by post-multiplying each row matrix as given below:

37

Uncoded Encoding Coded
row matrix matrix row matrix

[23512](2 -1 O =[45 -28 23];

[31513]|2 -1 0| =[46 -18 3]

[500][2 -1 Of=[5 -5 5]

So the encoded message is [45 — 28 —23] [46 -18 3] [5 —5 5]
The receiver will decode the message by the reverse key, post-multiplying by the inverse of A.

So the decoding matrix is

0 0 I
e i d=|0 <1 3]
|4
I -1 1

The receiver decodes the coded message as follows:

Coded Decoding Decoded

row matrix matrix row matrix

[0 0 1]
[45 -28 23] 0 -1 2| =[23 5 12};

1. =% 4}
S o 1

[46 18 3][0 -1 2| =[31513];
-l —l .
o o 1

[S§ -5 5]|0 -1 2| = [5 0 0].
1 -1

38

So, the sequence of decoded row matrices is [23 5 12], [3 15 13], [50 0].

Thus, the receiver reads the message as “WELCOME”.

39

CHAPTER 4

ALGORITHMS USED IN CRYPTOGRAPHY
4.1 TRIPLE DES

Triple DES is an encryption technique which uses three instance of DES on same plain text. It uses
there different types of key choosing technique in first all used keys are different and in second two
keys are same and one is different and in third all keys are same. 3DES is an improvement over des,
but each has their benefits and opportunities for improvements.

4.1.1 The encryption-decryption process is as follows

e Encrypt the plaintext blocks using single DES with key K1.

e Now decrypt the output of step 1 using single DES with key K2.

e Finally, encrypt the output of step 2 using single DES with key K3.

e The output of step 3 is the ciphertext.

e Decryption of a ciphertext is a reverse process. User first decrypt using K3, then encrypt
with K2, and finally decrypt with K1.

4.2 TWOFISH

Twofish is a symmetric block cipher; a single key is used for encryption and decryption. It has a
block size of 128 bits, and accepts a key of any length up to 256 bits.

4.2.1 Features

e 128 bit block cipher

e Uses 16 rounds of Feistel network

e Key length of 128 bit,192 bits and 256 bits
e No weak keys

40

4.3 AES

The Advanced Encryption Standard (AES) is a specification for the encryption of electronic data
AES is six times faster than Triple DES.AES is much faster than RSA.

4.3.1 Features
e Symmetric key symmetric block cipher

e 128-bit data, 128/192/256-bit keys
e Stronger and faster than Triple-DES
e Provide full specification and design details

e Software implementable in C and Java

AES performs all its computations on bytes rather than bits. Hence, AES treats the 128 bits of a
plaintext block as 16 bytes. These 16 bytes are arranged in four columns and four rows for
processing as a matrix he number of rounds in AES is variable and depends on the length of the
key. AES uses 10 rounds for 128-bit keys, 12 rounds for 192-bit keys and 14 rounds for 256-bit
keys. Each of these rounds uses a different 128-bit round key, which is calculated from the original
AES key.

4.4 SHA-256

SHA-256 is a one-way function that converts a text of any length into a string of 256 bits. This is
known as a hashing function. SHA256 stands for Secure Hash Algorithm 256-bit and it’s used for
cryptographic security.

SHA-256 generates an almost-unique 256-bit (32-byte) signature for a text. SHA-256 is one of the
successor hash functions to SHA-1. It is one of the strongest hash functions available. SHA-256 is
not much more complex to code than SHA-1, and has not yet been compromised in any way. The

256-bit key makes it a good partner-function for AES.

41

4.5 BLOCKCHAIN

It’s decentralized nature and cryptographic algorithm make it immune to attack. In

fact, hacking a Blockchain is close to impossible. In a world where cyber security has become a

key issue for personal, corporate, and national security, Blockchain is a potentially revolutionary

technology.

4.5.1 Features

1. Cannot be Corrupted

2. Decentralized Technology

3. Enhanced Security

4. Distributed Ledgers

5. Consensus

6. Faster Settlement

One of the application of blockchain is bitcoin.

42

4.6 VISUAL CRYPTOGRAPHY

Visual cryptography is a cryptographic technique which allows visual information (pictures, text,

etc.) to be encrypted in such a way that decryption can be done just by sight reading.

4.6.1 Features
1) The independence of pixel’s encryption.
2) Easy matrix generation.

3) Simple operations.

Visual Cryptography is a special encryption technique to hide information in images in such a way
that it can be decrypted by the human vision if the correct key image is used. Visual Cryptography
uses two transparent images. One image contains random pixels and the other image contains the
secret information. It is impossible to retrieve the secret information from one of the images. Both

transparent images and layers are required to reveal the information.

4.6.2 Applications

e Safe websites

e Secure online transactions
e For encryption of files

e Military communications
e Encryption in WhatsApp
e Sim card Authentication

e Electronic Money

43

4.7 ELLIPTIC CURVE CRYPTOSYSTEM

We start by giving a short introduction to the mathematical concept of elliptic curves, independent
of their cryptographic applications. ECC is based on the generalized discrete logarithm problem.
Hence, what we try to do first is to find a cyclic group on which we can build our cryptosystem.
Of course, the mere existence of a cyclic group is not sufficient. The DL problem in this group
must also be computationally hard, which means that it must have good one-way properties.

We start by considering certain polynomials (e.g., functions with sums of exponents
of x and y), and we plot them over the real numbers.

Example 1

Let’s look at the polynomial equation x?+y?= r? over the real number R. If we plot all the pairs
(x,y) which fulfill this equation in a coordinate system, we obtain a circle as shown in the figure.

Plot of all points (x, y) which fulfill the equation x? +y? = r?

We now look at other polynomial equations over the real numbers.

Example 2

A slight generalization of the circle equation is to introduce coefficients to the two terms x? and
y2, i.e., we look at the set of solutions to the equation a - x? +b - y? = ¢ over the real numbers. It
turns out that we obtain an ellipse, as shown in the figure.

44

M

Plot of all points (x,y) which fulfil the equation ax®+by? = c.
4.7.1 DEFINITION

From the two examples above, we conclude that we can form certain types of curves from
polynomial equations. By “curves”, we mean the set of points (X,y) which are solutions of the
equations.

e Elliptic curve cryptography is a key based technique for encrypting data. ECC focuses
on pairs of public and private keys for decryption and encryption.

e It provides equal security with smaller key size as compared to non ECC algorithms.

e It make use of elliptic curves.

e Elliptic curves are defined by some mathematical function fx = y? = x3 + ax = b.

ki
Y= +ax s 6

e Symmetric to x-axis.

e If we draw a line, it will touch a maximum of 3 parts.

e The definition of elliptic curve requires that the curve is nonsingular. Geometrically
speaking, this means that the plot has no self-intersections or vertices.

e For cryptographic use we are interested in studying the curve over a prime field as
in the definition. However, if we plot such an elliptic curve over Zp, we do not get
anything remotely resembling a curve. However, nothing prevents us from taking
an elliptic curve equation and plotting it over the set of real numbers.

45

4.7.2 GROUP OPERATIONS OF ELLIPTIC CURVE

We denote the group operation with the addition symbol2 “+”. “Addition” means that given two
points and their coordinates, say P = (x1,y1) and Q = (x2,y2), we have to compute the coordinates
of a third point R such that:

P+Q =R
(x1,y1)+(x2,y2) = (x3,y3)

As we will see below, it turns out that this addition operation looks quite arbitrary.
Luckily, there is a nice geometric interpretation of the addition operation if we
consider a curve defined over the real numbers. For this geometric interpretation,
we have to distinguish two cases: the addition of two distinct points (named point
addition) and the addition of one point to itself (named point doubling).

Point Addition P+Q

This is the case where we compute R = P+Q and P #Q. The construction works as follows: Draw
a line through P and Q and obtain a third point of intersection between the elliptic curve and the
line. Mirror this third intersection point along the x-axis. This mirrored point is, by definition, the
point R.

R=P+Q

Point Doubling P+P

This is the case where we compute P+Q but P=Q. Hence, we can write R = P+P = 2P. We need a
slightly different construction here. We draw the tangent line through P and obtain a second point
of intersection between this line and the elliptic curve. We mirror the point of the second
intersection along the x-axis. This mirrored point is the result R of the doubling.

46

o

AR
NN

We might wonder why the group operations have such an arbitrary looking form.
Historically, this tangent-and-chord method was used to construct a third point if two points were
already known, while only using the four standard algebraic operations add, subtract, multiply and
divide. It turns out that if points on the elliptic curve are added in this very way, the set of points
also fulfill most conditions necessary for a group, that is, closure, associativity, existence of an
identity element and existence of an inverse.

Of course, in a cryptosystem we cannot perform geometric constructions. However, by
applying simple coordinate geometry, we can express both of the geometric constructions from
above through analytic expressions, i.e., formulae. As stated above, these formulae only involve
the four basic algebraic operations. These operations can be performed in any field, not only over
the field of the real numbers. In particular, we can take the curve equation from above, but we
now consider it over prime fields GF(p) rather than over the real numbers. This yields the
following analytical expressions for the group operation.

4.7.3 ELLIPTIC CURVE POINT ADDITION AND POINT DOUBLING

X3 = s —x;—x,modp and
y3 = s(xy —x3)—y;modp where

Zz‘i" modp ;if P # Q (point addition)

s=4 250
3xé+amodp . if P = Q (point doubling)

Vi

47

Note that the parameter s is the slope of the line through P and Q in the case of point addition, or
the slope of the tangent through P in the case of point doubling.

PROBLEM -1
On a elliptic curve y? = x* — 36 find a point P + Q and 2P

Solution

Letp=1(-3,9),Q=(-28),a--3

Xs= (55) - (3)-(2)
=12+3+2
X3 =6
=9 (£2)(39
=-9-1(-9)
Y3=0
P+Q=(60)

Now to find 2P

X = (3(9)+(-35))2 _2(-3)

2X9
_ S271—836)2 5
= Z + 6
X3 = 24—5
=+ () (-a-2)
Ys =—

48

CHAPTER 5

MAGIC OF MATH IN CRYPTOGRAPHY
THE PERCEPTION

REALITY

-
Q<
&
‘o

f

oy U\l E
N o~ 4
> M -
- iy
B ¥y

5.1 CLOCK MATH
Cryptography is based on math that everyone understands: Clock math!

e Clocks have a finite range of numbers, which loop around rather than
continuing to infinity.

e If we can understand the math of clocks, we can understand math that
secures our computers and networks!

5.1.1 HOW ENCRYPTION WORKS

1. Choose message m to be encrypted.

49

2. Choose a number r from the clock.

Must be chosen at random.
Every number must have equal chance!

3.Add r tom.

The result, c called the ciphertext, is the encryption of message m with key r.

.
‘ &

5.1.2 CHOOSING SECRETS IN PUBLIC

How it Works
A B
(27y'=8"= R =A"=(29
r . Bob
Alice A=Z (modp) = 2' (mod p)
R»= 0" (med p) R = A (mod p)
B P

= samel —

5.2 GENERATING RANDOM NUMBERS DETERMINISTICALLY

1.

2.

It sounds like an oxymoron.

How can a deterministic process generates random number?

Yet this is the foundation of almost all cryptography. Every encryption algorithm is an
algorithm that can take a small key, of say 16 characters and use it to produce an endless
sequence of random bits.

These bits can then be used to encrypt the messages of any size or multiple messages.

HDs full of data can be encrypted with 1 random value this long : “abcdefghijklmnop”

50

5.2.1 TURNING ONE RANDOM NUMBER INTO MANY

Seed=7, M =253 even or odd? output bit
49 =722 mod 253 odd 1
124 = 4972 mod 253 even 0
196 = 124”2 mod 253 even 0
213 = 196”2 mod 253 odd 1
82 = 2132 mod 253 even 0
146 = 8272 mod 253 even 0
64 = 146”2 mod 253 even 0
48 = 64”2 mod 253 even 0

5.3 DIVIDING IN CLOCK MATH
1. What does it mean to “divide™?
e Isit possible to divide on a clock?
2. We can!By multiplying by an “inverse”
e Division by N = multiplying by (1/N)
e E.g.: (X/3) =(x*1/3)
3. Despite there being no fractions,there are inverses in clock math.An inverse is a
number that when multiplied gives 1.

e 3*1/3=1
e Eg.:3*4(mod1l)=1

51

3x4=1(mod 11)
4=1(mod 11)
4=3"(mod 11)

3°(mod 11)=1
3'"(mod 11)=3
32(mod 11)=9
3*(mod 11)=5
5x4(mod11)=9

9x4(mod11)=3
3x4(mod11)=1

5.4 MANIPULATING SECRET CONTENTS

In 1978, it was discovered that an encryption algorithm called RSA let people multiply two
encrypted values together without decrypying them.

E@ x Eb) = Eaxb)

Then, in 1999, it was discovered that an encryption algorithm called Paillier let people add

two encrypted values together without decrypting them.

E(a+b)

E(@) + E(b)

52

5.5 UNIVERSAL FUNCTIONS

Logical Operation Logic Gate Symbol Algebraic Representation

NOT a~l>o—y y=(1-a)

AND o y=(a-b)
OR) v y=(a+b)-(a-b)

5.6 APPLICATIONS OF FULLY HOMOMORPHIC ENCRYPTION
(FHE)
1. Having a genetic test done without revealing our ~ DNA

e Encrypt each base pair, send encrypted bits to be processed

e We get back and encrypted bit, which will decrypt to 1 if we have the
disease, 0 if not

= Prototypes of this have already been tested
2. Systems that can handout encryption keys without seeing them
3. Millions of others, literally everything we can think of can be done !

e But there is a down side : efficiency it’s much slower and less efficient to
run a computation on encrypted data (each encrypted bit is 20000 bits
inside)

= A 750 MB genome that fitsn on a CD becomes 7.5 TB (would
fill a large HD)

53

APPLICATIONS OF CRYPTOGRAPHY IN CYBER
SECURITY

SECRECY IN TRANSMISSION

Some existing secrecy systems for transmission access a private key system for converting
transmitted data because it is the quickest approach that functions with rational guarantee and
low overhead.

If the multiple conversing parties is minute, key distribution is implemented periodically with
a courier service and key preservation based on physical security of the keys over the method
of use and destruction after new keys are disseminated.

SECRECY IN STORAGE

Secrecy in storage is frequently preserved by a one-key system where the user provide the
key to the computer at the commencement of a session, and the system creates concern of
encryption and decryption during the phase of normal use.

AUTHENTICATION OF IDENTITY

Authenticating the identity of individuals or systems to each other has been a difficulty for a
very long time. Simple passwords have been used to test identity. More compound protocols
such as sequence of keywords exchanged between sets of parties are generally display in the
movies or on television.

CREDENTIALING SYSTEMS

A credential is generally a file that introduces one party to another by referencing a usually
known trusted party. When credit is used for, references are usually requested. The credit of
the references is determined and they are contacted to discover out the tested of the applicant.
Credit cards are generally used to credential an individual to achieve more credit cards.

54

APPLICATIONS OF CRYPTOGRAPHY IN DATA PRIVACY

INTEGRITY IN TRANSMISSION

Some users of communication systems are not as much worried concerning secrecy as about
integrity. In a computer funds transfer, the sum sent from one account to another is usually
public knowledge.

If an operating tapper can bring in a false transfer, funds can be shared illegally. An inaccuracy
in an individual bit can cause millions of dollars to be wrongly credited or debited.
Cryptographic methods are generally used to provide that intentional or accidental modification
of transmitted data does not cause flawed actions to appear.

INTEGRITY IN STORAGE

The central meaning of assuring integrity of accumulated data has previously been access
control. Access control contains systems of locks and keys, guards, and other approaches of a
physical or logical feature.

The recent advent of computer viruses has altered this to an important degree, and the use of
cryptographic checksums for assuring the integrity of stored data is becoming broad.

ELECTRONIC SIGNATURES

Electronic signatures are a means of monetary a lawfully binding transaction among two or
more parties. It can be as functional as a physical signature, electronic signatures should be at
least as hard to fake at least as simple to use, and accepted in a court of law as binding upon
some parties to the operation.

The necessity for these electronic signatures is especially intense in business dealings wherein
the parties to an agreement are not in the similar physical vicinity.

55

CONCLUSION

How math secures the Internet

e Hiding data that everyone can see.
e Agreeing on secrets in public.

e Speech that can’t be impersonated.

Math that will change the world

e Protecting data without having it.
e Checking proofs we can’t see.

e Working on data that we can’t access.

56

REFERENCES

[1] ANSI X9.31-1998, American National Standard X9.31, Appendix A.2.4, Public Key
Cryptography Using Reversible Algorithms for the Financial Services Industry (rDSA).
Technical report, Accredited Standards Committee X9, Available at http://www.x9.0rg, 2001.

[2] J.L. Carter and M.N. Wegman. New hash functions and their use in authentication and set
equality. Journal of Computer and System Sciences, 1981.

[3] Manuel Blum and Shafi Goldwasser. An efficient probabilistic public-key encryption
scheme which hides all partial information, In CRYPTO ’84. Proceedings of the 4th Annual
International Cryptology Conference, Advances in Cryptology, 1984.

[4] Dan Boneh and Richard J. Lipton. Algorithms for black-box fields and their application to
cryptography (extended abstract). In CRYPTO ’96: Proceedings of the 16th Annual
International Cryptology Conference, Advances in Cryptology, Springer, 1996.

[5] ANSI X9.62-1999. The Elliptic Curve Digital Signature Algorithm (ECDSA), Technical
report, American Bankers Association, 1999.

[6] Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications, Cambridge
University Press, New York, NY, USA, 2004.

57

STUDIES ON DYNAMIC PROGRAMMING
Project Report submitted to
ST.MARY'’S COLLEGE (AUTONOMOUS), THOOTHUKUDI.
Affiliated to
MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI.
In partial fulfillment of the requirement for the award of degree of

Bachelor of Science in Mathematics

Submitted by
NAME REG.NO.
ANTONY ROSL A | 19AUMT03
MAHALAKSHML G 19AUMTIS8
MARIASUJL B 19AUMT25
MICHAL FELIX. M 19AUMT27
PALKANI. P 19AUMT31
Under the Guidance of

Dr. V. L. STELLA ARPUTHA MARY M.Sc., M. Phil., B.Ed., Ph. D.,
Head & Assistant Professor of Mathematics

ST.MARY’S COLLEGE (AUTONOMOUS), THOOTHUKUDI.

Department of Mathematics
St. Mary’s College (Autonomous), Thoothukudi
(2021 - 2022)

CERTIFICATE

We hereby declare that the project report entitled “STUDIES ON DYNAMIC
PROGRAMMING" being submitted to St. Mary’s College (Autonomous), Thoothukudi
affiliated to Manonmaniam Sundaranar University, Tirunelveli in partial fulfillment for
the award of degree of Bachelor of Science in Mathematics and it is a record of work

done during the year 2021 - 2022 by the following students:

ANTONY ROSI. A
MAHALAKSHMI. G
MARIASUIJIL. B
MICHAL FELIX. M
PALKANI. P

e Svretla A~peina Moy
Signature of the Guide

an
Signature qﬁ‘}}gminer

19AUMTO3
19AUMTI8
19AUMT25
19AUMT27
19AUMT31

Vi Rretle Avp i Ma@

Dr. v.L. SEauge of e 02y
M.Sc.,M.Phil., BEd.. Ph.D.,
Head & Asst Professor of Mathematics
St. Mary's College (Autonomous)
Thoothukudi-628 001.

oﬂau'a Rese
Signature of the Principal
St Mary's Coflege (Autonom::.

Thoothukudi - 628 001.

DECLARATION

We hereby declare that the project reported entitled “STUDIES ON DYNAM}C
PROGRAMMING™, is our original work. It has not been submitted to any University
for any degree or diploma.

A AL Mahalakshmi - Gt

(ANTONY ROSI A) (MAHALAKSHML. G)

R - Mosandupt M Michal. Hdex.

(MARIASUIL B) (MICHAL FELIX. M)
P Vatkant

(PALKANIL P)

ACKNOWLEDGEMENT

First of all, we thank Lord Almighty for showering his blessings to undergo this
project.

With immense pleasure, we register our deep sense of gratitude to our guide
and the Head of the Department, Dr. V. L. Stella Arputha Mary M.Sc., M. Phil.,

B.Ed., Ph.D. for having imparted necessary guidelines throughout the period of our
investigation.

We thank our beloved Principal, Rev. Dr. Sr. A.S.J. Lucia Rose M.Sc.,

PGDCA., M. Phil., Ph.D., for providing us the help to carry out our project work
successfully.

Finally, we thank all those who extended their helping hands regarding this
project.

DYNAMIC
PROGRAMMING

1.1

1.2.

s

1.4.

1.5,

1.6.

1.7

1.8.

1.9.

.10,

1.11.

1.12.

1:13,

CONTENT

IDEEOANGCTION G & vuas comnns dumn v st iiaind s osdiativins b busns b brives sbkog tabionrsmspansnss 1
Distinguishing Characteristics of Dynamic Programming............... 2
Dynamic Programming Approach................ccoccvvvviiieininnnnnnnnn, 4
Formulation of Dynamic Programming Problems........................ 5
Optimal Subdivision Problem............ocvvviveieiererieieieseeeernsnnn, 36
System Reliability...........oooovviiniiiiiii e 53
Solution of lL.P.P. by Dynamic Programming............................. 56
Application of Dynamic Programming......................cceceuvvnn... 61
Deterministic Dynamic Programming.........................cccvuevii. .. 62
Probabilistic Dynamic Programming.........................coovviiii..l 62
Applications.o.oiviiii 65
ConCluSION.......oviiii i 67
Reference

DYNAMIC PROGRAMMING

“True optimization is the revolutionary contribution of modern research to
decision processes.”

- George Dantzig

While considering the situations of allocation, transportation, assignment,
scheduling and planning, it was assumed that the values of decision variables do not
change over the planning horizon. Thus these problems were of static nature and were
solved as specific situations occurring at a certain moment. However, we come across a
number of situations where the decision variables vary with time, and these situations are
considered to be dynamic in nature. The technique dealing with these types of problems
is called Dynamic Programming. It will be shown in the body of the chapter that time
element is not an essential variable, rather any multistage situation in which a series of
decisions are to be made is considered a dynamic programming problem.

Dynamic Programming is a technique in a computer programming that helps to

efficiently solve a class of problems that have overlapping subproblems and optimal
substructure property.

1.1 INTRODUCTION

In optimization problems involving a large number of decision variables or the
inequality constraints, it may not be possible to use the methods of calculus for obtaining
a solution. Classical mathematics handles the problems in a way to find the optimal
values for all the decision variables simultaneously which for large problems rapidly
increases the computations that become uneconomical or difficult to handle even by the
available computers. The obvious solution is to split up the original large problem into
smaller subproblems involving a few variables and that is precisely what the dynamic
programming does. It uses recursive equations to solve a large, complex problem, broken
into a series of interrelated decision stages (subproblems) wherein the outcome of the
decision one stage affects the decisions at the remaining stages.

Dynamic programming is a mathematical technique dealing with the optimization
of multistage decision problems. The technique was originated in 1952 by Richard
Bellman and G.B. Dantzig, and was initially referred to as the stochastic linear

programming. Today dynamic programming has been developed as a mathematical
technique to solve a wide range of decision problems and it forms an important part of
every operation researcher's tool kit.

Though the originator of the technique, Richard Bellman, himself, has said, “we
have coined the term 'dynamic programming' to emphasize that there are problems in
which time plays an essential role", yet, in many dynamic programming problems time is
not a relevant variable. For example, a decision regarding allocation of a fixed quantity of
resources to a number of alternative uses constitutes one decision to be taken at one time,
but the situation can be handled as a dynamic programming problem. As another
instance, suppose a company has marked capital C to be spent on advertising its products
through three different media i.e., of newspaper, radio and television. In cach media the
advertisement can appear a number of times per week. Each appearance has associated
with it certain costs and returns. How many times the product should be advertised in
each media so that the returns are maximum and the total cost is within the prescribed
limit ? In this situation time is not a variable, but the problem can be divided into stages
and solved by dynamic programming,

1.2 DISTINGUISHING CHARACTERISTICS OF DYNAMIC
PROGRAMMING

The important features of dynamic programming which distinguish it from other
quantitative techniques of decision-making can be summarized as follows :

1. Dynamic programming splits the original large problem into smaller subproblems
(also called stages) involving only a few variables, wherein the outcome of
decision at one stage affects the decisions at the remaining stages.

2. It involves a multistage process of decision-making. The points at which decisions
are called for are called stages. The stages may be certain time intervals or certain
subdivisions of the problems, for which independent feasible decisions are
possible. Each stage can be thought of having a beginning and an end. The stages
come in a sequence, the end of a stage forming the beginning of the next stage.

3. In dynamic programming, the variable that links up two stages is called a state
variable. At any stage, the status of the problem can be described by the values the
state variable can take. These values are referred to as states. Each stage may have,
associated with it, a certain number of states. It is not essential to know about the

previous decisions and how the states arise. This enables us to consider decisions
one at a time.

. In dynamic programming the outcome of decisions depends upon a small number
of varlables; that is, at any stage only a few variables should define the problem.
For example, in the production smoothening problem, all that one needs to know
at any stage is the production capacity, cost of production in regular and overtime,
storage costs and the time remaining to the last decision.

. A stage decision does not alter the number of variables on which the outcome
depends, but only changes the numerical value of these variables. For the
production smoothening problem, the number of variables which describe the
problem i.¢., production capacity, production costs, storage costs and time to the
last decisions, remain the same at all stages, No variable is added or dropped. The
effect to decision at any stage will be to alter the used production capacity, storage
cost, production cost and time remaining to the last decision.

. Principle of Optimality. Dynamic programming is based on Bellman’s Principle of
Optimality, which states, “An optimal policy (a sequence of decisions) has the
property that whatever the initial state and decision are, the remaining decisions
must constitute an optimal policy with regard to the state resulting from the first
decision”. This principle implies that a wrong decision taken at one stage does not
prevent from taking of optimum decisions for the remaining stages. For example,
in a production scheduling problem, wrong decisions made during first and second
months do not prevent taking correct decisions during third, fourth month, etc.
Using this principle of optimality, we find the best policy by solving one stage at
time, and then adding a series of one-stage-problems until the overall optimum of
the original problem is attained.

. Bellman's principle of optimality forms the basis of dynamic programming
technique. With this principle in mind, recursive equations are developed to take
optimal decision at each stage. A recursive equation expresses subsequent state
conditions and it is based on the fact that a policy is ‘optimal’ if the decision made
at each stage results in overall optimality over all the stages and not only for the
current stage.

. Dynamic programming provides a systematic procedure wherein starting with the
last stage of the problem and working backwards one makes an optimal decision
Jor each stage of the problem. The information for the last stage is the information
derived from the previous stages. It may be noted that dynamic programming
problems can also be solved by working forward i.e., starting with the first stage
and then working forward upto the last stage.

1.3 DYNAMIC PROGRAMMING APPROACH :

Before discussing the solutions to numerical problems, it will be worthwhile to
know a little more about some fundamental concepts of dynamic programming. The first
concept is stage. As already discussed, the problem is broken down into subproblems and
each subproblem is referred to as a stage. A stage signifies a portion of decision problem
for which a separate decision can be made. At each stage there are a number of
alternatives and the decision-making process involves the selection of one feasible
alternative which may be called as stage decision. The stage decision may not be optimal
for the considered stage, but contributes to make an overall optimal decision for the entire
problem.

The other important concept is state. A state represents the status of the problem at
a particular stage. The variables which specify the condition of decision process and
summarize the current ‘status’ of the system are called state variables. For example, in
the capital budgeting problem, the capital is the state variable. The amount of capital
allocated to the present stage and the preceding stages (or the capital remaining) defines
the status of the problem. The number of state variables should be as small as possible.
With the increase in number of state variables, increases the difficulty of problem
solving.

The procedure adopted in the analysis of dynamic programming problems can be
summarized as follows:

1. Define the problem variables, determine the objective function and specify
the constraints.

2. Define the stages of the problem. Determine the state variables whose
values constitute the state at each stage and the decision required at each
stage. Specify the relationship by which the state at one stage can be
expressed as a function of the state and decisions at the next stage.

3. Develop the recursive relationship for the optimal return function which
permits computation of the optimal policy at any stage. Decide whether to
follow the forward or the backward method to solve the problem. Specify
the optimal return function at stage 1, since it is generally a bit different
from the general optimal return function for the other stages.

4. Make a tabular representation to show the required values and calculations
for each stage.

5. Find the optimal decision at each stage and then the overall optimal policy.
There may be more than one such optimal policy.

1.4 FORMULATION OF DYNAMIC PROGRAMMING PROBLEMS

Consider a situation wherein a certain quantity ‘R’ of a resource (such as men,
machines, money, material, etc.) is to be distributed among ‘n’ number of different
activities. The retum ‘P’ depends upon the activities and the quantities of resource
allotted to them and the objective is to maximize the total return.

If pi(R;) denotes the return from the ith activity with the resource R;, then the
total return may be expressed as
P(RyRy....R) = Pi(Ry) + Po(Ry) + o + Pa(Ra).
(L)

The quantity of the resource R is limited, which gives rise to the constraint
R = R1+ R2+ "'+Rﬂ' R120,l = 1,2,..‘,n.
...(1.2)

The problem is to maximize the total return given by equation (1.1) subject to
constraint (1.2). If,

f(R) = o@g?é‘a[P(Rl' Ry, . s Ry)]

= o&dngg[pl(Rl) + p2(Ry) + ... + pa(Ry)]

... (1.3)

then f,(R) is the maximum return from the distribution of the resource R to the
n activities. Let us now allocate the resource to the activities, one by one, starting from
the last ie, nth activity. An expression connecting f,(R) and f,_,(R) for arbitrary
values of R and n may now be obtained with the help of principle of optimality. If R,, is
the quantity of resource allocated to the nth activity such that 0 < R, <R, then
regardless of the values of Ry, a quantity (R — R;;) of the resource will be distributed
amongst the remaining (n — 1) activities. Let f,_; (R — R,;) denote the return from the
(n — 1) activities, then the total return from all the n activities will be
pn(R) +* fn-l(R - Rn)-

An optimal choice of R, will maximize the above function and thus the

fundamental dynamic programming model may be expressed as
fR) = OhstaéR [Pa(R) + fo-1(R—Rp)], n=2,3,..,

...(1.4)

where f,(R), when n = 1 is obtained from equation (1.3) as
fi(R) = py(R). ... (1.5)
Equation (1.5) gives the return from the first activity when whole of the
resource R is allocated to it. Only f; (R) is known, equation (1.4) provides a relation to
evaluate f,(R), f3(R), ... This recursive process ultimately leads to the value of f,,_; (R)
and finally f,,(R) at which the process stops.

EXAMPLE 1.4 -1 (Employment Smoothening Problem)

A firm has divided its marketing area into three zones. The amount of sales
depends upon the number of salesmen in each zone. The firm has been collecting the data
regarding sales and salesmen in each area over a number of past years.

The information is summarized in table 1.1. For the next year firm has only 9
salesmen and the problem is to allocate these salesmen to three different zones so that
sales are maximum. ’

TABLE 1.1
Profit in thousands of rupees
No. of Zone Zone Zone
Salesman 1 ¥4 3

0 30 35 42
d 45 45 54
@ 60 52 60
3 70 64 70
4 79 72 82
5 90 82 95
6 98 93 102
7 105 98 110
8 100 100 110
9 90 100 110

Solution. In this problem the three zones represent the three states and the number
of salesman the state variables.

Stage I: We start with zone 1. The amount of sales corresponding to different
number of salesmen allocated to zone 1 are given in table 1.1 and are reproduced in table
1.2.

No. of salesmen : 0 1 2
Profit (000' of ?) :

TABLE 1.2
Zone |

3 4 5 6 7 8 9
30 45 60 70 79 9 98 105 100 90

Stage 2: Now consider the first two zones, zone | and 2. Nine salesmen can be
divided among two zones in 10 different ways: as 9 in zone 1 and 0 in zone 2, 8 in zone 1
and 1 in zone 2, 7 in zone | and 2 in zone 2, etc. Each combination will have associated
with it certain returns. The returns for all number of salesmen (total) 9,8,7,...,0 are

shown in table 1.3.
For a particular number of salesmen, the profits for all possible combinations can
be read along the diagonal. Max. profits are marked by*.

TABLE 1.3

X 0 I 2 3 4 5 6 7 8 9

“one filx)): | 30 45 60 70 79 90 98 105 100 90
Zone 2

X, fr00):
0 35 65% _80* 95 105% 114 _125% 133 140 135 125
1 45 75/ 90/105*/ 115;124;135; 143*/ 150/145/
2 52 82?975112?122/131/142/150;157/
3 64 947 109 124 134 143* _154* 162
4 72 102/117/132/142/151;162/
5 82 112/127/142/152;161
6 93 123/138/153/163*
7 98 128/143/158/
8 100 130/ 145/
9 100 130/

~

Stage 3: Now consider the distribution of 9 salesmen in three zones 1, 2 and 3.
The decision at this stage will result in allocating certain number of salesmen to zone 3
and the remaining to zone 2 and 1 combined; and then by following the backward
process, they will be distributed to zones 2 and 1.

For a total of 9 salesmen to be allocated to the three zones, the returns are shown
in table 1.4 below.

TABLE 1.4
No. of salesmen : 0 1 2 3 4 5 6 7 8 9
Total profit f,(x;) + 65 80 95 105 115 125 135 143 154 163

f1(xy):

Salesman in zone 2 + 0+0 0+1 0+2 0+3 143 0+5 1+5 3+4 345 643

zone 1 (x; + x,): 142 146

No. of salesmen in zone 3: 9 8 7 6 5 4 3 2 1 0
Profit f3(x3) : 110 110 110 102 95 82 70 60 54 42

Total profit f3(x3) + 175 190 205 207 210 207 205 203 208 205
f2(x2) + fi(x):

From table 1.4, the maximum profit for 9 salesman is Z 2,10,000 if 5 salesmen are
allotted to zone 3 and from the remaining four, 1 is allotted to zone 2 and 3 to zone 1.

EXAMPLE 1.4 - 2 (Capital Budgeting Problem)

A manufacturing company has three sections producing automobile parts, bicycle
parts and sewing machine parts respectively. The management has allocated ¥ 20,000 for
expanding the production facilities. In the auto parts and bicycle parts sections, the
production can be increased either by adding new machines or by replacing some old
inefficient machines by automatic machines. The sewing machine parts section was
started only a few years back and thus the additional amount can be invested only by
adding new machines to the sections. The cost of adding and replacing the machines,
along with the associated expected returns in the different sections is given in table
1.5.8elect a set of expansion plans which may yield the maximum return,

TABLE 1.5

Auto parts Bicycle parts Sewing machine parts
section Section section
Alternatives
Cost | Return | Cost | Return Cost Return

)) 2) (%) ?)

No expansion 0 0 0 0 0 0
Add new machines | 4,000 | 8,000 | 8000 | 12,000 2000 8000
Replace old 1 ¢ w00 | 10,000 | 12,000 18000| - i
machines

Solution: Here each section of the company is a stage. At each stage there are a
number of alternatives for expansion. Capital represents the state variable. Let us
consider the first stage - the auto parts sections. There are three alternatives: no
expansion, add new machines and replace old machines. The amount that may be
allocated to stage 1 may vary from 0 to 20,000; of course, it will be overspending if it is
more than ¥ 6000. The returns of the various alternatives are given in table 1.6.

TABLE 1.6

Stage 1: Auto parts section

Evaluation of alternatives

(Values in thousands of rupees)

Optimal solution
State x'1 1 2 3
(000°0f %)
CostCij=0 | CostCiz=4 | CostCi3=6 | Optimal
Decision
Return Return Return Return
0 0 - - 0 1
2 0 - - 0 1
4 0 8 - 8 2
6 0 8 10 10 3

8 0 8 10 10 3
10 0 8 10 10 3
12 0 8 10 10 3
14 0 8 10 10 3
16 0 8 10 10 3
18 0 8 10 10 3
20 0 8 10 10 3

When the capital allocated is zero or ¥ 2,000, only first alternative (no expansion)
is possible. Return is, of course, zero. When the amount allocated is ¥ 4,000, alternative 1
or 2 are possible with returns of T 0 and 8,000. So we select alternative 2 and when the
amount allocated is Z 6,000, all the three alternatives are possible, giving returns of zero,
% 8,000 and Z10,000 respectively. So we select alternative 3 with a return of ¥ 10,000 and

SO on.

Stage 2: Let us now move to stage 2. Here, again, three alternatives are available.
The computations are carried out in table 1.7.

TABLE 1.7

Stage 2 : Bicycle parts section (+ Auto parts section)

Evaluation of alternatives
(Values in thousands of rupees) Optimal solution
State x;] 2 3
(000’ of %)
Cost Cr2=10 Cost C22=8 | Cost C23 =12 Optimal .
Return Return Return Return Digisién

0 0+0 =0 - - 0 1

2 0+0 =0 - - 0 1

4 0+8 =8 - - 8 1

10

6 0+10=10 - - 10
8 0+10=10 12+0=12 - 12
10 0+10=10 12+0=12 - 12
12 0+10=10 12+8=20 18+0 =18 20
14 0+10=10 12+10=22 | 18+0 =18 22
16 0+10=10 12+10=22 [18+8 =26 26
18 0+10=10 12+10=22 |[18+10=28 28
20 0+10=10 12+10=22 | 18+10=28 28

Here state x, represents the total amount allocated to the current stage (stage 2)
and the preceding stage (stage 1). Similarly, the return also is the sum of the current stage
and the preceding stage (Principle of optimality). Thus when x, < ¥8,000, only the first
alternative (no expansion) is possible. But with x, = % 8,000, a return of ¥ 12,000 is
possible by selecting the second alternative (add new machines).With x, = 12,000,
three alternatives are possible with the maximum return of ¥ 20,000 from alternative 2.
The optimal policy consists of a set of two decisions, namely adopt alternative 2 at
second stage (table 1.7) and again alternative 2 at the first stage (table 1.6).

Stage 3 : The computations for stage 3 are given in table 1.8

TABLE 1.8

Stage 3 : Sewing machine parts section (+ Bicycle parts section + Auto parts
section)

Evaluation of alternatives (Values in , _
State x; thousands of rupees) Optimal solution
(000’ of
) Core C31=0 Cost C32=2 _ .
Return Return Optimal Return | Decision
0 0+0 =0 5 0 1

11

4 0+8 =8 8+0 =8 8 1,2
6 0+10=10 8+8 =16 16 2
3 O+12=12 8§+10=18 18 2
10 0+12=12 8§+12=20 20 2
12 0+20=22 8§+12=20 20 1,2
14 0+22=22 8+20=28 28 2
16 0+26=26 8§+22=30 30 2
18 0+28=28 8+26=34 34 2
20 0+28 =28 8+28=36 36 2

For x3 = 20,000, the optimal decision for stage 3 is alternative 2, which gives a
total return of X 36,000. This involves a cost of ¥2,000 and leaves ¥ 18,000 to be
allocated for stages 2 and 1 combined. From table 1.7, for allocation of ¥ 18,000,
alternative 3 is to be chosen which costs ¥ 12,000. For remaining sum of % 6,000, from
table 1.6, decision alternative 3 is to be selected. Thus the optimal policy of expanding
production facilities is 3-3-2, which can be elaborated as: in bicycle parts section, and add
new machines to the sewing machines parts section. This policy gives the optimal return

of ¥ 36,000.

EXAMPLE 14 - 3

The owner of a chain of four grocery stores has purchased six crates of fresh
strawberries. The following table gives the estimated profits at each store when it is

allocated various rumber of boxes.
TABLE 1.9
Stores

1 2

Number of 0 0 0
Boxes 1 4 2

12

5 7 9 8 4
6 7 10 8 4

The owner does not wish to split crates between stores, but is willing to make zero
allocations. Find the allocation of six crates so as to minimize the profits.

Solution :

This problem is similar to the allocation of salesmen to different zones. Here
stores represent the stages and number of boxes represent the state variables. Thus the
problem involves 4 stages and 6 state variables. Let X1,X5, X3 and x4 be the number of
crates allocated to the 4 stores and f;(x;), f>(x,), fa(x3) and f,(x,) be the respective
profits. Then the problem is

maximize Z = f,(x,) + fo(x2) + fi(xs) + fu(xa),
subjectto x; +x, + x5 +x, <6,
where x;, x,, x3, X, are non-negative integers.

Stage 1: The estimated profits corresponding to different number of boxes

allocated to store 1 are given in table 1.9 and are reproduced in table 1.10

TABLE 1.10
Store 1
No. of boxes , x4 : 0 1 2 3 4 5 6
PrOﬁt f1 (xl) i O 4 6 7 7 7 7

Stage 2: Now consider the first two stores, store 1 and 2. Six boxes can be
divided among the two stores in 7 different ways: as 6 in store 1 and 0 in store 2, 5 in
store 1 and 1 in store 2, etc. Each combination will have associated with it certain profits.
The profits for all the total number of boxes, such as 6, 5, 4, ..., 0 are shown in table
1.11.

13

TABLE 1.11

Store 1 x, : 0 1 2 3 4 5 6

fi(xy) : 0 4 6 7 7 ! 7
Store 2 fz(xz)

X2

0 0 0* 4* 6* 7 7 7 7

l 2 2= g 8*/9/9/9/

2 4 4 Tt et

3 6 S g

4 8 8 — 12414/

5 9 9" _13

6 10 0—"

For a particular number of boxes, the profits for all possible combinations can be
read along the diagonal. Maximum profits are marked by *. Thus the optimal profits and

corresponding allocations of boxes to the two stores are given by:

TABLE 1,12
Boxes : 0 1 2 3 4 5 6
f2(x2) + filx) - 0 4 6 8 10 12 14
X3 + x; : 0+0 0+1 14l 2+1 3+1 4+1 4+2
0+2 1+2 242 3+2

Stage 3: Now Consider the distribution of 6 boxes to three stores 1, 2 and 3.The decision
at this stage will result in allocating certain number of boxes to store 3 and the remaining
to stores 2 and 1 combined and then by following the backward process, they will be
distributed to stores 2 and 1.The profits for all the total number of boxes, such as 6, 5, 4,

..., 0 are shown in table 1.13.

14

TABLE 1.13

Store Boxes (X, +x;) | 0 1 2 3 4 5 6
i)+ folx) | O 4 6 8 100 12 14

S;‘:re f3(x3)

0 0

1 6 Z*/:)*/fz*/ i*/ I:*/::*/M

2 8 8/12/14*/16*/18*/

3 8 8/ / 14/ /

4 8 8/ 1/ /

5 8 8/ 12/

s s |

For any particular number of boxes, the profits for all possible combinations can
be read along the diagonal. Maximum profits are marked by *. Thus the optimal profits
and corresponding allocations of boxes to the three stores are given by table 1.14.

TABLE 1.14
Boxes : 0 1 2 3 4 5 6
)+ L)+ 6 10 12 14 16 18
f3(x3) '
X34+ (p+x) : 0+0 40 1+1 2+1 242 243 2+4
1+2 1+3 1+4 1+5
The

Stage 4:

Now consider the distribution of 6 boxes to four stores.

corresponding profits for all possible combinations are given in table 7.15.

15

TABLE 1.15

3

Boxes ij : 0 1 2 3 4 5 6
j=1
3
Zf,-(x,-)= 0 6 10 2 14 16 18
j=1
X4 : 6 2 4 3 2 1 0
falxs) : 4 4 4 4 3 2 0
4
Zf;(xj)= 4 10 14 16 17 18* 18*
j=1

Thus the maximum possible profit is 18 for x, = 1 or 0. Going back, eight optimal
allocations can be traced, each yielding profit of 18.

TABLE 7.16
x* x* x3* X4*

1 1 2 2 1

2 1 3 1 1

Possible 3 1 3 2 0
st |14 10
5 2 1 2 1

6 2 2 1 1

7 2 2 2 0

8 2 3 1 0

16

EXAMPLE 14-4

An oil company has 8 units of money available for exploration of three sites. If oil
is present at a site, the probability of finding it depends upon the amount allocated for
exploiting the site, as given below.

TABLE 1.17
Units of money allocated
0 1 2 3 4 5 6 7 8

Site 1 0.0 0.0 0.1 0.2 0.3 0.5 0.7 0.9 1.0
Site 2 0.0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 1.0

Site 3 0.0 0.1 0.1 0.2 0.3 0.5 0.8 0.9 1.0

The probability that the oil exists at sites 1, 2 and 3 is 0.4, 0.3 and 0.2 respectively.
Find the optimal allocation of money. '

Solution: In this oil exploration problem, the objective is to maximize the
probability of finding oil by allocating the available amount of money to the three
potential oil sites.

Let x;, x; and x3 be the units of money allocated to the sites 1, 2 and 3
respectively, and p;(x;), p2(x;) and p3(x3) be the corresponding probabilities of
finding oil, if it exists. Then actual probabilities of finding oil at the three sites are
py(x1) X 0.4, py(x;) x 0.3 and p3(x3) X 0.2.

Thus the objective function can be written as

maximize Z = 0.4 p;(x;) + 0.3 py(x;) + 0.2 p5(x3),
subject to constraint ~ x; + X, + x3 < 8,
where x,, X, , X3 are non-negative integers.

The probabilities of finding the oil, taking into consideration the availabilities of
oil at different sites, in the percentage form can be expressed as below.

17

TABLE 1.18
Unit of money allocated

o 1 2 3 4 5 6 7

8

0 4 8 12 20 28 36

o

Site 1, fl (X1) :
Site 2, fz(xz) i 0 3 6 9 12 18 21 24

Site 3, f3 (x3) d 0 2 2 4 6 10 16 18

40
30

20

Here the three sites are regarded as the three stages and the money allocated is the

stage variable.

Stage I: We start with site 1. The actual probabilities of finding the oil when

expressed as percentages are shown in the table 1.19.

TABLE 1.19
Site 1

Units of money allccated : 0 1 2 3 4 5 6 7

filxy): 0 0 4 8 12 20 28 36 40

8

Stage 2 : Now consider the first two sites 1 and 2. Eight units of money can be

divided among the two sites in 9 different ways as shown in table 1.20.

TABLE 1.20
X, 0 1 2 3 4 5 6 7 8
filx) :| 0 0 4 7 20 28 36 40
X3 f2(x2)
0* 0 4 8 12% 20%* 28* 36* 40*
0 0 3*/3/7/11/15/23/31/ -
l 3 6*/6//10/14/18/26/ /39
2 6 / / 34
3 o | o7 97 13/17/21 20"
4 12 12 /12 16 20 24
5 18 18 18?22/26/
6 21 21?21 25"
7 24 | 24 24/
8 30 30/

18

The optimal values of f,(x;) + fi(x,) are given in table 1.21.

TABLE 1.21
Unit of money : 0 1 2 3 4 5 6 7 8
f2(x2) + fi(xy) 0 3 6 9 12 20 28 36 40

X+x, 2 0+0 140 2+0 3+0 440 0+5 0+6 0+7 0+8
0+4

Stage 3: Now consider the allocation of 8 units of money to the three sites. The
corresponding probabilities expressed as percentage are shown in table.

TABLE 1.22

Units of money: 0 1 2 3 4 5 6 7 8
G)+filx): 0 3 6 9 12 20 28 36 40

X2tx;: 0+0 1+0 2+0 3+0 4+0 0+5 0+6 0+7 O0+8
0+4

x3 : 8 71 6 5 4 3 2 1 0
f3(X3)I 20 18 16 10 6 4 2 2 0

f(x) + filx)) + f3(x3) 1 20 21 22 19 18 24 30 38 40

Thus the maximum probability is 40%, which is obtained if x; =0, x, =0 and
x, = 8 i.e., if entire 8 units of money are allocated to site 1 only.

EXAMPLE 14-5

A company manufacturing a certain product has a contract of supplying 40 units
at the end of month 1 and 60 units at the end of month 2. The cost of manufacturing x
units in any month is ¢ (x) = 100x + 0.4x®. The company has enough production
Jacilities to manufacture 100 units a month. If the company produces more than 40 units
in month I, any excess units can be carried over to month 2. However, there is an

19

Inventory carrying cost of 2 1,60 for each unit carried over from month 1 to 2. How
many units should the company produce each month to minimize the total cost assuming

that there Iy no Initial inventory?

Solutlon: Here month | and month 2 are the two stages and the number of units
to be produced each month are the state variables, Let x; and x; be the number of units of
the product to be produced in month | and 2 respectively and W be the amount of
inventory at the end of month 1, which is to be carried to month 2.

Then xy = 40 + W and x, = 60 — W.

Cost incurred in month |, ¢,(x,) = 100x; + 04x}
= 100 (40 + W) + 0.4(40 + W)*
= 4,640 + 132W + 0.4W7,

and Cost incurred in month 2, ¢,(x,) = 100x, + 0.4x%
= 100 (60 — W) + 04(60 — W)
= 7,440 — 148W + 0.4W7%,

 Total cost incurred in the two months, including the inventory carrying cost,
ci(x)) + c,(x;) = 12,080 — 16W + 0.8W?% + 1.60W.

This cost is minimum if = (12,080 — 16W + 0.8W* + 160W) = 0

orif =16 + 1.6W + 160 =0
or if W = 9units. -~ x1 = 49 units, x2 = 51 units.

Minimum total cost = 12,080 — 16 x 9 + 0.8 % 92+ 1.60 x 9
Minimum total cost = % 12,015.20.

EXAMPLE 14-6

A manufacturer has entered into a contract for the supply of the following number
of units of a product at the end of each month:

Month ; January March August October November December

No. of units : 10 5 20 3 6 30

The units manufactured during a month are available for supply at the end of the
month or they may be kept in storage at a cost of % 2 per unit per month. Each time the

20

manufacture of a batch of units is undertaken, there is a set-up cost of ¥ 400. Determine
the production schedule which will minimize the total cost.

Solution. Here the six months represent the 6 stages and number of units to be
manufactured are the state variables. We shall start from the last month of December and
move backwards.

Month of December
The best decision is to produce 30 units with a cost of Z 400 towards the set-up cost
and there is no storage cost.

Month of November
There are two alternatives:
1. Produce (6 + 30) = 36 units to satisfy the demand of November and
December.
Total cost =% (400 + 30 x 2 x 1) = Z 400.
2. Produce 6 units in Nov. + 30 units in Dec. involving 2 set-ups and no
storage cost.
Total cost = Z (400 + 400) = T 800.
- The optimum decision is to produce 36 units in Nov. and no units in Dec.

Month of October
Various alternatives are:
1. Produce (3 + 6 + 30) = 39 units in Oct.
Total cost =T (400 +6 x 2 x 1 +30 x 2 x 2) =T 532,
2. Produce (3 + 6) =9 units in Oct. and 30 units in Dec.
Total cost =3 (400 x 2+ 6 x2 x 1)=T 812,
3. Produce 3 units in Oct. and 36 units in Nov.
Total cost =3 (400 x 2 +30 x 2 x 1) =¥ 860.
Note that as per the decision made in Nov., producing 3 units in Oct., 6 in
Nov. and 30 in Dec. is already ruled out as it involves higher cost.
Thus the optimum decision is to produce 39 units in Oct. and nothing in

Nov. and Dec.

Month of August
The various possible alternatives are:
1. Produce (20 + 3 + 6 + 30) = 59 units in August.
Total cost =3 (400 +3 x2 x2+6 x2x3+30 x2 x4)=7¥688.
2. Produce (20 + 3 + 6) = 29 units in August and 30 units in Dec.

21

Total cost =T [(400 x2) +3 x2x2+6 x2 x 3] =T 848.
3. Produce (20 + 3) = 23 units in August and 36 units in Nov.
Total cost =T [400 x 2 +3 x2 x2+30 x 2 x 1] =T 872,
4. Produce 20 units in August and 39 units in Nov.
Total cost =T [400 x2+6 x2 x| +30 x2 x 2] =T 932.
Thus the optimum decision is to produce 59 units in August and none in the
following months.

Month of March
The various possible alternatives are :
1. Produce all (5 +20 + 3 + 6 + 30) = 64 units in March.
Total cost =T [400+20 x2 x5 +3x2x7+6x2x8+30x2x9]
=31,278.
2. Produce (5 +20 + 3 + 6) = 34 units in March and 30 units in Dec.
Total cost =T [400 x2+20x2x5+3 x2x7+6x2 x 8]
=3 1,138.
3. Produce (5 + 20 + 3) = 28 units in March and 36 units in Nov.
Total cost =T [400 x 2+20x2x5+3 x2x7+30x2x1]
=3 1,102.
4. Produce (5 + 20) = 25 units in March and 39 units in Oct.
Total cost =% [400 x2+20x2x5+6 x2x1+30x2 x2]
=3 1,132.
5. Produce 5 units in March and 59 units in August.
Total cost =F[400 x2+3 x2x2+6x2x3+30x2x4]
=3 1,088.
= The optimum decision is to produce 5 units in March and 59 units in August.
The total cost involved is ¥ 1,088.

Month of January
The various possible alternatives are:
1. Produce all 74 units in January.
Total cost =3 [400+5x2x2+20%x2xT+3x2%x9+6x2 x 10+ 30 x
2 x11]
=31,534.
2. Produce (10 +5 + 20 + 3 + 6) = 44 units in January and 30 units in Dec.
Total cost =FT[400 x2+5x2x2+20%x2xT7+3x2x9+6x2x 10]
=31,274.
3. Produce (10 + 5 + 20 + 3) = 38 units in January and 36 units in Nov.

22

Totalcost=2[400 x 2+ 5%x2x2+42072xT7+37279+3072~1]
=2 1,214,
4. Produce (10 + 5 + 20) = 35 units in January and 39 units in Oct.
Total cost =2 [400 x 2+ 5%x2#x2+42072xT7+67271+30~x272]
= 31,232.
5. Produce (10 + 5) = 15 units in January and 59 units in August.
Totalcost=2[400 x 2+ 572 %243 x272+672x3+30x2~4]
=2 1,108.
6. Produce 10 units in January, 5 units in March and 59 units in August.
Total cost=2[400 343 x2x2+6 2% 3+30x2 4]
=21,488.
Thus the optimum decision is to produce 15 units in January and 59 units in
August.
Therefore, the best production schedule that will minimize total cost and satisfy
the demand from January till December is to produce 15 units in January and 59 units in
August.

EXAMPLE 14 -7
A salesman is planning a business tour from Mumbai to Kolkata in the course of
which he proposes to cover one city from each of the company’s different marketing

zones en roule.

FIGURE 1.1
D 5
]
6
H
B S
2 6 \ L
10,
E 5 = //_‘2"/
A\ 6
Mumbai 11 7 M 4
\: 7 7
] 8 / L Kolkata
| F = J 4
L 4
9 5 N
e 6 5
G K
Zonel Zone2 Zone3 Zoned

As he has limited time at his disposal, he has to complete his tour in the shortest possible
time. The network in the following figure shows the number of days’ time involved for
covering any of the various intermediate cities (time includes travel as well as working
time). Determine the optimum tour plan.

Solution. Starting from A, the cities of various marketing zones may be
considered as distinct stages.
Stagel : BorC?
Stage2 : D,E,ForG?
Stage3 : H, I, Jor K?
Stage4 : L, M or N?
Stage 5 : Best route to O.
Stage 1: At this stage it is not known whether B lies on the overall shortest route;
but if it does, the shortest route from A to B is AB.

AtoB= 6

AtoC = 11} the only routes

Stage 2: It is not known whether D lies on the overall shortest route; but if it does,
the only route from A is ABD, involving a total travel time of = 10 + 8 = 18 days.

Similarly,

ABE=10+9=19

ACE=11+7=18

ACF=11+8=19

ACG =11 +9=20.
From the above, shortest routes are :

AtoD = 18
AtoE = 18
AtoF = 19
AtoG = 20.

Stage 3: It is not known whether H lies on the overall shortest route; but if it does,
is it through D or E ?

Both D and E are reached in 18 days by the quickest route from (from the optimal
result from stage 2). .

Therefore, ABH=18+5=23
AEH=18+6=24
Similarly, ADI=18+6=24

AEI=19+7=26
AFI=18+6=24

24

AGI=19+5=23
AGK=20+6=26
AFK =19+7=26
AGK =20+ 6 = 26.
From the above, shortest routes from A are:

AtoH = 23
Atol = 23
Ato] = 24
AtoK = 26.

Stage 4: Proceeding in the same way as for stage 3, we have
AHL=23+5=28
AIL=23+6=29
AHL=23+5=28
AJL=24+7=31
AIM=23+6=29
AIM =24 +7=31
AKM =26 +5 =31
AIN=24+4=28
AKN =26 +5=31.

. The shortest routes from A are:

AtoL = 28
AtoM = 29}
AtoN = 28

Final Stage: There are three alternatives to reach O from the 4th stage viz. LO,
MO and NO.
Using the optimal times at 4th stage,

ALO =28 +3 =3
AMO=29+4=33
ANO = 28 + 4 = 32.

Thus the shortest time from A to O = 31. Now we retrace the steps backwards
along the network to identify the intermediate cities along the shortest route.

A — O — Final
A—-L-0—Stage4
A-H-L-0O— Stage3
A-D-H-L-0O— Stage 2

A—-B—D-H-L -0 — Optimal route.
The problem of finding the shortest route is known as the stagecoach problem.

25

EXAMPLE 14-8

A dealer has to dispose of certain goods within 5 weeks’ time. The market prices
are fluctuating from week to week. It is estimated that the chances of getting X 2,000 for
the whole stock are 45%, chances of getting 32,500 are 35% and chances for getting <
3,000 are 20%. If the goods are not sold in the first 4 weeks, then they will have to be
disposed of in the fifth week at the prevailing market price in that week. When should the
stocks be sold ?

Solution. The five weekly periods can be treated as five stages and the sale prices
are the state variables. At each stage the dealer has to make a choice among the
alternatives ‘sell’ and ‘wait’. If the prevailing market price is more than that he expects in
the following weeks, he should ‘sell’ and if it is less, he should ‘wait’.

These types of problems can be conveniently handled by starting from the last
stage and solving by the backward induction or backward process.

Fifth Week (stage): As it is essential to sell the stocks by the fifth week, he will
get T 2,000 or X 2,500 or Z 3,000 depending upon the price prevailing in the market in
that week.

Fourth Week (stage): The prevailing price may be T 2,000, Z 2,500 or ¥ 3,000. If
it is ¥3,000, he will naturally sell the stock. If it is less than ¥ 3,000, he may decide to sell
or wait. He will sell if he will naturally sell the stock. If it is less than ¥ 3,000, he may
decide to sell or wait. He will sell if the market price in 4th week is more than the
expected return in the Sth week, otherwise he will wait.

Now expected return in the 5th week = % [2,000 x .45 + 2,500 x .35 + 3,000 x ,20]

=3 2,375.

Thus if the market price in the 4th week is ¥ 3,000 or ¥ 2,500 he should sell;

otherwise he should wait.

Third week (stage): If the prevailing price is ¥ 3,000 he should sell. If the price is
less, he will still sell if he can get more than the expected return in the 4th week;
otherwise he will wait.

Expected return in the 4th week = X [3,000 x 0.20 + 2,500 x 0.35 + 2,375 x 0.45]

=3 2,544,

Thus if the market price in the 3rd week is T 3,000, he should sell; otherwise he

should wait.

26

Second week (stage): If the prevailing price is T 3,000 he should sell. If not, he
should see the expected return in the third week.
Expected return in the 3rd week =T [3,000 x 0.20 + 2,544 x 0.35 + 2,635 x 0.45]
=¥ 2,635.
So, he should wait.

First week (stage): If the prevailing price is ¥ 3,000 he should sell; if not,
expected return in the 2nd week will determine his decision.

Expected return in the 2nd week = Z [3,000 x 0.20 + 2,635 x 0.35 + 2,635 x 0.45]

=3 2,708.

So, he should wait.

Thus we reach at the following optimal decision policy: The dealer should sell
goods if the market price in the first, second and third weeks is Z3,000; otherwise wait. In
the fourth week, if he can get Z 2,500 or Z 3,000 he should sell; if it is less than ¥ 2,500
he should wait. If the goods remain unsold upto the 5th week he should dispose of the
stock at whatever value he gets in that week.

EXAMPLE 1.4 -9 (Cargo-Loading Problem)

In a cargo loading problem, there are 4 items of different weights/unit and
different value / unit as given below.

Item (i) Weight / ui‘m't Value / u'm‘t
(w; kg/unit) (p;/unit)
1 1 1
Z A 5
3 | 4 7
4 6 11

The maximum cargo load is restricted to 17. How many units of each item be
loaded to maximize the value?

Solution. 1t is a four-stage problem, each item represents a stage. The state of
the system is represented by the weight capacity available for allocation to stages 1, 2, 3,

27

4 and is denoted by x; which varies from 0 to 17. If a; is the number of units of item i,

then the problem is

4
maximize Z = Zami)

=1
4
subject to a;w;

=1

< W.

Stage 1: Here, w; = 1kg/unit, p, = I1/unit; WK =1 17.
1
dy, =0,1,2,,.:,17
Stage 2: Here, w, = 3 kg/ unit, p, = I5/unit;
w 17 _
— = — = 5,67 (=5, integral value)
Wo 3
a,=0,1,2,...,5.
TABLE 1.23
Stage 1 Stage 2 Stage 3 Stage 4
w, =1 p =1 wy= 3, p2=5 wy3= 4, p3=7 | wg=6, py=11 .
X% |a,=012,..17| a,=0,1,2,...,5 | a,=0,1,2,3,4 a, =012 |fit)
a, fi(x1) a fa(x2) as f3(x3) ay fa(xq)
0 0 0* 0 - 0 - 0 — 0
1 1 1* 0 - 0 - 0 - 1
2 2 2" 0 = 0 - 0 — 2
3 3 3 1 5+0=5*% | 0 - 0 = 5
4 4 4 1 5+1=6 1 7+0=7% 0 - 7
5 5 5 1 5+2=17 1 7+1=8%* 0 — 8
6 6 6 2 10+0=10 | 1 7+2=9 1 11+0=11%| 11
7 7 7 2 10+1=11 1 7+5=12% 1 11+1=12% 12
8 8 8 2 10+2=12 | 2 14+0=14%| 1 11+2=13 14
9 9 9 3 15+0=15 | 2 14+1=15 1 11+5=16%| 16
10 10 10 3 15+1=16 | 2 14+2=16 1 11+7=18*%| 18
11 11 11 3 15+2=17 | 2 14+5=19* 1 11+8=19*%| 19
12 12 12 4 20+0=20| 3 21+0=2] 2 22+0=22%| 22
13 13 13 4 20+1=211|3 21+1=22 2 22+1=23*%| 23
14 14 14 4 20+2=22|3 21+2=23 2 22+2=24%(24
15 15 15 5 25+0=25|3 21+5=26 2 22+5=27%| 27
16 16 16 5 25+1=26 |4 28+0=28 2 22+7=29%| 29
17 17 17 5 25+2=27| 4 28+1=29 2 22+8=30*] 30

28

Stage 3: Here, w; = 4 kg/unit, p; = ¥7/unit; Wﬁg = % = 4.25.
a; =0,1,2,3,4.

Stage 4: Here, wy = 6 kg/ unit, p, = I11/unit; Wi = 1?7 = 2.83.
a, =0,1,2. :

Let fi(xy), f2(x3), f3(x3) and f,(x,) be the values of the loaded items at stage 1,
2, 3 and 4 respectively. The computation for different stages are given in table 1.23.

As seen from table, for total load of 17 kg, the maximum value of cargo items is
X30(=22+8 =22+ 7+ 1), which is achieved if we load 1 unit of item 1, lunit of
item 3 and 2 units of item 4.

EXAMPLE 1.4 - 10 (Selection of Advertising Media)

A cosmetics manufacturing company is interested in selecting the advertising
media for its product and the frequency of advertising in each media. The data collected
over the past two years regarding the frequency of advertising in three media of
newspaper, radio and television and the related sales of the product give the following
results :

TABLE 1.24
Expected sales in thousands of rupees

Frequency/week Television Radio Newspaper

1 220 150 100
2 275 250 175
3 325 300 225
4 350 320 250

The cost of advertising in newspaper is 500 per appearance, while in radio and
in television, it is X 1,000 and X 2,000 respectively. The budget provides ¥ 4,500 per week
Jor advertisement. The problem is of determining the optimal combination of advertising
media and advertising frequency.

Solution: The problem can be decomposed into three stages corresponding to the
three media of advertising. In each media four alternatives (frequencies) are possible.

29

Each alternative, has associated with it certain cost and return (expected sales). Here
again, the capital marked for allocation to different media is the state variable. A
combination of media and frequency is to be selected in such a way as to maximize the
total sales with expenditure not exceeding the specified limit of Z 4,500.

Let us consider the advertising media of television as the first stage. If x; is the
capital allocated to stage 1, and R;;(C;;) is the return (expected sales) corresponding to
cost Cy j, then, the optimal return is

fi(x1) = max[R,;(Cy))],
j=01234with0<x; <C.

By applying this equation at various levels of expenditure, the various alternatives
are evaluated and the one giving the largest expected sales is selected. The selected
frequencies and the optimal return for different values of x, are given in table 1.25.

TABLE 1.25
Stage |
Cost per appearance = % 2,000
State x, Return (in thousands of rupees) Frequency
500 — 0
1,000 — 0
1,500 — 0
2,000 220 1
2,500 220 1
3,000 220 1
3,500 220 1
4,000 275 2
4,500 275 2

For x; = 0,%500,%1,000 and %1,500; it is not possible to advertise in this media,
since the cost of one appearance per week is ¥2000. For x, = 2,000, 32,500, 33,000
and X3,500, the product can be advertised only once, giving a return of ¥2,20,000.

With x; = %4,000,%4,500, two appearances can occur giving a return of
%2,75,000.

30

TABLE 1.26
Stage 2
Cost per appearance = 21,000
Return in thousands of rupees

Statex, 0 1 2 3 4 Return Frequency

500 0 0 — — — 0 0
1,000 0 150 — — — 150 1
1,500 0 150+0 — — — 150 1
2,000 220 150+0 250 — — 250 2
2,500 220 150+0 250+0 — — 250 2
3,000 220 150+220 250+0 300 — 370 1
3,500 220 150+220 250+0 300+0 — 370 1
4,000 275 150+220 250+220 300+0 320 470 2
4,500 275 150+220 250+220 300+0 320+0 470 2

Now, let us move to the second stage. Again for advertising in radio, four
alternatives (frequencies) are possible. Here, the state x, will signify the expenditure
incurred at the first stage and at the current stage.

At any value of state x,(0 < x; < 0),

Optimal return f;(x;) = max[R;;(C3j) + fi(x,)], forj =0to 4

= max[R,;(Cyj) + fi(xy — C3j)], for j=0to 4

The evaluation of alternatives is carried in the tabular form shown in table 1.26.
To illustrate, at x, = 3,000, four alternatives are possible, i.e., do not advertise, advertise
once, twice or thrice. It is not possible to advertise four times because that needs a sum of
Z 4,000. If we do not purchase any advertisement (frequency = 0), the amount of Z 3,000
can purchase one advertisement in media T, giving expected sales of Z 2,20,000. If one
advertisement is purchased in media R, this will cost ¥ 1,000, and with amount of Z 2,000
left one advertisement can be purchased in media T, giving total return of ¥ (150 + 220) x
1,000 = T 3,70,000. If two advertisements are purchased in R, costing Z 2,000, the
balance amount of 1,000 will be of no use in media T, and thus will give total sales as

31

T (250 + 0) x 1,000 = % 2,50,000. The maximum return comes when we purchase one
advertisement in media R. This is the optimal decision for x, = 3,000,
Now we move to the third stage,
fa(x3) = max[Ry;(Cy)) + f,(x;)], for /= 0to4
=max[Ry;(Cyy) + fo(x3 = C3y)), for /= 0to 4.

TABLE 1.27
Stage 3
Cost per appearance = T 500
Return in thousands of rupees

Optimal Decision
State x5 0 1 2 3 4 Total sales Frequency
500 0 100 — — — 100 1
1,000 150 100+0 175 — — 175 2
1,500 150 100+150 175+0 225 — 250 1
2,000 250 100+150 175+150 225+0 250 325 2
2,500 250 1004250 175+150 225+150 250+0 375 3
3,000 370 1004250 175+250 225+150 250+150 425 2
3,500 370 100+370 175+250 225+250 250+150 475 3
4,000 470 100+370 175+370 225+250 250+250 545 2
4,500 470 100+470 175+370 225+370 250+250 595 3

The computations are given in table 1.27. For the allocated capital of Z 4,500, the
maximum sales that can be expected are of ¥ 5,95,000. From table 1.27, the optimal
decision is: purchase three advertisements in newspaper. This will cost Z 1,500. The
amount left is ¥ 3,000, and corresponding to that at stage 2, the optimal decision is:
purchase one advertisement in radio. This costs ¥ 1,000 which leaves behind an amount
of T 2,000 which can purchase one advertisement in television (stage 1).

Similarly, if the firm wants to spend only ¥ 4,000 per week, the optimal policy will
be: purchase two advertisements in newspaper costing ¥ 1,000, one in radio costing

32

¥ 1,000, and one in television costing T 2,000. This will give an optimal expected sales
worth ¥ 5,45,000.

EXAMPLE 14-11

A man is engaged in buying and selling identical items. He operates from a
warehouse that can hold 500 items. Each month he can sell any quantity that he chooses
to stock at the beginning of the month. Each month, he can buy as much as he wishes for
delivery at the end of the month, so long as his stock does not exceed 500 items. For the
next four months he has the following error - free forecasts of cost and selling prices:

Month: 1 2 3 4
Cost: 27 26 24 28

Selling price : 28 25 25 27

If he currently has a stock of 200 units, what quantities should he sell and buy in
the next four months ? Find the solution using dynamic programming.

Solution.
The problem can be analyzed by treating the four months as the four stages.
Let x; be the number of items to be sold during the month i,
¥; be the number of items to be ordered during the month i,
b; be the stock level in the beginning of month i,
p; be the selling price in month i,
c; be the purchase price in month i,
w be the warehouse capacity, which is 500.
The problem can be solved starting with the 4th month and then proceeding
backward.
If f,(b,) is the return when there are n more months to follow and the initial stock
at the beginning of the month n is by, , then n varies from 1 to 4 as the months vary from
4th to 1st.

Month : I II I v

33

The recursive equation can be written as
At stage |:
fi(b,) = max|[p;x, = ¢, y,].
Xn.¥n

where x, < b, and b, = x,, + y, S W.
For any other stage,
fn(by) = max [Pnxn = cu¥n = fi(bn = xn + Ya))-
When n = 1,
fi(by) = max|[p,x; = cyy)
XN

Since ¢, is positive, to maximize f,(b,), ¥, = 0; and since no stock should be left
at the end of the 4th month, the amount to be sold during the month should be equal to be
the amount at the beginning of the month, i.e. x;, = b;.

fi(by) = pyby = 27b,.
When n = 2,
fa(by) = max [px, — ¢;y, = f1(by)]
X2, Y2

= ma;([p2x2 = €2 = fi(by — X2 + ¥2)]

X2, Y2

= max [25x; — 26y, + 27(b; — x3 + y;)]

X2, Y2

= max [y, — 2x, + 27b,].

X2, Y2
Since Y. SW—=b, +x,
< 500 — b, + x,
fz(bz) = xma;’([500 e b2 + xz - zxZ + 27b2]
2 Y2

= n}:aX[26b2 = Xy + 500].
2

To maximize f;(b;), x, can be taken as zero.

When n = 3,
f3(b3) = xf:laifa[mxs — ¢3y3 — f2(by)]
= max [25x3 — 24y; + 26b, + 500]
X3, Y3
Now
bz = b3 - X3 +y3.
o fa(bs) = Jrl;na;,cs[25x3 = 24y; + 26(b; — x3 + y3) + 500]
= max [26b; — x;3 + 2y, + 500],
X3, Y3
and y3 S 500 e b3 + xg.

34

o f3(b3) = n'xl'aX[26b3 - JC3 + 2(500 o b3 + x3) + 500]
3
= n}ax[24b3 + x3 + 1,500].
3

Now to maximize f3(b3), x5 should be maximum permissible, which is b; since

x3 < bs.
~ f3(bs) = 25b; + 1,500.

When n = 4,
fa(by) = ;?a;i[mx‘; — C4Ys t+ f3(b3)]
= max[28x, — 27y, + 25b; + 1,500].
X4.,Ya
But

b3 = b4 — X4 +y4
s fa(by) = max [28x, — 27y, + 25(by — x4 + y,) + 1,500]
X4+ Y4
= max [25b4 + BX4 - 2y4 + 1,500].
X4,Ya
To maximize f,(b,), ¥y, should be zero as y, > 0, and x, which is < b,, should

at minimum be equal to b,.
ie., ¥s = 0 and x, = b,, which gives

fo(b,) = 28b, + 1,500.

Now, it is given that stock level at the beginning of the first month is 200.
Thus b, = 200.

~ fa(by) = 28 x 200 + 1,500 = 7,100,
x4 = 200, y, =0,
by =by—x4+y, =0,
X3 = by =0,
y3 = 500 — b; + x5 = 500,
b, = by — x3 + y; = 500,
x,=0, y,=500-b, +x, =0,
b, = b, — x; + y, = 500,
x; = b, =500, and
y.=0.

35

The optimal policy can be expressed as

Month : I II III v

n 4 3 2 1
Purchase : 0 500 0 0
Sale : 200 0 0 500

1.5 OPTIMAL SUBDIVISION PROBLEM

This problem deals with the division of a given quantity into a given number of
parts. Let Q be the quantity to be divided in n number of parts (u;, U, ...,U,). Then
problem can be expressed as

n

maximize I | U; Or maximize uy. uy. Uz ... Uy,
i=1
n

subject to Z u; =Q,

i=1
Uu; = 0, = 1,2, e, ML

The problem can be handled by dynamic programming, by considering each part
as a stage. The alternatives at each stage are infinite, since u; is continuous and may

assume any non-negative value, satisfying the constraints
n

Zui=Q.

i=1

The state of the system x;, at any stage i, represents the part of resource Q, allocated
to stage 1 through i inclusive. The reaction formula is then given as

fi() = max{u,},

... (1.6)
filx) = OTS’}‘?éi{uiﬁﬂ(xi —u)},
= muclzx {u; (x; — w)} e (L7

36

EXAMPLE 1.5-1

Determine the value of uy, Uy, Uz so as to maximize (Uy. Uz U3), subject to u, +
Uy +uy =10 and uy, u, u; > 0.

Selution. In this example Q = 10, is to be divided into three parts u,,u, and u,
such that their product is maximum.

This Dynamic Programming problem can be regarded as a three-stage problem
with state variables x,, x;, x3 and returns fi(x,), fo(xp) and f3(x3) respectively.

Atstage 3, x3 = u; + Uy + uy,
atstage 2, x; = x3 = u3 = uy + u,,
atstage I, x; = x; —up; = uy.
) =u =x;—uy,
f2(x2) = max{u(x; = u)}, 0 < up < xy,

= max{ uyx; —u°},0 < u, < x;, .

Differentiating w.r.t. u,, and equating the differential to zero,

dfa(x;) X3
= =x—-2u; =0 or u,=—
duy 2 = ¢ 2
X3 (.rz)
X2) = —[x,=——].
fale) = 2 (2, - 3
Xz (xg—ug)?
Now f(x;) = max {uq -—-—} = max {u-; —3-—-1-—}
: uy 2 Uy : 2

Differentiating w.r.t. u3, and equating the differential to zero,

i) [(u3x3z+uas—2 1:32.\’3)] -1

duy 4
or x3% + 3uz? = dugxy = 0
or x3% = 3ugxy + 3uy? —ugxy; = 0
or X3(x3 = 3uz) = uz(x3 = 3uy) =0
or (x3 = uz)(x3 = 3uz) = 0.

37

~ Either uy = x5 which is trivial since
Xy = u1+ uZ+U3;

or Uy = .l
3 3 = 3
10 20
X2 10 1
and wy=—==— = —
2 > 3 and hence u, 3
. 10
" ul=u2=u3=—§—’
1,000
and maximum product = u;.uz. uz; = FTE

EXAMPLE 15-2

Let us consider the general case of dividing Q into n parts u,, Uy, ..., U, so as to
maximize,
n
| | U;, u; = 0.
i=1
Solution.

Using the recursive equations (1.6) and (1.7),
fi(xy) = max{u,}
1

filxp) = Og’llfgf(i{uiﬁq(xi = Uu;)}

Fori =1, fi(x;) =x; whichmeans u;" = x;.

Fori= 2, fa(xy) = Oﬁggf‘z[uz-ﬁ(xz - uy)}

max{u,. f (x; — uy)},
= {u,. (x; —up)}, since fi(x; —uy) = x, —u,.
Differentiating w.r.t. u, and equating to zero,

%(uzxz —u?) =0

38

or X—2u; =0 or u,' =

It can be shown that the second derivative is negative, which is a sufficient
condition for maxima.

Since Xy = Uy + u,

Thus for a two-stage problem,

X2
Uy =U; =/
2

Fori=3, f;(x;) = Tr}gx{us-fz (x3 — u3)}

Xzz

= max {us. (x3;u3)2} since fo(xz) = (2

Differentiating w.r.t. U3, and equating to zero,

i) [lt3x32+u33—2u32x3] — 5
au3 4 B

or x3% + 3uz? — 4uzx; =0,
which gives either U3 = X3 O U3 =—,

X3 . : " .
Since only uz = ?3 satisfies the sufficiency condition for a maxima,

(also uz # x3 since u; + u; + uz = x3)

3 x3)3
wge BB
f3(3) 3 4 3
X3
uz;t = —,
3 3
Since X3 = u1+ u2+U.3,
X u+u X u X k- £
= = - = _—— = Xa.
2 1 2 = X3— U3 373 3%3
X2 X
But‘u1=u2=—=?3.

a9

, o\ 3
~ For a three-stage problem, u, = u; = uy = %1 with [y(x,) = (5{4) :
For an n - stage problem,

— - -4 xn r : x n
u‘l = U, =Uy ., = un = "';1" Wl[h /"(Xn) - (—,'!u.) .

But xn = Q
Up = Uy = Uy 0o B Uy = % with /,(Q) = (%) ;
Remark:
q Q n
Sine @ = (%)
n
= (_zln-l u[)n
n]
and £,(Q) = max{uy. uy. Uz ... Uy)

- mgs [n] ﬂu,,

(=1 (=1

E?:l U
— u!
n

(=1

. Arithmetic mean = Geometric mean.

This inequality is known as Cauchy's geometric-arithmetic mean inequality, which
states that the arithmetic mean of ‘n’ numbers is always greater than their geometric

mean except when all the numbers are equal.

EXAMPLE 1.5-3

Minimize Z = y*+ yi+ ¥}
subjectto Y +y2tYys2 15,
Y1.Y2 Y3 2 0.

Solution.
Let the state variable be x;, Xz and X3 such that,

X3 =y1+Y2t Y3
X, = X3 — Y3 =Y + Y2, and

40

~ Bx =Y =)
The recursive equations are

f3(x3) = Tf;l;n{y;f + f2(x2)}
f(x2) = min{y; + fy(x)}, and
fi'(x) = min{y(} = yf.

Since x; = x, =y, and fi(x;) = yi,

fa(x;) = 77;;"[)’22 + (x; = y2)%)

Differentiating {yZ + (x; — y,)?} w.r.t. ¥, and equating to zero,
2y, +2(x2 —y2)(-1) =0
or —2x2 + 4y2 =0

X
or Y2 = ?2.
2 2
() = (22 _ X2\ _ %2
£ = ()4 (n-2) =2
Now f3(x3) = n’\t,in{yg + f2(x2)}.
r3
2
Since X, =x3—y3 and fo(x;) = f;—,
Xo — 2
f3(x3) = min {y% + (3_y3_)_}
Y3 2
a— 2
Differentiating {yg + %} w.r.t. ¥3 and equating to zero,

2y; = (x3—y3) =0
X3

or Y3 = ?

x 2
R

Since X3 = y; + ¥, +¥3 2 15, for minimization of f3(x3), y; +y, +y; = 15
or x3 = 15.

~

15)2
3

f3.(x3) - = 753

41

and ys== =5,

yz—?"' 2 2

NW=x-y;=10=5=5

Thus minimum value of yf + yZ 4+ y? = 75 withy, =y, =y, = 5,

EXAMPLE 15-4

Minimize y?+ yi+ yi,
subject to y, + y, + y; = 10,
when (a) ¥y, ¥, Y3 are non-negative,
(b) Y1, ¥2, Y3 are non-negative integers.

Solution.
(a) When y,, ¥,, y3 are continuous non-negative variables, the solution can be
obtained in the same way as in example 1.5 - 3.
. (10)* _ 100
Minimum value of y{ + yi + yi = = L = 5
1

S w

with NMN=EY, =Y =

|

(b) When the variables y;, ¥;, ¥3 are non-negative integers, the problem can
conveniently be solved by the tabular or enumeration method, treating it as a
three-stage problem.

At stage 1, the state variables x; can take any integer value from 0 to 10, with
return,

_ minimum ¢ 2\ __ ..z
fl(xl)_ 0sy,s10 {y1}“ yf

At stage 2,

y Z
fue) = "mam {4 £ (v, - ,)')

42

The computations for 2nd stage are shown below, where the minimum f; (x;)
values are identified by *.

y»:/ 0 1 2 3 4 5 6 7 8 9 10
y: | 0 1 4 9 16 25 36 49 64 81 100

1*/ //54*/190/17/25/37/49/64/8l/lOO
//5:}; ;13?20;;9; /53§68/

1

o | 1607 20w e

/ 26~ 29/ 41
36 6/ 37/ 40 52
/ /

0
1
4 4
9

O 00 3 O b bW NN~ O
N
[}

2
g1 | 81 .l
100 100/

—
o

The optimal values of f> (x2) are

y,:0 | 2 3 4 5 6 7 8 9 10
£(x) 0 0 I 2 5 8 13 18 25 32 41 50
At stage 3,

f3(x3) = min {y3 + f,"(x,)}
= min {Y32 + f2' (a3 - ¥3)*}

ys:l O 1 | 2345|6738/ 9]0
=y 10l 9| 8| 76|54 32]1]o
y3: 0 1 | 4| 9| 16|25 |36 49 | 64 | 81 | 100
(rs—y3)*:| 50 | 41 |32 {25 | 18|13 85| 2] 1] o
faxs) +| S0 | 42 | 36 | 34% | 34* | 38 | 44 | 54 | 66 | 82 | 100

43

fi'(x3) = 34 for y;* =3 0r4
For y3' =3, f;"(x;) = 25, for which y, = 3andy, = 4
or yi=4andy, =3
For v3' =4, f,"(x;) = 18, forwhich y, = 3,y, = 3,

Thus minimum value of 34 corresponds to
(yl' y2' y3) = (31 3! 4)! (31 4: 3): (4: 3: 3)-

EXAMPLE 15-5

Using Bellman's principle of optimality,
minimize Z = y; 4 Yy + ya+... +y,,
Subjectto y1.¥2.¥3...Yn = b,
i 20i=12,...,n
Solution.
This problem comprises of factorizing a constant b into n factors, such that the

sum of the factors is minimum. It can be treated as n-stage dynamic programming
problem.

Let f,(b) be the minimum attainable value of
n
Z Yis

when vy, V2, ¥3, ..., Vn are factors of b,
Considering the problem as single - stage, i.c, n = 1,

fi(b) = b or

fi(b) = mi"[yl} = b{yn}

y1=b

Considering the problem as two - stage, i.c., n = 2 and factorizing b into two
factors y; and y,,

Yi:¥2 = b
b
If Y2 =%, y1 =7
and fa(b) = min{y, + y,} = min{y, + y,}

44

b
= min Ix + —}
Osxsb X
; . (b . by _b
or f,(b) = Jnin, {x + f, (;)} , since f; (;) =
Next consider n = 3 with y,.y,.y, = b.
N b
If Ys=X, Y.)2 =% and

f3(b) = min{y, +y, + y;} = min{y; + y; + .}
= min{x + f; (2)}.

In the general form, for an i-stage problem,
; . (b
fib) = minf{x + £, (2)},

b
where Yi=xand ¥1.¥2.¥3 .. Yi—1 = pos
Now the optimal policy can be determined.

. ; . (b
L) = b, fo(0) = min{x +f; (2)}
- min fe+2) . snce ity =
= min X <j» since f1(b) = b.

s o b _
Ditferentiating {x + ;} w.r.t. X and equating to zero,

fr(b) = b1/ +b—f’7-2- = 2b1/2,

Now) = min {x+f; (2))

0<x<b
1
: b\z
= - 1 bt — 1/2
urgglb {x +2 (x) }, since f;(b) = 2b ‘
1
- _ b\z ;
Differentiating {x +2 (;) } w.r.to x and equating to zero,

1 =3 1
1=bzxz =0 or x = bs.

45

1

fa(b) = b3 +2 (-l;%g)z = 3b'/3 and so on.
For n-stage problem,
fr(b) = nbn and x = bn
Hence the optimal solution is
N1 =J’2=}’3="'=J’n=b%,
and fi(b) = nb,

EXAMPLE 15-6

Solve the following problem :

n
Minimize Z = Z y?
i=1

n
subject to I—[yi = b,
i=1
yi=20i=12,...,n

Solution: This problem can be treated as n-stage dynamic programming problem.
Let f,(b) be the minimum attainable value of Z, when b is factorized into n

parts.
Forn=1, y, =b,

and hence fi'(b) =)r,n_irllj[ylz] = b2,
o=

Forn=2, y,;y, =b.
Lety, =x, y; = b/x.

Then f2(b) = min[y! + y;] = min[y? + y?]
; o e
= min [« + ()]
or fi(b) = min [x2 +f*(2)] since f,(b) = b?
1 0sxs b 1 \x/1’ 1 '

46

Forn=3, y,.y,y3=b.

b
Let Y3 =X, Y12 =2
Then f3(b) = min[y? + y2 + y2] = min[y? + y{ + y;
— e [+2 (b
= sl® tf2 (x)]

Thus for i-stage problem,
[b
A — : 2 .t =
fi'(b) 02}5",, X +fita (x)]
The optimal policy can now be determined.
fi'(b) = b?,
— i 2
fo(b) = min [x* + f; (b)]

= min [xz + (J—IZ)Z], since f1(b) = b2.

0sx<b

2
Differentiating {xz + (g) } w.r.t. x and equating to zero,

2x — ch—g =0 or x*=p?
or X = b% - Y=Y = b%’
, N2 () 142
and f2(b) = (bz) + (g) =2 (bz) '
Now, f20) = min [x2+ £, (3)]

= min [x2+ 22 : -
= Orsrllsnb [x + 2x], since f,(b) = 2b.
Differentiating {x2 + 2—:—} w.r.t. x and equating to zero,

1
2x—i—g=0 or X = b3,

W

1

y3=x=b3s and yl-yz=§=b
1

Y1 =Y, =b3 since y, =y,

1, 2
and F®)=(53) +25 =383
b

47

Continuing in the same way,

fi(b) = nbr,

and y1=y2=y3=...=yn=b;.

EXAMPLE 1.5-7

Solve the following problem :
Maximize Z = u? + u? + u?,
subject to Up. Uy Uz = 6,
Uy, Uy, U3 all positive integers.

Solution.
It can be treated as a three-stage problem.
l.aet X3 = ul.uz.u3 = 6,

_ _ 6
X S U Uy = e and

X2

Stage 1: x; = u,, where u, can vary from 1 to 6.

- 2 - 2 . .
x,) = max {x = m y
f1(x1) 051156{ 1%} OSu?éCG{ul } with u, integer

X, = u u, = 6 with u,, u, integers.

uy=12345 6

u2=f—1=632—-1

f2(xz) = max[u? + fi'(x;)] = max [uzz + (i—z)z]

biiiemnes 10° 37
1 1
2 4 / 8 / 13 /
3 9 /13/
6 36 37/
The optimal values of f,(x;) are
xZ i 1 2 3 6
fa(x;) 2 5 10)
Stage 3:
X3 = Uy Up Uz = 6,
- .6 _6
= "l uz - XZ '
62 .
f2(x;) = max [u32 + (};)] = max[u;® + f7(x2)].
X, ¢ 1 2 3 6
fx) | 2 5 10 37
Usg u3"
38*
1 1
2 4 6 / 9 / 14 /
s
6 36 38"
»+ The optimal values of f;(x3) are
X3 1 2 3 6
By ¢ 3 6 1 38

49

For x3 = 6, optimal Z = 38 withu; = 1oré.
Proceeding backwards, following sets of values for u,, u;, u; can be traced:
(uliuzl u3) - (11 6.0 1); (11 11 6); (6l 1: 1)-

EXAMPLE 15-8

Use dynamic programming to show that

n
Z p; logp
(=1

n
Zm logp; =1, p; =20
i=1

subject to the constraint,

Jor all i is minimum when p; = p, =....= Pn = -71;

Solution.
This problem can be treated as an n-stage dynamic programming problem.
Let f,(1) be the minimum attainable value of Y, p; logp; .

Whenn=1,p, = 1.
fi'(1) = min [p, logp,] = 1 log1.

Whenn=2,p, +p, = 1.
f2 (1) = min [p, logp, + p,logp,]
= min [p, logp, + p, logp,].
If p2=2z, pp=1-2z
)= ogi;zl[zlogz+ 1 - 2)log(1 - z)]
= jnin [zlogz+ fi(1 - 2)],

since fi(1 —2z)= (1 = 2)log(1 - 2).

By simple calculus, it can be shown that the function f(z) =zlogz+
(1 — z)log(1 — z) is minimum for z = 1/2, Thus for a two-stage problem,

1
P1=P2='2“,

50

" 1 1 1 1 1 1
and f(1) = 3 Iogi +3 Iogi = 2(5 logi).
Next, whenn=3, p, +p, +p; = 1.
If p3=2 p,+p,=1-2.
f2 (1) = min [p;logp; + p, logp, + p, logp,]
- ognzxgl[zlogz+ (1 = 2)].
; 1 1
Since L()=2 (5 logi).

l—zl 1-2
g ey

fp(d—-2)=2
1-2 1-2

2)log(7)]‘
Again by differential calculus, it can be shown that

f(z) =zlogz+2 (1 ;z) log(1 ;Z) is minimum for z = -31-, which gives

f3 (1) = min [zlogz + 2(

P1r=D2=pP3 = %,
and (1) = % log% + 2 (%) log (%—) = 3 (-% log%—) .

For n-stage problem, the result can be generalized as

1
P1=P2="'=Pn=7‘z,

and) =n (% log%).

EXAMPLE 1.5-9

n
Maximize Z = Z bix;,

i=1
n

subject to in =c; x,20i=1,2,...,n
i=1
Solution.
Let f,(c) be the return function.

51

For n = 1, i.e, a single stage,
X, =C.

fille) = L’}__‘}f[blxll = byc.

Forn =2, X +x;, =c
fa(€) = max[b,x; + byx;,].

Let X,=2zand X, =c— 2.
fa(€) = max [byz + by (c = 2)]

= orétggcc[bzz + fi(c — 2)], because fi(c) = b,c.

Forn = i, the general recursive equation is

fi(e) = max [biz + fi(c — 2)]
Again, whenn = 2,

fa(e) = max [byz + by (c - 2)]

= max [(b; — by)z + byc].

0=szsc

The function {(b; — by)z + byc} will be maximum when z takes its maximum
value ¢ and (b, — b;) > 0.

f>2(c) = [(b; — b))z + byc] = bye,
and X, =2Z=¢, x1=0.
Whenn =3, x,+x,+x3=cC.
Taking X3= Z, X, +Xx;,=Cc—2,

fale) = OTQfsxc[bsz +f7 (c — 2)]

= Or;zfsacc[bgz + by (c — 2)], because f,'(c) = b,c

= max [(b3 — by)z + b,c].

0szsc

The function f3(c) will be maximum when z takes its maximum value of ¢ and
(b3 — b;) > 0, which gives
f2(€) = bsc,

Xx3=z=cand x, =x, =0.

52

Generalizing the result for n-stage problem,
fa(c) = bye,
Xp=cand x; =X, =X3= .. =X, =0.

Thus the optimal policy is
(x1, x3, X3, e, Xpn_1,%) = (0,0, 0, ..., 0, ¢) with f,(c) = b,c.

1.6 SYSTEM RELIABILITY

EXAMPLE 1.6-1

An electronic device consists of four components, each of which must function for
the system to function. The system reliability can be improved by installing parallel units
in one or more of the components. The reliability (R) of a component with one, two or
three parallel units and the corresponding cost (C) are given in table 1.28. The maximum

amount available for this device is 100. The problem is to determine the number of
parallel units in each component.

TABLE 1.28
Components
g ! : : ¢
R c R C R C R C
1 0.70 10 0.50 20 0.70 10 0.60 20
2 0.80 20 0.70 40 0.90 30 0.70 30
3 0.90 30 0.80 50 0.95 40 0.90 40
Solution.

The reliability of a system is the product of the reliability of its components. If
Rju; is the reliability of component having u; units in parallel, then the reliability of the
system comprising of n components in series is

n
1_[R,-u[- .

i1=1

53

The problem. then, becomes,

n
maximize R = | |Rfu¢,

(=1

n
subject to Z Chu <C,
i=1

where C;.u; is the cost of components, when it has u; units in parallel, and C is the total
capital available. The problem can be solved by considering the components as stages
and the capital allocated as state of the system, x;. The state x; (0 < x; < C) is the
capital allocated to stages 1 through i, inclusive. The reliability of the components of the
return function at stage i may be expressed as f;(x;).

The recursive equations can be written as

filx) = n%qu{Ri-ui]u 0<Cphu =xp3
1 L

filxi) = muffx{Ri-u.t X fi-10 = Cru)d), 0 Gy S x;.

Since the return functions of different components are multiplied by each other,
the procedure is called multiplicative decomposition.
In the given example, device will consist of at least one unit in each component.

G, =x,5C-Cy —C3y—C4y or 10 <x, <50,
lClI+CZJ.SXZSC""C31_C41 or 30 szs70’

Ci1 +Co +C3y Sx, SC—0Cyy or 40 < x3 <80,

Ciy+ €y +C3+Cay Sx, <C or 60 < x4 <100.

The computations for different stages are given below in the tabular form.

TABLE 1.29
Stage 1
filuy/x1) = Ry.uy Optimal Solution
X u =1 u, =2 =3
R=07,=10| R=08C=20 | R=09,c=30 | 1¥) | w’

10 0.7 — — 0.7)
20 0.7 0.8 s 0.8 2
30 0.7 0.8 0.9 0.9 3
40 0.7 0.8 0.9 0.9 3
50 0.7 0.8 0.9 0.9 3

54

Srage 2

faQup/xy) = Ryouy. £ (x; = C,\u!)

Optimal Solution

X wp=1 | =2 | wp=3 | .
R=05C=20| R=07,C=40 | R=08,c=50 |) |
30 05x07 | -] oas |
40 0.5 x 0.8 - 0,40 |
50 0.5 x 0.9 0.7 x 0.7 s 0.49 2
60 0.5 x 0.9 0.7 x 0.8 0.8 x 0.7 056 | 2.
70 0.5 x 0.9 0.7 x 0.9 08x08 | 064 | 3
Stage 3
fi(ug/xy) = Ry uy X fi'(x3 = Cyouy) Optimal Solution
X Uy = 1 Uy = 2 Uy = 3 S R
R=07.C=10| R=09,C=30 | R =095 =40 | &) | W’
40 |.7x.35= 245 - —] 2 |
S0 | .7 x.40 = .280 - 280 :
60 |.7x.49 =343 | .9 x.35 =315 o .343 1
70 |.7%.56=.392| .9%.40 =360 |.95x.35=.3325 | .392 1
80 [.7x.64=.448 | 9x.49 =441 | 95X .40 =380 | 448 |
Stage 4
fa(ue/xg) = Ryoug X fi(xg = Cyouy) Optimal Solution
X Uy =1 Uy =2 Uy =3 _
R=06C=20 | R=07C=30 | R=09,c=40 | PO | '
60 | .6x.245 =.147 -— - 147 |
70 | .6x.280=.168 |.7x.245=.1715 - A7S)
80 | .6x.343=.2058 | .7 X.280 =.196 |.9 X .245 =.2205 | .2205 3
90 | .6x.392=.2352 |.7x.343 =.2401 | .9x.280 =.252 | .252 |
100 | .6x.448 = 2688 |.7 x.392 =.2744 | .9 x 343 = 3087 | .3087 3

Optimal value of f,(x,) = 0.3087 with u,* = 3 and x, = 100, is obtained from
f3(x3) = 0.343 which has u3* =1 and f,(x,) = 0.49, which is for u,* = 2 and then
u;* = 1. Thus the optimal allocation is: 3 units in parallel should be installed on
component four, 1 unit on component three, 2 units on component two and 1 unit on
component one.

1.7 SOLUTION OF L.P.P BY DYNAMIC PROGRAMMING

The linear programming problem in the general form is
maximize Z = xy + cpxp+.. e Xy,
subject to 11X, + aax+... +apxy < by,
Az1X; + AzpXa+... +ay Xy < by,

Am1X1 + AmaXo+... +AmnXn < by,
Xyi s w5 Xy = O

This problem involving m resources and n decision variables can be formulated as
a dynamic programming problem as follows:

Each activity j (j = 1,2,...,n) is considered a stage.Then the problem can be
regards as n-stage problem and decision variables (alternatives) are the levels of activities
xj (= 0) at stage j. Since x; is continuous, each activity has infinite number of
alternatives (values of x;) within the feasible space.

Allocation problems are a particular type of L.P. problems that require allocation
of available resources to the activities .The constants by, b, ..., b, are the amounts of the
available resources. The state of the system at any stage is given by the amount allocated
at that stage and left for the remaining stages. The state would be thus an m-dimensional
vector (by, b, ..., by).

Let f,(by, by, ...,by,) be the optimal value of the objective function defined
above for stages Xj,Xp,...,X, for states by, by, ..., b, .Using forward computational
procedure, the recursive equation can be written as

fi(by, b, ..., b)) = Orsr}:‘j_l)scb[cjx,- + fj-1(by — ayjxj, by — azjx;j, ..., by — amjxj)].

The maximum value of b that Xj can assume is
. by b b

b = min [—1,—2, ., ==

ayj azj Amj

56

EXAMPLE 1.7 -1
Using dvnamic programmng to solve the following L.P.P,
Maximize Z = 3x, + 5x,
subjectto X, S 4,
Xy S 6,
3x, +2x, S 18
Xy, Xy 2 0.

Solution.

There are two variables and hence the problem can be treated as a two-stage
dynamic programming problem. Both x, and x, being continuous, represent the infinite
number of alternatives within the feasible space. The three constraints can be regarded as
three resources, say by, by, and by which are to be allocated to x; and x;, at different
stages. The state of the system at a stage would be given by the amount of resources
allocated at that stage and left for the remaining stages. Therefore, the states of the
equivalent D.P. problemare b, =4, b, =6 and by = 18,

Srage 1
The optimal value f; (b, , by, bg) at stage 1 is given by
fi(by, by, by) = , max [3x,],

| 2D
where b, =4, b, = 6, by = 18,
The feasible value of x; is non-negative and satisfies all the three constraints .

. . ; 4 6 18
But the maximum value of that xlcan assume 18 = min(oL ‘]) 4,

- 2X-
[1(4,6,18) = max Hx,] = 3 min [4 .--—_-_f-]

’

where X0 = min[4, 224 = 4,

Srage 2

The recursive equation for optimization of this two-stage problem is
4,6,18) = max |5x, + 3x
f2(.) 0sx, sh[a & 1]

18 -2
= max [ng + 3min (4, a]

0s5x;5h

=

But the maximum value of b that x, can assume is = min (0, ,-E-) 6.

18 - sz)]
3 .

f(4,6,18) = ’ 15112):‘) [sz + 3min (4,

57

4 if0<x,<3,
N min (4 18'2"2) =1g-2x J i
o ! 3 ——-3——2‘ Jif3<x < 6.

_—

18 — 2x 5x,+12 ,if 0<x, <3,
5x2+3min(4,—-—2-)—{ e / :

3 3x, +18 ,if 3<x; <6.
27 , at Xy = 3,
f2(4,6,18) = max |5 " at %, =6,
= 36.
18 — 2x 18 —12
sV x3=6, Lmax =36 and x; = min [4,—3—-—2] = min [4, 3] =2

EXAMPLE 1.7-2

Solve the following L.P.P. by the method of dynamic programming:
Maximize Z = 2xq + 5x,,
Subjectto 2x, +x, < 430,
2x, < 460,
X1, X2 2 0.

Solution:
The problem involves two decision variables and two resources b; and b,.
Therefore, the states of the equivalent D.P. problem are b; = 430, b, = 460.

Stage 1
filbyby) = max [2x,].

The maximum value of b that x; can assume is = min (% , 4—80-)

= min(215,0) = 215.

. 430 —x
430, = - 2
fi(460) . Sr?lcgagls[le] 2 min [T oo],

and x? = 215.

58

Stage 2
The recursive equation is

fZ(bll bz) = OTxaxsb[st + le]

or f>(430, 460) = max [5x2 + 2 min (ﬂz;x_z, 00)]
460
But the maximum value of b that x, can assume is min (4:1%0 =5) 230
y . 430 — X2
f>(430, 460) = ’ STZanZBO [sz +2 mm(5 00)]
Now min (22222, o) = 22 -% =100, 0 < x, <230,

. 430 = xz
5x, + 2 min (_2__'00) = 5x, + 200, 0 <x, < 230.

f2(430, 460) = 5x, + 200 = 5 x 230 + 200 = 1,150 + 200 = 1,350.
430 — 230

x5 = 230, Zpay = 1,350 and x] = —i= 100.

EXAMPLE 1.7-3

Solve the following L.P.P. by dynamic programming:
Maximize Z = 50x; + 100x,,
subject to 10x, + 5x, < 2,500,
4x, + 10x, < 2,000,

3
X, + 2x2 450

X1, X3 2 0.

Solution.

The problem involves two decision variables and three resources by, b, and by

Therefore, the states of the equivalent D.P problem are b, = 2,500, b, = 2,000 and by =
450.

Stage 1
fi(by, by, b3) = O?xall"sb[Soxﬂ-
where the maximum is to be taken over 0 < 10x; < 2,500;0 < 4x, < 2,000 and 0 <
x; < 450.

59

2,500 2,000 45(p
The maximum value of b that x; can asvume in min (ﬁm— 57— '—lﬂ) = 260,

S L2500, 2,000, 450) = max ”|f;ox,|

0wy, &2

2500-5x; 2,000~ 10x 450 4/@]
10 g 4

and xj = 250

Stage 2

The recursive equation is
: g, - ; 50);
[a(hy, by, by) = ”w;);hlﬂ)()xl 4+ 50x,]

or 12(2,500,2,000,450)

max
05X, sh

2,500 = 5x, 2,000 = 10x, 450 = 4/2x4)]
10 ' 4 ' 1

1”0‘4 + 50 mtn(

Now the maximum value of b that x; can assume is

2,500 2,000 450
- LNy oV
= min (= 1710 ,3/2) = min (500,200,300) = 200,

£,(2,500, 2,000, 450)

2,500 = 5x, 2,000 = 10x, 450 =3/2x,
10 ' 4 ' 1 ‘

= max [1()0.\':2 + 50 mln(

05 xy 200
Now

2,500 = -';X;g

0
lz,um) = 10x,
4 ’

2,500 = 5x; 2,000 = 10x, 45 0 =3/2x, if 0=x, =125,

10 " 4 ' 1

min

{f 125 < x, % 200,

2,500 = bx.)
100x, + 50. —-’-—-TH—”-‘-‘ . If 05 x, < 125,
2,000 = 10x.

v (2,500, 2,000,450) = max
f 100x, -+ 50. —————J, If 125 < x, < 200.

7”;1’,} + 12,500 l/ 0= =X 5 125,

-max{z.- 000 = 25x,, (f 125 < x, < 200,

. [21,37.), at x, = 125,
=MAx121,875 ar x, = 125
= 21,875,
2,500 =5x% 2,000=10x’ 450=3/2x;,
& Zmax = 21,875; x; = 125, x; = min 4, 7 4, 1 2]

60

,500 —5x125 2,000 — 10x125

or X; = min 0 . 3 » 450—%x125]
= min[187.5, 187.5,262.5]
= 187.5.

1.8 APPLICATIONS OF DYNAMIC PROGRAMMING

We have discussed some over-simplified examples from the various fields of
applications of dynamic programming. Many more applications are found for this
decision-making technique. Whereas linear programming has found its applications in
large-scale complex situations, dynamic programming has more applications in smaller-
scale systems.

Following are a few of the large number of fields in which dynamic programming
has been successfully applied:

1. Production. In the production area, this technique has been employed for
production, scheduling and employment smoothening, in the face of widely fluctuating
demand requirements.

2. Inventory Control. This technique has been used to determine the opimum
inventory level and for formulating the inventory reordering rules, indicating when to
replenish an item and by what amount.

3. Allocation of Resources. It has been emploved for allocating the scarce
resources to different alternative uses, such as allocating salesmen to different sales zones
and capital budgeting procedures.

4. Selection of Advertising Media. (See example 4.10)

5. Spare Part Level Determination to guarantee high efficiency utilization of
expensive equipment.

6. Equipment Replacement Policies. To determine at which stage equipment is to
be replaced for optimal return from the facilities.

7. Scheduling methods for routine and major overhauls on complex machinery.

8. Systematic plan or search to discover the whereabouts of a valuable resource.

These are only a few of the wide range of situations to which dynamic
programming has been successfully applied. Many real operating systems call for
thousands of such decisions. The dynamic programming models make it possible to make
all these decisions, of course with the help of computers. These decisions individually

61

may not appear to be of much economic benefit, but in aggregate they exert a major
influence on the economy of a firm,

1.9 DETERMINISTIC DYNAMIC PROGRAMMING

In deterministic dynamic programming the decisions are under the control of the
decision-maker and outcomes of decisions have values which are fixed and certain. The
number of decisions to be made may be finite or infinite. Example 1.4-1 on allocation of
nine salesmen to three zones involves revenues which are fixed and known with certainty
and hence forms a deterministic D.P. problem. The problem involves three stages and
hence 3 decisions. However, in many situations the number of decisions to be taken
could be infinite. For instance, the intention of the management of an organization quite
often is to remain in business indefinitely. Likewise, the objective of a production
manager is to minimize the production costs over an indefinite future period.

In such situations, since each decision stage will involve some cost, the cost of all
the decision policies will always be unlimited and it is futile to talk of choosing a policy
that minimizes the total cost of all the decisions. Two approaches are followed in such
cases:

The first approach discounts the costs to be incurred in future. This approach is
justified when the decisions to be made are not very frequent, say not more than once or
twice a year. Here, the costs incurred in the current year will have more influence on the
decisions than the costs incurred next year and so on.

The second approach is used when the decisions are to be made frequently, say
once a week or fortnight, so that discounting the costs each week over long indefinite
periods will be too long and cumbersome. In such cases a policy that minimizes the
average cost per decision rather than the total cost is selected.

1.10 PROBABILISTIC DYNAMIC PROGRAMMING

In probabilistic dynamic programming the outcomes of the decisions are not
certain and are associated with probabilities. These situations also may involve finite or
infinite number of decisions.

62

(i) Finite number of decisions : In such cases decision tree approach is used.
Decision tree diagram is a graphical representation of various decisions, alternatives and
their outcomes in a decision - making problem. In constructing a decision tree there are
certain conventions to be followed. The tree is constructed by starting from left and

moving towards right. The square box O denotes a decision point at which the available

strategies are considered. The circle O represents the chance node or event. The various

outcomes or states of nature emanate from this chance node. These states of nature are
represented by straight lines. Probabilities are associated with these outcomes.

Suppose a company manufacturing toys is to decide whether to introduce the
deluxe model or popular model. From market survey, the probabilities of market demand
along with the associated profit or loss from sales for both the models is known. To
analyze the problem and to decide the optimum strategy, the problem can be represented
as a decision tree shown in Fig. 1.2. There are two branches at the decision node 1, each
branch representing a strategy. Similarly, at each of the two chance nodes A and B, there
are three branches representing outcomes.

0.3 1,40,000
Demand good
(A\ g 270,000
\ / Demand fair
Introduce
Deluxe
Model L -%10,000
Demand poor
1
Introduce
Popular 0.4 -%1,50,000
Model Demand good
/B\ 0.3 -< 80,000
\# Demand fair
03 -%15,000
Demand poor
FIGURE 1.1

Thus the decision tree shows the structure of the decision problem. To carry out
the decision analysis, conditional payoffs are estimated for every combination of actions

63

and events. The payoffs can be either positive or negative. Also probabilities for each
event must be assessed by the decision-maker. Analysis of the decision tree is done by
the following roll back method or backward pass method as shown below.

Expected payoff at chance node A = I[0.3 x 1,40,000 + 0.4 x 70,000 —

0.3 x 10,000]
= % (42,000 + 28,000 — 3,000)
= ¥67,000.
Expected payoff at chance node B = ¥[0.4 x 1,50,000 + 0.3 x 80,000 —
0.3 x 15,000]
= ¥[60,000 + 24,000 — 4,500]
= ¥79,500.
~ Expected payofY at decision node 1= Max % [67,000; 79,500]
= 379,500.

Therefore, the company should produce the popular model.

(ii) Infinite number of decisions

There are situations in which the outcomes are probabilistic and the same decision
1s to be made at regular intervals and this process continues indefinitely e.g., problems
involving maintenance, replacement of equipment, etc. The approach in such situations is
to maximize the outcome per decision rather than the total outcome over an indefinite

period.

APPLICATIONS

1. Dynamic Programming on Graph Theory:

Dynamic programming is “an algorithmic technique which is usually based on a
recurrent formula and one (or some) starting states.” When it’s applied to graphs, we can
solve for the shortest paths with one source or shortest paths for every pair. Graph
Theory consists of problems and ways to model things you may encounter in game
theory, or have problems that can be solved using dynamic programming. There are
many aspects of Graph Theory that have little to do with game theory and are
inapplicable to employing dynamic programming. Some game theory utilizes graphs, and
some graph theoretic problems can be solved using dynamic programming.

Max

Min

2. Dynamic Programming on Fibonacci Sequence:

Using dynamic programming in the calculation of the nth member of
the Fibonacci sequence improves its performance greatly. Here is a naive
implementation, based directly on the mathematical definition:

function fib(n)
ifn <= lreturnn
return fib(n — 1) + fib(n — 2)

3. Dynamic Programming on Bioinformatics:

Dynamic programming (DP) is a most fundamental programming technique in
bioinformatics. Sequence comparison, gene recognition, RNA structure prediction and
hundreds of other problems are solved by ever new variants of DP. The first dynamic
programming algorithms for protein-DNA binding were developed in the 1970s
independently by Charles DeLisi in USA and Georgii Gurskii and Alexander Zasedatelev
in USSR. Recently these algorithms have become very popular in bioinformatics

65

and computational biology, particularly in the studies of nucleosome positioning
and transcription factor binding.

Despite of all available experience, the development of the typical DP recurrences
is nontrivial, and their implementation presents quite a few pitfalls. To quote a recent
comment by an expert: Presently, developing efficient DP algorithms is a matter of
experience, talent and luck. A more systematic or mechanical way to develop efficient
DP algorithms would be very valuable in many fields in addition to bioinformatics. In my
own experience, developing successful DP occurrences is hard, and I would like to learn
a mechanistic way to do it on problems that haven't already been worked out.

A B
Alc|c|ala A|lC|C|A]|A
[]] [] [} [] []]] [] 0 [] 0
1
L] N
A 1 0=l 1 [] [] A 1 [1 1 0 []
* 1 1 |
v * [t
clal si}n) clalaolo]ls]1|
L i l Ihl 'y
L] [] v 1
G b) 2 1 1 2 2 G | 2 1] 2 F |
1 i L 1 1 'y
I B ERER] ’\T
<] 4 3 2 2 2—1#) a 4 b | 2 1 2 3
L 1]
L] [‘ ~ IT
A] 4 3 b) 2 2 A] 4 3 3 2 1

66

CONCLUSION

Dynamic programming is a mathematical modeling theory that is useful for
solving a select set of problems involving a sequence of interrelated decisions. Dynamic
programming provides a systematic means of solving multistage problems over a
planning horizon or a sequence of probabilities.

As an example, a stock investment problem can be analyzed through a dynamic
programming model to determine the allocation of funds that will maximize total profit
over a number of years. Decision making in this case requires a set of decisions separated
by time. Dynamic programming is a powerful tool that allows segmentation or
decomposition of complex multistage problems into a number of simpler subproblems.

Most of the problems you’ll encounter within Dynamic Programming already exist
in one shape or another. Often, your problem will build on from the answers for previous
problems. Among all its tremendous applications, the most important contribution of
Dynamic Programming is RNA structure prediction and protein - DNA binding. So, by
making effective researches on Dynamic Programming, mankind will be much benefited.

67

REFERENCES

[1] Bellman, Richard (1954), "The theory of dynamic programming", Bulletin of the
American Mathematical Society, DOI:10.1090/S0002-9904-1954-09848-
8, MR 0067459. Includes an extensive bibliography of the literature in the area, up to
the year 1954.

(2] Bellman, Richard (1957), Dynamic Programming, Princeton University Press.
Dover paperback edition (2003), ISBN 0-486-42809-5.

[3] Dreyfus, Stuart E.; Law, Averill M. (1977), The Art and Theory of Dynamic
Programming, Academic Press, ISBN 978-0-12-221860-6.

[4] Giegerich. R.; Meyer. C.; Steffen. P.; (2004), "A Discipline of Dynamic
Programming over Sequence Data" , Science of Computer Programming.

68

FOURIER TRANSFORMS : STUDY, APPLICATIONS IN HEALTH
AND DATA SCIENCES AND CODING THROUGH SOFTWARES

Project Report submitted to
ST.MARY'S COLLEGE (AUTONOMOUS), THOOTHUKUDI
Affiliated to
MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI

In partial fulfillment of the requirement for the award of degree of

Bachelor of Science in Mathematics

Submitted by
NAME REG.NO.
JOAN MORAIS. R 19AUMT17
MARIA ABITHAA VICTORIA. C 19AUMT21
MARIA BENJAMINI. A 19AUMT23
MONISHA ROSE. G 19AUMT28
YAMINL. S 19AUMT50

Under the Guidance of
Dr. Sr. S. KULANDAI THERESE M.Sc., B.Ed., M.Phil., Ph.D.
Assistant Professor of Mathematics

St. Mary’s College (Autonomous), Thoothukudi.

Department of Mathematics
St. Mary’s College (Autonomous), Thoothukudi

(2021 - 2022)

CERTIFICATE

We hereby declare that the project report entitled "FOURIER TRANSFORMS :
STUDY, APPLICATIONS IN HEALTH AND DATA SCIENCES AND CODING
THROUGH SOFTWARES" being submitted to St. Mary’s College
(Autonomous), Thoothukudi affiliated to Manonmaniam Sundaranar
University, Tirunelveli in partial fulfillment for the award of degree of
Bachelor of Science in Mathematics and it is a record of work done during the
year 2021 - 2022 by the following students :

NAME REG.NO.

JOAN MORAIS. R 19AUMT17
MARIA ABITHAA VICTORIA. C 19AUMT21
MARIA BENJAMINI. A 19AUMT23
MONISHA ROSE. G 19AUMT28
YAMINI. S 19AUMT50

ﬂHi \f L Qrela ullre

Signature of the Guide Slgnature of the: HOD Mary
Dr. S. KULANDAI THERESE ¢ MLEhiL, B.Ed.,
M.Sc.,B.Ed. M.Phil.,Ph.D., Head & Asst §rfesst
Asslstant Professor, Qs \ ,_‘H_ N:..:vi
Department of Mathematics, b - M
St. Mary’s College (Autonomous), !
Thoothukudi - 628 001.

\\ Dﬁ.m (VY Qc%-.
SignatureCﬁ%é*é/x/aminer i

Signature of the Principal

Principal
St. Mary’s College (Autonomous)
Thoothukudi-628 001.

onon wus}

) | ‘I
J A

DECLARATION

We hereby declare that the project reported entitled "FOURIER
TRANSFORMS : STUDY, APPLICATIONS IN HEALTH AND DATA SCIENCES
AND CODING THROUGH SOFTWARES", is our original work. It has not been
submitted to any university for any degree or diploma.

A3 :
(JOAN MORAIS. R) (MARIA BENJAMINI. A)

(n. Mon'nslwa Rose > Yo

(MONISHA ROSE. G) (YAMINLI. S)

C Masia Acbsithaa Vittowio
(MARIA ABITHAA VICTORIA. C)

ACKNOWLEDGEMENT

First of all, we thank Lord Almighty for showering his blessings to undergo

this project,

with immense pleasure, we register our deep sense of gratitude to our gt_)ide
Dr. Sr. S. Kulandai Therese M.Sc., B.Ed., M.Phil., Ph.D. and the Head ot‘ the
Department, Dr. V. L. Stella Arputha Mary M.Sc., M.Phil., B.Ed., Ph.D. t(fr

having imparted necessary guidelines throughout the period of our studies.

We thank our beloved Principal, Rev. Dr. Sr. A.S.J. Lucia Rose M.Sc., M.Phil.,
Ph.D., PGDCA for providing us the help to carry out our project work
successfully.

Finally, we thank all those who extended their helping hands regarding this
project.

4

FOURIER TRANSFORMS

PREFACE

The topic of our Project "FOURIER TRANSFORMS : STUDY, APPLICATIONS
IN HEALTH AND DATA SCIENCES AND CODING THROUGH SOFTWARES",
focuses on underlying concepts of the discipline and behavioural aspects of
signals in time domain and frequency domain. Fourier Transform named af-
ter Joseph Fourier, is a mathematical transformation employed to transform
signals between time (or spatial) domain and frequency domain. The Fourier
Transform allows us to perform tasks that would be impossible to perform any
other way.
Important properties, standard formulae, definitions, relevant examples and
references have also been discussed to scaffold the readers on the necessary
concepts. After brief learning, it was a natural progression to apply the learned
concepts and practices in real life. Fourier Transform has multitude of applica-
tions in almost all areas of life which have been discussed in our project. The
Project is structured into five chapters :

Chapter 1 presents briefly the idea of What is a Fourier Transform and it’s
Types.

Chapter 2 deals with the most important Applications of Fourier Transform and
the softwares which can be used to calculate all types of Fourier Transforms.

Chapter 3 introduces the definitions of Fourier Transform, it’s Inverse, Fourier
Cosine and Sine Transform and it’s Inverses respectively.

Chapter 4 focuses on Properties, Fourier Integral Theorem, Alternative Form
of Fourier Complex Integral Formula, Standard Fourier Transform Pairs, Deriv-
ing Fourier Transform from Fourier Series and Relationship between Fourier
Transform and Laplace Transform.

Chapter 5 deals with Finite Fourier Sine and Cosine Transform, it’s Inverses
and Finite Fourier Transforms of Derivatives.

CONTENT

1 Chapter1
1.1 INtroducCtioncccceeeeeeeecccccscsssssssssssssnnsnssensssssssssssssssssssses 9
1.2 Typesof Fourier Transformcccccceeeececscssssssssssccenenennene 10
2 Chapter 2
2.1 Applications of Fourier Transformccccceeeiccnnnnnnnncees 11

2.2 Softwares that can be used to calculate all types

of Fourier Transformsccccccccceeeeennnnnnneececccecsssssssscecennns 18
3 Chapter3
3.1 Fourier Transformccccccceeieeeecccccccccsssssssssssssneneesesssssees 22
3.2 Inverse Fourier Transformcccccocceeeeeennnnnnnnneeeccccssses 24
3.3 Fourier Cosine Transformccccccccccceecesessssssssssssssssses 26
3.4 Inverse Fourier Cosine Transformccccccceeeccennnnnnnnnnees 27
3.5 Fourier Sine Transformccccccccceeeenenneneneneeeceeecccccccccsces 28
3.6 Inverse Fourier Sine Transformccccccccccccccccccscsccccenenes 29
4 Chapter4
4.1 Fourier Integral Theoremccccceeecccnnnnneececcssccnnnssenneces 30
4.2 Alternative Form of Fourier

Complex Integral Formulaeeennennnnnnnnnnneeneneenees 34
4.3 Standard Fourier Transform Pairscccccceeeeeececcccccccccnes 35

4.4 Deriving Fourier Transform
from Fourier Seriesioiinisericisnncsssneecssnnnessnnenens

4.5 Relationship between Fourier

Transform and Laplace Transformccccccceeeeennnnnnnnneeeee
4.6 Properties of Fourier Transformccccccccccvveneneennnennns
5 Chapter5
5.1 Finite Fourier Transforms of Derivativescccccceveeeeneeee
5.2 Finite Fourier Sine Transformcccccceeecececscssssssscscnnnne
5.3 Finite Fourier Cosine Transformcccccccevrneeeeeeeeeeccccooees
5.4 Inverse Finite Fourier Sine Transformcccceeeeeeeeecccees
5.5 Inverse Finite Fourier Cosine Transformcccccceeeeenes

6 COHCluSion 000

7 References 00

FOURIER TRANSFORMS : STUDY, APPLICATIONS IN HEALTH
AND DATA SCIENCES AND CODING THROUGH SOFTWARES

1.1 Introduction

“Profound study of nature is the most fertile source of mathematical
discoveries.”

- Joseph Fourier

Jean Baptiste Joseph Fourier (1768 — 1830) was
a French mathematician and Physicist, best known
for initiating the investigation of Fourier series, which
eventually developed into Fourier analysis and Har-
monic analysis, and their applications to problems of
Heat transfer and Vibrations. The Fourier Transform
and Fourier’s law of conduction are also named in his
honour. Fourier is also generally credited with the dis-
covery of the Greenhouse effect.

What is Fourier Transform?

In mathematics, Fourier Transform is a mathematical technique
that transforms a function of time, x(¢), to a function of frequency, X (w)

It is a mathematical transform that decomposes
functions depending on space or time into functions
depending on spatial or temporal frequency. The term Fourier transform refers
to both the frequency domain representation and the mathematical operation
that associates the frequency domain representation to a function of space or
time. The Fourier transform can be formally defined as an improper Riemann
integral, making it an integral transform.

The representation of periodic signals as

a linear combination of harmonically related

‘ ‘ complex exponentials can be extended to de-

(/ velop a representation of periodic signals as

o | ET - linear combination of complex exponentials.

e —> "™ This leads to Fourier Transforms. Also, Fourier

Transform is a tool that breaks a waveform (a

function or signal) into an alternate representation, characterized by sine and

cosines. The Fourier Transform shows that any waveform can be re-written

as the sum of sinusoidal functions. The more concentrated f(x) is, the more
spread out its Fourier transform f(¢) must be.

Itis closely related to the Fourier Series and it is an extended form of Fourier
Analysis. Fourier Series is mainly used for periodic signals whereas Fourier
Transform is used for non-periodic signals.

Dirichlet’s Conditions (Conditions for existence of Fourier
transform)

1. f(¢) should be absolutely integrable (i.e.) [|f(f)ldt < oo.

2. The function must have finite number of maxima and minima.

3. The function must have finite number of discontinuities.

The choice of a particular transform is decided by the nature of the boundary
conditions and the convenience of inverting the transform function f (s) to give

f(x).
1.2 TYPES OF FOURIER TRANSFORM

e Continuous Fourier Transform

* Discrete - Time Fourier Transform

* Discrete Fourier Transform

* Discrete Fourier Transform over a Ring
* Fourier Transform on Finite Groups
 Fourier Analysis

¢ Fast Fourier Transform

10

2.1 APPLICATIONS OF FOURIER TRANSFORM

The Fourier Transform
ZF{g@} =G = [gD T ar
SZHGUO) = 8 = [G(pre"ar

1. Rapid diagnosis of COVID-19 using FT-IR ATR spectroscopy
and machine learning

Attenuated Total Reflection - Fourier Transform InfraRed (ATR-FTIR) Spec-
troscopy associated with machine learning in oropharyngeal swab suspension
fluid is applicable to predict COVID-19 positive samples.

The study included samples
of 243 patients from two Brazil-
ian States. Samples were trans- i
ported by using different vi- s '
ral transport mediums (liquid 8 COVID —1 9
1 or 2). Clinical COVID-19 di- &8 CORONAVIRUS DISEASE 2018
agnosis was performed by the :
Reverse Transcription - Poly-
merase Chain Reaction (RT-
PCR). Researchers built a classi-
fication model based on Partial Least Squares (PLS) associated with cosine k-
Nearest Neighbours (KNN). Their analysis led to 84% and 87% sensitivity, 66%
and 64% specificity, and 76.9% and 78.4% accuracy for samples of liquids 1 and
2, respectively. Based on this proof-of-concept study, they believe this method
could offer a simple, label-free, cost-effective solution for high-throughput
screening of suspect patients for COVID-19 in health care centres and emer-
gency departments.

This technique has shown promise as a di-

‘ agnostic or screening tool in several diseases
— such as cancer, diabetes, hypertension, and
L? physiological stress.

Recently, ATR-FTIR has already been in-
vestigated as a screening/diagnostic tool in
medicine. In 2019, the use of this technique was
reported in the screening of patients with brain

11

cancer, achieving sensitivity of 93.2% and specificity of 92.8% in the identifi-
cation of high-risk patients indicated for Definitive Diagnostic Tests (more ex-
pensive), thus saving time and cost. In infectious diseases, a similar study was
done to discriminate patients with Human immunodeficiency virus (HIV) in-
fection by ATR-FTIR also associated with Linear Discriminant Analysis (LDA)
in plasma samples. Interestingly, this analysis proved to be a possible strategy
for discrimination against different spectra of HIV infection and co-infection
with the hepatitis C virus (AIDS, HIV + HCV or AIDS + HCV).

2. Fourier Transform on Data Science

* Animated Visualization using Fourier Transform.
* Clean Up Data Noise with Fourier Transform in Python.

» Image Processing and Removal of Image Elements with Python - Appli-
cation of Fourier Transformation.

One of the more advanced
topics in image processing has
to do with the concept of Fourier
Transformation. Put very briefly,
some images contain system-
atic noise that users may want
to remove. If such noise is reg-
ular enough, employing Fourier
Transformation adjustments may
aid in image processing.

3. Fourier Transform on Analysis of Differential Equations

Some problems, such as cer-

(problem) Fourier transform (transformed problem) tain differential equatiOHS, be-
h”;?_,]) ""l' . come easier to solve when the
Irl Inverse Fl)ll]'j‘:l' 11'5[[]."\[‘1]1'“] Fourier traHSform iS applied. In

[solution) = (transformed solution) that case the solution to the

original problem is recovered
using the inverse Fourier transform. The operation of differentiation in the
time domain corresponds to multiplication by the frequency, so some differ-
ential equations are easier to analyze in the frequency domain. Perhaps the
most important use of the Fourier transformation is to solve partial differential
equations.

12

4. Fourier Transform Spectroscopy

Fourier-transform spectroscopy is a measurement technique whereby spectra
are collected based on measurements of the coherence of a radiative source,
using time-domain or space-domain measurements of the radiation and elec-
tromagnetic.

The Fourier transform is also used in
Nuclear Magnetic Resonance (NMR) and
in other kinds of spectroscopy, e.g. In-
frared (FTIR). In NMR an exponentially
shaped Free Induction Decay (FID) sig-
nal is acquired in the time domain and
Fourier-transformed to a Lorentzian line-
shape in the frequency domain. The
Fourier transform is also used in Mag-
netic Resonance Imaging (MRI) and
Mass Spectrometry.

5. Fourier Transform on Signal Processing

The Fourier transform is used for
the spectral analysis of time-series. The
subject of statistical signal processing
does not, however, usually apply the
Fourier transformation to the signal it-
self. Even if a real signal is indeed
transient (Lasting only for a short time;
Impermanent), it has been found in
practice advisable to model a signal by
a function which is stationary in the
sense that its characteristic properties
are constant over all time. The Fourier transform of such a function does not
exist in the usual sense, and it has been found more useful for the analysis of
signals to instead take the Fourier transform of its auto correlation function.
For video signals other types of spectral analysis must also be employed, still
using the Fourier transform as a tool.

6. Fourier Transform on Quantum mechanics

The Fourier transform is useful in quantum mechanics. The Fourier transform
can be used to pass from one way of representing the state of the particle, by a
wave function of position, to another way of representing the state of the parti-
cle: by a wave function of momentum. The other use of the Fourier transform

13

in both quantum mechanics and quantum field theory is to solve the appli-
cable wave equation. Fourier methods have been adapted to also deal with
non-trivial interactions.

7. Fourier Transform on Circuit Analysis

There are many linear circuits used in Electronic engineering field .These cir-
cuits include various components like capacitor, inductor ,resistor etc. Every
Electronic circuit can be modelled using mathematical equations. To perform
frequency analysis of the circuit Fourier Transform is used. Fourier Transform
helps us to analyse the behavior of circuit when different inputs are applied.

8. Fourier Transform on Cell phones

Communication is all based on Mathematics. The communication includes au-
tomatic transmission of data over wires and radio circuits through signals. Cell
phones are one of the most prominent communication device. The principle
of Fourier Transform is used in signal, which can be represented as the sum of
a collection of sine and cosine waves with various frequencies and amplitudes.
This collection of waves can then be manipulated with relative ease. Our mo-
bile phone has performing Fourier Transform. Every mobile device - such as
netbook, tablet and phone have been built in high speed cellular connection,
just like Fourier Transform. Humans very easily perform it mechanically every-
day.For example, when you are in a room with a great deal of noise and you
selectively hear your name above the noise, then you just performed Fourier
transform.

9. Fourier Transform on Image Processing

The Fourier Transform is used in a
wide range of applications such as im-
age analysis, image filtering, image re-
construction and image compression.
The Fourier Transform is an important
image processing tool which is used to
decompose an image into its sine and
cosine components. The output of the
transformation represents the image in
the Fourier or frequency domain, while the input image is the spatial domain
equivalent. In the Fourier domain image, each point represents a particular
frequency contained in the spatial domain image.

Spatial domain Frequency domain

10. Fourier Transform on Analysis of Linear Time Invariant
(LTT) Systems

14

A signal is any waveform (function of time). This could be anything in the real
world - an electromagnetic wave, the voltage across a resistor versus time, the
air pressure variance due to your speech (i.e. a sound wave), or the value of Ap-
ple Stock versus time. The family of Fourier Transforms are specifically devel-
oped for analysing frequency contents of the signals for which there is no def-
inition of linearity or time invariance. Hence we can define the Fourier trans-
form of any signal, as long as it’s integrable (i.e. stable).

11. Fourier Transform on Radio Astronomy

Radio astronomers are particularly avid users of Fourier transforms because
Fourier transforms are key components in data processing (e.g., periodicity
searches) and instruments (e.g., antennas, receivers, spectrometers) and they
are the cornerstones of interferometry and aperture synthesis.

Radio Frequency Interference (RFI)
makes the process of detecting and an-
alyzing pulsars extremely difficult. This
has forced astronomers to be creative
in identifying and determining the spe-
cific characteristics of these unique ro-
tating neutron stars. Astrophysicists
have utilized algorithms such as the
Fast Fourier Transform (FFT) to predict
the spin period and harmonic frequen-
cies of pulsars. Dedispersion and the
pulsar frequency are critical for predict-
ing multiple characteristics of pulsars and correcting the influence of the Inter-
stellar Medium (ISM). Hence, Discrete Fourier Transform is a useful technique
for detecting radio signals and determining the pulsar frequency.

12. Fourier Transform on Astronomy

Fourier transforms are performed to learn
about the spectral characteristics of a data set.
Thus in astronomy, when looking for periodic-
ities in a time series, we Fourier transform the
data and look for peaks in the spectrum. If the
data are regularly sampled we can make use of
the Fast Fourier Transform to decrease the com-
putation time.

13. Fourier Transform on Seismology

15

Seismograph Fourier transform is fundamental to
seismic data analysis. It applies to al-
most all stages of processing. A seis-
mic trace represents a seismic wavefield
recorded at a receiver location. The dig-
ital form of a seismic trace is a time se-
ries which can be completely described
as a discrete sum of a number of sinu-
soids — each with a unique peak ampli-
tude, frequency, and a phase-lag (relative alignment). The analysis of a seismic
trace into its sinusoidal components is achieved by the Forward Fourier Trans-
form. Conversely, the synthesis of a seismic trace from the individual sinusoidal
components is achieved by the Inverse Fourier Transform.

Seismic research has always been a common user for the Discrete Fourier
Transform (and the FFT). If you look at the history of the FFT you will find that
one of the original uses for the FFT was to distinguish between natural seismic
events and nuclear test explosions because they generate different frequency
spectra.

14. Fourier Transform on Radio Detection And Ranging
(RADAR)

The Fourier- transformation has become a

fundamental method in the signal processing
procedures, since the radar echo contains a va-
riety of informations in the signal form. This
information is convicted by the Fourier- trans-
formation into a data format which can be used
by the computer-aided signal processing. With
help of the Fast Fourier analysis whole signal
forms of radar echoes can be stored as only few data by the digital signal pro-
cessing. These data can be used by the process of the identification of radar
targets like fingerprints.
The signal received by a pulsed radar is a time sequence of pulses for which the
amplitude and phase are measured. Doppler processing techniques are based
on measuring the spectral (frequency) content of this signal. The frequency
content of this time-domain signal is obtained by taking its Fourier transfor-
mation, thus turning it into a frequency-domain signal or spectrum of the time-
domain signal.

16

15. Fourier Transform on Music

Fourier Transform helps in determining
the constituent pitches in a musical wave-
form. While applying a Constant-Q trans-
form (a Fourier-related transform) to the wave-
form of a C major piano chord, the first
three peaks on the left correspond to the
frequencies of the fundamental frequency of
the chord (C, E, G). The remaining smaller
peaks are higher-frequency overtones of the
fundamental pitches. A pitch detection al-
gorithm could use the relative intensity of
these peaks to infer which notes the pianist
pressed.

17

2.2 SOFTWARES THAT CAN BE USED TO
CALCULATE ALL TYPES OF FOURIER TRANSFORMS

e Python

* MATLAB

"WolframAlpha - Computational Intelligence" - Free Online Fourier Trans-
form Calculator

* CoCalc
1. Python

Different types of Fourier Transform can be calculated through Python Coding
within some minutes. Let us try to understand this through simple coding for
calculating Fourier Transform (Continuous time and frequency).

Fourier Transform (Continuous time and frequency)

This occurs when the functional form of your time series is known analytically

(i.e. you have a formula x(#) = ... for it) and goes from —oo to oo.
o0
x(f) = f x(t) e 2"t dy
Program

Write a Program Coding to find the Fourier Transform of the funtion kre kt*

using Python in terms of the final variable f.
Coding

numpy as np
Scipy as sp
matplotlib.pyplot a5 plt

plt.style.use(['science’, 'notebook’])

sympy as smp
skimage color
skimage io
scipy.fft fftfreq
scipy.fft fft, ifft, fft2, ifft2
t, f = smp.symbols(’t, {’, real)

t, f = smp.symbols('t, {’, real-True)

18

k = smp.symbols('k’, real=True, positive=True)
x=smp.exp(-k“t72) “k"t

X
kte k*
sympy.integrals.transforms fourier _transform
x _FT = fourier _transform(x, t, f)
x_FT
L3 ﬂ2f2
im2 f e Tk
vk

Like the above example, we can calculate any type of Fourier Transform using
Python. Plots can also be plotted for Fourier Transforms.

2. MATLAB

Different types of Fourier Transform can be calculated through MATLAB Cod-
ing. Let us try to understand this through simple coding for calculating Fourier
Transform of Unit impulse (Dirac delta) Function in MATLAB.

Note that fourier(f) returns the Fourier Transform of f. By default, the func-
tion symvar determines the independent variable, and w is the transformation
variable.

Program

Write a Program to calculate the Fourier Transform of Unit impulse (Dirac delta)
Function using MATLAB.

Coding

> f = dirac(t);
>f FT =fourier(f)

f_FT=
1

19

3. "WolframAlpha - Computational Intelligence" - Free Online
Fourier Transform Calculator

"WolframAlpha" is an Free Online Fourier Transform Calculator through which
all types of Fourier Transforms can be calculated instantly. All you need to know
is which function to transform, initial variable and transform variable.

% WolframAlpha

Fourier transform calculator =]

i n =
ﬂ‘.-‘l RAL LANGUAGE j!aMﬂ\THlNPU BB EXTENDED KEYBOARD EEE‘:‘,‘;‘\I_-"_-:-E 4 UPLOAD 32 RANDOM

Computational Inputs:

b function to transform: | eM-a"2jx*(2))
} initial variable: X

» transform variable: l

4. CoCalc

Different types of Fourier Transform can be calculated through CoCalc Coding
also.

Program

Write a Program to obtain Fourier Transformation Plot for the function
f1(1) =12sin(27w(3¢#)) + 11sin(2w(41)) + 10sin(27(5¢)) + 9sin(27w(61))

Coding

from sage.plot.bar _chart import BarChart

var('t)

f1(t) = 12*sin(2*pi*(3*t)) + 11*sin(2*pi*(4*t)) + 10*sin(2*pi*(5*t)) + 9*sin (2*pi*(6*t))
plot(fl, (t, -1, 2))

20

Output

/\ /\J\A /\hfﬂ/\ A

21

3.1 Fourier Transform

Fourier transform of f(x) is denoted by f(s) or F{f(x)}.
F is the Fourier transform operator.
Fourier transform of f(x)

f(s) = F{f(x)} = f f(x)e " dx

Example on how to calculate Fourier Transform for a given
function

Example 1

1, fi <
Find the Fourier transform of f(x), defined as f(x) = orlx| <a

0, for|x|>a
and hence find the value of [SIRX .
0 X

Solution:

a

Fif(x)} = f e I dx

—a
a

= f(cossx— isinsx)dx
—a

a

=2 f cossxdx, [by the property of definite integrals |

0

2 .
=—sinas
s

Taking Fourier inverse transforms,
2
F‘l{— sin as} = f(x)
s

ie.,
1 2
— | Zsinase™ds= f(x
27 f S S

—0o0

22

ie.,
[e.@]
1 1 . ..
— | —sinas(cosxs+isinxs)ds= f(x)
TJ s
—0o0

i.e.,

1
Since, — sinassinxsis odd
s

oo
2 1
—f—sinascosxsds:f(x)
nJ s

0

ie.,
[e.0]

/

0
Substituting a =1 and x =0, so that [0] < 1, we get

m .
sins /4
f ds=—
S 2
0
Changing the dummy variable s into x , we get
m .
sinx /4
f dx=—
X 2
0

Example on how to calculate Fourier Transform for Unit Step
Function and Unit Impulse Function

g, for|x| < a

0, forlx|>a

v | =

sinascosxsds= {

Example 2

Find the Fourier transform of the unit step function and unit impulse function.
Solution:

(i) The unit step function is defined as

0, forx<a
Ug(x) =
1, forx=a

—ias
—e

—1 (o°]
e lS.X'] 1
a

is

.-.F{ua(x)}=fe‘”xdx: .
—18

In particular

1 —1
F{up(x)} = —or—
is S

23

(ii) The unit impulse function or Dirac Delta function 6,(x) is defined as
limg_o[f(x)], where

1 € €
Fl) = = fora-5<x=<a+;
0, elsewhere

€
a3

F{f(x)} = f %e‘i”dx

2

[}

€

. a-£
—18X

e 2

1
Ce| —is a+s
_ '1 {e—is(a—g)_e—is(a+§)}
ies
: €S
—ias Sln[?]
o E
2

€S

.-.F{%(x)}ﬂ@g[e"'“-{ :

sin [%S] }}
In particular

F{6a(x)} =1
3.2 Inverse Fourier Transform

Inverse Fourier transform of f(s)

-1 F _i]o‘ ixs
F {f(S)}_Zn_ f(s)e'* ds

Some authors define the Fourier transform pair as:

Fifx)} = f(s) = \/%:O[o f(x) e *dx and

FYf(s)l = flo) = f(s)-e**ds

el

24

Example on how to calculate Inverse Fourier Transform for a
given function

Example 3

Find the inverse Fourier transform of f(s) given by
- a—|s|, for|s|<a
(8) =
! {0, for|s| > a.

sin®x T

[e,0]
Hence show that [——dx=—.
0 X 2
Solution:
1 [o.@]
FYf(s)=— f f(s)e*Sds
27
—00
1 a
:—f{a—lsl}(cosxs+isinxs)ds
27
—a
a
1
:—f(a—s)cosxsds
T
0
[Since, {a — |s|}sin xsis odd]
sinxs cosxs|?
=—1|(a-ys) -—
X X 0
1
:—z(l—cosax)
TX
. ax12
_az szn?
o ax
2
. ax 2
2 | sin—
. a 2 _F
o F g —ax —f(S)
2
ie.,
ol .. ax 2
a? stn == i a—|s|, for|s|<a
— ax e dx=
27 “r 0, for|s| > a
% 2

25

Taking a = 2 and letting s — 0, we get

sinx
dx=mn
X
—00

Since the integrand is an even function of x , we get

oo

|

0

2

sinx b4
dx=—
2

X

3.3 Fourier Cosine Transform

Fourier cosine transform of f(x) is denoted by fc(s) or Fc{f(x)}.
Fc is the Fourier cosine transform operator.
Fourier cosine transform of f(x)

fo(s) = Felf (x)} = f f(x)cossxdx
0

Example on how to calculate Fourier Cosine Transform for a
given function

Example 4

. . 2,2
Find the Fourier 2'[1ransf01rm of e”%* . Hence

(i) Prove that e is self-reciprocal with respect to Fourier Transforms; and
e e . . 2
(ii) Find the Fourier cosine transform of e™*

Solution:
o0
2.2 2,2 .
F{e—d X }: e—d X .e—lSJCdx
—00
o0
. 2 782
= —[ax+(2‘—s) e dx
—00
2 1 X
=S 2
= e4d? ._‘[e_t dt’
a
—00

I is
[on substituting sx + 20" t]
a

T =2
= \/——e4a2 (D
a

26

(i) Had we assumed the definition of the Fourier transform as

F{f(x)}= \/%_n_ [O f(x) e dx

(1) would have become

F{e_azxz} _

. . _ L .
Substituting a = & In (2), we get

—x? =S
F{eT} —e 2
and so

2 x2

FlieZ1=e2

2

i.e.,, ez is reciprocal with respect to Fourier transforms.

(ii) From (1), we have

o0

2
rw o N
fe @ X (cossx—isinsx)dx = — eia?
2a
—00

Equating the real parts on both sides, we get

o0
2.2
fe @ X" cossxdx =
0
or

2.2 T =
Fcie ax }:2—84“2
a

3.4 Inverse Fourier Cosine Transform

Inverse Fourier cosine transform of f¢(s)

_ 2 r
FEl{fc(s)} = ;ffc(s) cosxsds
0

27

Some authors define the Fourier cosine transform pair as:

Felfx)} = fe(s) = \/gff(x) cossxdx and
0

_ 2 Oo_
FoYe(s)) = fo) = \/;ffc(s) cosxsds
0

3.5 Fourier Sine Transform

Fourier sine transform of f(x) is denoted by fs(s) or Fs{f(x)}.
Fs is the Fourier sine transform operator.
Fourier sine transform of f(x)

o0

fs(s) = Fs{f(x)} = f f(x)sinsxdx

0

Example on how to calculate Fourier Sine Transform for a given
function

Example 5

e—ax

).

Find the Fourier Sine Transform of e~ %*(a > 0). Hence find Fs{xe™%*} and F{
Deduce the value of -
sinsx
f dx.
0

X

X

Solution:

[e.0]
Fs(e™™) :fe_“xsinsxdx
0

—ax 0o
e

ﬁ(—asinsx—scossx)
S+ a 0
S

s2+a?

ie.,

o0

—ax . s

fe “sinsxdx=—5—— (1)
s?+a

0

28

Differentiating both sides of (1) with respect to a, we get

T 2
—ax . as
f—xe “sinsxdx = ————
(s + a®)
0
i.e.,
2as
FS(xe_ax) =
(5% + a?)?

Integrating both sides of (1) with respect to a between a and oo,

Zo(—M) “””dk[—cot—l(g)]j

i.e.,

Jo(e_ax

i (a
)sinsxdx: cot 1(—)
S

i.e.,

—ax

Fs(e):cot_l(%),a>0 @)

Taking limits on both sides of (2) as a — 0, we get
1 -1
Fg|—|=cot " (0) =
X

Thus

o0
msx
— s>0.
0

3.6 Inverse Fourier Sine Transform

Inverse Fourier sine transform of f(s)

_ 2 .
FMfs(s)} = ;ffs(s)sinxsds
0

29

Some authors define the Fourier sine transform pair as:

Fsifx)} = fs(s) = \/%ff(x)sinsxdx and
0

_ 5
Fs_l{fs(S)} = f(x) = \/;ffs(s)sinxsds
0

4.1 Fourier Integral Theorem

If f(x) is piecewise continuous, has piecewise continuous derivatives in every
finite interval in (—oo,00) and absolutely integrable in (—oo,00), then

[e. oo]

1 .
f(x)zz—f ff(t)-e’s(x_”dtds or equivalently
T[—OO—OO

fx) = %f f@)cos{is(x—1)}dtds.

0 —o0
Proof:

When f(x) satisfies the conditions given in the theorem, we can prove that f(x)
can be expanded as a infinite series of the form.

fx= > cne T (D

n=-—0o0

in (=1, 1) however large [may be, where
1 : i
cn:gff(t)e% dr)
-1

o nw . . .
Substituting s, = T and inserting (2) in (1), we have

n=—oo

l
00 1 .
f=) ﬁff(t)e””(x_t)dt
IR
1

_1f
Y

(e8]

Y fpetsntn. ar
n5=0 l

30

on interchanging summation and integration.

| [.
:EH Y f@eIAS, |dr

n=—oo

Since

(n+1)m nn b4
ASp=Spr1—Sp =] _T :7

Taking limits as AS,, — 0 or equivalently / — co we get

_ i rir is(x—1)
flx) = Zn_f [_f F(0e 0 gs| dar @3)
flx) = 1]o]Of(t)e”(x_” dtds (4)
2n_ K
[Since, the limits of integration are constants]
From (3)
flx) = ff(t) f [coss(x—t)+isins(x—1)]dsdt

o0

1
= — 12 —tdsdt
2nff() fcoss(x)ds
—00 0
[Since, cos s(x—t) is an even function and sin s(x— ¢) is an odd func-

tion of s in (—oo,00)]

flx) =

S| =

ff (H)coss(x—1t)dtds (5)
0 —o0

[Since, the limits of the integration are constants]
From (5), we have

oo o0

1
fx)=— f f(t)cossxcosst+sinsx-sinstldtds

T

O\

[e.©]

jltfcossx(f f(t)cosstdt) ds+ lfsinsx(f f(t)sinstdt) ds
0 —00

0

31

(6)

If f(x) [orf(#)] is even,
f(t) cosstisaneven function of t and f(¢) sin st is an odd function of ¢. Hence,
by the property of define integrals, we get the following from (6)

f(x):%fff(t)cossxcosstdtds
00

The R.H.S of (7) is called the Fourier Cosine Integral of f(x), provided f(x) is
even.

If f(x)[or f(1)] is odd, f(t)cosst is an odd function of ¢ and f(¢) sinst is an
even function of ¢.

Hence, by the property of definite integrals, we get the following from (6)

[e.0]

2 oo

f(x):—f ft)sinsxsinstdtds

/4
00

The R.H.S of (8) is called the Fourier Sine Integral of f(x), provided f(x) is odd.

Example on how to find Fourier Integral Representation for a
given function using Fourier Integral Theorem

Example 6
Find the Fourier integral representation of f(x) defined as
forx<0

0,
f=1%3 forx=0
o

* forx>0

Verify the representation at x = 0.

Solution:

32

)

(8)

Fourier (complex) integral representation is given by

oo o0

1 Lo
X) = — Ne e drds
f(x) 27[[ff()
—00 —00
1 0 [O 0
=— ['%* f+f ne ™tde| ds
5 f)
—00 |—o0 0
1 [ee] [o0
=5 isx fe_(l”s)tdt ds [on using the given values of f(t)]
T
—00 LO
00 —(+i _
= i eisx{ e +_lf)t }[_oods
27 —(1+1is))r=0
—00
o0
— i isx 1 —ds
27 1+1is
—00
1 [(1-is)
—1s
=— (cosxs+isinxs)ds
27 1+s2
—00
1 . -
= — [{cosxs+ssinxst+i{sinxs—scosxs}]
2n J 1+s2
—0O0
m .
1 COSXS+SSinxs
1 (o
T 1+

0

by property of definite integrals, as the real part is even and the imaginary part
is odd.

Substituting x = 0 in the integral representation (1), we get

[e.0]

1 ds 1 o]

0)=— :—[tan_ls] ==

FO n[1+32 T o 2
0

Thus the integral representation (1) holds good for x = 0 also.

33

4.2 Alternative Form of Fourier Complex Integral Formula

The Fourier integral formula for f(x) is

flx) = fff(r)e”“ dtds

—OOOO

Proof:
1 [e.olNe o]
flx) = ;fff(t)coss(x—t)dtds
0 —oco

f(t)coss(t—x)dtds

\"8

:llr—‘

g

& ¢

f(lf) [eis(t—x) +e—is(t—x)] dtds

I
-

S,

3

—3 é\g

1 [o elNe o]
f(t)eis(t_X)dtds+§ f f fe S drds

S~

o

8

Substituting s = —s in the second integral, we get

0 oo

f(x) i ff(t)eis(t—x)dtds_,_if ff(t)eis’(t—x)dtds’
2n 21

—00 —00

?IH

8\8 C’\8

f fe*"Ydrds

[on changing s into s and combining the two integrals] (1)
(1) provides an alternative formula for f(x). Comparing this with the Fourier

Complex integral formula derived in (4) of Fourier integral theorem, we note
that x and ¢ can be interchanged in the exponential function.

34

4.3 Standard Fourier Transform Pairs

S.No. x(t) X(t) X(w)
1. (1) 1 1
2. rect(t) sinc(f) sinc(ﬁ)
21
. ;2 e (&
3. tri(e) since(f) sinc (271)
. w
4. sinc(t) rect(f) rect(g)
1
5. cos(2mat) E[5(f+a)+6(f—a)] n[6(w+2ma)+6(w-2na))
6. sin(2rat) %[6(f+a)—6(f—a)] jr[b(w+2ma)—6(w-2na)l
1 1
7. Aty (t _—
e ulf) a+j2nf a+jw
1 1
n,—at -
5 re o (a+ j2nf)™ (a+ jo)™!
_ 2a 2a
9. el S — =
a’ +4n? f? a’ + w?
—
10. et e f? e 41
11 sgn(t) L 2
' s ixf jo
12 u(r) Lo+ —— 6(w) + ——
] 2 j2nf jw
_ a+j2nf a+jw
13. A cos2mbru(t
e Teosambiult) | o ey eab)? (a+ jw)? + 27b)?
14. | e sin2nbtu(r) 2nb 2mb
] (a+ j2nf)*+ (2nb)? (a+ jw)?+ 2nb)?
15 eu(—1 L L
' a-j2nf a-jow

35

4.4 Deriving Fourier Transform from Fourier Series

w .
x(= Y X[kle/*!
k=-o00
00 on 2
x(t)=) X[k]eJkZTt Since,w:—n
k=-00 T
Let Of L
e =—
T
1) = x(H= Y X[kle/*mA!
k=-0c0
to+T

1 .
X[k]::—r f x(t) e ket gy
To
to+T

1)
X[k]::—r f x(1) el *2mASE gy

To

where, | X(w) = f x()e /' dt

—00

The above equation is known as Fourier Transform Equation.
Substituting equation (2) in equation (1), we get,

to+T
w . .
x()=) |Af f x(1) e I2TRAST gy | elkemAft
k=—00 o
T
Let t():—E
T
m 2 . .
x(f)=lim) fx(t)e_fz’”mftdt _elkenAft
=00} "o

S

When T — oo, Z — f ,Af —df, kAf — f,continuous variable function.

x(”=fdffx(t)e—fzﬂffdt.efzﬂff
x(t)=f (X ()] e/ duw

36

(1

)

The above equation is known as Fourier Inverse Transform Equation.

4.5 Relationship between Fourier Transform and Laplace
Transform

e *lp(1), t=0

Let f(¢) be defined)=
et f(t) be defined as f () {0’ <0

Then -
F{fw}= f f(oe Vdr

where y is the Fourier transform variable.

—Oo0
o-e‘fﬂdt+fe‘“cp(t)e"'ﬂdr
0

e Slp(r)dt [where s = x+iy]

0\8 é\o

ie., F{f(t)} = L{<p(t)}

37

4.6 PROPERTIES OF FOURIER TRANSFORM
Property 1 - Linearity Property

F is a linear operator, i.e. F[(c1 fi(x) + c2 fo(x))] = c1 F{fi(x)} + co F{f2(x)}, where
c1 and ¢, are constants.

Proof:

F lel(X) + szz(x)] = f [lel(x) + CZfZ(x)] e—isxdx

:01ff1(X)e_isxdx+czffz(JC)e_isxdx

= 1 F{fi}() + 2 F{f2(x)}
Property 2 - Change of Scale Property
N

_ 1 -
If F{f(x)} = f(s), then F{f(ax)} = Hf[a]

Proof:

Fif(ax)} = f flax)e " dx

o0
—ist dt
= f f(t)e a .—, [onsubstituting ax = t and assuming that a > 0.]
a

—00

1 -r1s
i
But o
F{f(ax)} = f(t)e%.%, if a<0
1 75
=212
1 s
..F{f(ax)}=mf[a]
Similarly,
1 -5
Felftax) = —- Je -]
and)
TS
Fs{f(ax)}=5'fs[5]

38

Property 3 - Shifting Property (Shifting in x)

If F{f(x)} = f(s), then F{f(x—a)} = e "% f(s)

Proof:

Fif(x-a)} = f flx—a)e “*dx

o0
:ff(t)e_is(”“)dt, [on substituting £ = x — a]
—00

— e—iasf-(s)
Property 4 - Shifting in Respect of s
If F{f(x)} = f(s), then Fle '** f(x)} = f(s+ a)

Proof:

oo

F{e—laJCf(x)}: f e—l(ZXf(x) e—iS)Cdx

— f f(x)e—i(s+a)xdx
=f(s+a)

F{elaJCf(x)} — f ela.X'f(X) e—isx dx

—00

= f f(x)e 'S~ gx

=f(s-a)

39

Property 5 - Modulation Theorem

If F{f(x)} = f(s), then F{f(x)cosax}:% [fs+a)+ f(s—a)]
Proof:

F{f(x) cos ax} = %F [f(x)(ei“x + e i)

1 , .
=2 [F{f(x) o9} 4 F{f (x) e” 4%}

1. - _
=3 [fs—a)+ f(s+a)]
Property 6 - Conjugate Symmetry Property
IfF{f(x)}= f(s), then F{f™*(—x)} = [f(s)] *, where * denotes complex conjugate.

Proof:

f(s):ff(x)e_isxdx
1 = f fre*dx

= f fr(=ne 'dr, [On Substituting x = —1]
—00

= F{f" (-2}

40

Property 7 - Transform of Derivatives

If f(x) is continuous, f, (x) is piecewise continuously differentiable, f(x) and
f / (x) are absolutely intergrable in (—oo,00) and limy_ 10 [f (x) = 0], then F{f "(x) =
isf(s)} where f(s) = F{f(x)}

Proof:

By the first three conditions given, F{f(x)} and F{f (%)} exist.

Fif ()} = f (e ™ dx

o0

= [e'isxf(x)]oooo+ isf e_isxf(x) dx,
—00
[on substituting by parts]
=0+isF{f(x)}, [by the given condition]
=isf(s)

Example on how to solve Differential Equations using Fourier
Transforms

Example 7
Solve the differential equation

d’y _dy
—=+3—=+2y=e¢%,x>0
dx? dx y=e X

using Fourier transforms, given that y(0) = 0 and y'(0) = 0.
Solution:

Taking Fourier complex transforms on both sides of the given differential equa-

tion, we have
(is)2 YO +3U) Y +27(8) = F(e™), x>0

=F{U(x)-e™"},

[where U(x) is the unit step function]
ie.,

41

((i5)? +3(is) + 2] J'/(S):fe_(””)xdx: ,
1+1is
0

LY = DR Gs 1 2)

-1 1 1
= - + — + - [by partial fractions.]
is+1 (is+1)? is+2

vk et el

=—Ue +UW).xe *+Ux).e >

Since
o0
F{U(x)xe_x}:fxe_(1+i5)xdx
0
e~ (1+is)x e~ (+is)x 0
- x{—(1+is)}_{(l+is)2}]0
B 1
C (1+is)?
ie.,
y=—e "+ xe ¥+, x>0

Example on how to solve Partial Differential Equations using
Transform of Derivatives and Fourier Cosine Transform

Example 8

2

ou u ou
Solve the equation — = a? , satisfying the boundary conditions o 0,0 =

ot 0x0x o o
k, t =0 and u(x, t) — 0 as x — oo and the initial condition u(x,0) = 0.

Solution:
We know that,
of

If £(0, y) is given but 3

o (0, y) is not known in a boundary value problem, Fourier

0
sine transform is used. On the other hand, if O_f (0, y) is given but (0, y) is not
X

known, Fourier cosine transform is used.

42

ou
Since x > 0 and 6—(0, 1) is given, we take Fourier cosine transforms of the
X

equation with respect to x.

Thus
izzc(s,) =a*|-s%ic(s,) - ou 0, 1)
ot 0x
i.e.,
%ﬂc(s, D+ a’s’uc(s, t) = ka? ()

Transform of the initial condition is
uc(s,0)=0 (2)

Solving (1) and using (2), we get

k

dc(s, t) = Ae™ @S _ 5 3)

k

Using (2) in (3), we get A = 2
k

(s == 1)
S

Taking the inverse cosine transforms, we get

1

f—z(e_“zszt —1)cosxsds
s

0

2k

ulx,t)=—
/4

Property 8 - Derivatives of the Transform

_ d -
If F{f(x)} = f(s), then —iF{xf(x)} = af(s)

Proof:

f(s)=fe_isxf(x)ds
d - T d —isx
%f(s) —_f %[e f)ldx

= (—i) f e S xf(x) dx

=—i-F{xf(x)}

43

Extending, we get
-

d" - T r
@f(S)—(—t) Fix" f(x)}

Convolution Product

f fx—wgwdu

is called the convolution product or simply the convolution of the functions
f(x) and g(x) and is denoted by f(x)* g(x).

Property 9 - Convolution Theorem

The Fourier transform of the convolution of two functions is the product of
their Fourier transforms.
i.e., if F{f(x)}=f(s) and F{g(x)}=g(s), then

Fif(x)*g(x)} = f(s)-&(s)

Proof:

F{f(x)*gx)} = f fx0)*g(x)e " dx

= f fx-—wgwdu|e **dx
—o0 |-o0
o0 o0
= f g(u) f f(x—uwe “*dx| du [on changing the order of integration.]

= f g(u) [e‘iusf(s)] du, [by the shifting property.]
—0O0

:f(s)-fg(u)e_i“‘du

= f(9)-8(s)
Inverting, we get

FHA® - g = f0* gk
= F Y f)1*Flg(s)

44

Property 10 - Parseval’s Identity or Energy Theorem

If F{f(x)} = f(s), then

[e.@] 1 o0 i
flf(x)lzdx=§f|f(s)|2ds

Proof:
By convolution theorem,
f0)*g)=Ff(s) &)}
i.e.,
[e] 1 (o] i '
ff(u)-g(x—u)du: Py f f(9g(e ds (1)

Substituting x = 0 in (1), we get

o0 1 (e,0))
ff(u)g(—u)du:§ff(8)g(5)ds 2)

(2) is true for any g(u); take g(u) = [f(—u)]* and hence g(—u) = [f(u)]*, where
[f(w)]* is the complex conjugate of f(u).
Also

g(s) =F{gx)} = F{f (=x)}* = [Ff(x)]" = [f()]"

[by conjugate symmetric property]
Using these in (2), we get

o) 1 [ee) i i
| raiswr au=— [forforas
i.e.,
2 1 PRy
flf(u)l du:—f |f(9)N°ds,
I 27t_oo
or o0 (0. 0]
1 _
[rwrax=— [fwias
J 27{_OO
[on changing the dummy variable]

45

Example on how to calculate Fourier cosine and sine
transforms of a given function using Parseval’s Identity

Example 9

Using Parseval’s identity for Fourier cosine and sine transforms of e™ %%,
evaluate

(i)]o dx and (ii)]o LN
(a? + x?)? (a? + x2)?
0 0
Solution
(i) Fcle ™) = [cossxdx = = faz
0
By Parseval’s identity,
2 2 Z N2

flf(x)l dx=;f|fc(8)| ds

0 0

ra 2 T ds

—-2ax 2
dx=—

f . ﬂa f (s2 + a?)?

0 0
i.e.,

f ds @ [e?)%

) (s2+a?? 2a® | -2a |,

=" ita>o0
4a3

Changing the dummy variable s into x, we get the first result.

ii) Now
s

oo
Fs(e_‘”):fe_“xsinsxdx =5
s?+a
0

By Parseval’s identity,

(0,0) 2 o0 i
flf(x)lzdx: ;flfs(s)lzds
0 0

46

i.e.,

2 T §2 F
— - ds= —Zaxd
T f (Z+a2 ™ f ¢ .
0 0
T x’dx n
f PraddE aa ifa>0 [on changing the dummy variables.]
0

Property 11 - Parseval’s Identity for Fourier Cosine and Sine
Transforms

If fc(s), §c(s) are the Fourier cosine transforms and fs(s), gs(s) are the Fourier
sine transforms of f(x) and g(x) respectively, then

(i) f fx)gx)dx= f fc(9) ge(s)ds = f fs(s)gs(s)ds
0 0 0

(ii)[lf(x)lzdxzfIfc(S)Izdszflfs(S)Izds
0 0 0

Proof:
oo_ oo_ [5 [ee)
(i)ffc(s)gc(s)ds:ffc(s) \/;fg(x) cossxdx| ds
0 0 | 0
o0 2 oo _
=fg(x) \/;/ fc(s)cosxsds| dx,
0 | 0

(changing the order of integration)

:f fx)gx)dx
0

(ii) Replacing g(x) = f* (x) in (i) and noting that Fc{f™* (x)}

= {fe(9)}" and F{f* (x)} = {fs(s)}", we get f £
0
ffxdx= f fe®) {fc()} ds= f fs(&) {fs(s)}* ds
0 0

ie, f F@Pdx= f Fo(o)Pds = f ()2 ds
0 0 0

47

Property 12

If Folf (x)} = fo(s) and Fs{f(x)} = fs(s), then

a -

(1) a{fc(s)} =—Fs{x f(x)}and
a -

(i) %{fs(s)}:FC{xf(x)}.

Proof:

(i) fc(s):ff(x)cossxdx
0
d . r _
%{fc(s)}:ff(x){—xsmsx}dx
0

= —f{xf(x)}sinsxdx
0

= —Fs{x f(x)}

(ii) f_s(s):ff(x)sinsxdx
0

(o ¢]

d -
a{fg(s)}—b[f(x){xcossx}dx

:f{xf(x)}cossxdx
0

= Fcix f(x)}
5.1 Finite Fourier Transforms of Derivatives
(i) Fsif'(x)} = —"—l”fc(n)

(ii) Felf'0y=E=D"F) - fO)+ n—lnfs(n)

n?m?

12
I’lzﬂz

12

(iii) Fsif"(x))=-

Folm) + ”—l”{f(O) — D F)

(iv) FciF"(x)}=— fem+ D" (- f'(0)

48

Proof:

I
Fs{f'(x)} = f f(x) sin# dx

0

1
:f sin@d{f(x)}

0

l
Cnaxy! onm nax
_{f(x)sm—l }O—Toff(x)cos—l dx

= —n—lnfc(n)

n
T

2
Fc{f’(x)}:fl-cosnxdx—fl-cosnxdx
0

(SE]

n
7 T

sinnx sinnx
n 0 n %

1. nn . . nm
= —{szn——o—sznnn+szn—}
n 2 2

2 . nm
= —smT, n#Z0

b/4

Fsif"(x)} = sinnxdx—fsinnxdx

o\ml: S

(SIE]

1 7 1
= ——(COSTZX) +—(COSHX)
n 0 n

T

(SE]

1 nn n
= E{l —20037 +(-1 }
5.2 Finite Fourier Sine Transform
Finite Fourier Sine Transform of f(x) in (0, [) is denoted by fs(n) or Fs{f(x)}.

If the function f(x) is piecewise continuous in the interval (0,1), then the Fourier
sine transform of f(x) in (0, /)

1
Fs(n) = Fs{f(x)} = j f(x)sm@dx
0

49

5.3 Finite Fourier Cosine Transform

Finite Fourier Cosine Transform of f(x) in (0, I) is denoted by fc(n) or Fc{f(x)}.
If the function f(x) is piecewise continuous in the interval (0,1), then the Fourier
cosine transform of f(x) in (0,)

1
Feln) = Felf () = f fo0cos ™ ax
0

Example on how to calculate Finite Fourier Sine and Cosine
Transforms of a given function

Example 10

x12
Find the Finite Fourier Sine and Cosine Transforms of [1 - —] sin (0, 7).
b4

Solution:

Fs{[l—g]z}:f[l—g]zsinnxdx
_0 x12r—cosnx)[-2][1—-x][—-sinnx 2 cosnxm
-2 === |t
:%+n22n3{(—1)”—1}

T

FC{[I—g]Z}:f[l——] cos nxdx
:2[1_5]231nnnx_ _% [1_3][_(:(:2”)6] % —sinngnx }Z
:niz’n;éo

5.4 Inverse Finite Fourier Sine Transform

_Inverse finite sine fourier transform of f5(n) is denoted by Fg'{fs(n)}
If fs(n) is the finite Fourier cosine Transform of f(x) in (0,), then the Inverse
Finite Fourier Sine Transform of fs(n)

m —_
Z fs(n)sin nrx
n=1 l

~I D

fx) =

50

Example on how to calculate Inverse Finite Fourier Sine
Transform of a given function

Example 11
- 1-
Find f(x), if its finite sine transform is given by fs(n) = % in0<x<m.
nm
Solution:

The inverse finite Fourier sine transform is given by

2 .
f@) ==Y fs(n)ysinnx
nn=l
2 [1-cosnm] .
:;nzl W Sinnx
2 & 1—(—1)”} .
= — ———'sinnx
73 n;l{ n?
4 & 1
= — Z —sinnx
3 n=1,35... n?
4 X 1 e N
= — ——sin(2n—-1x
3 = 2n-1)?

5.5 Inverse Finite Fourier Cosine Transform

Inverse finite cosine fourier transform of fc(n) is denoted by F£'{ fc(n)}
If fc(n) is the finite Fourier sine Tr_ansform of f(x) in (0,]), then the Inverse
Finite Fourier Cosine Transform of f:(n)

o0

1- 2 -
fG) = 2@+ Y fetn cos"—’l”
n=1

Example on how to calculate Inverse Finite Fourier Cosine
Transform of a given function

Example 12

Find f(x) if its finite cosine transform is given by

- 1 2nm
fe(n) = Zn =17 <% in0<x<l1
n=

51

Solution:

The inverse finite Fourier cosine transform in (0, /) is given by
I 2 & nmwx
fO0=5fc@+7) feln)cos—=
n=1

Here [=1 and fc(0) =1

= 1 2nm
COS cosnmx
n=1 (27’1 = 1)2 3

Sf)=1+2

52

CONCLUSION

Fourier Transform has multitude of applications in almost all areas of life. Right
from the cell phones that we use in our day to day life to Radio Astronomy,
fourier transform plays a vital role in developing today’s modern world of tech-
nology.

Fourier transform clearly shows us that any waveform can be re-written as the
sum of sinusoidal functions. In other words, wherever there is a waveform
which is absolutely integrable with finite number of maxima, minima and dis-
continuities, fourier transform can be definitely applied.

Among all it’s tremendous applications, the most important contribution of
fourier transform is the rapid diagnosis of COVID 19 using FT-IR ATR spec-
troscopy combined with machine learning. It offered a simple, free-label and
cost-effective solution for high-throughput screening of suspect patients for
COVID-19 in health care centres and emergency departments. So, by making
effective researches on fourier transform, mankind will be much benefited.

53

REFERENCES

References

(1]

(2]

3]

(4]

Integral Transforms and Their Applications by Lokenath Debnath and
Dambaru Bhatta, Chapman and Hall/CRC, 3rd Edition, November 7, 2014,
ISBN-13:978-1482223576.

Fourier Transform and Its Applications by Ronald Newbold Bracewell,
McGraw-Hill, 2nd Edition, January 1, 1978, ISBN-13 : 978-0070070134.

Fundamentals of Fourier Transform Infrared Spectroscopy by Brian C.
Smith, CRC Press, 2nd Edition, March 9, 2011, ISBN-13 : 978-1420069297.

The Fourier Transform: A Tutorial Introduction by James V Stone, Sebtel
Press, Annotated Edition, April 11, 2021, ISBN-13 : 978-1916279148.

Fourier Series, Fourier Transform and Their Applications to Mathematical
Physics by Valery Serov, Springer, 1st 2017 Edition, December 18, 2017,
ISBN-13:978-3319652610.

54

S Ty R SRR BN KN RS B

egooouu¢¢uuooo¢eeccocooooou@ug'cgc:

FRACTAL THEORY

Project Report submitted to

ST.MARY’S COLLEGE (AUTONOMOUS), THOOTHUKUDI

Affiliated to

MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI

In partial fulfilment of the requirement for the award of degree of

Bachelor of Science in Mathematics

Submitted by

NAME

ANTO SNOW SHERINE. 1
JEBENA. J

JEFFRINA.J

JINCY JOSE. P
PARIPOORANA JEFFRINA. J

Under the Guidance of

Dr. A. PUNITHA THARANI M.Sc., M.Phil., Ph.D.

Associate Professor of Mathematics and COE

St. Mary’s College (Autonomous), Thoothukudi.

Department of Mathematics
St. Mary’s College (Autonomous), Thoothukudi
(2021 - 2022)

REG.NO.
19AUMTO02
19AUMT14
19AUMT15
19AUMT16
19AUMT32

s

CERTIFICATE

We hereby declare that the project report entitled "FRACTAL THEORY" being
submitted to St. Mary's College (Autonomous), Thoothukudi affiliated to
Manonmaniam Sundaranar University, Tirunelveli in partial fulfilment for the
award of degree of Bachelor of Science in Mathematics and it is a record of work done
during the vear 2021 - 2022 by the following students:

NAME REG.NO.
ANTO SNOW SHERINE. 1 19AUMTO02
JEBENA.J 19AUMT14
JEFFRINA. J 19AUMTI15
JINCY JOSE. P 19AUMTI16
PARIPOORANA JEFFRINA.J 19AUMT32

J-F/@ oL V+-Srella Avputha w\e:j

Signature of the Guide Signature of the HOD

Dr. A. Punitha Tharan} Dr. V.L. Stella Arputha Mary
M.Sc., M.PhilPh.O., M.Sc.M.Phil,, B.Ed., Ph.D.,

Depml”‘ i;:fessor, Head & Asst Professor of Mathematics
sy St. Mary's College (Autonomous)
StMary's College (Autonomous), : , o

Thoothukudi - 628 001. _ | Thoothukudi-628 001.

RN OEA via Rope

Signatureof the Examiner Signature of the Principal
Principal

8t Mary's Coliege (Autonon«us)
Thoothukudi - 628 001.

®

<

o

DECLARATION

We hereby declare that the project
original work. It has not bexn submitted 5 any umwersicy for my

f/\b

~
(R

7~

(ANTO SNOW SHERINE. D

~ g ~aoF
£ ,)A“'
¥ 4 i
o~ [24 ;J(q
"'L"-‘ ~\
B

T -
J’i Vo
(PARIPOORANL JEFFRI™NA T

Jegree ¥ JOma.

' 4

-

7
)

>

reported enotied ~FRACTAL THEORY™. = our

i

-

JEBENA D

;.'d'

L

- W W W F v N L DR T

ACKNOWLEDGEMENT

First of all. we thank Lord Almighty for showering his blessings to undergo this project.

With immense pleasure, we register our deep sense of gratitude to our guide
Dr. A. Punitha Tharani M.Sc.. M.Phil., Ph.D. for having imparted necessary
guidelines throughout the period of our studies.

We thank our beloved Principal, Rev. Dr. Sr. A.S.J. Lucia Rose M.Sc., M.Phil,, Ph.D.,
PGDCA and the Head of the Department. Dr. V. L. Stella Arputha Mary M.Sc.,
M.Phil., B.Ed., Ph.D. for providing us the help to carry out our project work
successfully.

Finally. we thank all those who extended their helping hands regarding this project.

FRACTAL
THEORY

¢ €eccececece

, & €

V)

‘D

LR IRV N 2 IS I VI VA VAN N SN SNV

= W N -

5.

6.

7.

CONTENT
INFOAUCHION oottt 03
What is meant by fractals? ..o O
History of fractals...........oooooi 05
Definitions and classifications ... 0%
4.1. Some definitions of fractals
4.2. Exact self=similarity
4.3. Quasi scll-similarity
4.4. Statistical sclf-similarity
4.5. Nerative fractals
4.6. Recursive Iractals
4.7. Random fractals
Fractal dimensions. ... I
5.1. Scaling factor
5.2. Topological dimensions
5.3. The Hausdorff dimension
5.4. Box counting dimension
5.5. lterated Functions Systems (11S)
Examples of Exactly Self-Similarity
Fractals.. ... 14
6.1. Cantor set
6.2. Koch curve
6.3. Minkowski curve
6.4. Koch snowflake
6.5. Sierpifiski sieve (triangle)
6.6. Sierpinski carpet and tetrahedron
6.7. Menger sponge
Examples of Quasi Self-Similarity
Fractals..........ooooo 21

7.1.

Julia set

vy bouwu w v

N NN BEEN BN

o0

7.2. Mandelbrot set

Applications of Fractal Geometry...........ooooooree 22

Q1. Fractal geometry in architecture
and civil engineering
{.2. Fractals in Computer Graphics
R 3. Fractals in Biological Science
R 4. Fractals in Film Industry
8.5. Fractals in Astrophysics
R.6. Fractals in Image Compression
8.7. Fractals in Fluid Mechanics
8.8. Fractals in Astronomy
8.9. Fractals in Telecommunications
8.10. Fractals in Antenna

LINTRODUCTION

* In the past, mathematics has been concerned largely with sets
and functions to which the methods of classical calculus can be
apphed.

* Sets or functions that are not sufficiently smooth or regular have
tended to be ignored as ‘Pathological’ and not worthy of study.

¢ Centainly, they were regarded as individual curiosities and only
rarcly were thought of as a class to which a general theory might
be applicable.

* In recent years this attitude has changed. It has been realized

that a great deal can be said, and is worth saying, about the
mathematics of non-smooth sets.

e Irregular sets provide a much better representation of many
natural phenomena than do the figures of classical geometry.

 Fractal Geometry provides a general framework for the study of
such irregular sets.

* Fractal Geometry is concerned with the properties of fractal
objects usually simply known as Fractals.

2.WHAT IS MEANT BY FRACTAL?

* Afractal is generally “a rough or fragmented geometric shape
that can be split into parts, each of which is (at least approximately) a
reduced- size copy of the whole,” a property called self-similarity.

~3~

The term was coined by Benoit Mandelbrot in 1975 and was
derived From the Latin fractus meaning “broken” or “fractured.”
Mathematical fractals are based on a set of equations that are all.
Characterized by iteration, a form of feedback based on recursion

The fractal dimension would be a value that gives us an insight into
the extent to which the fractal fills the space in which it is located. In
other words, the fractal dimension is used to express the density at
which the object fills the space, or to express how many new parts
appear when increasing the resolution. The fractal dimension is not an
integer and it is normally greater than the Euclidean dimension . For
self-similar objects F it is natural define the self-similarity dimension
or scaling dimension d (F) by the expression:

log N

d(F) =
logr

where N is the number of new copies of the object observed after
magnification, and r is the magnification factor.

~4~

F N L

\y

3.HISTORY OF FRACTALS

The mathematics behind fractals began to take shape in the 17th
century when mathematician and philosopher Leibniz
considered recursive self-similarity (although he made the
mistake of thinking that only the straight line was self-similar in
this sense).

It took until 1872 before a function appeared whose graph
would today be considered fractal, when Karl Weierstrass gave
an example of a function with the non-intuitive property of
being everywhere continuous but nowhere differentiable.

In 1904, Helge Von Koch, dissatisfied with Weierstrass’s very
abstract and analytic definition, gave more geometric definition
of a similar function, which is now called the Koch Snowflake.

In 1915, Waclaw Sierpimski constructed his triangle and, one
year later, his carpet. Originally these geometric fractals were
described as curves rather than the 2D shapes that they are
known as in their modern constructions.

In 1918, Betrand Russell had recognized a “supreme beauty”
within the mathematics of fractals that was then emerging.

The idea of self-similar curves was taken further by Paul Pierre
Levy, who, in his 1938 paper Plane or Space Curves and
Surfaces Consisting of Parts Similar to the Whole described a
new fractal curve, the Levy C Curve.

b
)

)

* Georpe Cantor also gave examples of sunsets of the real line
with unusual propertics - these Cantor sets are also now
recognized as fractals.

George Cantor

* lterated functions in the complex plane were investigated in the
late 19th and early 20th centuries by Henri Poincare, Felix
Klein, Pierre Fatou and Gaston Julia.

* However, without the aid of modern computer graphics, they
lacked the means to visualize the beauty of many of the objects
that they had discovered.

GASTON JULIA

Gaston Julia (1893-1978) was a French mathematician who
published a book on the iteration of rational functions in 1918.

Before computers, he had to draw the sets of functions by hand. These
types of fractals are now called Julia sets.

* In the 1960s, Benoit Mandelbrot started investigating self-
similarity in papers such as How Long Is the Coast of Britain?
Statistical self-similarity and fractional dimension, which is built
on earlier work by Lewis Fry Richardson.

e Finally, in1975 Mandelbrot coined the word “fractal” to denote
an object whose Hausdorff-Besicovitch dimension is greater
than its topological dimension.

BENOIT MANDELBROT

Benoit Mandelbrot is a mathematics professor at Yale
University. He used a computer to explore Julia’s iterated
functions, and found a simpler equation that included all the Julia
sets. This Mandelbrot set is named after him. He is the “Father of
Fractals™.

He illustrated this mathematical definition with striking
computer-constructed visualizations. These images captured the
popular imagination; many of them were based on recursion,
leading to the popular meaning of the term “Fractal”.

- - - N’ = ~

Mandelbrot realized that it is vert often impossible to
described nature using only Luclidean Geometry, that is in terms of
straight lines, circles, cubes and such like.

He proposed that fractals and fractal geometry could be used
to describe real objects, such as trees, lightning, river meanders and
coast lines, to name but a few.

4.DEFINITIONS AND CLASIFICATIONS

4.1.Some Definitions of Fractals:

e A fractal is an object which appears self-similar under varying
degrees of magnification. In effect, possessing symmetry across
scale. With each small part of the object replicating the structure
of the whole.

o Afractal is defined to be a set with Hausdorff dimension strictly
greater than its topological dimension.

e According to Mandelbrot, a fractal is a set for which the
Hausdorff dimension strictly exceeds the topological dimension

and a fractal is a shapes made up of parts similar to the whole in
some way

CLASSIFICATION:
4.2.Exact self-similarity —

This is the strongest type of self-similarity; the fractal appears
identical at different scales. Fractals defined by iterated function
systems often display exact self-similarity.

4.3.Quasi-self-similarity —

This is a loose form of self-similarity; the fractal appears
approximately (but not exactly) identical at different scales. Quasi-
self-similar fractals contain small copies of the entire fractal in
distorted and degenerate forms. Fractals defined by recurrence
relations are usually quasi-self-similar but not exactly self-similar.

4.4.Statistical self-similarity —
This is the weakest type of self-similarity; the fractal has
numerical or statistical measures which are preserved across scales.

~9~

— ey

—

ISEEN

Mot reasonable definitions of “fractal” trivially imply some form of
statistical sell-similarity. (Fractal dimension itself is a numerical
measure which is preserved across scales.) Random fractals are
examples of fractals which are statistically self-similar, but neither
exactly nor quasi-self-similar.

According to the type of formation, fractals can be divided into:

4.5.1terative fractals - formed by copying and rotating and/or
translating the copy, and

possibly replacing an element with a copy - these are self-similar
fractals;

4.6.Recursive fractals - are defined by a recursive mathematical
formula that determines

whether a given point of space (e.g. complex or Gauss plane) belongs
to the set or not

- these are quasi-self-similar fractals;

4.7.Random fractals - have the lowest degree of self-similarity and
are frequently found in

nature (coastlines, river branches and flows, mountain ranges, jungles,
tree roots

and tops. leaves. flowers. clouds. lghtnings, climate systems,
snowflakes, bacteria.

fractals

S.FRACTAL DIMENSION
DIMENSIONS

Dimension is a property of a mathematical object that refers to the
extent it occupies the space in which it is embedded. There are many
formal definitions of dimension. if the definition allows non-integer
values (a fraction), it is a Fractal dimension. The box-counting
dimension are defined over a vector space, but there is also the
packing dimension, compass dimension etc

General rule for Dimensions

e A figure is in D dimensions

e If I magnify the length by R, then I would get R copies
e« N=RP

The dimension formula
Define R as the magnifying factor,
Define N as the number of identical(“self-duplicating”) copies.
Then the dimension of a figure is:

_ log(N)
~ log(R)

5.1.Scaling Factor

VvV & € @ 7 W

v vV

- -

O U ®

O

We can divide the object in N self-similar pieces then, how to get
original object from size of these N pieces?

Scaling Factor: If we want to get original object from any part of
self-similar then we have to scale the object using scaling factor.
For example:

If we divide the line in 2 equal pieces then SF is 4

If we divide the plane in 4 equal pieces then SF is 2

5.2.Topological Dimension:

The topological dimension of a set is always an integer and is zero if
it is totally disconnected, one if each point has arbitrarily small
neighborhoods with boundary dimension zero and so on

Fractal Dimension:

Let (X, d) be a metric space. Let H(X) be a collection of
all non empty compact subsets of X. Let A € H(X). For
each £ > 0. Let N(4, £)denote the smallest number of

closed balls of radius € > 0 needed to cover A. If

£-0 ln(a)

exists, then D is called the Fractal Dimension of A and we

will say A has Fractal Dimension D.

The Hausdorff Distance

Definition: Let (X, d) be a complete metric space. Then the
Hausdorff distance between two points 4, B € H(X) is defined by

h(A,B) = max{d(A, B),d(B, A)}
Theorem: The Hausdorff distance is metric on H(X)

53.Hausdorff Dimension

Let F be a subset of R™ and s is a non-negative integer. For any 6§ >
0 we define

H*(F) = rlsir%Hs (F)
We call H*(F), the s-dimensional Hausdorff measure.

There is a critical value of s at which Hs(F) jumps from oo to 0. This
critical value is called the Hausdorff dimension

5.4.Box Counting Dimension

Let F be any non-empty bounded subset of R™ and let Ns(F) be the
smallest number of sets of diameter at most § which can cover F. If
these are equal we refer to the common value as the box-counting
dimension or box dimension of F

. s I B 6
dimg F = lim log N5 (F)/ —log

W W W

SXi

a }

terated Function Nistemas (1FY)

Ae XY}
LU

NI 2 closad subwet of R

R We call | LetS1 800 S, be contractions on

~
Sy

HRTamatone N, i

AR W shal

SIS

o.1.

T Cat a subset A ot} :
< SUOSCEA of D mvarnant CAtteactor) for the

A= UL SR

Usee, such imvariant set are often fractals,

\\\\\

f " \
amiwes of contractions on X forms an ierated function

6.EXAMPLES OF SELF SIMILAR FRACTALS

Cantor set

A subset of separated points remaining afler dividing a line

segment of length 1 into three equal subsegments, removing all the

'\‘iﬂ

St

from the middle subsegment, dividing cach of the remaining

ibsegments into three, removing all the points from the middle one
t th

1ese three subsegments and continuing so infinitely many times.

PROPERTIES OF CANTOR SETS

~
r
h
»

Cantor set contain 2¥ intervals of length 37%.

1t satisfies open set Condition.

D c R™ .anon-empty compact subset I of ID an attractor (or
invariant set) for the IFS if

Usu)

S satisfv the open set condition if there exists a non-empty
bounded open set V such that

m
V2 U Si (V)
=1

~]4m

with the union disjoint.
» It can be determined by the Ite
it contains self-similarity.
» It has Hausdorff dimension. ‘
» Cantor set is the perfect set. Because it is closed and dense 1n

rated Function Systems (IFS) and

itself.
» Cantor set is a dense set.
» It contains countable set of points.

» Cantor set contains the set of numbers in [0,1]whose base three
expansions do not contain the digit 1.
log?
> HS(E) = 1ifE is a Cantor set dim(E) = 2(0)—5—3 = 0.6309r set

contains no intervals.
> The Cantor set C has no isolated points, that is if a € C.then for

every £ > 0,the interval (a — £, a + £) contains points of C, in

addition to a.
» Cantor set is closed.
¢elgl] cR”
» Let {Q, Q,, ... } be a countable collection of non empty sets in
R™, such that

1. Qk+1 c Qk(k - 1,2,)
2. Each set Q is closed and Q; is bounded.

Then the intersection Ny=; Qy is closed and non-empty.
> Cantor set is a compact set having measure Z€ero.

Cantor set

\

— s =1
- .
s sm 7<)

wu un mwn ua n=4d

|
!
+
:

0.2 Noch curve
s vonstiucted by dividing a line segment of length a into three
\ F e N LA TE) 1o a i i
wual segmeats, cach of length 3 and then adding to the middle
wament two more line segments of equal lengths so that they form an
squilateral triangle wgether with the middle segment: then the middle
wamentis removed and now we have four line segments of equal
e e v \ Loooag .,
lengths (cach of them being L) the second step the procedure from
the fiststep is repeated for each of these four segments, etc.
» \ N VR - Al Al Al
PFROPERTIES OF KOCH CURVE
> The Koch curve has an infinite length because each time the
steps above are performed on each line segment of the figure
there are tour times as many line segments in the previous stage

> Henee the total length increases by one third and thus the length

; 4 & . :
at step nowill be (5) n of the original triangle perimeter: the
log4

tractal dimension is —— = 1.26ter than the dimension of z line

log3
but less than peano's space - filling curve.
» The Koch curve is continuous everywhere but differentizble
nowhere

Koch Curve

3

UL\'Q\)J)t‘((G((UJQQGG

6.3.Minkowski curve

The Minkowski sausage or Minkowski curve is a fractal first
proposed by and named for Hermann Minkowski as well as its casual
resemblance to a sausage or sausage links. The initiator is a line
Segment and the generator is a broken line of eight parts one fourth
the length.

The Sausage has a Hausdorff dimension of (—) =15=3/2.Itis

therefore often chosen when studying the physical properties of non-
integer fractal objects. It is strictly self-similar. It never intersects
itself. It is continuous everywhere, but differentiable nowhere. It is
not rectifiable. It has a Lebesgue measure of 0. The tvpe 1 curve has a

dimension of-; x~ 1.46.

Multiple Minkowski Sausages may be arranged in a four sided
polygon or square to create a quadratic Koch_island or Minkowski
island/[snow]flake:

1—1_ -

nfm
Afo-

Initial line segment and the first three iterations of Minkowski curve.

6.4.Koch snowflake

It is obtained when the iteration procedure described for a Koch
curve, instead of a line segment of length a , starts with an
equilateral triangle with sides of length a.

The Kacl 1a n he bt ap teratively i i sequence of

he Koch snowfiake ca
tages. | he f’x‘m‘?gg’\,V?(\Htﬂjhﬂ.”iihﬂiphﬂ.MId(HH‘\HH(C(WNlVF

sape 15 formed By addime outward bends to each side of the

previoals stage. making smaller equilateral triangles | he areas

enclosed by the successive stages in the construction of the
nowflake converge to 8/5 times the area of the original triangle,
ahile the perimeters of the successive stages inerease without

mound Conseguenthh . the snowflake encloses a finite area, but has

mes cesharsibys Terrs Tl
a INIE pCNMELCT

g =y
Ciir P 5 Q S i
3 ¢
% i A3
% S
s XA
'y ‘J‘
Ll
2 W N e oy
En 2

2 eguilateral triangle and the first six iterations of Koch snowflake

riil i

6.5 Sierpinski sieve (triangle

f
"he construction stants from the initial equilateral triangle, by
removing a triangle (also equilateral) obtained by connecting
midpoints of the sides of the initial triangle; the remaining three
cquilateral triangles represent the starting point for the next step.,
ele
PROPERTIES OF SIERPINSKI SIEVE

log(3)

» The sierpinsks tnangle has Hausdortt dimension =
og(d

1.565. which follows from the fact that it s a union of three
copies of iself, each scaled by a factor of” Y.

1 one takes Pascal's triangle with 2n rows and colors the
even numbers whiteand the odd numbers black, the result is

14

v

> & & O

3)39JOQUUUUU¢,¢(((((PPP

an approximation to the sierpinski triangle. More precisely,
the limit as n approaches infinity of this parity - colored 2n-
row Pascal triangle is the sierpinski triangle.

> The area of a sierpinski triangle is zero (in Lebesgue

. 3
measure). The area remaining after each iteration 1s clearly "

of the area from the previous iteration, and an infinite number
of iteration results in zero.

Initial equilateral triangle and the first six iterations of the Sierpinski sieve
(triangle)

Non — Integer Dimension

Using this fractal as an example, we can prove that the fractal

dimensions is not an integer. Looking at the picture of the first step in
building the Sierpinski Triangle, we can notice that if the linear

dimension of the basis triangle is doubled, then the area of the whole
fractal (black triangles) increases by a factor of three.

Using the pattern given above, we can calculate a dimension for the
Sierpinski Triangle.

__log3

—— = 1.585
log2

The result of this calculation proves the non-integer fractal dimension.

The number of triangles in the Sierpinski Triangle can be calculated
with the formula:

N =3k

e

%’j

Where N is the number of triangles and k is the number of iterations

6.6.Sierpinski carpet and tetrahedron
They are obtained when a similar procedure of iteration described

for Sierpinski sieve is applied to square or tetrahedron
Step 1. Generator Step 2

Step 0 Initiator

-
-
" e s eeewws

."'-...I
‘W -W- |-
S eeeneae
‘.
i,

Initial square and the first five iterations of Sierpinski carpet.

6.7.Menger sponge
It a three-dimensional analogue of the Sierpinski carpet; each side

of the Menger sponge is a Sierpinski carpet, and each diagonal a

Cantor set.

The first three iterations of the Menger sponge — cube with volume 0 and

surface area o

Self-Similar Objects and Fractal Dimensions
e Fractal dimension is a measure of how “complicated” a self-

similar figure is.
e i.c., to measure the fractal dimension, the picture must be self-

similar.
e Self-similar regular shapes: Line, Plane, Cube
e Self-similar irregular shapes: Cauliflower, Galaxy, Coast Line

7.EXAMPLES OF QUASI SELF SIMILAR FRACTALS

7.1.Julia Set
» The boundary of the basin of infinity is non empty. This

boundary is called Julia Set.
» Julia sets for the map f(x) = z* +¢

Julia set

7.2.Mandelbrot Set
It's concept is closely linked to the concept of a Julia set. A

Mandelbrot Set is formed using very simple algorithms as the
Julia set. To draw a Mandelbrot Set do the following:

> Make a complex number z equal to 0 + 0.
> Choose some point on the common plane , and make a

complex number ¢ equal to its coordinates.

» Make z = z- + ¢ and make this change a lot ol ime.

> If the number did not go to infinity. it belongs to the .sct
and you can mark it. Otherwise you can color the point
depc;nding on how fast it escaped to infinity.

» Repeat steps 1-5 tor all the points on the planc.

Mandelbrot set

8.APPLICATIONS OF FRACTAL GEOMETRY

The facts that fractals are abundant in nature and natural
phenomena, is itself a testimony to the potential applicability and
design efficiency of these shapes. Fraction shapes capture the finc
details and organic irregularity of natural forms like clouds, cost lines

and land shanes.

Fractals have variety of applications in science. Because it’s
properly of self-similarity exists everywhere. They can be used to
model plants, blood vessels, nerves, explosions, clouds, mountains,
LUIDUICIICE, €LC. Tractdl BOHIEUTY MOUELS HALUTdl 0DJECts More Close] y
than does other geometries.

Fngineers have begun designing and constructing fractals in
order to solve partial engineering problems. Fractals are also used in
computer graphics are even in composing music.

Iractal gcometry has permeated many arcas of science. Such
as astrophysics, biological science, and has become onc of the most
important techniques in computer graphics. Architects are using .
fractal geometries to create more impressive buildings. Digital artists
use fractal geometries to create interesting art work which engages
views at variable scales Game designers are always seeking to create
natural organic environments. Which do not seem to be constructed
and synthetic. Fractal geometry can be applied in such environments

to include random elements which can enrich user experience.

Fractals are also used to generate natural patterns which can
create effective camouflage and preclude artificial repetitive motifs.
Fractals have been used by seismologists to understand earthquake
phenomena and gain deeper understanding of the earth physical
constitution. As well as the distribution pattern of earthquakes.
Financial theorists have even applied fractals to understand and

forecast stock market patterns.

8.1. Fractal geometry in architecture and civil engineering

Intentionally or unintentionally, architects, builders and other
construction experts have been using mathematics and geometry since
ancient times as the most basic but nevertheless rather valuable tool in

almost all stages of architectural and construction projects. History
remembers great builders and architects who were also great
mathematicians, and vice versa (Vitruvius, Leonardo Da Vinci,...).
Mathematics and architecture have always been close, most of all
because of their common aspiration for order and beauty . The
discovery of fractal geometry (or the geometry of nature), attributed
to the French-American mathematician Benoit Mandelbrot, has
inevitably led to a great revolution in natural and technical sciences,
and consequently in architecture and civil engineering as fields of

technical sciences. he reason why fractals are used so much lies in

that many shapes i nature (coastlines, river branches and flows,
ountain ranges, jungles, tree roots and tops, leaves, flowers, clouds,
lphtmings, climate Systems, snowllakes, bacteria, lungs, blood vessel
Systems L) are irregular and rugged, and offer these irregularities on
ales. The characteristics of all these shapes are essentially
contrary to the characteristies ot regular geometric shapes and bodies
of Fuchidean geometry (ball, cube, pyramid, cone), but can be
considerably better represented using fractals (nature is fractal). In
other words, tractal geometry, in contrast to the Euclidean one, offers
considerably better methods for describing natural objects. The

rugeed characteristics of nature are not modeled by smooth shapes of
Fuclidean geometry, but it is the new approach of fractal complexity
that copes with the irregularities of the structure itself. Although
complex. a fractal is usually described by a simple algorithm,
indicating that there is a law behind the greatest ruggedness and
irregularities . Despite the fact that fractal geometry developed only in
the late 20th century, fractals have been known to people from times
immemorial, they were just not recognized as such (for example,
golden ratio was studied by Pythagoras and Euclid in connection with
the construction of dodecahedron and icosahedron, i.e. polyhedra
bounded by twelve and twenty planes, respectively). Architects and
builders have used fractals as decorative elements from ancient times.
As examples of ancient architecture in which fractal components are
present or dominant, the most remarkable are Egyptian pyramids,
Buddhist and Hindu temples, Gothic cathedrals, but also some _
cathedrals from the earlier period . Historians of mathematics and art,
even today, have been unable to determine with certainty when
golden ratio appeared for the first time in some of the old
civilizations, but they all agree that golden ratio, purposely or not,
was applied in ancient Egypt in the construction of the Cheops
Pyramid in Giza (the ratio of the height of the facet to half the length
of the base edge), one of the seven wonders of the old world that still
eXIsts today.

ditterent N§

A S 8 J e i - B\" ./ in

(a) (b)
(a) Construction of golden ratio. AB - BC — 2:1: (b) Golden reciangle a golden

criral

It was preciscly the golden ratio that was notably used in ancient
and Hindu architecture. Gothic architecture, Renaissance, and later in
classicism, usually for the design of faces orground plans of temples.
HIAUSOICULTS, CHUICHIES diid CAUICUl dls | Fdl LISVl dl ALCian
Acropolis (432 BC), Taj Mahal in Agra (1653, Figure 6). cathedrals
in Anagni (1104), Florence (1436), Milan (Figure 8), Paris (1345).
Reims (1275)....). The golden ratio (Latsectio aurea, or divine ratio. is
the ratio o1 parts o1 a hine segment In which the whole segment a +
b = ABis related to the larger part b = AS as the larger part b is
related to the smaller part

a — ('R'nr(n-l-h\:hz htﬂ:(h‘(hz {14+ TY/ 7D 21-61Q

The golden rectangle or a rectangle whose sides are in the golden

ratio, is considered to be a fractal because it has the following

property of self-similarity: when a square is removed from (or added
t0) a golden rectangle, a smaller (or larger) rectangle with enurely the
same golden ratio always remains, and so indefinitely. The golden
spiral or the spiral formed by the arcs connecting opposite corners of
inserted squares, is actually a logarithmic spiral, i.c. a spiral for which
it is true that any tangent makes the same angle with the spiral radius.
The center of the golden spiral is at the intersection of diagonals of
golden rectangles, which intersect each other at right angle, at a ratio
that involves the golden section again. It is worth mentioning that, as
it expands, it changes in size but it never changes in shape, i.e., it
carries in itself a growth matrix that is present in nature in many

examples. More precisely said, wherever nature needs economical
and regular filling of space, there is a golden spiral.

Essentially, it is true that whenever we notice an
exceptional beauty and harmony, we will usually reveal the presence
of golden ratio so one should not wonder why this concept, which
connects mathematics. nature, science, engineering and art in a very
unusual and interesting way, is present in all aspects of human life.
Human aspiration is to be surrounded by structures and works
pleasant to the eve, so it is logical to expect the magic of golden ratio
to be found in the pores of mathematics, architecture, painting,
sculpture. music and many other scientific disciplines . Numerous
experiments (although not all) in which respondents were asked to
choose among a certain number of rectangles one that they liked
most. show that people prefer a rectangle whose sides are in the ratio
¢. The first such experiment was performed by one of the founders of
modern psychology. Gustav T. Fechner. A team of colleagues from
the Department of Civil Engineering at University North performed
similar experiments during classes of history of architecture, and the
results of these experiments show that their students choose the
golden rectangle as the most pleasing to their eye .The concept shared
by the Cheops Pyramid in Giza, the temple of Parthenon at Athenian
Acropolis, the Taj Mahal mausoleum in Agra, the Constantine's
triumphal arch in Rome, the Cathedral of Notre Dame in Paris. the
United Nations headquarters building in New York, a human body, a
regular pentagon and a regular pentagram, design of credit cards. a
common snail, sunflower ... makes mathematics a universal science.
Like no other concept that appeared in the history of mathematics, it
inspired many thinkers of various disciplines to discover its presence
in various fields of life and periods of human existence .

- !

Rt s

The Milan Cathedral (built from the late 14th to the middle of 19th century) and
Beijing National A quatic Center (2008)

A considerable number of examples of fractal geometry principles
being used in construction and design can be found in modemn
architecture. Two viewpoints or two approaches to the fractal concept
typically stand out: one approach attempts to simulate natural forms
or apply similar forms of different sizes at different scales in project
design, while the other approach attempts to measure (the
measurement is based on calculation of fractal dimension) the
complexity of forms. In both approaches, fractal geometry provides a
quantitative means to describe the complexity of the physical
appearance of an architectural product and the degree to which it
qualifies as a "fractal”. The National Aquatic Center in Beijing or the
British Museum in London, a typical example of the classic method
of opposing the old and the new, and the spiral staircase in the
Vatican Museums are just a few modern and magnificent examples of

architecture with fractal components.

of computer technologies and computer graphics, civil engineers have
been provided with powerful tools for modeling and analysis of
structures with highly nonlinear structure (e.g. hyperbolic paraboloid),
modeling and regulation of rivers and sea shores, techniques they
knew from before, but also for creating something completely new,
which normally relies on disruption of the established and usual order
Of: things. Even Mandelbrot used the example of coastline as a fractal
— inlets look like bays, capes look like peninsulas; if we came closer,

every rock would look like a peninsula . Today, there are other
specialized software solutions that enable engineers to apply fractal
geometry in the design of gnd or reticulated shell structures, but also
in the regulation of nvers and sea shores, o to make models of simple
repeating forms, that are close to the fractal concept, applying a set of
rules of non-linear transformations in the process

The British Museum in London Hyperbolic Paraboloid

Spiral staircase in the Vatican City of Calgary Water

Museums (1932) Centre (2008)

8.2.Fractals in Computer Graphics

The biggest usage of fractals in everyday life is in computer science.
Many images compression schemes use fractal algorithms to

compress computer graphics files to less than a quarter of their
original size.

Computer graphics artists uses many fractals forms to create
text termed landscapes and other intricate models.

It’s possible to create all sorts up realistic “Fractal forgesies”
images of natural scene, such a lunar landscape, mountain ranges and
coastlines. We can see them it may special effects in Hollywood
movies and also in television ads. The “genesis effect” in the films
“star trek II”. “The worth of khan” was created using fractal used to
create the geography of a moon. and to draw the outline of dreaded
“death star”. But fractal signals can be used to model natural

objectives. Allowing up to define mathematically our environment
with a higher accuracy than ever before.

8.3.Fractals in Biological Science

Biological scientists have traditionally model nature using
Euclidean representations of natural object or series. They represented
heartbeats as sine waves. Conifer trees as cones, animals habit a
simple area, and cell membranes as curves or simple surfaces
however scientists have come to recognize that many natural

constructs are better characteristic using fractal geometry. Biological
systems and processes are typically characterized by many levels of
substructure with some general

pattern repeated in an ever-decreasing
cascade.

Scientists discovered that b
in tree like: every chromosome co ny “mini chromosomes”
and therefore can be treated as fractal for a human chromosome, for in
theory one can argue that cverything existent on this world is fractal: -

asic architecture of a chromosome
nsist of ma

~ 29 ~

- . " .
T3 ¥ . e -~ R s ST
> S DrancTvn M ITRCNCE (UK

&
R NE &
>

> Water swirling and twisting out ot a tap

>
e
~

A1l of these are fractals from people ancient civilizations to the
marker of star ek [1: The worth of Khan scientists. Mathematictans
and arusts alike have been captivated by fractal and have utilized

IS I eir Work.

8.4.Fractals in Film Industry

One of the more trivial applications of tractals is their visual eflect.
Not only do fractals have a stunning aesthetic value that is, they are
remarkably pleasing to the eye. but they also have a way to trick the
mind. Fractals have been used commercially in the tilm industry.
Fractal images are used as an alternative to costly claborate sets (o
produce fantasy land scape.

8.5.Fractals in Astrophysics

Nobody really how many stars actually glitter in our skics. but have
vou ever wondered how they were formed and ultimately tound their
home in the world? Astrophvsicist believe that the Key to this problem
in the fractal nature of interstellar gas. Distributions are hierarchical,
like smoke trails or billow cloud in the sky and the clouds in space.
Qix‘ing them an irregular but repetitive pattern that would be
impossible to describe without the help of fractal geometry

5=

8.6.1Fractals in ITmage € ompression
L1 tal geametry i imige

Most use full application of fra fardeg nne
{1 he basic

¢ of the more antraver sl i

COMPression i1 also on
Ao in o ke i g and

concept behind of fractal mage comprens
express it as an it rated system of function:
pnification with mfinite leve
hehind its ideas 15 dernving

he e can be quickly
Iy of fractal

displayed, and at any ma
(the system of

details. The largest problems
functions which describe an image.

8.7.Fractals in Fluid Mechanics

ry adapted to fractals. Turbulent
correctly. A fractal

icists to better

The study of turbulence in flows is ve
flows are chaotic and very difficult to model
representation of them helps engineers and phys
understand complex flows. Flames can also be simulated. Porous
media have a very complex geometry and are well represented by
fractal. This is actually used in petroleum science.

8.8.Fractals in Astronomy

Fractals will may be revolutionize the way that the universe 1S seen.
Cosmologists usually assume that matter is spread uniformity across
space. But observations show that is not true. Astronomers a.gree with
that assumptions on “small” scales. But most of them think that the
universe is smooth at very large scales. However, a dissident group of
scientists claims that the structure of the universe is fractal at :ﬂl
scales. If this new theory is proved to be correct, even the big bung
models should be adapted. Some vears ago, we proposed a ,;c\\- ;
approach for the analysis of galaxy and cluster correlations abmcd on
the concepts and methods of modern statistical physies. This lé;i (N
the surprising result that galaxy correlations are ii‘;u‘ml and not
homogeneous up to the limits of the available catalogues. In the

‘
A
'}

2;::2222160 L]:a11y ?ore redshifts have been measured and we have
-, | method also to th.e analysis of number counts and
ang catalogues. The result is that galaxy structures are highly
|rregular. and self-similar. The usual statistical method, based on the
?:EU;TPUOH of homogenc?ity, are therefore inconsistent for all the

g 1 scales probed until now. A new move general conceptual frame
work is necessary to identity the real physical properties of these
st.ruc.tures. But present cosmologists need more data about the matter
distribution in the universe to prove (or not) that we are living in a
fractal universe.

8.9.Fractals in Telecommunications

A new application is fractal- shaped antennae that reduce greatly the
size and the weight of the antennae. Fractenna is the company which
sells these antennae. The benefits depend on the fractal applied,
frequency of interest, and so on. In general, the fractal parts produce
‘fractal loading’ and makes the antenna smaller for given frequency
of use. Practical shrinkage of 2-4 times is realizable for acceptable

performance. Surprisingly high performance is attained.

8.10.Fractal Antenna

A fractal antenna is an antenna that uses a fractal, self-similar design
to maximize the length, or increase the perimeter (on inside section or
the outer structure), of material that can receive or transmit
electromagnetic radiation within a given total surface area or volume.
cohen use this concept of fractal antenna. And it is theoretically it is
proved that fractal design in the only design which receives multiple

signals.

9.CONCLUSION

We presented a brief overview of one of the greatest secrets of
nature's design: rugged, irregular, self-similar infinite objects
developed through multiple repetition called fractals through this
project. Fractal Theory is one of the most important concepts in
Mathematics. Fraction shapes are used to capture the fine details and
organic irregularity of natural forms like clouds, cost lines land
shapes, etc. Fractal theory helps us to describe objects like trees,
clouds, lightning, river meanders etc. The fact that irregular sets
provide a much better representation of many natural phenomena than
do the figures of classical geometry has led to the introduction of
fractal Theory. The project displays the classifications of fractals
based on their formation and appearance. It provides the history of
fractals and the list of mathematicians who have contributed to it. It
also provides brief examples for exactly Self similarity fractals such
as cantor set, Koch curve, etc. and Quasi Self similarity fractals such
as Julia set, Mandelbrot sets, etc. Fractals have variety of applications
in science because it’s properly of self-similarity exists everywhere. It
demonstrates the applications of fractals in various fields like
architecture, computer graphics, biological sciences, film industry,
astrophysics, Image Compression, Fluid Mechanics, astronomy,
Telecommunication and Fractal Antenna. Game designers are always
seeking to create natural organic environments. Fractal geometry can
be applied in such environments to include random elements which
can enrich user experience. Fractals are also used to generate natural
patterns which can create effective camouflage and preclude artificial
repetitive motifs. Hence making fractals an important concept. The
facts that fractals are abundant in nature and natural phenomena, is
itself a testimony to the potential applicability and design efficiency

of these shapes.

\)

00U VO P UL WM &©W§E€ wWYCCOoeowoe oo

a

References

* B B. Mandelbrot, ‘The Fractal Geometry of Nature’, San

Francisco, W. H. Freeman and company, 1982.

B B. Mandelbrot, ‘The Fractal Geometry of Natu're' 1?81
yearbook of science and future, Encyclopedia Britannica,
Chicago, 1980.

Sala, N.: Fractal geometry and architecture: Some interesting
connections, WIT Transactions on the Built Environment,
2006, Vol. 86, pp. 163—173.

Vyzantiadou, M.A., Avdelas, A.V., Zafiropoulos, S.: The
application of fractal geometry to the design of grid or
reticulated shell structures, Computer—Aided Design, 2007, Vol.
39, No. 1, pp. 51-59.

Zlati¢, S.: Zlatni rez, Technical journal, 2013, Vol. 7, No. 1. pp.
84-90.

Wolfram Alpha LLC, 2019. Wolfram|Alpha.

Websites

O Fractal- Wikipedia
https://en.wikipedia.org/wiki/Fractal

O Fractal antenna
https://slideplayer.com/slide/10852710/39/images/4/ WHA

T+IS+tA+FRACTAL+ANTENNA.pg?hl=en IN
https://en.wikipedia.org/wiki/Fractal antenna

O https:/fractalfoundation.org

STUDIES ON
FUZZY GRAPH THEORY
Project Report submitted to
ST.MARY’S COLLEGE (AUTONOMOUS), THOOTHUKUDI
Affiliated to
MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI
In partial fulfillment of the requirement for the award of degree of

Bachelor of Science in Mathematics

Submitted by
NAME REG.NO.
ARUNA. A 19AUMTO05
ASHINA PARVEEN. S 19AUMTO06
HEMALATHA .B 19AUMT13
MARIAMMAL. P 19AUMT24
SANTHANA SUNDARI.M 19AUMT39
Under the Guidance of

Dr. G. PRISCILLA PACIFICA M.Sc., B.Ed., M.Phil., Ph.D., SET
Assistant Professor of Mathematics

St. Mary’s College (Autonomous), Thoothukudi.

Department of Mathematics
St. Mary’s College (Autonomous), Thoothukudi
(2021 - 2022)

CERTIFICATE

We hereby declare that the project report entitled"STUDIES ON FUZZY GRAPH
THEORY" being submitted to St. Mary’s College (Autonomous), Thoothukudi
affiliated to Manonmaniam Sundaranar University, Tirunelveli in partial ful-
ﬁllmenl for the award of degree of Bachelor of Science in Mathematics and it
1s a record of work done during the year 2021 - 2022 by the following students :

NAME

ARUNA. A

ASHINA PARVEEN. S
HEMALATHA. B
MARIAMMAL. P
SANTHANA SUNDARI.M

3@“‘»0 ?%X{rg

Slgnature of thl’(f/ulde

utdgf ar
Signature xaminer

REG.NO.

19AUMTO05
19AUMTO06
19AUMT13
19AUMT24
19AUMT39

Vi Srella Avpulhg mo:j
Dr. v.oisRage SR HORary

M.Sc. M.Phil., B.Ed., \nu
Head & Asst. Professor of Matht.matics

St. Mary's College (Autonomous)
'I;ﬁﬂt:lukudl -628 001,
Sign mhgﬁ,?:fpal
Principal

St. Mary's College (Autonomous)
Thoothukudi-628 001.

DECLARATION

We hereby declare that the project reported entitled "STUDIES ON FUZZY GRAPH
THEORY", is our original work. It has not been submitted to any university for
any degree or diploma.

A- Arunra steLma Yorven &

(ARUNA. A) (ASHINA PARVEEN. S)
B- Hemalatha P. Mawiommok
(HEMALATHA.B)

(MARIAMMAL. P)

M'Samﬁam Sumlaw,‘

(SANTHANA SUNDARI. M)

ACKNOWLEDGEMENT

First of all, we thank Lord Almighty for showering his blessings to undergo
this project.

With immense pleasure, we register our deep sense of gratitude to our guide
Dr. G.PRISCILLA PACIFICA M.Sc., B.Ed., M.Phil., Ph.D., SET and the Head of
the Department, Dr. V. L. Stella Arputha Mary M.Sc., M.Phil., B.Ed., Ph.D. for
having imparted necessary guidelines throughout the period of our studies.

We thank our beloved Principal, Rev. Dr. Sr. A.S.J. Lucia Rose M.Sc., M.Phil.,

Ph.D., PGDCA for providing us the help to carry out our project work success-
fully.

Finally, we thank all those who extended their helping hands regarding this
project.

STUDIES
ON
FUZZY GRAPH THEORY

CONTENTS

INTRODUCTION

1 PRELIMINARIES ..o, 2
2 FUZZY REGULAR GRAPHS

2.1 Introductionc.ccciiiiiiiiiiiiiiiiiiiiiiiiiiieeee 12
2.2 Fuzzy Regular Graphscccociiiiiiiiiiiiiiiiiiinnnn. 12
2.3 Adjacency Matrices of fuzzy Regular Graphs ... 16
2.4 Product of Fuzzy Regular Graphs 17
3 MATCHING IN FUZZY GRAPHS

3.1 Introductionc.cccciiiiiiiiiiiiiiiiiiiiii 19
3.2 Fuzzy Matching Setscccoovviiiiiiiiiiiiiiiiiiinininnan. 20
3.3 The Linear Programming Formulation 21
3.4 Perfect Fuzzy Set ...ocooiviiiiiiiiiiiiiiiiiiiiiiiiiiienene, 23
3.5 Weighted Matching in Fuzzy Graph 25
4 S-MORPHISM IN FUZZY GRAPHS

4.1 Introductionc.ccceveviiiiiiiiiiiiiiiiiiiiia 27
4.2 S-Morphism in Fuzzy Graphcccciviviiiiiiin. 27
4.3 Equivalent Condition For S-Morphism 30

5 APPLICATIONS .cciiiiiiiiiiiiiiiiiieneee, 33

6 CONCLUSION i, 35

7 REFERENCEScocoiiiiiiiiinnnn, 36

INTRODUCTION

In 1973, Kaufmann defined Fuzzy Graphs for the first time. Then Azriel Rosenfeld
developed the theory of fuzzy graphs in 1975. Fuzzy Graph theory, a combination of graph
theory and fuzzy set theory have been applied in various fields of science and engineering. We,
now have several fuzzy areas like fuzzy Algebra, fuzzy Topology, fuzzy logic and fuzzy
optimization. Fuzzy sets were proposed in order to give a degree of membership to an element
in a given set. The traditional logical membership has only two choices, namely that an element
belongs to a set or does not belong to that set. The crisp set theory is based on this logic and all
results in pure mathematics are derived on this logic. The basic concepts of fuzzy sets can be
found in the book “Fuzzy sets and Fuzzy logic” by George Klir and Bo Yuan. The fuzzy graph
theory can be used in a wide range of domains in which information is incomplete or imprecise,
such as bioinformatics.

Applications of fuzzy logic and fuzzy graph theory in Decision — making, Pattern
recognition, Image processing, Control system, Neutral networks, Genetic algorithm and in
many other areas have been significant results.

The Project consists of four chapters.

In chapter 1, we have discussed about the basic concepts of fuzzy graphs, strength of
connectedness between two vertices, path and bridges.

In chapter 2, we have discussed about Fuzzy Regular Graphs and derive several results with
respect to regularity.

In chapter 3, we have discussed about the concept of Matching in Fuzzy Graphs.

In chapter 4, we have discussed about the concept of morphism, based on the strength of

connectedness between two vertices.

CHAPTER 1
PRELIMINARIES

Definition 1.1: Let S be any non-empty set. A fuzzy subset of S is a mapping

u:S —[0, 1], where [0,1] denotes the closed interval of the set of real
numbers. We say u as a fuzzy subset of S

Definition 1.2: Let p be a fuzzy subset of S. We let p' ={xeS/ p(X) >t}
forall t €[0,1].The sets u' are called level sets or t-cuts of p..

Definition 1.3: We define the supp(p) as the set {xeS /u (x)>0}. The height
of u is defined as h(u)=v{ u(x)/x €S} where v denotes supremum.

Definition 1.4: Let p and v be two fuzzy subsets of S. Then,
(Hpcvif px) <v(x) forall xeS

2 pcvifp (x) <v (x) for all x€S and there exists one X€S
such thatp (X) <v (X) .
B) u=vifu(x)=v (x) forall xeS

Definition 1.5: Let p and v be two fuzzy subsets of S. Then p Uv is the fuzzy
subset of S defined by(p Uv)(X) = max{u (x), v (xX)} for all X€S and p Nv is
thefuzzy subset of S defined by(u Nv)(X) = min{u (X), v (x)} for all XxeS .
Definition 1.6 : A fuzzy graph G = (V,u ,p) is a nonempty set V together
with a pair of functions p: V — [0, 1] and p : V x V — [0, 1] such that for all
X,y inV, we have p(x,y) < w(X) A w(y). For simplicity, we denote the fuzzy graph

by G = (u,p) or by (G, u,p)
Example 1.7: Let V= {ab,c,d,e}. The values of u are given in brackets in the

following figure. The nonzero edge weights are given along the edges
a(0.7)

b(0.5)

c(0.8) 0.4 d(0.9)
Fig :1
2

Definition 1.8: The fuzzy graph H = (v,7) is called a partial fuzzy sub graph of
G=(Viu.,p)if vep and tcp.((i.e) v(x) < p(x) and (x,y) <p (Xy))
for all x,y eV. We say the partial fuzzy subgraph (v,t) spans the fuzzy graph

(w,p) if v=p . Inthis case, we call (v,t) a spanning fuzzy subgraph of (u ,p).

Definition 1.9: Let G = (V, u,p) be a fuzzy graph. For any fuzzy subset v of V
such that v < p the partial subgraph of (u ,p) induced by v is the maximal

partial fuzzy subgraph of (i ,p) that has the fuzzy vertex set v.

(i.e) T(x,y) = v(X) Av(Yy) A p (xy) forall x,y V.

Matrix representation of a fuzzy graph.

A fuzzy graph can be represented by an adjacency matrix where rows and
columns are indexed by the vertex set V and the (i,j)" entry is p(x,y) and where
p(X, X) = u(x).

Since p is a fuzzy relation on p it follows that any diagonal element of p is
larger than or equal to the elements in its column. For computational purposes,
we omit the diagonal entries. The fuzzy graph given in the figure 1.5.7 has

matrix representation

(0.7 03 02 0 0.5
03 05 04 0 O
02 04 0.8 04 O

0O 0 04 09 06

05 0 0 0.6 0.6,

The Composition of two fuzzy relations is defined as follows.

The composition of two fuzzy relations p and p of S x S is defined by

(Lo p)(X2)= sup {uxy) ~ ply.2) }

; (1o p) (x2)=supf 2,.4,5}=5

Fig (2)
As Composition of fuzzy relations is associative, we can talk about po p = p?

and other powers of p.
We define p” (x,y) = sup { p* (x,y) / k=1,2,3.....}. The composition can be

computed, similar to matrix multiplication, where the addition is replaced by v

and the multiplication is replaced by A. We define p° (x,y) = 0 if x=y and

p® (x,y) =p(X) otherwise.

Definition 1.10: A path in a fuzzy graph (u ,p) is a sequence of distinct vertices

Xo, X1, X2 Xn such that p(Xi-1, Xi) > 0, 1<i < n. The strength of the

path is defined as A{p(xi-1,xi) | i= 1,2.....n} where A denotes the minimum,

Here ‘n’ is the length of the path. A single vertex is a path of length 0. A

strongest path joining any two vertices has strength p= (x, y) .

Definition 1.11: A partial fuzzy subgraph (u ,p) is said to be connected if for

all X,y e supp(n), o= (x y)>0.

Definition 1.12: Let G = (V, u,p) be a fuzzy graph. Let x, y be two distinct
vertices and let G’ be the partial fuzzy subgraph of G obtained by deleting the
edge (x,y). That is, G'=(u, p") where p'(x,y)=0and p'=p for all other pairs.
We say that (x,y) is a bridge in G if p"(u,v) <p®(u,v) for some u,v. In other
words, deleting the edge (x,y) reduces the strength of connectedness between
some pair of vertices.

Example 1.13:

1.0 1.0

0.5

Fig(3)

Here the edge ‘ab’ is a bridge, while ‘be¢’ is not a bridge.

Definition 1.14: G = (u,p) is called a tree if (supp(u),supp(p)) is a tree.

G = (u,p) is called a fuzzy tree if (i ,p) has a fuzzy spanning subgraph (u,v)
which is a tree such that vV (u,v) € supp(u) but not in supp(v) we have
p(u,v) < v* (u,v). That is, there exists a path in (u,v) between u and v whose

strength is greater than p(u,v).

Definition 1.15: G = (u ,p) is called a cycle if (supp(w),supp(p)) is a cycle.
= (u,p) is called a fuzzy cycle if (u,p) if (supp(w),supp(p)) is a cycle and

there does not exist a unique (X,y) € supp(p) such that

p(x.y) = A{p(u.v) | (u,v) € supp(p)}.

Example 1.16:

1.0 1.0 1.0 0.5

0.5
0.5

Fig(4)
Fig (5)

Fig(6)

Definition 1.17: The complement [12] of a fuzzy graph G = (V,u ,p) is

definedas G =(V, u, p) where p (X,y) = u(x) Ap(y)- p(X,y).

Example 1.18:
5
(5)u (.6)V (5 u (.6)v
4
3
3 2 1 1
(.4)x 3 (3)w (4)x 3 (:3w
Fig (7) Fig (8)
G G

It is shown in [12], that G = Gand that for a self-complementary fuzzy

graph (G =G), we have Y p(u,v) = lZ(ﬂ(U)A/J(V)) :

U=V u=v

Definition 1.19: The Cartesian product of two fuzzy graphs (Gg,u1,p1) and
(G2,u2,p2) is defined as the fuzzy graph (G1xG2, pixuz, pixp2) where GixG; has
the vertex set V1xVa, and the edge set is given by

E={((u, u2, (uv2))/ ue Vi & uv2e E2 } U { ((u,w), (vi,w)/ we V2 &
uivie Ei1 }

with

((paxpz) (Ug,U2) = pa(Us) A pa(U2) ;

(p1xp2) ((u, U2), (U, v2)) = pa(u) A p2(Uz ,v2) and

(p1xp2) ((Un,w), (Vi,w)) = p2(W) A pa(Uz ,va)

Definition 1.20: The Composition of two fuzzy graphs (Gi,ui,p1) and
(G2,u2,p2) is defined as the fuzzy graph (G1[G:], pieu2,p1e p2) where Gi[Gz]has
the vertex set V1xV2, and the edge set is given by

E={((u, u2), (u,v2))/ ue Vi & uavae E> }o{ ((U1, u2),(vz, v2) /uvie E1 ,uz
V2 € V2 } with

(naop 2) (UzU2) = pa(u) A pa(u2) ;

(p1e p2) ((u,U2), (U,V2))=pa(u) A p2(U2 ,v2) and

(prep2) ((ug, U2),(v1, Vv2)) = ma(u2) A p2(v2) A pr(Uz ,vi)

Definition 1.21: The Tensor product of two fuzzy graphs (Gi,ui,p1) and
(G2,u2,p2) is defined as the fuzzy graph (G: @ G2, W ® u2,p1 ® p2) Where the
vertex set V1xV», and the edge set is given by

E = {((u1, uz), (v1, v2)) / urvie E1 ,uav2 € Ez } with

(mi®p2) (usu2) = pa(us) A pe(uz) ; and

(Pr®p2) ((U1, U2),(V1, V2)) = pa(U1 V1) A p2(U2 ,V2).

Definition 1.22: Let G = (V,X) be a graph where V={v1,vz,----- ,Vn} and

Then (S,T) is an intersection graph. For this graph define fuzzy subsets z,y of S
and T by 7(S)=u(v,) vS, and y(S,,S;)=p v, v;) V(5,S;)eT. Then, (S§T) is

called an intersection graph.

Definition 1.23: The line graph of a graph G is by definition intersection
graph Where L(G) = {Z,W} where Z={ {x}U{ux, vx} / X eX, Ux, VxeV, X= (Ux,
Vx) } and W= { (Sx, Sy) / Sx N Sy = ¢, XeX, x=y}. Define the fuzzy subsets

Ao of Z and W by A(S,)=p(x) and &(S,,S,)=p(X) A p(y). Then (1,@) is a

fuzzy sub graph of L(G).called the fuzzy line sub graph corresponding to (x, p).

The following theorems will be used in subsequent chapters.

Theorem 1.24: The following are equivalent

(1) (x,y) is a Bridge
(2) p=(xy) < p*(XY)

(3) (x,y) is not the weakest edge of any cycle

Theorem 1.25: Let G =(u,p) be acycle. Then (u,p) is a fuzzy cycle if and

only if (u,p) is not a fuzzy tree.

Strong arcs in fuzzy graphs

Definition 1.26: The maximum of strengths of all paths from x to y is called

CONNG (X,y). We say G is connected if CONNGg (x,y).> 0 for all x,y

Definition 1.27: We call the arc (x,y) strong in G if p(x,y) > 0and p(x,y) >

CONNGe-xy) (X,y).where G-(x,y) is obtained by removing the edge (X,y).

Definition 1.28: A path from x to y is called strong if every edge in it is strong

10

Note 1.29: An arc of maximum weight is strong but the converse is not true

(consider a fuzzy cycle, in which every arc is strong, even the weakest edge

Note 1.30: A path of maximum strength need not be a strong path.

Example 1.31:

25

The two paths u,w,t and u,v,w,t have maximum strength .25 but u,v,w,t is not a

strong path since the arc (v,w) is not strong.

11

CHAPTER 2

FUZZY REGULAR GRAPHS

§2.1: Introduction

In this chapter, we see the concept of fuzzy regular graphs. We derive
several results concerning fuzzy regular graphs. We prove if G is a fuzzy
regular graph then so is its complement. We prove that Cartesian product,
Tensor product, Composition of two fuzzy regular graphs is fuzzy regular. We
derive a necessary and sufficient condition for a fuzzy graph to be fuzzy regular.
We prove the existence of a fuzzy regular graph containing the given fuzzy
graph as an induced fuzzy sub graph. Then, we define s-regular fuzzy graphs
and derive a necessary and sufficient condition for a fuzzy graph to be s-regular.
Finally we introduce another type of regularity called pseudo-regular graphs and

relate them with fuzzy regular graphs and regular graphs.

82.2. Fuzzy regular graphs
Definition 2.2.1: Let G = (V,u ,p) be a fuzzy graph. The degree of a vertex v is

defined as d(v) = > p(u,v) The minimum of degrees of the vertices is denoted

u=v

by & (G) and the maximum of the degrees of the vertices is denoted by ®(G).

12

Definition 2.2.2: A fuzzy graph is called fuzzy regular if d(u) = d(v) for all

uveV ,u#v
Example 2.2.3
5
X wW
3
))
3
u \Y
Fig:10
Example 2.2.4
X
1
/4 712
y
1/4 W
2/3
1/3
u
Vv
%,
Fig:11

13

Example 2.2.5: We give an example of a crisp graph which cannot be fuzzy

regular. The graph in the following can never be fuzzy regular

Fig:12

Here after, we assume p(x) = 1 for all the vertices x.

The following results are based on this assumption.

Theorem 2.2.6: If G(u,p) is a fuzzy regular graph of degree k, then G is fuzzy

regular of degree p-k-1

Proof: By definition of G, p_(x,y) = 1(X) A (Y) - p(x,y) = 1- p(x,y).
By taking the sum over the vertices y adjacent to x, we get d (x) = p-1-k, where

p is the number of vertices, we get the result.

Theorem 2.2.7: A necessary and sufficient condition for a fuzzy graph G to be

fuzzy regular is that 5 (G) + 8(G) = p-1 where p is the no of vertices.

14

Proof: Suppose G is fuzzy regular of degree k then g js fuzzy regular of degree
p-k-1.
5 (G)+8(G) = k+p-k-1=p-1
Conversely, assume & (G) + &(G) = p-1. Suppose G is not fuzzy regular then G
has two vertices u and v such that a = d(u) and b = d(v) with a<b.
=8 (G) <a.Now in G, d(v) =p-1-b
= 8(G)<p-1-b
=06 (G)+8(G)<atp-1-b<p-lasb-a>0

which is a contradiction to our assumption.

Theorem 2.2.8: For every fuzzy graph G(u,p) , there exists a fuzzy regular

graph H containing G as an induced fuzzy sub graph

Proof: Suppose G is not fuzzy regular let G' be another copy of G. We construct
G, from G and G' by adding the edges v; v; for all vertices for which d(v;) < A
(G). Now assign the weight to edge v; v; by defining
p(vi Vi)=min { 1, A (G)- d(v;)}
Now G is an induced subgraph of G; with
0 (Gy) =min {1, min {1, A (G)- d(v;)}}

Clearly, 6 (G) <6 (Gy) <A (G).

15

If Gy is fuzzy regular then G; is the desired graph. Otherwise, we
continue this procedure till we get the required fuzzy regular graph. This

process will stop in at most n steps.

82.3 Adjacency matrices of fuzzy regular graphs

Definition 2.3.1: Let G = (V,u ,p) be a fuzzy regular Graph. The adjacency
matrix of a such a fuzzy graph with 'n’ vertices is a n X n matrix, whose (i,j) "

entry is p(vi ,Vj).

2.3.2: Fuzzy regular graphs and doubly stochastic matrices.

Let G = (V,u,p) be a fuzzy regular Graph. By dividing the weight of each edge
by the common degree (i.e) we normalize the weights of the edges we get a
fuzzy regular graph in which d(v)=1 for each vertex v . . Since d(v) = 1 for each
vertex v, the sum of elements in each row and in each column of the adjacency
matrix becomes one. Therefore, the adjacency matrix of such a fuzzy regular
graph becomes a doubly stochastic matrix in which all the elements along the
principal diagonal are zero. (i.e) Corresponding to each fuzzy regular graph on
'n' vertices we have a doubly stochastic matrix in which all the elements along
the principal diagonal are zero. Conversely, given a doubly stochastic matrix in

which all the elements along the principal diagonal are zero, we can associate a

16

fuzzy regular graph in which the degree of each vertex is one. The following

results are obvious for fuzzy regular graphs in which, d(v)=1 for each vertex v.

Result 2.3.3: An odd cycle is fuzzy regular if and only if the weights of all
edges are equal to %2.

Result 2.3.4: An even cycle is fuzzy Regular if and only if the weights of
alternate edges are equal and the sum of weights of any two adjacent edges is
one.

Result 2.3.5: A cycle which is fuzzy regular is a fuzzy cycle.

82. 4: Product of fuzzy regular graphs

In this section, we show that the products of fuzzy regular graphs are also fuzzy
regular. We assume p (x) = 1 for all vertices x. We will represent (Gy,u,p1) and
(Ga,u2,p2) simply as (G1 , p1) and (G, , p,). Let them have py, p, vertices. Then

we have the following theorem.

Theorem 2.4.1: If (Gy,p;1) and (G,,p,) are fuzzy regular graphs of degree k; ,k,
respectively then,

(i) Their Cartesian product is also fuzzy regular of degree k;+ k,

(i) Their composition is also fuzzy regular of degree k,+ pok;

(iii) Their Tensor product is also fuzzy regular of degree k;k,

17

Proof: 1) Letu; ,vie V; andu,,v, € V, Fora fixed (ug, U,) € VixV,
z (plxp2) ((U1, u2)1 (Vll V2)) = z (plxp2) ((u11 u2)1 (uli VZ)) +
v2
le (P1xp2) (U1, Uz), (V1, Up))
= pa(Uz Vo) + > pr(Uy Vi)
=d(u,) in G, +d(uy) in Gy
= kot ky

i) 2 (p1 @ p2) ((Ug, Uz), (V1,V2)) = (p1® p2) ((ug, Ug), (Ug, Vo))+

Z (p1® p2) p2) ((Uz, Uz), (V1, U2))

ul#vl

= > pauz Vo) + Y > pa(ug Vi)

D pa(Uz Vo) + > P2 pr(Up Vi)

=d(uz) +p2.d(uy)

= Ko+ p2ks

i) 2 (pr@ p2) (U), (Vi v2)) =20 2 pa(us Vi) - po((Uz Vo)

v2

=(Y pu(u,vi)). (3 pa(uz,v2))
=d(uy) d(uy)

=k1 k2

18

CHAPTER 3

MATCHING IN FUZZY GRAPHS

$ 3.1 Introduction.

A fuzzy matching involving the vertex weight, the edge weight and the
incidence of edges on a vertex. We define a fuzzy matching in a fuzzy graph
and the fuzzy matching number of a fuzzy graph. The determination of fuzzy
matching number is based on the solution ofa 0,1 linear programming problem
associated with it. We also define fuzzy perfect matching number of a fuzzy
graph and derive three results for perfect fuzzy matching. We also define a new
weight function for the edges of a fuzzy graph. This weight function depends on

both the vertex weight and the edge weight.

19

$ 3.2 Fuzzy Matching sets

Definition 3.2.1: Let G = (V,u,p) be a fuzzy graph with vertex set V. Let E

denote the set of edges of nonzero weights. A subset M of E is called a fuzzy

Matching if for each vertex u, we have > p(uv) <p (u)

veV
(uv)eM

Definition 3.2.2: Let G = (V,u ,p) be a fuzzy graph. We define the fuzzy

matching Number F(G) as

.]
F(G) = Max { > p(,v) M isaFuzzyMatching in GT and the edge set for

M (uv)eM

which the maximum is attained as fuzzy matching set.

Example 3.2.3 :
1 3 5
1 3 5
5 A4 The Fuzzy matching set is
> 5
72 4 !
F(G)=1.2
Fig: 14 Fig: 15

20

$ 3.3 The Linear programming formulation

We can formulate the finding of the fuzzy matching number as a 0,1
programming problem. Let E denote the incidence matrix of the fuzzy graph
G = (V,u ,p) having n vertices and m edges. Then E is a n x m matrix whose
(i,j)"entryis p (g) if the j " edge is incident on v; and 0 otherwise.
1f X = (X, Xopevvneenn. xn)" and V=(p(va),u(Va),......u(vy)) " and
W = (p (e1),p (e2),......p (€m)) then the Linear 0 ,1 programming problem is

Maximze WX

subject to

EXLV

Where, each x; is either 1 or 0.
This is a zero-one Programming problem which can be solved by Additive
Algorithm or by Branch and Bound Algorithm. We can also consider the dual
of the above linear programming problem as a Vertex cover problem for the

given fuzzy graph. For illustration consider the following graph.

U(.9) a(.5) V(.5)
d(.4) e(.3) b(.5)
X(.7) c(.3) W(.6)

Fig: 16

21

The incidence matrix of the above graph is |. where the edges

O D n
(=TT T =]
Www o o
2O O R
w o o

a,b,c,d and e represent the columns and the vertices U,V,W X represent the

edges.
a'\
b
The fuzzy matching problem is Maximize (5 .5 .3 .4 .3)|c | subjectto
d
e
a\
S5 0 0 4 0 b 9
S5 50 0 3 5
. c| =
0 53 00 d 6
0 0 3 4 3 i
e

The fuzzy matching corresponds to the solution a=1, c=1, d=land the fuzzy
matching number is 1.2. Now comes the interesting part. Consider the dual of

the above problem. The dual can be put in the form

S5 50 0) (.5
u u
0550 5
Minimize (9 .5 6 .7)| |subjectto|0 0 3 3|/ | <|.3]. The solution
w
400 4 4
X X
0 30 3 3

is u=1, w=1. Note that the constraint can be put in the form

22

= — -
—_ O O =

0
0
1
1
1

C O = = O

= =

IA

1
1
1
1
1

which, is the corresponding L.P.P of finding the

independence number for the crisp graph.

§ 3.4 Perfect Matching Fuzzy Set

Definition 3.4.1: A fuzzy matching M 1is called a perfect fuzzy matching if for

each vertex u, we have

| Z pluy) =p(u)
Example 3.4.2 :
1 4 9 1 4 9
.6 .8 5 6 5
3 8 I3
Fig :17 Fig: 18

The perfect Fuzzy Matching with F(G) = 1.8

23

Theorem 3.4.3: Let a fuzzy graph G = (V,u ,p) have a perfect fuzzy matching.

Then

1
F(G)= EZM(U)

ueV

Proof: We have Zp(u,v) =u (u). Since at every vertex we attain the Maximum

(uv)eM

possible value for Zp(u,v) , this sum is the maximum over all possible fuzzy

(uv)eM
matchings for that vertex. Taking the sum over all the vertices on both sides we

get the result.

Theorem 3.4.4: Let G = (V,u ,p) be a M-strong graph. Let G have a perfect
fuzzy matching M. Then the Components of the induced crisp

subgraph of M are either K; or Kj

Proof : Let M be a perfect fuzzy matching. Take an edge e from M. If no other
edges of M is incident with e than we have a component K, . If not, let its end
vertices be u and v. Then either u is saturated by e or v is saturated by e.
Without loss of generality, take u. Then no other edge of M is incident with u.

Now we may have edges of M incident at v other than e. However in this case
the edges of M, incident to v will have weights which are less than weight of the

vertex v. Therefore such vertices will have weight of the respective edges in M

24

as G is M-strong. In such cases, these vertices will be saturated by the edges of
M and we cannot have edges in M incident to these vertices. Therefore In this

case we have K s .Hence, the result folloes..

Theorem 3.4.5: Letafuzzy graph G =(V,u,p) have a perfect fuzzy matching
M. Suppose u (V) is the same for all the vertices v then the

components of M are K, or disjoint cycles.

Proof : If a component of M is not K, then the edges of M will grow at both
ends of such edges. But u (v) is same for all the vertices v will
ensure that the growth is at both ends and we get a cycle. Again

these cycles will be disjoint as p (v) is the same for all vertices.

$ 3.5 Weighted matching in fuzzy graph:

Given a fuzzy graph we define a new function W : E — [0,1] by

_ 2p(%Y)
W(xy) = 227
() 1)+ p(y)

In case u (x) =1 for all vertices x then this reduces to just the weight of the edge.
This weight function involves both the weight of the vertex and the weight of
the edge. Then we can find the maximum weighted matching for the

corresponding weighted graph. In case of fuzzy bipartite graphs we can find a

25

maximum weighted matching by solving the corresponding assignmentproblem.

26

CHAPTER 4
s-MORPHISM IN FUZZY GRAPHS

§ 4.1: Introduction

In this chapter, we see another concept of morphism, based on the strength
of connectedness between two vertices. The strength of a path plays a crucial role
in determining the connectedness between two vertices. Here, we define an s-
morphism between two fuzzy graphs, which is based on the strength of
connectedness between two vertices. This s- morphism preserves the strength
between two vertices, and two graphs which are s-morphic need not have the same
number of edges, even though they must have same number of vertices. This s-
morphism can also be expressed in terms of matrices, which give rise to
various interpretations of a fuzzy graph. After defining the s-morphism, we prove
that it is an equivalence relation among the class of all fuzzy graphs with n
vertices. We also prove that this s - morphism preserves tree structures, bridges

and strong edges.

§ 4.2: s-Morphism in fuzzy graph

Definition 4.2.1: :Let (G1,u, p1) and (Gz2,p2, p2) be two fuzzy graphs.
They are said to be s-morphic if there exists a bijection f: V1 — V2 such that
p1” (u,v) =p2° (f(u), f(v)) VuyveV:.

Example

Example 4.1and 4.2

27

04 04

03

Fig (21) Fig (22)

The map defined by. f(a) =u
f(b)=z
fo)=y
f(d)= x
fle)=v

IS a s-morphism.

Given a fuzzy graph G we can compute its strength matrix as follows. We

define the product of two adjacency matrices A and B as C=AB

where Cij= max; { (aik, bij)}

28

It has been proved that ,if M is the adjacency matrix of a fuzzy graph of

order p then there exists a positive integer q < p-1 such that

M4 = M1 = M3*2=— — — — [t has also been proved that the strength of the path
connecting Vi and V;j is the (i,j)™ entry of M9,

The strength matrices of the above two graphs example 4.3 and 4.4 are respectively

Example
ﬁ 4 4 4 N
4 o 5 5 4 and

S 6 o 4 4 respectively

29

§ 4.3: Equivalent condition for s-morphism

We give an equivalent condition for two fuzzy graphs to be s-morphic.

“The fuzzy graphs(Gi, p1, p1) and (Gz, po, p2) are s-isomorphic iff there exists a
permutation matrix P such that AP=PB (or A= PBP*) where A, B are strength
matrices of the fuzzy graphs G1, G2 respectively”.

Here, the multiplication is the usual multiplication of matrices.

/00010\

In the above example 4.4, the permutation matrixisP= | 0 0 1 0 O

1 0 0 0 O

QOOOI/

Remark 4.3.1: Multiplying a matrix by a permutation matrix on the right interchanges the

column, while multiplying on left interchanges rows. Also,
Permutation matrices are real orthogonal matrices. (i.e) P = P!

Remark 4.3.2: If two fuzzy graphs are s-isomorphic then they must have equal
number of vertices but they need not have the same number of edges.

Refer Example 4.4.

Theorem 4.3.3: For a given positive integer n, “s-isomorphism”is
anequivalence relation in the class of fuzzy graphs on n vertices.

Proof :

We use the condition the fuzzy graphs(Gy, p, p1) and (Gz, pe, p2) are s-isomorphic

30

if and only if there exists a permutation matrix P such that AP=PB or A= PBP!
where A, B are strength matrices of the graphs G1,G2 respectively.

Clearly G1 is s-morphic to itself as we can take P to be the identity matrix.
Let G;1 be s-morphic to Gz. Then A= PBP!

=PlBP as P=P1.
Hence G; is s-morphic to G.

Let G1,G2 and Ggz be three fuzzy graphs with strength matrices A,B,C respectively.
Let G1 be s-morphic to G2 and G2 be s-morphic to Gz .Then there exists a
permutation matrix P such that AP=PB and there exists a permutation matrix Q
such that BQ=QC.

Now, AP =PB =APQ =PBQ

=PQC
But PQ is again a permutation matrix which implies that G is s-morphic to Ga.

Hence, the result follows.

Theorem 4.3.4: If two trees are s-morphic then they are isomorphic in the crispsense also.

Proof : Let Ty, T, be two trees which are s-morphic. Then they must have equal

number of vertices. In a tree there exists only one path between any two vertices.
Also, the strength of two adjacent vertices is equal to the weight of the edge joining
them. Hence adjacency will be preserved. Therefore, T1, T2 must be isomorphic

in the crisp sense also.

Note: However the result is not true in case of fuzzy trees, as given by the

example 4.3

31

Theorem 4.3.5: Let two fuzzy graphs(G 1,1, p1) and (Gz i 2, p2) be s-isomorphic
.Then there exists a bijection f : V1 — V> such that p* (u,v) = p* (T (u), f (v))
vu,v €V1 and let. Let (u,v) be a bridge. If (f(u),f(v)) is also an edge, then

(f(u),f(v)) is a bridge.

Proof : Let f: V1 — V, be an s-Morphism from G; to G,

Let (u,v) be a bridge in G1 . Then there exists two vertices u and v such that p 1*
(x,y) <p*(x,y) for some pair of vertices x and y and where p1 '(u, v) = Oand
p 1' = p for all other vertices.
Now, p1°(X,y) <p1=(xy) = p2* (fx),f(y))< p2* (f(x),f(y))as f is an s-morphism
= (f(u),f(v)) is a bridge in Go>.

Theorem 4.3.6: Let two fuzzy graphs(G: ,uu , p1) and (G2 ,u 2, p2) be s-isomorphic.
If (u,v) is a strong edge in G1 and if (f(u).f(v)) is an edge in G then (f(u),f(v)) is also a

strong edge in G2 .

Proof: Let (u,v) be a strong edge in G1 = p1* (u,v) = p 1(u,V)
= p2(f(u), f(v)) = p1 (u, v) asstrength is preserved.
Also, p2 (f(w), f(v) = p 2 (f(u), f(V))

=p1” (wv)2p2 (f(u), f(v))

= (f(u),f(v)) is strong edge .

32

APPLICATIONS OF FUZZY GRAPH IN VARIOUS FIELDS

» Utility of Fuzzy Graph in Medical Field

Utilizations of Artificial Intelligence Techniques occurred in numerous zones
including medication, for example, determination, treatment of sickness, tolerant interest, and
expectation of illness chance and so on. Fuzzy logic approach, as opposed to a certain or
parallel rationale, utilizes a rationale and decision mechanism which doesn't have certain limits
like human rationale. At the point when an individual is given a clinical assessment, a wide
assortment of parameters, called side effects in clinical language, can be found out and
estimated. Because of the intricacy of the human body, it is beyond the realm of imagination
to expect to give a sensible utmost for the quantity of built up criteria. Fuzzy set theory rationale
is a scientific control that we use every day and causes us to arrive at the structure in which we
decipher our own practices. Fuzzy set theory in which esteems among genuine and bogus that
is halfway valid and in part bogus are resolved. Fuzzy set theory express the vulnerabilities of
life, for example, warm and cool which are in the middle of hot and cold scientifically. At the
point when a specialist begins treatment of a patient he utilizes his own understanding,

information from books, and mental capacity.
» Exploit of Fuzzy Graph in Traffic Light Control

The control strategy of the traffic light relies generally upon the quantity of vehicles
in the crossing point line. On the off chance that the traffic stream in the crossing point line is
high, at that point there is a chance of mishap. At the point when the quantity of vehicles in the
crossing point line is low then there might be less chance of mishap. The idea of mishap and
number of vehicles in each line could be fuzzy. This shouldn’t be numerical, is related to the
ideal security level for the traffic. Here we describe each traffic stream with a fuzzy edge whose
enrolment esteem relies upon the quantity of vehicles in that way. Two fuzzy nodes are
neighbouring on the off chance that the relating traffic streams cross one another; at that point
there is a chance of mishap. Plausibility of mishap worth will rely upon node enrolment esteem.
The most extreme security level is achieved when all paths are viewed as in crossing point with
one another and the quantity of vehicles in each line is likewise high. So Graph will be a
complete graph. Right now, chromatic number is the quantity of paths and the control approach
of the lights guarantee that just a single development is permitted in any space of the cycle.
Then again, the base security level is achieved when the crossing point edge set is unfilled,

right now, chromatic number is 1 and all developments are permitted at any moment.

33

» Utilize of Fuzzy Graph in Neural Networks

Neural systems are disentangled models of the organic sensory system and in this
way have drawn their motivation from the sort of registering performed by a human mind.
Neural systems exhibit trademark, for example, mapping abilities or example affiliation,
speculation, vigor, adaptation to internal failure, and resemble and rapid data handling. Fuzzy
neural systems and neural fuzzy frameworks are ground-breaking procedures for different
computational and control applications. The region is still under an extraordinary deluge from
both hypothetical and applied research. There is no orderly or brought together methodology
for fusing the ideas of fuzziness and neural handling. Fuzzy sets can be utilized to delineate
different parts of Neural Computing. That is, fuzziness might be presented at the info yield
signals, synaptic loads, and collection activity and actuation capacity of individual neurons to
make it fluffy neuron. Applying fuzzy techniques into the activities of neural systems
establishes a significant push of neuron-fuzzy computing. A fuzzy neuron has a similar
fundamental structure as the counterfeit neuron with the exception of that its segments and

parameters are depicted through the arithmetic of fuzzy logic.

34

CONCLUSION:

The study of fuzzy graphs made in this report is far from being complete. We
sincerely hope that the wide ranging applications of graph theory and the
interdisciplinary nature of fuzzy set theory, if properly blended together could
pave a way for a substantial growth of fuzzy graph theory. Research on the
theory of fuzzy sets has been witnessing an exponential growth; both within
mathematics and in its applications. This ranges from traditional mathematical
subjects like logic, topology, algebra, analysis etc. to pattern recognition,
information theory, artificial intelligence, operations research, neural
networks, planning etc. Consequently, fuzzy set theory has emerged as a
potential area of interdisciplinary research. We hope that the growth of fuzzy
graph theory will be further accelerated by the development of fuzzy software

and fuzzy hardware.

35

BIBLIOGRAPHY

[1] Abraham kandel, Fuzzy Mathematical Techniques with

Applications, Addison Wesley Publishing Company.

[2] Bhattacharya P.”Some Remarks on Fuzzy Graphs”, Pattern Recognition
Letters 6:297-302,1987.

[3] Bhutani K.R and Rosenfeld A, Strong Arcs in Fuzzy Graphs, Information

Sciences 152 (2003), 319-322.

[4] Craine W.L., Characterization of Fuzzy interval Graphs., Fuzzy Sets and

Systems 68:181-193, 1994.

[5] Goetschel R., Jr., Introduction to Fuzzy hypergraphs and hebbian

Structures, Fuzzy Sets and Systems 84: 235-254, 1996.

[6] Kaufmann A., Introduction to the Theory of Fuzzy Sets, Academic Press,

NewYork, 1975.

[7] Klir G.J. and Yuan B, Fuzzy Sets and Fuzzy Logic: Theory and

Applications, Prentice Hall of India, 2002.

[8] Mordeson J.N. and Peng, C.S, Operations on Fuzzy Graphs, Information

Sciences 79:159-170, 1994 .

[9] Rosenfeld A., Fuzzy Graphs. In: Zadeh K.S, Fu and Shimura M, Eds., Fuzy

Sets and Their Applications, Academic Press, New York, 77-95, 1975.

[10] Vaidyanathan M, Ramakrishnan P.V, Matching in Fuzzy graphs,
Proceedings of National Conference on Discrete Mathematics and its
Applications, NCDMA, sep 27-29,2007 Thiagarajar College of Engineering,

Madurai .

36

A STUDY ON FUZZY THEORIES

Project Report submitted to
ST. MARY’S COLLEGE (AUTONOMOUS), THOOTHUKUDI
Affiliated to
MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI
In partial fulfillment of the requirement for the award of degree of
Bachelor of Science in Mathematics

Submitted by

NAME REG.NO
AROCKIA CATHRINE SHARUBALA. E 19AUMTO04
CAROLIN BELCIA. R 19AUMTO8
MAHALAKSHMI. M 19AUMTI19
PAULIN PACKIAM. B 19AUMT33
SHIBANIA. C 19AUMT43

Under the Guidance of
Dr. V. L. STELLA ARPUTHA MARY, M.Sc., B.Ed., M.Phil., Ph.D.
Head of the department of Mathematics

St. Mary’s College (Autonomous), Thoothukudi.

Department of Mathematics
St. Mary’s College (Autonomous), Thoothukudi
(2021 - 2022)

CERTIFICATE

We hereby declare that the project report entitled "A STUDY ON FUZZY THEORIES "
being submitted to St. Mary's College (Autonomous), Thoothukudi affiliated 1o
Manonmaniam Sundaranar University, Tirunelveli in partial fulfilment for the award of
degree of Bachelor of Science in Mathematics and it is a record of work done during the year

2021 - 2022 by the following students:

NAME

AROCKIA CATHRINE SHARUBALA. E
CAROLIN BELCIA. R
MAHALAKSHMI. M

PAULIN PACKIAM. B

SHIBANIA. C

V- Qra e AP Uding
Signature of the Guide

ang. -

Signature 6f the Examiner

REG. NO.

19AUMTO04
19AUMTO08
19AUMT19
19AUMT33
19AUMT43

Vo Srella Avpithg
Signature of the

HO
Dr. V.L. Stella uﬁma Mery
M.Sc.,M.Phil., B.Ed., Ph.D.,
Head & Asst Professor of Mathematics
St. Mary's College (Autonomous)
Thoothukudi-628 001.

Signature of the Principal
Principal
§t, Mary’s College (Autonon:yus)
Thoothukudl - 628 001.

DECLARATION

We hereby declare that the project reported entitled "A STUDY ON FUZZY THEORIES", is
our original work. It has not been submitted to any university for any degree or diploma.

° o
E Asotia (abhsue §harubala Poonsts Butfeys .
(AROCKIA CATHRINE SHARUBALA. E) (CAROLIN BELCIA. R)

M- 1 n f ‘ 5W %PauLn Pacb‘awu

(MAHALAKSHNMI. M) (PAULIN PACKIAM. B)

C . Shubama
(SHIBANIA. C)

A STUDY ON
FUZZY
THEORIES

INTRODUCTION

The term ‘FUZZY’ refers to ‘lacking in clarity’ or ‘vagueness’. Fuzziness occurs
when the boundary of a piece of information is not clear-cut. For example, moving the
camera causes fuzzy photos.

Fuzzy set theory: Fuzzy set theory was proposed by Prof. Lotfi A. Zadeh in 1965 as
an extension of the classical notion of a set. With the proposed methodology, Zadeh
introduced a mathematic method with which decision making using fuzzy descriptions
of some information becomes possible. Fuzzy set theory is at once a generalization as
well as extension of Crisp set theory. Thus, the basic theme and ideas of Crisp set
theory will be reflected in Fuzzy set theory.

Fuzzy relation: From a historical perspective, the first fuzzy relation was mentioned
in the year 1971 by Lotfi A. Zadeh. Fuzzy relation can be utilized in databases.

Fuzzy matrix: Fuzzy matrices were introduced for the first time by Thomason who
discussed the convergence of power of fuzzy matrix. Fuzzy matrices play a vital role in
scientific development.

Fuzzy logic: Fuzzy logicisalogic. Logic refers to the study of methods and principles
of human reasoning. Any event that changes continuously we cannot define it as a true
or false in such cases we can solve it by fuzzy logic. It deals with vagueness and
imprecise information. It was proposed by Lotfi A. Zadeh in his paper ‘Fuzzy Logic
and Approximate Reasoning, Synthes, 30,1975°.

CONTENT

. Fuzzy Set Theory

1.1.
1.2.
1.3.
1.4.
1.5.

FUZZY Sl .o e 8
Operations on Fuzzy Sets...........cooiiiiii i, 10
Certain Numbers Associated with a Fuzzy Sets......................o.ee. 13
The Power Of FUZZY SEt.... ... e 17
Extension PrinCiple..... ... 18

. Fuzzy Relation

2.1.
2.2.
2.3.
2.4.
2.5.

DEfINItION. .. e 23
Operations on Fuzzy Relations. ..o, 25
a-CutofaFuzzy Relations. ... 26
Composition of Fuzzy Relations............ocooiiiiiiii 27
Projections of Fuzzy Relations................cocoiiiiiii i 30

Fuzzy Matrix

3.1.
3.2.
3.3.
3.4.

DefINItION ..o 32
Addition of MatriCesS.c.oiiii e 32
Max - Min Composition of Matrices.............coooviiiiiiiiiiiii i, 34
Matrix Multiplication...........cooeiiiiiiii e 35

. Fuzzy Logics

4.1, LOQIC CONNEBCLIVES. ... ettt e 38
4.2. Three Valued LOQICS......c.ooviiniiiii e 40
4.3. N-Valued Logic for N>4... ..o 42
4.4. Infinite Valued LOQICS........oviiriiiiii e 42
A5, FUZZY LOQICS. ..ottt 43
c CONCIUSION. ... 45
c REIEIENCE. .. e, 46

1. FUZZY SET THEORY

The concept of set is the building block of mathematics. In fact, the whole edifice
of mathematics is constructed out of it. This concept is so fundamental and all-pervading
that it is absolutely essential to have a firm and clear understanding of the theory of sets.

A set means any well-defined collection of objects. This, however, is not at all
defined it is what is called an undefined term. Another undefined term is a

member or an element of a set. We express the relation between an object and a set to
which it belongs by writing a € A. The symbol € is read as “belongs to “, “lies in” etc.

Crisp Set:

Crisp set is a collection of unordered distinct elements, which are derived from
Universal set. In the context of fuzzy sets theory, we often refer crisp sets.

Characteristic function:
Crisp Set Theory can also be studied via characteristic function.
Definition:

Let U be a fixed non-empty set, to be called the universal set or universe of discourse
or simply domain. Define,

F: U - {0,1}

f is called characteristic function on U. The set of all such functions is denoted as
CH(U). Each element of CH(U) is called a CH on U.

1.1. FUZZY SETS:

The concept of a fuzzy set is an extension of the concept of a crisp set. Just as a
crisp set on a universal is defined by its characteristic function from U to {0,1}, a fuzzy
set on a domain U is defined by its membership function from U to [0,1]. Let U be a non
- empty set to be called the universal set or the universe of discourse or simply a domain.
Then by a fuzzy set on U is meant a function,

A:U - [0,1]

‘A’ is called the membership function, A(x) is called the membership grade of x. A
={(x, A(x)): x € U}. We represent the unit interval [0,1] by I.

Membership Function:

The membership function fully defines the fuzzy set. A membership function
provides a measure of the degree of similarity of an element to a fuzzy set. It can be
either be chosen by the user arbitrarily, based on the user’s experience or be designed
using machine learning methods.

Example:
Consider U={a, b, c,d}and A: U — | defined by
A(a) =0.0, A(b)=0.7,
A(c) =0.4, Ad)=1
Then A is a fuzzy set on U.
A ={(a,0), (b,0.7), (c,0.4), (d,1)}
Fuzzy Power Set:
Let U be a domain. The set of all fuzzy sets on U is denoted by PF(U)
is called the Fuzzy Power Set of U.
PF(U) ={A|A:U> I}
1.1.1 RELATION BETWEEN FUZZY SETS:
Let U be a domain and A, B be fuzzy sets on U.
Containment or Inclusion:
A is said to be included or contained in B if and only if A(x)<B(x) for
all x in U. We write as ASB. We also say that A is a subset of B.
Equality:
A is said to be equal to B or same as B if and only if ACB and BSA,

I.e.) A(X) = B(x), for all x € U.
We write as A=B.

These two relations satisfy the following properties:
Let A, B, C be fuzzy sets on U. Then,
1. AcCA.

ACB and BSA imply AcC.
ACB and BSA imply A=B.
A=A
A=B imply B=A.

6. A=B and B=C imply A=C.
1.2. OPERATIONS ON FUZZY SETS:

a bk wn

Let U be a domain and A, B be fuzzy sets on U. Then,
Union:

Union of A and B, denoted by AUB, is defined as that fuzzy set on U for which,

(AUB) (x) = max (A(x), B(x)), for every x € U.
Intersection:

Intersection of A and B, denoted by A N B is defined as that fuzzy set on U for which,
(ANB) x = min (A(x), B(x)), for every x € U.

Complement:

Complement of A, denoted by A’, defined as they fuzzy set on U for which,

(AH)x = 1 - A(x), foreveryxinU.

Example:

1) Let U= {a, b, c, d} be the domain and A and B be fuzzy sets on U as given a

a b C d
0.5 0.8 0.0 0.3
B 0.2 1.0 0.1 0.7

For AUB,

(AUB) (a) = max [A(a), B(a)]
= max [0.5, 0.2]
=05

(AUB) (b) = max [A(b), B(b)]

10

= max [0.8, 1.0]

=1.0
(AUB) (c) = max [A(c), B(c)]
= max [0.0, 0.1]
=01
(AUB) (a) = max [A(c), B(c)]
= max [0.3, 0.7]
=0.7
Thus,
a b c d
AUB 0.5 1.0 0.1 0.7
For A N B,
(A N B) (a) =min [A(a), B(a)]
=min [0.5, 0.2]
=0.2

(A N B) (b) =min [A(b), B(b)]
=min[0.8, 1.0]
=038

(AN B) (c)=min [A(c), B(c)]
=min[0.0, 0.1]
=0.0

(A N B) (d) =min [A(d), B(d)]
=min[0.3,0.7]
=0.3

Thus,

11

ANB 0.2 0.8

0.0

0.3

For A',
A'(a)=1-A(a)

=1-05
=05
A'(b)=1- A(b)

=1-08
=0.2
A'(c)=1-A(c)

=1-0.0
=1.0
A'(d) =1-A(d)

=1-0.3
=0.7
Thus,

A 0.5 0.2

For B,
B'(a) =1-B(a)

=1-0.2
=0.8
B'(b)=1- B(b)

=1-1.0
=0.0

B'(c)=1-B(c)

=1-0.1
=0.9

12

B'(d) =1 - B(d)

=1-0.7
=0.3
Thus,
a b C d
B’ 0.2 1.0 0.1 0.3

1.3. CERTAIN NUMBERS ASSOCIATED WITH A FUZZY SETS:

Let A be a fuzzy set on U. Then by the scalar cardinality of A, we mean then
number) A(x) where the summation is over all the elements of U or more generally,
the summation is over the support of A[supp(A)]. This makes sense only when U is
a finite set or more generally, the support of A is finite. This number is denoted by
|A| or SC (A).

Example:

1) A=(0.1,0.8,0.2)
sc(A) = 1.1

I)Height of a fuzzy set:

Let A be a fuzzy set on U. Then the height of A is defined to be that number ht (A)
which is such that:

i) A(x) <ht (A), for all x in supp(A).
i) A(x) = ht (A) for all least one x in supp(A).
This can be compactly expressed as follows:

ht (A) = max {A(X)| x in supp(A)}.
When supp(A) is finite. When supp (A) is not finite, we write,

ht (A) = supremum {A(X)| x in supp(A)}.
And include the condition A(x) = ht(A) for at least one x, explicitly in order
to exclude certain pathological cases like the following fuzzy set:

A(X)=1-e™* , for x>0

13

A(x) = 0, for x<0.

For this fuzzy set, height is 1, but there is no value of x for which A(x)=1 and also that
ht(A) always lies between 0 and 1.

Example:

1. IfA=(0.0,0.2,0.8)
Then ht(A)=0.8

2. IfA=(0.0,0.2,0.6)
Then ht (A)=0.6
i)Normal fuzzy set:

Let A be a fuzzy set on U. Then A is said to be normal if A(x) = 1 for at least one
x in U. In other word, ht(A) = 1.

Example:

1. All non-empty crisp sets are normal.
Certain fuzzy set can be converted into a normal fuzzy set. This procedure is called
normalization of a fuzzy set.

iii)Normalization of a fuzzy set:

Let A be a non-empty fuzzy set on U. Let Ay (x) = A(X)/ht(A) for all x in U. Then
Ay isafuzzy set on U, called the normalized version of A. Note that ht(4,)=1,s0 that
Ay isnormal. Note that Ay is always a fuzzy set. This process associates a fuzzy set
with a given fuzzy set. Note also that if A is normal, then Ay = A, i.e., an already
normal fuzzy set is not affected by normalization.

Example:
1. For A=(0.0,0.2, 0.8), ht(A)=0.8 and hence A, =(0.0, 0.25, 1.0)
2. For A=(0.0,0.2, 1.0), ht(A)=1 and hence A, =(0.0,0.2,1.0)
Iv)Support of a fuzzy set:

Let A be a fuzzy set on U. The set { xeU | A(x)>0} is called the support of A and
Is denoted by supp(A).

Remark:

1. supp(A) is a crisp set on U, for all fuzzy set A.
2. supp(A) = A for any crisp set A.

14

3. for a genuine fuzzy set A, A c supp(A)

Before giving the definition of a-cuts of a fuzzy set, we deal with level set
associated with a fuzzy set.

v) Level set associated with a fuzzy set:

With every fuzzy set A on U, we associate L(A), a crisp subset on 1=[0,1] called
its level set. L(A) is defined as follows:

LA)={ael/A(x) = a, for some xeU}.
Example:

1. LetA={0.8,0.0,1.0,0.4}
Then L(A) = {0.4, 0.8, 1.0}.

2. Let A be given by
A(X)=1-e™* , for x>0

A(x) =0, for x<0.

Then, L(A) =[0,1]
vi)a-Cuts of a fuzzy set:

Given a fuzzy set A on U and a number « in |, such that 0< a<1. We can
associate crisp set with A, denoted by A, and defined as

A, ={xeU | A(x)> a}. A, iscalled the a-cuts of A. Thus, for each a , we
obtain an a-cuts of A.

Example:

Let U be the set {a, b, ¢, d} and A be given by A =(0.8,1.0,0.3,0.1). Then,
Ai =(0,1,0,0) = {b}
Aos =(1,1,0,0) = {a, b}
Ap3=(1,11,0)={a, b, c}
Ay;=(111,1)=U

More generally,

When 0 <a <0.1, A, =4p1
When 0.1 <a <0.3, A, =A4)3

15

When 0.3<a <0.8, A, =Ays

When 0.8<a < 1.0, 4, =4,
This happens when the domain U is a countable set.
vii) Fuzzy cardinality of a fuzzy set:

We now introduce an important concept associated with a given fuzzy
set namely, its fuzzy cardinality.

Let A be a non-empty fuzzy set on U and supp(A) be finite. Its fuzzy cardinality,
denoted by FC(A), is defined as the fuzzy set on N ((the set of all-natural numbers.) given
by > a/ SC (4,) that is

FC(A)=) a /n, where n,= SC (4,) and Y runs over all « in L(A).
Example:

1.For A=(0,0.3,0.2,0.8,0.1), L(A) = {0.1, 0.2, 0.3, 0.8}. Thus the & —Cuts of A are
AO.l = {0!1111111}1 A0_2: {0,1,1,1,0},

Ay5 ={0,1,0,1,0}; A,¢={0,0,0,1,0};

Further, SC (4,,)=4
SC (Ap2)=3
SC (Ao3)=2
SC (A8)=1

Thus, FC(A) = 2= + 2 4+ 22 4 ==
2.1f A={a} is a crisp singleton set, then L(A) = {1}. Hence, there is only one non-empty
a-cut, A, , ={a}. Therefore, SC (4,,) =1and FC(A) =1.0/1. Thus, FC(A) ={1}isa
crisp singleton on N. The fuzzy cardinality gives a mapping from PF(U) to PF(N).

viii)Fuzzification of a fuzzy set:

We now take up the method of fuzzification of a given fuzzy set. LetU
be a domain and for every x in U let a fuzzy set K(x) on U be given, then for any fuzzy
set A on U, we define the fuzzification of A,

F(A) =2 AXK(X)

16

Here, Y stands for the union over elements of U and A(x)F(x) stands for usual product of
numbers. Note, that F(A) is a fuzzy set on U. The collection {K(x)| x € U} is called the
kernel of fuzzification.

Example:

Let U be {a,b,c,d},
_03 . 06
A_T + >

07 . 04

K(a) = + Y
04 10 04

K(b) = + > + ~
02 08

K(C) = + ~

Then

K(A) = A(a)K(a) + A(b)K(b) + AC)K(C)
_ 0.7 0.4 0.4 1.0 0.4
—0.3X[7+7] + 0.6 x [7+7+T] +0

__ 024 06 024

a b

1.4 THE POWER OF A FUZZY SET:

For a fuzzy set A on U, and a positive real number a, we define the a-th power of A
(denoted by A%),

A*(X)=[A(x)]* forall x in U
The following special cases are quite important in applications:
i)Concentration of A:
It is denoted by con(A) and is given by

con(A)(x) = [A(x)]? forxinU

con(A)(x) = A for x in U
That is, con(A) = A2
i) Dilation of A:

17

This is denoted by Dil(A) and is given by Dil(A) == [A(x)]%° forall x in U.
That is,

Dil(A) = A%>
iii)Contrast Intensification of a Fuzzy set:
The contrast intensification of a fuzzy set A, denoted by Int(A), is defined as:
Int(A)(x) = 2[A(x)]?* for 0<A(x)<0.5
= 1-2[1- A(x)?] for 0.5<A(x)<I
1.5. EXTENTION PRINCIPLE:

The extension principle is a basis principle by means of which certain mathematical
concepts pertaining to the crisp side can be generalized to the fuzzy framework (Notable
exception are union, intersection and complement operators of crisp sets.)

The extension principle was introduced by Zadeh in his paper ‘The Concept of a
Linguistic Variable and its Application to Approximate Reasoning’. A further
elaboration of this principle was presented by R.R. Yager in ‘A Characterization of the
Extension Principle’. The details of this principle are as follows:

Let f be a function from U, x U, x U3 x --- x U,, (a Cartesian product of n domains)
toV. LetA,, A,, As,....., A, be fuzzy sets on U,,U,,U;, ---,U, respectively. Then,
extension principle indicates a method of associating a fuzzy set B on V based on the
given information or inputs. This fuzzy set B is given by

B(v) =0, if f~1(v) is empty

= max [min {4;(u,), 4, (uy),A, (u,)} if f~1(v) is empty where
the max is taken over all n-tuples (u,,u,,us, -+ ,u,)in Uy x U, X U3 x --- x U, whose
image is v under f, i.e., all n-tuples such that f(u,,u,,us, -+ ,u,)=Vv.

We write,
B=f(A)orB=foA
Where, A= A; xA, X Az X -+ x A, and
A (uq,uy,usz, - ,u,) =min [4;(uy), A, (uy),,A, (u,)] is a fuzzy set on

U= leUZXU3>< ...xUn_

18

A is called the cartesian product of the fuzzy sets A, A,, As,....., A,. The fuzzy set B is
called the image of A under f.

We close this section with two examples illustrating the extension principle. The first
one is a straightforward example which helps to clarify and fix the concepts. The second

one illustrates the idea of extending the addition of real numbers to ‘addition’ of fuzzy
sets.

Example 1
Consider the three domains U, V, and W where U = {a, b, ¢}, V ={X, y, z} and
W = {p, q, r}. Consider the function f: UxV -W
where f(a,x) = f(a,y) = f(c,y) = p,
f(a,z) = f(b,x) = f(b,z) = q and

f(b,y) = f(c,x) = f(c,z) = r. This can be expressed compactly in the form of a
table:

U V
X y z
F
a p p q
q r q
c p

Consider the fuzzy sets A and B on U and V respectively, where
A= 0.2 + 0.7 + 0.5
a b c

B:E+E+
x

1.0
y z

Then, the values of C(p), C(q) and C(r), where C = f(AxB) the image fuzzy set on W, are
given by
D 7 ={@x), @y}
C(p) = max [min {A(a), B(x)},min{A(a), B(y)}, min{A(c), B(y)}]

19

= max [min {0.2, 0.5}, min {0.2, 0.3}, min {0.5, 0.3}]
=max [0.2, 0.2, 0.3]
C(p) =0.3
i) f7H(q) ={(a 2), (b, x), (b, 2)}
C(q) = max [min {A(a), B(z)},min{A(b), B(x)}, min{A(b),B(2)}]
= max [min {0.2, 1.0}, min {0.7, 0.5}, min {0.7, 1.0}]
= max [0.2, 0.5, 0.7]
C(q)=0.7
iii) £ ={(b.y). (¢, %), (¢, 2)}
C(r) = max [min {A(b), B(y)},min{A(c), B(x)}, min{A(c),B(2)}]
= max [min {0.7, 0.3}, min {0.5, 0.5}, min {0.5, 1.0}]
=max [0.3, 0.5, 0.5]

C(r=05
Thus,
C= 03 + 07 + 05
14 q r
Example 2

Consider the three domains U, V and W where U=VV=W=N, the set of natural numbers.

Let f: UXV — W be given by f (m, n) = m + n, i.e., fis the addition operation on
natural numbers.

Let A and B be fuzzy sets on U and V respectively, given by
A=22422427 and
2 3 4
B = o7 + 0.6 + 0.5
3 4 5

Observe that supp(A) = {2, 3, 4} and supp(B) = {3, 4, 5}. Thus, the various pairs in
UxV that are to be considered lie in supp(A) x supp(B). These pairs and their images
under f are given in the following table:

20

f
2
3

0 N ol &
o ® N| w»

N o o w

4
) f7H(7) ={(2.5). 3,4), 4, 3)}
C (7) = max [min {A(2), B(5)},min{A (3), B (4)}, min {A (4), B(3)}]
= max [min {0.2, 1.0}, min {0.7, 0.5}, min {0.7, 1.0}]
=max [0.2, 0.5, 0.7]
C((7)=07
i) £71(5) ={(2 3)}
C (5) = max [min {A(2),B(3)}]

= max [min {0.2, 0.7}]
= max [0.2]
C (5)=0.2
i) £71(6) ={(2,4), (3, 3)}
C (6) = max [min {A(2), B(4)},min{A (3), B (3)}]
= max [min {0.2, 0.6}, min {0.8, 0.7}]
=max [0.2, 0.7]
C(6)=0.7
v) f71(8) ={(4.4), 3,5)}
C (8) = max [min {A(4), B(4)},min {A (3), B (5)}]
= max [min {0.7, 0.6}, min {0.8, 0.5}]
= max [0.6, 0.5]
C(8)=0.6
v) £71(9) ={4,5)}

21

C (9) = max [min {A(4), B(5)}]
= max [min {0.7, 0.5}]
= max [0.5]
C(9)=05
Therefore,
Since f represents addition, C=f (A, B) can be written as:
C=A+B

Where ‘+’ denotes addition of fuzzy sets or if we prefer, can be called fuzzy addition.

22

2.FUZZY RELATION
2.1 DEFINITION:

Fuzzy relation defines the mapping of variables from one fuzzy set to
another. Like crisp relation, we can also define the relation over fuzzy set.

Let A be a fuzzy set on universe X and B be a fuzzy set on universe Y, then the
Cartesian product between fuzzy sets A and B will result in a fuzzy relation R which is
contained with the full Cartesian product space or it is subset of cartesian product of
fuzzy subsets. Formally, we can define fuzzy relation as,

R=AXxB
And
Rc (XxY)

where the relation R has membership function,

HR(X, y) = pA x B(X, y) = min(pA(x), uB(y)

An n-ary fuzzy relation R is a fuzzy set on Ui x UaX................ xU,, where
U.. Ua.......,U,, are domains.

A 2-ary fuzzy relation is also called a binary fuzzy relation. A binary fuzzy
relation (BFR) looks like

R = ZR(u,v)

(wv)
where (u, v) varies over U x V.
We say that R is from U to V and is indicated by R: U-V

A 3-ary fuzzy relation is also called a ternary fuzzy relation. A 3-ary fuzzy
relation looks like

t(u,v,w)

=X

(wv,w)

where the triplets (u, v, w) vary over U x V x W.

23

Example

1. LetU={a, b,c}andV ={x, y}. Then a binary fuzzy relation on U x V is given

by
R X y

a 0.6 1.0
0.3 0.5
0.4 0.2

This is called the tabular or matrix representation of R and it is very useful when
dealing with binary fuzzy relations.

2. U={a, b, c}, V={x, y} and W= {&, *}. Then a fuzzy relation on
U xV x W is given by

;021 038 09
(ax &) (by &) (ay*)

We can express T which is a ternary fuzzy relation in the tabular form: one
matrix for & and one for *.

& X y

a 021 O
0 0.38
0 0

* N X y

3. U and V be the set of real numbers. Then the relation 'y is smaller than x' is a
binary fuzzy relation on UxV.A representation of this fuzzy relation is given

by

24

R(x,y) =0 ify=>x

1 .
_1+(x—y)‘2 ify<x
2.2. OPERATIONS ON FUZZY RELATIONS :
Let Ui, Uz, , U, be domains and let U = U x Uz x.......... X

shows that every n-ary fuzzy relation (FR) on Uix Uxx....... xUp,, is a fuzzy set on U
and vice-versa.

Let U be UiXx Uz2X.......... x U,.
1.Equality:

For R, S in PF(U), we say R =S if and only if R(u) = S(u) for all uin U
2. Containment:

For R, S in PF(U), we say R € S if and only if R(u) < S(u) for all u in U.
3.Union:

For R, S in PF(U), the union of R and S, denoted by RUS, is defined by
(RUS)(u) = max[R(u), S(u)] for every u in U.

Example:
0 1 0
Let A=|1 0 0
1
1
B=|0 1 0
1

0 1 1
(AUB)(u) = [1 1 0]
0 0 1

4.Intersection:

For R, S in PF(U), the intersection of R and S, denoted by RNS, is defined by
(RNS)(u) = min[R(u), S(u)] for every u in U.
Example:

25

0 1 0 0 0 1
Let A=|1 0 0] B:\O 1 0]
0 0 1 0 0 1

0 0 O

(AnB)(u) = [O 0 0]

0 0 1

5.Complement:

For R in P(FU). R' is defined by R'(u) = 1-R(u) for every w in U.

Example:
0 1 0
Let A=|1 0 O
0 0 1
0 1 1
A'u=11 1 0
0 0 1

2.3. 0-CUTS OF A FUZZY RELATION:

Let R be a fuzzy relation (FR) on Ux V and a be such that 0 < o < 1. Then, the
a-cut of R, denoted by R, is defined by

R, ={w,v) I R(u,v) = a}
Note that R, is a crisp set on U x V and hence is a crisp (binary) relation on UxV.

The a-cuts of R satisfy the following property, called the decomposition theorem
or resolution form of R. Let R be a fuzzy relation on U x V. Then R=}(aR.) where

> is taken over all a. The following example illustrates the above point.

Let R be a fuzzy relation on U xV given by the matrix

R=[54 0o
Then, Ro.FH (1)] and R°-7:[(1) 8]
(0.4 Ro4) U (0.7% Ro7) = 8:2 0(',4]U [0(')7 8]

_[07 04

04 0.0

26

This verifies the above theorem.
Remark:

The a-cut decomposition can be obtained directly by applying the maximum
principle. Again, consider R as above. Consider the largest entry 0.7 of R and write R
as:

R:O.YX[(l) 8]U[0.4 04)

04 O

Now, apply this principle again to obtain
R=0.7x [Juoax]]
which is the a-cut decomposition of R.
2.4. COMPOSITION OF FUZZY RELATIONS:
Composition of two relations can be defined in several ways.
« Max-min composition
* Max product composition

Max-min Composition of Two Fuzzy Relations:

Let R be a binary fuzzy relation (BFR) on U x V and S be a BFR on Vx W. Then,
the max-min composition of R and S (that is, composition of R followed by S) is a BFR
on UxW, denoted by SoR and is given by

(SoR) (u, w) = max [min {R (u, v), S (v, w)}]
where the maximum is taken over all v in V.
2. More generally, let R be in PF (U x V) and S be in PF (V x W). where now
U=Uix Uz x xUk
V=VixV2x...... X Vm
and W=Wix W2x....... X W,

Then, the max-min composition of R and S, denoted by SoR, is a fuzzy relation on Ux
Wand is given by

(SoR) (u, w) = max {min (R (u, v). S (v, w)}]

Where now

The maximum is taken over all v in V.

Note that R is a (k+ m)-ary fuzzy relation, S is an (m + n)-ary fuzzy relation and Vis
the common domain (or, called the linking domain) of R and S. This is called the
compatibility condition for composition. And finally. SoR is a (k+ n)-ary fuzzy
relation.

Examples:

Consider the fuzzy relations R on U x V and S on V x W, where U = {a, b, c}
V ={x,y, z} and W= {&, *} given in matrix form by

1.0 04 0.5 0.7 0.1
R=103 0.0 0.7 S=(0.2 09
0.6 08 0.2 0.8 0.4

Then SoR can be defined and it is fuzzy relation on U x W. Now

(SoR) (a, &) =max [min {R (a, v), S (v. &)}], for everyvinV

=max [min {R (a, X), S (X, &)}, min{R (a,y), S (y, &}, min{R (a, 2), S (z, &)}]
= max [min (1, 0.7), min (0.4, 0.2), min (0.5, 0.8)]

=max (0.7, 0.2, 0.5]

=0.7

(SoR) (a, *) = max [min {R (a, v), S (v, *)}], foreveryvinV

=max [min {R (a, x), S (X, *)}, min {R (a, ¥), S (y, ®)}, min {R (a,), S (z, *)}]

= max [min (1.0, 1.0), min (0.4, 0.9), min (0.5, 0.4)]

=max [1, 0.4, 0.4]

=04

(SoR) (b, &) = max [min {R (b, v), S (v, &)}], foreveryvinV

=max [min {R (b, X), S (X, &)}, min {R (b, ¥), S (y, &)}, min {R (b, 2), S (z, &)}]
= max [min (0.3, 0.2), min (0.0, 0.2), min (0.7, 0.8)]

=max [2,0.0,0.7]

=0.7

28

(SoR) (b, *) = max [min {R (b, v), S (v, *)}], for everyvinV

=max [min {R (b, x), S (x, *)}, min {R (b, y), S (y, *)}, min {R (b, z), S (z, *)}]
= max [min (0.3, 0.1), min (0.0, 0.9), min (0.7, 0.4)]

=max [0.1, 0.0,0.4]

=04

(SoR) (¢, &) = max [min {R (c, V), S (v, &)}], for every vin V

=max [min {R (c, x), S (X, &)}, min {R (¢, y), S (¢, &)}, min {R (c, 2), S (z, &)}]
= max [min (0.6, 0.7), min (0.8, 0.2), min (0.2, 0.8)]

=max [0.6, 0.2 ,0.2]

=0.6

(SoR) (c, *) = max [min {R (c, v), S (v, *)}], foreveryvinV

=max [min {R (c, x), S (X, *)}, min {R (¢, y), S (y, *)}, min {R (c, 2), S (z, *)}]
= max [min (0.6, 0.1), min (0.8, 0.9), min (0.2, 0.4)]

=max [0.1, 0.8,0.2]

=0.8
0.7 04
SoR=10.7 0.4
0.6 0.8

The Max-product composition:
It can be defined as:

If R is a fuzzy relation on UxV and S is a fuzzy relation on VxW then
the max product composition of R followed by S, denoted again by

(SoR) (u,w) = max [R (u,v)*S (v,w)]

Where ‘*’ is the ordinary product of real numbers and ‘max’ is taken over all elements
vinV

This special case deals with the composition, of a fuzzy relation, as explained in the
following definition.

Let A be a fuzzy set on U and R be a fuzzy relation on UxV, where

29

V=VixVox, ... x Vn Then the composition of A followed by R, also called the
image of A under R, denoted by RoA and defined as

(RoA) (v) = max [min {A(u), R(u,v)}]

Where ‘max’ is taken over all u in U. RoA is an n-ary fuzzy relation on V (in case n=1

it is a fuzzy set on V). We can in a similar way, define the max — product composition
of Aand R

2.5. PROJECTIONS OF FUZZY RELATION:
Definition:

Let R be a BFR on UxV. Then, by the first projection of R or the projection of
R on U or the shadow of R on U, we mean the fuzzy set on U given by

max {R (u, v)| for all v in V}.

We denote this projection by Proj[R : U] or by [R1U] or simply Ry, (that is.
R projected on to the first domain). Similarly, we can talk about the projection of R on
V, defined by max {R (u, v) all uin U}. This is denoted by Proj[R: V] or [R | V] or
Ro. (that is, projection on the second domain).

EXAMPLE:
Let U ={a,b,c} and V = {x,y}.Here R is given by

R=|0.3 0.5

04 0.2
To determine Ry, we need to compute Ri(a), R1(b), R1(c).

0.6 1.0]

Ri(a) = max {R(a,v)Iforall vin V}
= max {R(a,x), R(a,y)}
= max {0.6,1}
=1

Ri(b) = max {R(b,v)Ifor all vin V}
= max {R(b,x), R(b,y)}
= max {0.3,0.5}
=0.5

Ri(c) = max {R(c,v)Ifor all vin V}
= max {R(c,x), R(c,y)}

30

=max {0.4,0.2}
=04
R:=(1,0.5,0.4)
Similarly, we have by looking at column maxima
Ro(x) = max {R(x,u)lfor all u in U}
= max {R(x,a), R(x,b), R(x,c)}
=max {0.6, 0.3, 0.4}
=0.6
Ra(y) = max {R(y,u)lfor all uin U}
= max {R(y,a), R(y,b), R(y.c)}
=max {1.0, 0.5, 0.2}
=1.0
R 2= (0.6, 1)

31

3. FUZZY MATRICES

Fuzzy matrix, we mean a matrix over a fuzzy algebra. We confine with matrices over
the fuzzy algebra #=[0,1] under the max-min operations and with the usual ordering on real
numbers. Fuzzy matrices have quite different properties from matrices over a field, due to
fact that addition in a fuzzy algebra does not form a group, every fuzzy linear transformation
on Vi can be represented by a unique fuzzy matrix. One of the most important ways to study
a fuzzy matrix is to consider its row space that subspace of V, spanned by its rows.

3.1. DEFINITION :

Let Zmn denote the set of all mxn matrices over &. If m=n in shorts we write
I elements of mn are called membership value matrices, binary fuzzy relation matrices
(or) in short, fuzzy matrices. Matrices over the Boolean algebra {0,1} are special type of
fuzzy matrices.

Let A= (aij) € Zmn . Then the element a;j is called (i,j) entry of . Let Ai=(a%) denote
the i"" row (column) of A. The row space R(A) of A is the subspace of V, generated by the
rows {Ai*} of A. The column space @(A) of A is the subspace of Vm generated by the
columns {A*j} of A.The null space or Kernel of A is the {x/xA = 0} . Note that a row
(column) vector is just an element of V, (7).

The nxm zero matrix O is the matrix all of whose entries are zero. The nxn identity
matrix [is the matrix (3ij) such djj = 1 if i=j and &;j=0 if i#j. Then nxm universal matrix J is
the matrix all of whose entries are 1.

Since the order of a matrix is clear from the context, most of the time suppress the
order of the matrix.

3.2. ADDITION OF MATRICES:

Let A = (aij) € Zmn and B = (bi}) € Zmn . Then the A + B = (sup{aijbij}) € Fmn is
called the sum of A and B.

Example:
0.5 0 1
IfA=/0.8 0.2 0.3
0 06 0.1

32

B=10.5 0.3 0.3

0.7 08 0
A+B = (sup {aij,bi})

0.2 04 0.6‘

05 0 1 0.2 04 0.6
A+B=10.8 0.2 03|+(|05 03 0.3
0 06 01 0.7 08 0

sup {a;;,b11} sup{a;,, by} sup{ags,bis}
A+B=|sup {a,;,b1} sup{ay;,by;} sup{azs, b3}
sup {as;,b3;} sup{as,,bs,} sup{ass,bss}

sup {0.5,0.2} sup {0,0.4} sup {1,0.6}
sup {0.8,0.5} sup {0.2,0.3} sup{0.3,0.3}
sup {0,0.7} sup {0.6,0.8%3 sup{0.1,0}

05 04 1
A+B=10.8 0.3 0.3

0.7 08 1

Let A = (aij) € Zmn and C € Z then the fuzzy multiplication, that is scalar
multiplication with scalars restricted to % 'is defined as

CA =(inf{c,aij}) € Zm
For the universal matrix J, CJ = (inf {C,1}) is the constant matrix all of whose
entries are C. Further under component wise multiplication.

CJ O A = (inf {c,ajj}) = CA
PREPOSITION:

The set Jmn is a fuzzy vector space under the operations defined as
A+B = (sup{aij,bij}) and CA = (inf {c,aij}) for A = (ajj) , B= (bij) € Zmn

Proof :
For,

A,B,C € Jmn)

33

A+B =B+A € Im (Commutativity)
A+(B+C) = (A+B) + C (Associativity)

For all A € Jmn , there exists an element 0 € Zmn such that A+0 = A

ForCe &,
C(A+B) =cJ O (A+B)
=(cJOA)+(cJOB)

=cA+cB

Forci, c2e &,
(citc)) A=(c1+C2)JOA
=(cd+c)OA
=(CLJOA)+(c,JOA)
=CcA + CA
Hence Zmn 1s a vector space over Z. In particular for m=1
3.3. MAX - MIN COMPOSITION OF MATRICES:
For A = (aij) € Zmp and B = (bij) € Zpn , the max-min produce

AB = (sup inf {aik, bjk}) € Fmn.

The product AB defined if and only if the number of columns of A is the
same as the number of rows of B. A are said to be comfortable for multiplication.

34

_[0.8 0.1
Moz 1.
_[0.6 0.5]
%=lo4 03l
_[0.8 0.1770.6 0.5
AB=lo2 1-[0.4 0.3]
_[[0.8 0.1](35) [08 0.11(73)

(02 10() 102 1(3)
_[sup{inf{0.8,0.6},inf{0.8,0.5}} sup{inf{0.8,0.5},inf{0.1,0.3}}
| sup{inf{0.2,0.6},inf{1,0.4}} sup{inf{0.2,0.5},inf{1,0.3}}
_[sup{0.6,0.1} sup{0.5,0.1}

“[sup{0.2,0.4} sup{0.2,0.3}
_[0.6 0.5
AB_[O.4 0.3

3.4. MATRIX MULTIPLICATION:
Matrix multiplication is not in general commutative, that is, AB # BA. Further AB =
0 need not imply A =0 (or) B =0 as in the case of real matrices

Example:

0.8 0.1)
0.2 14

(0.6 0.5]
0.4 0.3

0.6 0.2]
0.7 0.3

A=

AB= (sup{inf{aik by} }) € Fmn

0.8 0.1] [0.6 0.5]

AB:[O.Z 11loa 03

35

o8 0.11(%%) [08 0.1](2%)
Loz 1@ 02 163

_[sup{inf{0.8,0.6},inf{0.1,0.4}} sup{inf{0.8,0.5},inf{0.1,0.3}}
| sup{inf{0.2,0.6},inf{1,0.4}} sup{inf{0.2,0.5},inf{1,0.3}}

_[sup{0.6,0.1} sup{0.5,0.1}
“[sup{0.2,0.4} sup{0.2,0.3}

0.6 0.5]

AB:[0.4 0.3

[0.6 05]1(%%) [0.6 0.51(°")

_[[0.4 03125 [0.4 0.31(%H

_[sup{inf{0.6,0.8},inf{0.5,0.2}} sup{inf{0.6,0.1},inf{0.5,1}}
_[sup{inf{0.4,0.8}, inf{0.3,0.2}} sup{inf{0.4,0.1},inf{0.3,1}}

_[sup{0.6,0.2} sup{0.1,0.5}
lsup{0.4,0.2} sup{0.1,0.3}

0.6 0.5
04 0.3
0.6 0.5] [0.6 0.2
04 0.3110.7 0.3

BA:[

BC=|

[0.6 0.51(%%) [0.6 0.5](%2

_[[0.4 0.31(%%) [0.4 0.3](22]

_[sup{inf{0.6,0.6},inf{0.5,0.7}} sup{inf{0.6,0.2},inf{0.5,0.3}}
_[sup{inf{0.4,0.6}, inf{0.3,0.7}} sup{inf{0.4,0.2},inf{0.3,0.3}}

_[sup{0.6,0.5} sup{0.2,0.3}
lsup{0.4,0.3} sup{0.2,0.3}
06 0.3

BC :[0.4 0.3

36

ce=[o7 oallos o3

_[[0.6 0.21(3%) [0.6 0.2](37
_[[0.7 0.31(%%) 0.7 0.31(%:]

_[sup{inf{0.6,0.6},inf{0.2,0.4}} sup{inf{0.6,0.5},inf{0.2,0.3}}
_[Sup{inf{0.7,0.6}, inf{0.3,0.4}} sup{inf{0.7,0.5},inf{0.3,0.3}}

_[sup{0.6,0.2} sup{0.5,0.2}
[sup{0.6,0.3} sup{0.5,0.3}

0.6 0.5
0.4 0.5

CB =

BC:[O'6 0.3 ¢[0.6 0.5

04 03l7 loa O.S]ZCB

37

4. FUZZY LOGIC

Any event that changes continuously we cannot define it as a true or false
in such cases we can solve it by fuzzy logic. It deals with vagueness and

imprecise information.

4.1. LOGIC CONNECTIVES (Negation, Conjunction, Disjunction)

Truth table for Negation:

P P
T F
F T

Truth table for conjunction:

P Q PAQ
T T T
T F F
F T F
F F F
Truth table for Disjunction:

P Q PVQ

T T T

T F T

F T T

F F F

38

P Q P PAQ PVQ
T T F T T
F T T F T
T F F F T
F F T F F

Conditional or Bi conditional:

Let P and Q be any two statements. Then the statement P = Q which is read
as if P then Q or P implies Q is called a conditional statement. The truth tables of
P=0Q is F when Q has truth values F and P the truth values F and P the truth values
T; inall other cases P= Q has truth values T. P is called antecedent and Q is called

consequent in P Q. The truth table for P=Q is given as follows:

P Q P= Q
T T T
T F F
F T T
F F T

For any two statement P and Q the statement P& Q is called a Biconditional.
This is read as P if and only if Q and abbreviated as P iff Q this is also called P is
necessary and sufficient for Q. P& Q has the truth values T whenever both P and

Q have identical truth values. The table is given as follows:

P Q Po Q
T T T
T F F
F T F
F F T

39

4.2. THREE-VALUED LOGICS:

The classical logic is two-valued: the values being True and False. Aristotle, who
was the founder of the two-valued logic, felt that this assumption is not justified and
raised doubts about this assumption of two truth values.

To tackle such situations. Lukasiewicz suggested in 1920. a 3-valued logic. In this
logic everything is same as in the 2-valued logic, except that there are three truth values:

The May be and False. These linguistic values are usually represented by 1,% and 0.2
respectively. In this 3-valued logic, denoted by Las. the truth value of any statement can be
either 1 or% or0.ie. T(p) =1 or% or 0. We define three operations on the statements p,

g, r denoted by p vqg,pAq and —p analogous to the three operations OR, AND and NOT of
classical logic. These are defined by their truth values as follows

T (p Vq) =max {T(p), T(a)}
T (p Aq) =min {T(p), T(a)}
T(=p) =1-T(p)
Lukasiewicz also defined the implication operation by
T(p—q)=1-T(p) + T(q), if T(p) > T(q)
Orsimplyas: =1 ,if T(p) < T(q)

Using this formula, we can write down the truth table of —. This is given in the
table,

> 1 1 0
2

1 1 1 0
2

1 1 1 1

2 2 2

0 1 1 1

40

This 3-valued logic has many distinguishing and surprising features. One of them is
that the WFF [pVv (-p)] is NOT a tautology (Note, however, that [p v (=p)] is a tautology
in the classical logic). This can be seen by writing the truth table of this WFF as given in
Table

P -p [p V(-p)]
1 1 1
1 1 1
2 2 2
1 1 1

Thus, we see that the last column of the table does not have all the entries equal to 1

A O 0O o [1 1 1 11 |1 |1
2 | 2 | 2
B |0 191 o | 1 | 1 o 1 1
2 2 2
Ao 1 1o 1 | 1 | 1 o 1 |1
2 2 | 2 | 2 2
v o 1 |1 1 | 1 | 1 |1 1 |1
2 2 | 2 | 2 2
S |1 1 |1 1 | 1 | 1 Jo 1 |1
2 2 | 2 | 2 2
A | O | 0 [0 | 1 1 1 |1 |1 |1
2 | 2 | 2
B o | 1 4212 o | 1 1 o | 1T |1
2 2 2
A~ |o0o o 0o | 0o | I 1T o | 1 |1
2 | 2 2
v o | 1 42 (1T | 1 1T 1 |1 |1
2 | 2

41

One thing is common for Lukasiewicz and Bochvar logics, namely, the definition
of T(=p)

T(=p) =1-T(p)
But, this is not true for Heyting's logic.
4.3. N-VALUED LOGICS FOR N > 4:

Once the 3-valued logics were accepted and their usefulness realized, further
generalizations took place. Several n-valued logics for n>4 were developed in the 1930's .

For a given value of n, consider the set T(n) called the truth value set, where

T(n):{O,(l 2 n-2 1}

n-1)"(n-1)" """ (n-1)’

Using this set. Lukasiewicz proposed the first generalization of L, denoted by Ln
using the following equations as definitions:

T(=p) = 1- T(p)
T (p Vq) = max {T(p), T(q)}
T (p Aq) = min {T(p), T(a)}
T(p—q) =min {1, 1 - (p) + T(q)}
T(peq) = 1-[T(P)-T(a)]

Note that, for n = 2, T(n)= (0, 1) and the above definitions reduce to the truth table
of the classical logic. Similarly, for n = 3, T(n)= (0,

%, 1) and L, reduces to Ly.

Thus. L, is an appropriate generalization of both the 2-valued classical logic L, and
the 3-valued logic L3

4.4. INFINITE-VALUED LOGICS

The natural generalization of n-valued logics is the infinite-valued logics, wherein
infinite sets are used as truth value sets. Two of the commonly used infinite sets are:

1. T(infinity)= all rational numbers in the unit interval [0, 1]
2. T (1) =l=all real numbers in the unit interval [0, 1]

42

Of course, there are other infinite sets, which are subsets of [0, 1] and which can be used
as truth value sets. For example.

)
52012, (), (2), (D)1= ().}

Nee that we can also express S, and S. in a compact way as follows:

si= {0,1,2.3,

Si= {0,1,,%, 1-,n =123 }

)

Lukasiewicz proposed two infinite valued logics, denoted by L (infinity) and L
(1) L(infinity) is based on 7infinity) and L (1) is based on 7(1) as their truth value sets
respectively. Both of them are based on the same sets of definitions (Refer Eq. (1)). Note
that L (1) is a genuine generalization of L(infinity) and L(infinity) is a genuine.
generalization of L

))

Si= {o,1,§,

Wlkr
AN
wIlN
ol w
SRS

45. FUZZY LOGICS:

In its widest sense, fuzzy logic encompasses the logics developed so far and even
more. In fact, L2 is a fuzzy logic in this sense. But for the present, it is enough to consider
logic in the following narrower sense: fuzzy logic is any logic having 7= [0, 1] as its
truck value set, we have already come across an example of fuzzy logic in the previous
section, namely. L (1) Most of the fuzzy logics (including L (1)) are based on the
following definitions for the logical connectives V, A and -

T (PV q)=max [T(p), T(q)]
T (P A q)=min [T(p), T(q)]
T(=p) = 1- T(p)

Where p,q are fuzzy propositions and T(p),T(q) take values in 1.note that we have not
specified the connectives — each specification of — gives rise to a different fuzzy logic.
That is these fuzzy logics differ in the definition of —. In L(1),we have

T (P—q) =min [1, 1-T(p), T(q)]

Zadeh proposed the following definition:

43

T (p— q) =max {min [T(p), T(a)], 1 - T(p)}

There are plenty of definition available in the literature for — some of them are:

Leta=T(p) and b = T(q). then

1. T(p—q)=1,ifa<bandO0, otherwise
2. T(P—q)=1,ifa<band b, otherwise
3. T(P— q)=min{1, b/a}

4. T (p— q)=min {1, [b(1-a)]/ [a (1 - Db)}

Each one of the above definitions give rise to different fuzzy logic.

Each one of the fuzzy logics is to be considered as a model for real life situation and
the choice will depend on the characteristic of the problem considered and the intuition
experience and the ingenuity of the problem solver

Given A in PF(U), consider the proposition p where p: x is a member of A. Then

T(P)=A(X)
Similarly, if B is in PF(U), then we get the proposition g where g: x is a member of B
and T(q) B(x). Then

T (p vq) = max[T(p), T(q)]
= max[A(x), B(X)]
= (AUB)(x)

Thus, the proposition corresponding to AUB is p vq. Similarly, we can show that
ANB corresponds to p Aq and A' corresponds to —p.

44

CONCLUSION:

Fuzzy theories have been used in day-to-day life. Fuzzy set theory has been shown
to be a useful tool to describe situations in which the data are imprecise or vague. Fuzzy
sets handle such situations by attributing a degree to which a certain object belongs to a
set. Fuzzy logic has been successfully used in numerous fields such as control systems
engineering, image processing, power optimization. Fuzzy relation equations, which are
obtained by the composition of binary fuzzy relations, are used in this work as a tool for
evaluating student mathematical modelling skills. Fuzzy matrix frame work have been
utilized in several different approaches to model the medicine diagnostic process and
decision-making process.

45

REFERENCES

H w N R

Zadeh, L.A. Fuzzy Sets, Info. and Control, 8, 1965.

Klir and Bo Yuvan, Fuzzy Sets: Theory and Applications, PHI< 1997.

Ross, T., Fuzzy Logic with Engineering Applications, McGraw Hill, 1995.
Kruse, R., Gebhardt J. and Klawonn, F., Foundations of Fuzzy Systems, John
Wiley and Sons, 1994.

Bezdek. J. Spillman. B and Spillman. R. (1978). ‘A fuzzy relation space for group
decision theory’, Fuzzy Sets Sys. 1: 255 - 268

Blin.J.M. (1974). ‘Fuzzy relations in group decision theory.” J. Cyberntics.4 17-
22,

Cho. H.H. (1993). ‘Regular matrices in the semigroup of Hall matrices. Lin. Alg.
Appl. 191: 151-163

Cho. H.H. (1993). ‘Regular fuzzy matrices and fuzzy equations. ‘Fuzzy Sets Sys,
105: 445 - 451.

46

INTRODUCTION TO R SOFTWARE

Project Report submitted to

ST. MARY’S COLLEGE (AUTONOMOUS), THOOTHUKUDI

Affiliated to

MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI

In partial fulfillment of the requirement for the award of degree of

NAME

Bachelor of Science in Mathematics

Submitted by

BLESSY JEBARANI. A

EMIMA LUKRAGI.

MUTHU YOGESWARI. |

STERLY. B
VARSHA. S

Under the Guidance of

REG.NO.
19AUMTO7
15AUMT11
1SAUMT30
19AUMTA46
1SAUMTA7

Dr. Tmty. A. PUNITHA THARANI, M.Sc., M.Phil., Ph.D.

Associate Professor of Mathematics and COE

St. Mary’s College (Autonomous), Thoothukudi.

Department of Mathematics
5t. Mary's College (Autonomous), Thoothukudi
(2021 - 2022)

)

CERTIFICATE

We here by declare that the project report entitled "INTRODUCTION TO R SOFTWARE"
being submitted to St. Mary’s College (Autonomous), Thoothukudi affiliated to
Manonmaniam Sundaranar University, Tirunelveli in partial fulfillment for the award of
degree of Bachelor of Science in Mathematics and it is a record of work done during the year

2021 - 2022 by the following students:

NAME REG.NO.

BLESSY JEBARANI. A 19AUMTO7

EMIMA LUKRAGI.] 19AUMT11

MUTHU YOGESWARI. J 19AUMT30

STERLY. B 19AUMT46

VARSHA. S 19AUMT47

A0 O A poSrella AvprRe N\wj

Signature of the HOD

Signature of the Guide o
Dr. V.L. Stella Arputh

Dr. A. Punitha Tharani \rputha M
M.Sc., M.PhilPN.Dn M.Sc.M.Phil. B E¢ pr

ASSO;GLB ::ers;or. quad &As’st Professor of Mathenat,.
StMary’ CO“E; Amutibn?, ‘ ' St. Mary's College (Autonomous)
\; aThry:um"hm- (628 m;nous)' .) ThOOth kudi 628 “{,‘1

A Lrein Rote
Signatu%iner Signature of the Principal
Principal

St, Mary's College (Autanonsus)
Thoothukugi - 628 001.

DECLARATION

We hereby declare that the project reported entitled “lINTRODUCTION TO R SOFTWARE”, is
our original work. It has not been submitted to any university for any degree or diploma.

A'._B}ess% ((Jeﬁamnl J - Ermuma, LULYC%\
(BLESSY JEBARANI. A) (EMIMA LUKRAGI. J)
T Muthue Yogeswad B. Sty
(MUTHU YOGESWARI. J) (STERLY. B)

S . Varsha

(VARSHA. S)

ACKNOWLEDGEMENT

First of all, we thank Lord Almighty for showering his blessings to undergo this project.

With immense pleasure, we register our deep sense of gratitude to our guide
Dr. Tmty. A. PUNITHA THARANI, M.5c., M.Phil., Ph.D. for guiding and supporting us in every

part of this project.

We are thankful to Dr. V. L. Stella Arputha Mary M.Sc., M.Phil., B.Ed., Ph.D., Head of the

Department, for having imparted necessary guidelines throughout the period of our studies.

We thank our beloved Principal, Rev. Dr. Sr. A.S.J. Lucia Rose M.Sc., M.Phil., Ph.D., PGDCA

for providing us the help to carry out our project work successfully.

Finally, we thank all those who extended their helping hands regarding this project.

INTRODUCTION TO R

SOFTWARE

CONTENT

1. INTRODUCTION ooiiiiiiiiiiiii s 7
2. R AS A CALCULATOR ottt ettt e e e e ee e 10
3. FUNCTIONS AND MATRIX OPERATIONSoooiiiiiiiiiiiiiiene, 14
4. MISSING DATA AND LOGICAL OPERATORSouviiiiiiiiiiiiiiiiieiieciieeeeceeee, 19
5. CONDITIONAL EXECUTION AND LOOPSuvvviiiiiiiiiiiiiiiinnincccvieenccene 22
6. DATA MANAGEMENT ..oiiiiiiiiiiii e 25
7. STRINGS — DISPLAY AND FORMATTING .ccoiiiiiiiiiiiiiiiiiiiiii e, 35
8. DATAFRAMES ...ooiiiiiiiiiiiiii s 42
9. STATISTICAL FUNCTIONS ..ooviiiiiiiiiiiiiiiiiiiiiiiiiiiini e, 49
10. PROGRAMMING IN R coeeeiiiii s 62
11, APPLICATIONS oo 64
12. CONCLUSION oot 66
13. REFERENCES ..., 67

1. INTRODUCTION

R is another emerging name in the Programming world!

R is an open-source programming language that is widely used as a statistical software and
data analysis tool. R generally comes with the Command-line interface. R is available across
widely used platforms like Windows, Linux, and macOS. Also, the R programming language is
the latest cutting-edge tool.

It was designed by Ross lhaka and Robert Gentleman at the University of Auckland, New
Zealand, and is currently developed by the R Development Core Team. R programming
language is an implementation of the S programming language. It also combines with lexical
scoping semantics inspired by Scheme. Moreover, the project conceives in 1992, with an
initial version released in 1995 and a stable beta version in 2000.

Is it worth learning R in 2022?

In our opinion, absolutely YES! This is still an awesome programming language to learn. With
the increasing demand for machine learning and data science, it is worth learning the R
programming language. Various big tech companies like Facebook, Google, Uber, etc. are
using the R language for their businesses. Learning the R programming language is surely
worthwhile for future career endeavors.

Programming in R

Since R is much similar to other widely used languages syntactically, it is easier to code and
learn in R. Programs can be written in R in any of the widely used IDE like R Studio, Rattle,
Tinn-R, etc. After writing the program save the file with the extension .r.

Introduction to R studio

R Studio is an integrated development environment (IDE) for R. IDE is a GUI, where you can
write your quotes, see the results and also see the variables that are generated during the
course of programming.

R Studio can be downloaded from its Official Website (https://rstudio.com/)

https://rstudio.com/

€ Rstudio 14 - a b3
Fle Edit Code View Plots Session Build Debug Profile Tools Help

(+ i = addins ~ L Prolect Mlons)

vt lﬁmm History _‘_\~
_import Dataset v ' utv| G
R version 3.4.0 (2017-04-21) -- "You Stupid Darkness” il TSP aport DRkt | us

copyright (C) 2017 The R Foundation for Statistical compu || @ Global Emironment -
tin
platform: x86_64-w64-mingw32/x64 (64-bit)

R 1s free software and comes with ABSOLUTELY NO WARRANTY.
vou are welcome to rediscribute 1t under certain conditlio
ns.

Type “license()' or 'licence()’ for distribution details.

R Is a collaborative project with many contributors.
Type 'contributors()' for more information and

"citation()’ on how to cite R or R packages in publicatio \ Environment/History
ns.

Type ‘demo()' for some demos, ‘help()' for on-line help,
or

A
‘help.start()’ for an HTML browser interface to help. K F”eS/P’OtslpackageslHe’P \N
-

Type 'q()' to quit R.
Files Plots Packages Help Viewer
il | NewFolder @ | Delete s Rename {GF More ~
;] 2 Home
A Name Sze Modified
] T (Hest and Mass Transter) Prof. Dipl.-... 58 ME May 17, 2016, 10:40 AM
Console 1 1) (Oxford Applied Mathematics and C... 29 M
] 1 Rhistory
1) 0513.,pdf
O 13 Booktaisc
[™) BOOKS.pdf
&) Criterion Games J

After the installation process is over, the R Studio interface looks like this:

The console panel (left panel) is the place where R is waiting for you to tell it what to
do, and see the results that are generated when you type in the commands.
To the top right, you have the Environmental/History panel. It contains 2 tabs:

o Environment tab: It shows the variables that are generated during the course
of programming in a workspace that is temporary.

o History tab: In this tab, you’ll see all the commands that are used till now from
the start of usage of R Studio.

To the right bottom, you have another panel, which contains multiple tabs, such as
files,
plots, packages, help, and viewer.

o The Files tab shows the files and directories that are available within the
default workspace of R.

o The Plots tab shows the plots that are generated during the course of
programming.

o The Packages tab helps you to look at what are the packages that are already
installed in the R Studio and it also gives a user interface to install new
packages.

o The Help tab is the most important one where you can get help from the R
Documentation on the functions that are in built-in R.

o The final and last tab is that the Viewer tab which can be used to see the local
web content that’s generated using R.

Getting help with R:

Before asking others for help, it’s generally a good idea for you to try to help yourself. R
includes extensive facilities for accessing documentation and searching for help. There are
also specialized search engines for accessing information about R on the internet, and general
internet search engines can also prove useful.

If you need help with a function, then type question mark followed by the name of the
function. For example, ?read.table to get help for function read.table.

Sometimes, you want to search by the subject on which we want help (e.g., data
input). In such a case, type help.search("data input")

'help()' for on-line help, or 'help.start()’ for an HTML browser interface to help.

The find function tells us what package something is in.

For example:
> find("lowess")
[1] "package:stats"

The apropos returns a character vector giving the names of all objects in the search
list that match your enquiry.

For example:

> apropos("Im")

[1] ".colMeans" ".Im.fit" "colMeans" "confint.Im"
[5] "contr.helmert" "dummy.coef.Im" "glm" "glm.control"
[9] "glm.fit" "KalmanForecast" "KalmanLike" "KalmanRun"

To see a worked example just type the function name, e.g., Im for linear models:
>example(Im)

and we see the printed and graphical output produced by the Im function.

Libraries in R:

R provides many functions and one can also write own. Functions and datasets are organised
into libraries. To use a library, simply type the library function with the name of the library in
brackets. For example: >library(MASS)

Examples of libraries that come as a part of base package in R:

MASS: package associated with Venables and Ripley’s book entitled Modern Applied
Statistics using S-Plus.
mgcyv : generalized additive models.

2. RAS A CALCULATOR

R can be used as a powerful calculator by entering equations directly at the prompt in the
command console. R will evaluate the expressions and respond with the result. While this is
a simple interaction interface, there could be problems if you are not careful. R will normally
execute your arithmetic expression by evaluating each item from left to right, but generally it
follows the BEDMAS order: Brackets (), Exponents A, Division / and Multiplication *, Addition
+ and Subtraction -. Let's start with some simple expressions as examples.

Simple Arithmetic Expressions:
The operators R uses for basic arithmetic are:

Addition
Subtraction
Multiplication
Division
Exponentiation

+

>SN % !

Examples:
>2+3

[1]5

>2-3

[1] -1

> 2%*3

[1]6

>3/2

[1] 1.5

> 273

[1] 8

> 2*3-4+5/6
[1] 2.8333

Integer Division
Division in which the fractional part(remainder) is discarded

Usage:
10

%/%

Example:
>¢(2,3,5,7) %/% 2
[1]1123

Modulo Division

x mod y: Modulo operation finds the remainder after division of one number by another.
Usage:

%%

Example:

>c(2,3,5,7) %% 2

[1]0111

Maximum & Minimum

The max(), min() is a built in R- function. max() is used to calculate the maximum of vector
elements or maximum of a particular column of a data frame. min(), is used to calculate the
minimum of vector elements or minimum of a particular column of a data frame.

Usage:

e max(x)
e min(x), where x is a numeric or character arguments.

Example:

> max(1.2, 3.4, -7.8)
[1] 3.4

>min(1.2, 3.4, -7.8)
[1]-7.8

Absolute Value

To calculate the absolute value in R, use the abs() method. The abs() function takes a real
number or numeric value as a vector, matrix, or data frame and returns the absolute value.

11

Usage:

abs(x), where x is a numeric or character arguments.
Example:

> abs(c(-1,-2,-3,4,5))

(1112345

Square Root

sqrt() function in R Language is used to calculate the mathematical square-root of the value
passed to it as argument.

Usage:

sgrt(x), where x is a numeric or character arguments.
Example:

> sqrt(c(4,9,16,25))

[1]2345

Sum

sum() function in R is used to calculate the sum of vector elements.
Usage:

sum(x), where x is a numeric or character arguments.

Example:

> sum(c(2,3,5,7))

[1]117

Product

prod() function in R Language is used to return the multiplication results of all the values
present in its arguments.

Usage:

prod(x), where x is a numeric or character arguments.

12

Example:
> prod(c(2,3,5,7))
[1] 210

Round

round() function in R Language is used to round off values to a specific number of decimal
values.

Usage:
round(x), where x is a numeric or character arguments.
Example:

> round(1.23)

[1]1
round(), floor(), ceiling() Rounding, up and down
log() Logarithms
exp() Exponential function
sin(), cos(), tan(), Trigonometric functions
sinh(), cosh(), tanh(), Hyperbolic functions
Assignments

“u_n

Assignment operator “=" can be used to assign the value to a variable in an environment.
Example:

>x1=c(1,2,3,4)

> x2 =x1/72
> x2
[1114916

13

3. FUNCTIONS & MATRIX OPERATIONS

Functions

A function is a set of statements organized together to perform a specific task. R has a large
number of in-built functions and the user can create their own functions. In R, a function is
an object so the R interpreter is able to pass control to the function, along with arguments
that may be necessary for the function to accomplish the actions. The function in turn
performs its task and returns control to the interpreter as well as any result which may be
stored in other objects.

Usage:
Name = function(Argumentl, Argument2, ...)

{

expression

}

where expression is a single command or a group of commands
Function (Single Variable)
> abc = function(x){

x"2

}

> abc(3)

[1]9

Function (Two Variables)
> abc = function(x,y){

XN2+yN2

}

> abc(-2,-1)

[1] 5

Function (Other Variables)
> abc = function(x){

sin(x)"2+cos(x)"2 + x

14

}

> abc(8)
[1]9

Matrix

In R, a matrix is a collection of elements of the same data type (numeric, character, or logical)
arranged into a fixed number of rows and columns. It is a rectangular array with p rows and
n columns. An element in the i-th row and j-th column is denoted by Xij or or X[i, j]. A Matrix
is created using the matrix() function.

In R, a 4 x 2-matrix X can be created with a following command:
> x = matrix(nrow=4, ncol=2, data=c(1,2,3,4,5,6,7,8))
> X

[11[.2]
[1,]1 5
[2]2 6
313 7
4] 4 8
Note:

e The parameter nrow defines the row number of a matrix.

e The parameter ncol defines the column number of a matrix.

e The parameter data assigns specified values to the matrix elements.
e The values from the parameters are written column-wise in matrix.
e One can access a single element of a matrix with x[i,j]:

> x[3,2]
[1] 7
e |ncase, the data has to be entered row wise, then a 4 x 2-matrix X can be created with

> x = matrix(nrow=4, ncol=2, data=c(1,2,3,4,5,6,7,8), byrow = TRUE)

> X
[11[.2]
[1] 1 2
[2] 3 4
[3] 5 6

15

4] 7 8

Properties of a Matrix

dim() function in R Language is used to get the dimension of the specified matrix, array or
data frame. nrow() function is used to return the number of rows of the specified matrix.
ncol() function is used to return the number of columns of the specified matrix. mode()
function informs the type of an object in the matrix.

Usage:

e dim(x), where x is an R object, for example a matrix, array or data frame.
e nrow(x), where x is a vector, array, data frame.

e ncol(x), where x is a vector, array, data frame.

e mode(x), where x is any R object.

Example:

> dim(x)

[1]42

> nrow(x)

[1] 4

> ncol(x)

[1] 2

> mode(x)

[1] "numeric"

Assigning a specified number to all matrix elements:
> x = matrix(nrow=4, ncol=2, data=2)
> X

[1]1[,2]

[1,]22

(2,122

(322

[4,]22

16

Diagonal Matrix

diag() function in R Language is used to construct a diagonal matrix. t() function in R Language
is used to calculate transpose of a matrix or Data Frame.

Example:

> d = diag(1, nrow=2, ncol=2)

>d

[1][,2]

[1,]10

[2,]01

Transpose of a Matrix

t() function in R Language is used to calculate transpose of a matrix or Data Frame.
Example:

> x = matrix(nrow=4, ncol=2, data=1:8, byrow=T)

> X

[11[2]
1,] 1 2
2] 3 4
3] 5 6
4] 7 8
> xt = t(x)
> xt

[1]1[,2]1 [,3] [,4]
1] 1 3 5 7
2] 2 4 6 8

Matrix Operations

There are multiple matrix operations that you can perform in R. The most basic matrix
operations are addition and subtraction. Addition and subtraction of matrices of same
dimensions can be executed with the usual operators + and -.

17

Matrix Multiplication

In R, the operator%*% is used for matrix multiplication satisfying the condition that the
number of columns in the first matrix is equal to the number of rows in second.

Example:

> xtx = t(x) %*% x

> xtx

[,1][,2]

[1,] 84 100

[2,] 100 120

Inverse of a Matrix

In order to calculate the inverse of a matrix in R, solve() function is used. It finds the inverse
of a positive definite matrix.

Example:
> y=matrix(nrow=2, ncol=2, byrow=T, data=c(84,100,100,120))
>y
[11[,2]
[1,] 84 100
[2,] 100 120
> solve(y)
(1] [2]
[1,] 1.50-1.25
[2,]-1.251.05

18

4. MISSING DATA & LOGICAL OPERATORS

Missing Data

R represents missing observations through the data value NA. We can detect missing values
using is.na. NA is a placeholder for something that exists but is missing. NULL stands for
something that never existed at all.

Example:

>x=NA

> is.na(x)

[1] TRUE

>x=c(11, NA, 13)

> is.na(x)

[1] FALSE TRUE FALSE

Logical Operators and Comparisons

The following table shows the operations and functions for logical comparisons (True or
False). TRUE and FALSE are reserved words denoting logical constants.

Operator Executions
> Greater than
>= Greater than or equal
< Less than
<= Less than or equal
== Exactly equal to
= Not equal to
! Negation(not)
&, && and
|, or
Xor() either...or(exclusive)
isSTRUE(x) Test if x is TRUE
TRUE true
FALSE false

* The shorter form performs element-wise comparisons in almost the same way as arithmetic
operators.

19

* The longer form evaluates left to right examining only the first element of each vector.
Evaluation proceeds only until the result is determined.

* The longer form is appropriate for programming control-flow and typically preferred in if
clauses (conditional).

Examples:
>8>7
[1] TRUE
e |s8lessthan6?
> isTRUE(8<6)
[1] FALSE
>x=5
> (x<10) && (x > 2)
[1] TRUE
e s xgreater than 10 or x is greater than 5?
>(x>10) || (x>5)
[1] FALSE
e Isxequalto10andisy equal to 20?
>x=10
>y =20
> (x == 10) & (y == 20)
[1] TRUE

Examples using & and |

>x=1:6

>(x>2)]| (x<5)

[1] TRUE TRUE TRUE TRUE TRUE TRUE
[11123456

>x=1:6

>(x>2)&(x<5)

20

[1] FALSE FALSE TRUE TRUE FALSE FALSE

>X[(x>2) & (x < 5)]

[1]34

The longer form evaluates left to right examining only the first element of each vector
>x=1:6

>(x>2) && (x<5)

[1] FALSE

is equivalent to:

> (x[1] >2) & (x[1] < 5)

[1] FALSE

Note: x[1]is only the first element in x

Truth Table

A truth table is a display of the inputs to, and the output of a Boolean function organized as a
table where each row gives one combination of input values and the corresponding value of

the function.

Statement 1 Statement 2 Outcomes Outcomes
(x) (y) xandy xory
True True True True

True False False True

False True False True

False False False False

21

5. CONDITIONAL EXECUTION & LOOPS

Control structures in R:

e Control statements,
e Loops,
e Functions.

Conditional Execution

Conditional execution controls whether or not the core will execute an instruction. If they
match then the instruction is executed, otherwise the instruction is ignored. The condition
attribute is postfixed to the instruction mnemonic, which is encoded into the instruction.
Conditionals are expressions that perform different computations or actions depending on
whether a predefined Boolean condition is TRUE or FALSE. Conditional statements include
if(), the combination if()/esle(), and ifelse().

Usage:
if (condition) {executes commands if condition is TRUE}

if (condition) {executes commands if condition is TRUE} else { executes commands if condition
is FALSE }

Example:

>x=5

>if (x==3) {x=x-1}else {x=2*x}
>x[1]1

Interpretation:

e [f x = 3, then execute x = x — 1.

e |f x # 3, then execute x = 2*x.

In this case, x =5, so x # 3. Thus x = 2*5
ifelse Execution

The ifelse function is used to assign one object or another depending on whether the first
argument, test, is TRUE or FALSE.

Usage: ifelse(test, yes, no)

Example:

>x=1:10

22

>X

(1112345678910

> ifelse(x<6, x"2, x+1)

[1]14916257891011

Interpretation:

e If x < 6 (TRUE), then x = x2 (YES).

e If x > 6 (FALSE), then x =x + 1 (NO).

e So,forx=1,2,3,4,5, we getx=x2=1,4,9, 16, 25
e Forx=6,7,8,9,10,wegetx=x+1=7,8,9,0, 11
Loops

Repetitive commands are executed by loops

efor loop

ewhile loop

erepeat loop

For Loop

For loop in R Programming Language can be used to execute a group of statements repeatedly
depending upon the number of elements in the object. It is an entry-controlled loop. In this
loop the test condition is tested first, then the body of the loop is executed, the loop body
would not be executed if the test condition is false.

Usage:

for (var in vector) {commands to be executed}

Here, var takes on each value of vector during the loop.
Example:

>for (iinc(2,4,6,7)) { print(i*2) }

[1]4

[1] 16

[1] 36

[1] 49

While Loop

23

A "While" Loop is used to repeat a specific block of code an unknown number of times, until
a condition is met.

Usage: while(condition){ commands to be executed as long as condition is TRUE }

Example:
>i=1

> while (i<5) {
+ print(i*2)
+i=i+2

+}

[1]1

[1]9

Repeat Loop

Repeat loop in R is used to iterate over a block of code multiple number of times. And also, it
executes the same code again and again until a break statement is found. Additionally, the
command next is available, to return to the beginning of the loop (to return to the first
command in the loop).

Usage: repeat{ commands to be executed }

Example:
>i=1

> repeat{
+i=i+l

+if (i < 10) next
+ print(i*2)

+if (i >= 13) break
+}

[1] 100

[1] 121

[1] 144

[1] 169

24

6. DATA MANAGEMENT

Sequences

seq() function in R Language is used to create a sequence of elements in a Vector. It takes the
length and difference between values as optional argument.

Usage:
seq(from,to,by)
Example:

> seq(from=-4, to=4)

[1]-4-3-2-101234

Sequence with constant increment:

Example:

> seq(from=20, to=10, by=-2)

(112018161412 10

Downstream sequence with constant increment:

Example:

> seq(from=3, to=-2, by=-0.5)
[1]3.02.52.01.51.00.50.0-0.5-1.0-1.5-2
Sequences with a predefined length:
Sequences with a predefined length with default increment +1.
Examples:

> seq(to=10, length=10)
[1]12345678910

> x=50

> seq(0, x, x/10)
[1105101520253035404550

25

Index-Vector

Vector elements are accessed using indexing vectors, which can be numeric, character or
logical vectors. You can access an individual element of a vector by its position (or "index"),
indicated using square brackets.

Example:

> x =¢(9,8,7,6)

> ind = seq(along=x)

>ind

[1]1234

> x[ind[2]]

[1] 8

Generating Sequence of Alphabets

letters are used to find sequence of lowercase alphabets. To create a sequential uppercase
alphabet in R, use the LETTERS constant. The LETTERS is a character constant in R that
generates an uppercase alphabet, and you can use it with different functions to extract the
result as per your requirement.

Usage:

o letters[from_index:to_index]
e LETTERS[from_index:to_index]

Examples:

> letters

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "I" "m" "n"
[15] "o" "p" "g" "r" "s" "t Mu" WM "w" X" Myt Mz

> letters[1:3]

[1] "a" "b" "c"

> LETTERS

[1] "A""B" "C" "D" "E" "F" "G" "H" "[" "J)" "K" "L" "M" "N"
[15] "O" "p" "Q" "R" "S" "T" "U" "V" "W X" YT izt

> LETTERS[21:23]

[1] IIUII IIVII IIWH

26

Repeats
Command rep() is used to replicate the values in a vector.
Usage:

e rep(x, times=n)
e rep(x, each=n)

Example:

> rep(1:4, each = 2, times = 3)
(1]112233441122334411223344
Repetition of elements in a matrix:

> x = matrix(nrow=2, ncol=2, data=1:4, byrow=T)

> X
[11[2]
[1,]1 2
213 4
> rep(x, 3)

[1]132413241324
Repetition of characters:
> r.eF)(C(llall’ llbll, ”C"), 2)

[1] Ilall Ilbll "C" Ilall llbll llcll

Sorting

To sort a data frame in R, use the order() function. By default, sorting is ASCENDING. Prepend
the sorting variable by a minus sign to indicate DESCENDING order.

Usage:

sort(x, decreasing = FALSE, ..,), where x is a sequence of numeric, complex, character or logical
vectors.

Example:
>y =¢(8,5,7,6)
>y
27

[1]18576

> sort(y)

[1]5678

> sort(y, decreasing = TRUE)
[118765

Ordering

The order() function in R is very useful in sorting a particular data value according to a specific
variable. It will arrange the data or orders the data based on given parameters.

Usage:

order(x, decreasing = FALSE, ..,), where x is a sequence of numeric, complex, character or
logical vectors.

Example:

>y =c(8,5,7,6)

>y

[118576

> order(y)

[1]2431

> order(y, decreasing = TRUE)
[1]1342

Lists

Lists are the R objects which contain elements of different types like — numbers, strings,
vectors and another list inside it. A list can also contain a matrix or a function as its elements.
List is created using list() function. Lists can be indexed by position.

For example: x[[5]] refers to the fifth element of x.
Difference between a vector and a list:

¢ |[n a vector, all elements must have the same mode.
¢ |n a list, the elements can have different modes.

List can contain any kind. An example of a list that contains different object types:

28

>z1 = list(c("water", "juice", "lemonade"), rep(1:4, each=2), matrix(data=5:8, nrow=2, ncol=2,
byrow=T))

>z1

[[11]

[1] "water
[[2]]
(1111223344
[[31]

[11[2]

[1,]56

mnmiag

juice" "lemonade"

(2,178

Access the elements of a list using the operator [[]]
Following commands work.

>z1[[1]]

[1] "water" "juice" "lemonade"

Suppose we want to extract "juice".

z1[[1]][2]

[1] "juice"

Mode
Every object has a mode.
The mode indicates how the object is stored in memory: as a

e number,

e character string,

e list of pointers to other objects,
e function etc.

OBJECT EXAMPLE MODE
Number 1.234 numeric
Vector of numbers c(5,6,7,8) numeric
Character string "India" character
Vector of character strings c("India", "USA") character

29

Factor factor(c("UP", "MP")) numeric
List list("India", "USA") list
Data frame data.frame(x=1:2, list
y=c("India", "USA"))
Function print function
Usage:

mode(x), where x is a numeric or character arguments.
Example:

> mode(c(5,6,7,8))

[1] "numeric"

> mode(c("India", "USA"))

[1] "character"

> mode(list("India", "USA"))

[1] "list"

> mode(print)

[1] "function"

Vector Indexing

Vector elements are accessed using indexing vectors, which can be numeric, character or
logical vectors. You can access an individual element of a vector by its position (or "index"),
indicated using square brackets.

Example:
>x=1:10
>X

(1112345678910
>X[(x>5)]
[1]6789 10

> X[(x%%2==0)]
(11246810

30

Logical Vector

A logical vector is a vector that only contains TRUE and FALSE values. In R, true values are
designated with TRUE, and false values with FALSE. When you index a vector with a logical
vector, R will return values of the vector for which the indexing vector is TRUE.

Example:
> x[5] = NA
> X

[111234NA678910

>y = X[lis.na(x)]

>y

(111234678910

Vector of Negative integers

A negative of a vector represents the direction opposite to the reference direction. It means
that the magnitude of two vectors is same but they are opposite in direction.

>x=1:10

> X
(1112345678910
> x[-(1:5)]
[11678910

String Vector

names() function in R Language is used to get or set the name of an Object. This function takes
objecti.e., vector, matrix or data frame as argument along with the value that is to be assigned
as name to the object. The length of the value vector passed must be exactly equal to the
length of the object to be named.

Usage:

names(x), where x is an R object.
Example:
>z=list(al=1,a2="c",a3 =1:3)

>z

31

Sal

[1]1

Sa2

[1] "c"

Sa3
[1]123
> names(z)

[1] Ilalll Ila2|l Ila3ll

Empty Index

In R Programming Language an empty index can be created by simply not passing any value
while creating a regular index using the x[] function.

Example:
>x=1:10
>X

[1112345678910

> X([]

[1]112345678910
Matrix created from Lists

List can be heterogeneous (mixed modes). We can start with a heterogeneous list, give it
dimensions, and thus create a heterogeneous matrix that is a mixture of numeric and
character data.

Example:
> ab = |ISt(1, 2' 3' llxll, "Y", llzll)
> dim(ab) = c(2,3)

> print(ab)
[11[.2] [,3]

1,1 1 3 "y"

[2,] 2 "X" "z"

32

Factors

Factors in R Programming Language are data structures that are implemented to categorize
the data or represent categorical data and store it on multiple levels. They can be stored as
integers with a corresponding label to every unique integer. Factors are the data objects
which are used to categorize the data and store it as levels. They can store both strings and
integers. They are useful in data analysis for statistical modeling.

Usage:

e factor(x)
e factor(x,levels), where x is a numeric or character arguments.

Example:

nmn n-n

> x = factor(c("juice", "juice", "lemonade",
"juice", "water"))

>X

[1] juice juice lemonade juice water
Levels: juice lemonade water

The single levels are ordered alphabetically:

juice --- lemonade --- water
Unclass Function

All objects in R have a class, reported by the function class. For simple vectors this is just the

n.n

mode, for example "numeric", "logical", "character" or "list", but "matrix", "array", "factor"
and "data.frame" are other possible values. unclass() is used to temporarily remove the
effects of class. The command unclass shows, an integer is assigned to every factor level.

Usage:
unclass(x), where x is an R object.

Example:

nmn nmn nmn

> x = factor(c("juice", "juice", "lemonade", "juice", "water"))
> unclass(x)

[1]11213

attr(,"levels")

nmn

[1] "juice" "lemonade" "water"

33

Ordered Factor

The levels of factors are stored in alphabetical order, or in the order they were specified to
factor if they were specified explicitly. Sometimes the levels will have a natural ordering that
we want to record and want our statistical analysis to make use of. The ordered() function
creates such ordered factors but is otherwise identical to factor.

Example:

nmn nmn

>income = ordered(c("high", "high", "low", "medium", "medium"), levels=c("low", "medium",
Ilhighll))

> income
[1] high high low medium medium

Levels: low < medium < high

Turning a vector into a factor:

A vector can be turned into a factor with the command as.factor(). However, it converts a
vector into a factor and uses value labels as factor levels.

Usage:

as.factor(x), where x is a vector of data, taking a small number of distinct values.
Example:

>x=c(4,5,1,2,3,3,4,4,5,6)

> x = as.factor(x)

> X

[114512334456

Levels: 123456

34

7. STRINGS - DISPLAY & FORMATTING

Any value written within a pair of single quote or double quotes in R is treated as a string.
Internally R stores every string within double quotes, even when you create them with single
quote.

Formatting and Display of strings

A common task when working with character strings involves printing and displaying them on
the screen or on a file. R provides a series of functions for printing strings. Some of the
printing functions are

e print(x), where x is an object used to select a method.

e format(x), where x is any R object, typically numeric.

e cat(x), where x is an R object

e paste(x), where x is a one or more R objects, to be converted to character vectors.

Print Function

In R there are various methods to print the output. Most common method to print output in
R program, is the print() function.

Example:

> print(sqrt(2), digits=16)
[1] 1.414213562373095
Limitations:

e The print function has a significant limitation that it prints only one object at a time.
Trying to print multiple items gives error message:

Example:

> print("The zero occurs at", 2*pi, "radians.")

Error in print.default("The zero occurs at", 2 * pi, "radians."): invalid 'quote' argument
e The only way to print multiple items is to print them one at a time

Example:

> print("The zero occurs at"); print(2*pi);

print("radians")

[1] "The zero occurs at"

[1] 6.283185

[1] "radians"

35

Format Function

The function format() allows you to format an R object for pretty printing. Essentially, format()
treats the elements of a vector as character strings using a common format. This is especially
useful when printing numbers and quantities under different formats.

Usage:

format(x, trim = FALSE, digits = NULL, nsmall = OL, justify = c("left", "right", "centre", "none"),
width = NULL, ...)

Example:

> print(format(0.5, digits=10, nsmall=15))
[1] "0.500000000000000"

Cat Function

The function cat() converts its arguments to character strings, concatenates them, separating
them by the given sep= string, and then prints them. cat puts a space between each item by
default. One must provide a newline character (\n) (newline) to terminate the line. cat is
useful for producing output in user defined functions.

Example:
> cat(1:10,sep="_")
12345678910

The cat function is an alternative to print that lets you combine multiple items into a
continuous output as well as it can also print simple vectors.

> cat("The zero occurs at", 2*pi, "radians.", "\n")
The zero occurs at 6.283185 radians.

> evenno = ¢(2,4,6,8,10)

> evenno

[1]246810

> cat("The first few even numbers are:", evenno, "...\n")

The first few even numbers are: 246 8 10 ...
Paste Function

The paste() function concatenates several strings together. It creates a new string by joining
the given strings end to end. The result of paste() can be assigned to a variable. paste inserts
a single space between pairs of strings. A desired line break can be achieved with "\n"

36

(newline). The collapse parameter defines a top-level separator and instructs paste to
concatenate the generated strings using that separator:

Usage:
paste (..., sep="", collapse = NULL).
Example:

nn

> x = paste("Ex", 1:5, sep="_", collapse="")

> x[1]
[1] "Ex_1Ex_2Ex_3Ex_4Ex_5"
> names = ¢("Prof. Singh", "Mr. Venkat", "Dr. Jha")

> paste(names, "is", "a good", "person.", collapse=", and ")

[1] "Prof. Singh is a good person., and Mr. Venkat is a good person., and Dr. Jha is a good
person.”

Splitting

The strsplit() in R programming language function is used to split the elements of the specified
character vector into substrings according to the given substring taken as its parameter.

Usage:

strsplit(x, split, fixed = FALSE, ...)

Example:

> x = "The&!syntax&!of&!paste&!is!&available!&inthe online-help"
> X

[1] "The&!syntax&!of&!paste&!is!&available!

&inthe online-help"

> abc = strsplit(x,"!&")

>abc

[[11]

[1] "The&!syntax&!of&!paste&!is" "available!&inthe online-help"
Note: To access single components:

> abc([[1]][1]

[1] "The&!syntax&!of&!paste&lis"

37

String Manipulation Functions
Here are the functions available for string manipulation in R:

e nchar(x)

e tolower(x)

e toupper(x), where x is a character vector, or a vector to be coerced to a character
vector

nchar Function

With the help of this nchar() function, we can count the characters. This function consists of
a character vector as its argument which then returns a vector comprising of different sizes
of the elements of x. nchar() is the fastest way to find out if elements of a character vector
are non-empty strings or not.

Example:

> x ="R course 24.07.2017"

> nchar(x)

[1] 19

tolower and toupper Functions

The tolower() function is used to convert the string characters to the lower case. The
toupper() function is used to convert the string characters to upper case.

Usage:

e tolower(x)
e toupper(x), where x is a character vector, or a vector to be coerced to a character
vector

Example:

>x = "R course will start from 24.07.2022"
> tolower(x)

[1] "r course will start from 24.07.2022"

> toupper(x)

[1] "R COURSE WILL START FROM 24.07.2022"

Operations with Strings

38

R has various functions for regular expression-based match and replaces. Some functions
(e.g., grep, grepl, etc.) are used for searching for matches and functions whereas sub and gsub
are used for performing replacement.

e sub()
e gsub()
e grep()

sub and gsub Functions

The sub() and gsub() function in R is used for substitution as well as replacement operations.
The sub() function will replace the first occurrence leaving the other as it is. On the other
hand, the gsub() function will replace all the strings or values with the input strings.

Usage:

sub(old, new, string)

gsub(old, new, string)

Example:

>y ="Mr. Singh is the smart one. Mr. Singh is funny, too."
>y

[1] "Mr. Singh is the smart one. Mr. Singh is funny, too."

> sub("Mr. Singh","Professor Jha", y)

[1] "Professor Jha is the smart one. Mr. Singh is funny, too."
> gsub("Mr. Singh","Professor Jha", y)

[1] "Professor Jha is the smart one. Professor Jha is funny, too."

grep Function

grep() function in R Language is used to search for matches of a pattern within each element
of the given string. If its value is TRUE, it returns the matching elements vector, else return
the indices vector. value = FALSE is default.

Usage:
grep(pattern, x, value=TRUE/FALSE)
Examples:

grep(pattern, x, value = TRUE) returns a character vector containing the selected elements
of x.

39

mn mn

> x =¢("R Course", "exercises", "include examples of R language")
> grep("ex", x, value=T)
[1] "exercises" "include examples of R language"

grep(pattern, x, value = FALSE) returns an integer vector of the indices of the elements of x
that yielded a match.

> x =¢("R Course", "exercises", "include examples of R language")

> grep("ex", x, value=F)

[1]23

Combining two Strings

The c¢() in R programming language function is used to combine two strings.
Example:

>x ="R course 24.07.2022"

>y ="Number of participants: 25"

> c(x,y)
[1] "R course 24.07.2022" "Number of participants: 25"

eval Function

eval() function in R Language is used to evaluate an expression passed to it as argument.
Usage:

eval(x), where x is an object to be evaluated

Example:

> eval("6+8")

[1] "6+8"

> eval(6+8)

[1] 14

> eval("6+8 is Fourteen")

[1] "6+8 is Fourteen"

40

https://www.geeksforgeeks.org/introduction-to-r-programming-language/

The eval() function evaluates an expression, but "6+8" is a string, not an expression whereas
6+8 is not an expression so it evaluates.

parse Function

parse() function in R language is used to convert an object of character class to an object of
expression class. parse() with text=string is used to change the string into an expression.

Usage:

parse(x), where x is an object of character class.
Example:

> eval("6+8")

[1] "6+8"

> class("6+8")

[1] "character"

> eval(parse(text="6+8"))

[1] 14

> class(parse(text="6+8"))

[1] "expression"

41

8. DATA FRAMES

A data frame is a table or a two-dimensional array-like structure in which each column
contains values of one variable and each row contains one set of values from each column.
Following are the characteristics of a data frame. The column names should be non-empty.
The row names should be unique. Data frames contain complete data sets that are mostly
created with other programs (spreadsheet-files, software SPSS-files, Excel-files etc.).
Variables in a data frame may be numeric (numbers) or categorical (characters or factors).

Example:

An example data frame painters is available in the library MASS.

> library(MASS)

> painters

Composition Drawing Colour Expression School
Da Udine 10 8 16 3 A
Da Vinci 15 16 4 14 A
Del Piombo 8 13 16 7 A
Del Sarto 12 16 9 8 A
Fr. Penni 0 15 8 0 A

Here, the names of the painters serve as row identifications, i.e., every row is assigned to the
name of the corresponding painter.

Row Names

All data frames have a row names attribute, a character vector of length the number of rows
with no duplicates nor missing values.

Usage:

rownames(x), where x is an object of class “data.frame”.
Example:

> rownames(painters)

[1] "Da Udine" "Da Vinci" "Del Piombo"

42

[4] "Del Sarto" "Fr. Penni" "Guilio Romano"

[7] "Michelangelo" "Perino del Vaga" "Perugino"

[10] "Raphael" "F. Zucarro" "Fr. Salviata"
[13] "Parmigiano" "Primaticcio" "T. Zucarro"

[16] "Volterra" "Barocci" "Cortona"

[19] "Josepin" "L. Jordaens" "Testa"

[22] "Vanius" "Bassano" "Bellini"

[25] "Giorgione" "Murillo" "Palma Giovane"

Column Names

colnames() method in R is used to rename and replace the column names of the data frame
in R. The columns of the data frame can be renamed by specifying the new column names as
avector. The new name replaces the corresponding old name of the column in the data frame.

Usage:

colnames(x), where x is an object of class “data.frame”.
Example:

> colnames(painters)

[1] "Composition" "Drawing" "Colour" "Expression" "School"
Variables

The data set contains four numerical variables (Composition, Drawing, Colour and
Expression), as well as one factor variable (School).

Example:

> is.numeric(paintersSSchool)
[1] FALSE

> is.factor(paintersSSchool)

[1] TRUE

> is.numeric(paintersSDrawing)
[1] TRUE

> is.factor(paintersSDrawing)

[1] FALSE

43

Summary Function

The summary() command will provide you with a statistical summary of your data. The output
of summary command depends on the object you are looking at. It gives the output as the
largest value in data, the least value or mean and median and another similar type of
information.

Usage:
summary(x), where x is an object for which a summary is desired.
Example:

> summary(painters)

Composition Drawing Colour Expression School
Min. : 0.00 Min. : 6.00 Min. :0.00 Min. :0.000 A :10
1stQu. :8.25 1stQu. :10.00 1stQu. : 7.25 1stQu.: 4000 D :10
Median :12.50 Median :13.50 Median :10.00 Median: 6.000 E 7
Mean :11.56 Mean :12.46 Mean :10.94 Mean : 7.667 G 7
3rd Qu. :15.00 3rdQu. :15.00 3rdQu.:16.00 3rdQu.:11.500 B 16
Max. :18.00 Max. :18.00 Max. :18.00 Max. :18.000 C : 6

(Other): 8

Test if we are dealing with a data frame:
> is.data.frame(painters)

[1] TRUE

Creating data frames

We can create a data frame in R by passing the variable a,b,c,d into the data. frame() function.
We can R create data frame and name the columns with name() and simply specify the name
of the variables.

Example:

>x=1:16

>y = matrix(x, nrow=4, ncol=4)

>z = letters[1:16]

> X

1112345678910 11 12 13 14 15 16
44

>y
(11 L2 [3] [4]

1] 1 5 9 13
2] 2 6 10 14
3] 3 7 11 15
4] 4 8 12 16
>z

[1] Ilall Ilbll "C" Ildll Ilell Ilfll llgll llhll llill Iljll llkll |I|l| llmll IInII IIOII llpll

> datafr = data.frame(x, y, z)

> datafr

X X1 X2 X3 X4 z
1 1 1 5 9 13 a
2 2 2 6 10 14 b
3 3 3 11 15 C
4 4 4 8 12 16 d
5 5 1 5 9 13 e
6 6 2 6 10 14 f
7 7 3 7 11 15 g
8 8 4 8 12 16 h
9 9 1 5 9 13 i
10 10 2 6 10 14 j
11 11 3 7 11 15 k
12 12 4 8 12 16 |
13 13 1 5 9 13 m
14 14 2 6 10 14 n
15 15 3 7 11 15 o]
16 16 4 8 12 16 p

45

Structure of the data

Data structures in R programming are tools for holding multiple values. R's base data
structures are often organized by their dimensionality (1D, 2D, or nD) and whether they're
homogeneous (all elements must be of the identical type) or heterogeneous (the elements
are often of various types).

Usage:
str(x), where x is any R object about which you want to have some information.
Example:

> str(painters)

'data.frame': 54 obs. of 5 variables:

S Composition: int 10 15 8 12 0 15 8 15 4 17..

S Drawing : int 8 16 13 16 15 16 17 16 12 18..

S Colour : int 16 4 16 9 8 4 4 7 10 12..

S Expression : int 3 14 7 8 0 14 8 6 4 18..

S School : Factor w/ 8 levels "A", "B", "C", "D"...11111111..

Note: int means integer.

How to extract variable from a data frame?

= Extract a variable from data frame using S
= Variables can be extracted using the S operator followed by the name of the variable.

Suppose we want to extract information on variable School from the data set painters.
> paintersSSchool

[1] AAAAAAAAAABBBBBBCCCCCCDDDDD

23l DDDDDEEEEEEEFFFFGGGGGGGHHHH

Levels: ABCD EFGH

How to extract data from a data frame?

= The data from a data frame can be extracted by using the matrix-style [row, column]
indexing.

Suppose, if we want to extract information on the first painter Da Udine on the variable
Composition from the data set painters.

46

> painters["Da Udine", "Composition"]
[1] 10
Subsets of a Data Frame

A Data Frame is a two-dimensional data structure, i.e., data is aligned in a tabular fashion in
rows and columns. It is the process of selecting a set of desired rows and columns from the
data frame.

Usage:
subset(x), where x is an object to be subsetted.
Example:

> subset(painters, School=="F')

Composition Drawing Colour Expression School
Durer 8 10 10 8 F
Holbein 9 10 16 13 F
Pourbus 4 15 6 6 F
Van Leyden 8 6 6 4 F

Splitting of a data frame

Using the 'product' and 'condition' variables, divide the data frame into groups. Use the
unsplit() function to restore the original data frame from the split() method. The unsplit()
method has the following syntax. Use the split() function in R to split a vector or data frame.

Usage:
split(x), where x is a vector or data frame containing values to be divided into groups.
Example:

Following command splits painters with respect to School (A,B,C,... categories)

> splitted = split(painters, paintersSSchool)

> splitted
SA

Composition Drawing Colour Expression School
Da Udine 10 8 16 3 A
Da Vinci 15 16 4 14 A

a7

Del Piombo
Del Sarto

Fr. Penni

Guilio Romano

Michelangelo

Perino del Vaga

Perugino

Raphael

SB

F. Zucarro
Fr. Salviata
Parmigiano
Primaticcio
T. Zucarro

Volterra

And so on.

Composition
10
13
10
15
13
12

12

15

15

17

13
16
15
16
17
16
12
18

Drawing
13
15
15
14
14
15

Colour

N9

10

48

(o]
> > » r» > > > >

18

Expression School
8 B
8 B
6 B
10 B
9 B
8 B

9. STATISTICAL FUNCTIONS

Suppose there are 10 persons coded into two categories as male and female.
M,F, M,F, M, M, M, F, M, M.

Use al and a2 to refer to male and female categories. There are 7 male and 3 female persons,
denoted as n1 =7 and n2 = 3. The number of observations in a particular category is called
the absolute frequency.

The relative frequencies of al and a2 are

n, _l

= =0.7=70%
n +n, 10

M 3 03-30%
n +n, 10

This gives us information about the proportions of male and female.

Absolute and Relative Frequencies

Table uses the cross-classifying factors to build a contingency table of the counts at each
combination of factor levels. In R, the command table() creates the absolute frequency of
the variable of the data file.

Usage:

e table(x)
e table(x)/length(x), where x is one or more objects which can be interpreted as factors
or a list.

Example:

e ABSOLUTE FREQUENCY
>gender=c¢(1,2,1,2,1,1,1,2,1, 1)
> gender
111212111211
> table(gender)

12
73
e RELATIVE FREQUENCY

> table(gender)/length(gender)

49

1 2
0.7 0.3

Partition Values

The Partition Values are the measures used in statistics for dividing the total number for
dividing the total number of observations of a distribution into certain number of equal parts.

Quartile: Divides the data into 4 equal parts.
Decile: Divides the data into 10 equal parts.

Percentile: Divides the data into 100 equal parts.

Quantile

The generic function quantile produces sample quantiles corresponding to the given
probabilities. The smallest observation corresponds to a probability of 0 and the largest to a
probability of 1.

Usage:

e quantile(x, ...)
e quantile(x, probs =seq(0, 1, 0. 25),...), where x is a numeric vector.

Example:

> marks = (68, 82, 63, 86, 34, 96, 41, 89, 29, 51, 75, 77, 56, 59, 42)
> quantile(marks)

0% 25% 50% 75% 100%

29.046.563.079.596.0

> quantile(marks, probs=c(0,0.25,0.5,0.75,1))

0% 25% 50% 75% 100%

29.046.563.079.596.0

Variability

Variability (also known as Statistical Dispersion) is one of the features of descriptive statistics.
Variability shows the spread of a data set around a point.

Data: X{, X5, ..., X;,; where X is a data vector.

50

To find the variability of this data:

> marks = c(68, 82, 63, 86, 34, 96, 41, 89, 29, 51, 75, 77, 56, 59, 42)

® Variance

n

1 —
var(x) =— Z (B =%])
i=1
Usage: var(x), where x is a numeric vector, matrix or data frame.
Example:
> var(marks)

[1] 439.3143

® Range
maximum(Xq, X5, ..., Xy,) - minimum(X, X5, ..., X;,)
USAGE: max(x) - min(x), where x is any numeric or character objects.
¢ Interquartile Range
Third quartile(X{, X5, ..., X;;) - First quartile(X{, X5, ..., Xy)
Usage: IQR(x), where x is a numeric vector.
Example:
> |QR(marks)
[1] 33
e Quartile Deviation
[Third quartile(X, X5, ..., X;,) - First quartile(X{, X5, ..., X;;)1/2 = Interquartile range/2
Usage: IQR(x)/2, where x is a numeric vector.
Example:
> |QR(marks)/2
[1] 16.5

Correlation

51

Let x,y be the two data vectors

Data: X = (X1, %y, ..., %) and Y = (Y1, Vo, woe) Vi)

e Covariance
1 n . _
cov(x, y) = ;Z(x,- —ZNX ¥ —Y)
i=1

Usage: cov(x,y): covariance between x and y
Example:

> cov(c(1,2,3,4),c(1,2,3,4))

[1] 1.666667

> cov(¢(1,2,3,4), c(-1,-2,-3,-4))

[1] -1.666667

e Correlation Coefficient

Measures the degree of linear relationship between the two variables.

> (=~ D) -)

cov(x,y)

r\‘\‘ =) Acere : - » n
var(x) var(y) \/Z(x,- T Y -3
i=I i=l

—~18%, 51

Usage: cor(x,y): correlation between x and y
Example:
e Exact positive linear dependence
> cor(c(1,2,3,4), ¢(1,2,3,4))
[1]1
e Exact negative linear dependence
> cor(c¢(1,2,3,4), c(-1,-2,-3,-4))
[1]-1

52

Graphics and Plots

The graphics package is an R base package for creating graphs. The plot function is the most
basic function to create plots in R. With this plotting function you can create several types of
plots, like line charts, bar plots or even boxplots, depending on the input.

Bar Plots

A bar plot is used to display the relationship between a numeric and a categorical variable.
Each entity of the categoric variable is represented as a bar. The size of the bar represents its
numeric value.

Usage:

barplot(x), where x refers to the vector of values for which the barplot is desired.
Example:

>gender=c¢(1,2,1,2,1,1,1,2,1,1)

> gender

[1]1212111211

> barplot(gender)

20

158

1.0

05
L

0.0
L

Pie Diagram

A pie chart is a representation of values as slices of a circle with different colors. The slices are
labeled and the numbers corresponding to each slice is also represented in the chart. In R the
pie chart is created using the pie() function which takes positive numbers as a vector input.

Usage:
53

pie(x), where x refers to a vector of values for which the Pie diagram is desired.
Example:

> pie(gender)

10

Histogram

A histogram represents the frequencies of values of a variable bucketed into ranges.
Histogram is similar to bar chat but the difference is it groups the values into continuous
ranges. Each bar in histogram represents the height of the number of values present in that
range. R creates histogram using hist() function.

Usage:
hist(x), where x refers to a vector of values for which the histogram is desired.
Example:

> hist(gender)

o4

Histogram of gender

Frequency

1.0 1.2 14 16 1.8 20

gender

Boxplot

Boxplots are a measure of how well distributed is the data in a data set. It divides the data set
into three quartiles. This graph represents the minimum, maximum, median, first quartile and
third quartile in the data set.

Usage:

boxplot(x), where x refers to the vector of values for which the boxplot is desired.
Example:

> marks = ¢(68, 82, 63, 86, 34, 96, 41, 89, 29, 51, 75, 77, 56, 59, 42)

> boxplot(marks)

55

90

80

70

60

50

40
|

30

Scatter Plot

A scatter plot is a set of dotted points to represent individual pieces of data in the horizontal
and vertical axis. A graph in which the values of two variables are plotted along X-axis and Y-
axis, the pattern of the resulting points reveals a correlation between them.

Usage:
e plot(x, y)
e plot(x, y, type)
type

“p" for points “b" for both
“1"for lines “c" for the lines part alone of “b"
“0" for both ‘overplotted’ “s" for stair steps.
“h" for ‘histogram’ like (or ‘high-density’) vertical lines

Parameters:

x: This parameter sets the horizontal coordinates.

y: This parameter sets the vertical coordinates.

xlab: This parameter is the label for horizontal axis.

ylab: This parameter is the label for vertical axis.

main: This parameter main is the title of the chart.

xlim: This parameter is used for plotting values of x.

ylim: This parameter is used for plotting values of y.

axes: This parameter indicates whether both axes should be drawn on the plot.

Examples:

56

Daily water demand in a city depends upon weather temperature. We know from experience
that water consumption increases as weather temperature increases. Data on 27 days is
collected as follows:

Daily water demand (in million litres), Temperature (in centigrade)

> water = ¢(33710, 31666, 33495, 32758, 34067, 36069, 37497, 33044, 35216, 35383, 37066,
38037, 38495, 39895, 41311, 42849, 43038, 43873, 43923, 45078, 46935, 47951, 46085,
48003, 45050, 42924, 46061)

> temp = ¢(23,25,25,26,27,28,30,26,29,32,33,34,35,38,39,42,43,44,45,45.5,
45,46,44,44,41,37,40)

> plot(water, temp)

? o ° o
o o o
o
o
o o
v 4 o
o
o
- o
0
§ 3 o
o
o
o
R
~ o
o
o
o
7o) 00
N 2o o
o
T T T
35000 40000 45000

water

> plot(water, temp, "I1")

57

temp
30 35 40 45
]

25

T I
35000 40000

water

> plot(water, temp, "b")

T
45000

lg | o/o\
o
2 | 7
o
o™ 4££i;//
a
£ 3. /
o/o
o
8 |
o 7
/
w0 4
N o [}
\\\\o
T T !
35000 40000 45000
water

> plot(water, temp, "0")

58

temp
30 35 40 45
|

25

I | I

35000 40000 45000
water
> plot(water, temp, "h")
wn
<
o
L
Qo
£ 5
(=]
«]
m I
N
| |
35000 40000 45000
water

> plot(water, temp, "s")

59

temp

> plot(water, temp, xlab=" Daily Water Consumption

45

40

35

30

25

-

T T
40000 45000

water

, ylab=" Day Temperature

main="Daily Water Consumption versus Day Temperature")

Day Temperature

45

40

25

Daily Water Consumption versus

35000

60

T T
40000 45000

Daily Water Consumption

n
7

Smooth Scatter Plot

In statistical, several Scatter plot smoothing methods are available to fit a function through
the points of a scatterplot to best represent the relationship between the variables.

Usage:

scatter.smooth(x,y), where x, y refers to the arguments that provide the x and y coordinates
for the plot.

Example:

>scatter.smooth(water,temp)

0
¥
o
<

£ o

o ™
o
O]
0
N

35000 40000 45000

water

More Functions:

e contour() for contour lines

e dotchart() for dot charts (replacement for bar charts)

e image() pictures with colors as third dimension

e mosaicplot() mosaic plot for (multidimensional) diagrams of categorical variables
(contingency tables)

e persp() perspective surfaces over the x—y plane

61

10. R PROGRAMMING

Steps to write a programme:

¢ Aprogramme is a set of instructions or commands which are written in a sequence of
operations i.e., what comes first and what comes after that.

The objective of a programme is to obtain a defined outcome based on input variables.
The computer is instructed to perform the defined task.

Computer is an obedient worker but it has its own language.

We do not understand computer’s language and computer does not understand our
language.

The software helps us and works like an interpreter between us and computer.

We say something in software’s language and software informs it to computer.
Computer does the task and informs back to software.

The software translates it to our language and informs us.

Programme in R is written as a function using function.

Write down the objective, i.e., what we want to obtain as an outcome.

Translate it in the language of R.

Identify the input and output variables.

Identify the nature of input and output variables, i.e., numeric, string, factor, matrix
etc.

* & & o

@ & & & O 6 o oo

¢ Input and output variables can be single variable, vector, matrix or even a function
itself.

¢ Theinputvariables are the component of function which are reported in the argument
of function()

¢ The output of a function can also be input to another function.

¢ The output of an outcome can be formatted as per the need and requirement.

Tips

* Loops usually slower the speed of programmes, so better is to use vectors and
matrices.

Use # symbol to write comment to understand the syntax.

Use the variable names which are easy to understand.

Don’t forget to initialize the variables.

L)

e

AS

7/
X4

L)

¢

o
A

62

Example:

Suppose we want to compute

(3
exp(x+]n(i+x)] if x>0
X
f(x)=<10 if x=0
3

=i if x<0
| X

At a Glance:

> f = function(x)

{

if(x>0) {exp((x+log(1+x~3))/x"2)}
else if(x==0) {10}

else {(2+x"3)/x}

}

Output:

> f(8)

[1] 1.249201
> f(-4)

[1] 15.5

> f(0)

[1] 10

63

APPLICATIONS

Real-Life uses of R

R applications are not enough until you don’t know how people/companies are using the R

programming language.

10.

(Dt Companies that use R for Analytics

Lot Google | A
¢_» MERCK

TS TechCrunch CREBITZ
0fatel::cl ok G genpact

e, Wiprol Ehe

1 I 1 MNewr ok
b Blﬂg ' :1H=lﬁf Eﬁ]ﬁ

. Thomas Cook

[
L

L
L

w'n
g

Facebook — Facebook uses R to update status and its social network graph. It is also
used for predicting colleague interactions with R.

Ford Motor Company — Ford relies on Hadoop. It also relies on R for statistical analysis
as well as carrying out data-driven support for decision making.

Google — Google uses R to calculate ROl on advertising campaigns and to predict
economic activity and also to improve the efficiency of online advertising.
Foursquare — R is an important stack behind Foursquare’s famed recommendation
engine.

Microsoft — Microsoft uses R for the Xbox matchmaking service and also as a statistical
engine within the Azure ML framework.

Mozilla - It is the foundation behind the Firefox web browser and uses R to visualize
web activity.

New York Times — R is used in the news cycle at The New York Times to crunch data
and prepare graphics before they go for printing.

Thomas Cook — Thomas Cook uses R for prediction and also Fuzzy Logic Systems to
automate price settings of their last-minute offers.

National Weather Service — The National Weather Service uses R at its River Forecast
Centers. Thus, it is used to generate graphics for flood forecasting.

Twitter — R is part of Twitter’s Data Science toolbox for sophisticated statistical
modeling.

64

https://data-flair.training/blogs/fuzzy-logic-systems/

Pros and Cons of R

R is one of the most popular languages for statistical modeling and analysis. But like every
other programming language, R has its own set of benefits and limitations. R is a continuously
evolving language. This means that many of the cons will gradually fade away with the future
updates of R.

Advantages of R:

R is the most comprehensive statistical analysis package. As new technology and
concepts often appear first in R.

As R programming language is an open source. Thus, you can run R anywhere and at
any time.

R programming language is suitable for GNU/Linux and Windows operating system.

R programming is cross-platform which runs on any operating system.

In R, everyone is welcome to provide new packages, bug fixes, and code
enhancements.

Disadvantages of R:

In the R programming language, the standard of some packages is less than perfect.
Although, R commands give little pressure to memory management. So R
programming language may consume all available memory.

In R basically, nobody to complain if something doesn’t work.

R programming language is much slower than other programming languages such as
Python and MATLAB.

We got to know the positive aspects of R Language which place us a step ahead towards
generating our interest in learning R. We also inferred many of its weaknesses but, most of
them are under the correction phase through several upgrades and further development. We
believe that many of the limitations will be eradicated in future.

65

CONCLUSION

As a conclusion, R is the most popular analytic tool for data analysis and statistics, having
approximately 2 million users. It is ideal for all data analytics operations.

Being an open-source language, it is continuously expanding, people from all over the world
are contributing to its development.

The platform independence, diversity of packages, and robust graphical features add an
advantage to this primary tool in the analytics industry.

Due to a shortfall of data analysts, various jobs are available for R programmers in the Data
Analyst Industry. Both novice and professionals have a place in this industry.

Apart from the IT industry, several other industries are using data to transform problems into
solutions -

e Financial Sectors

e Banks

e Health Organizations

e Manufacturing companies
e Academia

e Governmental departments

Companies like Facebook, Google, Twitter are adopting R to meet their analytical goals.
Emerging startups are moving on the same path.

The adoption of R in data-driven companies is increasing rapidly and will flourish in the years
to come.

However, these organizations expect their new employees to be up to date with R. They want
them to be familiar with R and its use for Data Analytics. With so many advantages, this
language will continue to grow in popularity in the world of statistical computing and data
analytics.

66

REFERENCES

1. Introduction to Statistics and Data Analysis - With Exercises, Solutions and Applications in
R - By Christian Heumann, Michael Schomaker and Shalabh, Springer, 2016.

2. The R Software-Fundamentals of Programming and Statistical Analysis -Pierre Lafaye de
Micheaux, Rémy Drouilhet, Benoit Liquet, Springer 2013.

3. A Beginner's Guide to R (Use R) By Alain F. Zuur, Elena N. leno, Erik H.W.G. Meesters,
Springer 2009.

4. https://www.geeksforgeeks.org/r-programming-language-introduction

67

BASICS OF
PY
$HON AND MATHEMATICAL COMPUTATIONS
SING PYTHON PROGRAMMING

Project Report submitted to

ST.MARY" ;
S COLLEGE (AUTONOMOUS), THOOTHUKUDI

Affiliated to
MANONMANIAM SUNDARANAR U

In partial fulf

NIVERSITY, TIRUNELVELI
llment of the requirement for the award of degree of

Bachelor of Science in Mathematics

Submitted by
NAME REG.NO.
ANGEL MERCY. J 19AUMTO1
HARITHA. S 19AUMT12
MARIA ANTONY SNOWBA.J 19AUMT22
SELIN PREETHI. A 19AUMT40
SHALINI. M 19AUMT42
Under the Guidance of

Dr. Sr. S. KULANDAI THERESE M.Sc., B.Ed., M.Phil., Ph.D.
Assistant Professor of Mathematics

St. Mary’s College (Autonomous), Thoothukudi.

Department of Mathematics
St. Mary’s College (Autonomous), Thoothukudi
(2021 -2022)

BASICS OF PYTHON AND MATHEMATICAL COMPUTATIONS
USING PYTHON PROGRAMMING
Project Report submitted to
ST.MARY’S COLLEGE (AUTONOMOUS), THOOTHUKUDI
Affiliated to
MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI
In partial fulfillment of the requirement for the award of degree of
Bachelor of Science in Mathematics

Submitted by

NAME REG.NO.

ANGEL MERCY.J 19AUMTO1

HARITHA. S 19AUMT12

MARIA ANTONY SNOWBA. J 19AUMT?22

SELIN PREETHI. A 19AUMT40

SHALINI. M 19AUMT42
Under the Guidance of

Dr. Sr. S. KULANDAI THERESE M.Sc., B.Ed., M.Phil., Ph.D.
Assistant Professor of Mathematics

St. Mary’s College (Autonomous), Thoothukudi.

Department of Mathematics

St. Mary’s College (Autonomous), Thoothukudi

(2021 - 2022)

CERTIFICATE

We h .
M;T:IrEKZAC’IFCIare that the project report entitled "BASICS OF PYTHON AND
ICAL COMPUTATIONS USING PYTHON" being submitted to St.

Ma.ry ° .Colle.ge (Autonomous), Thoothukudi affiliated to Manonmaniam Sundaranar
University, Tirunelvel; in partial fulfillment for the award of degree of Bachelor of

Scienc.e in Mathematics and it is a record of work done during the year 2021 - 2022 by the
following student :

NAME REG.NO.
ANGEL MERCY. J 19AUMTO1
HARITHA. S 19AUMT12
MARIA ANTONY SNOWBA. J 19AUMT?22
SELIN PREETHI. A 19AUMT40
SHALINL. M 19AUMT42

V&k_‘i‘“‘ , Vel Qrelle AP aling W\a—‘j

Signature of the Guide Signature of the HOD
Dr. S. KULANDAI THERESE A Dr. V.L. Stella Arputha Mary
LR - M.Sc.M.Phil.,, B.Ed., Ph.D.,
m&mmm Head & Asst Professor of Mathematics
St Mary's Colege (Autonomous), St. Mary's College (Autonomous)
Thoothukudi - 628 001. Thoothukudi-628 001.

D e
Signatur&of tie Examiner SignatureofthePrincipal

Principal
St. Mary's College (Autonomous)
Thoothukudi-628 001.

J. P“‘%Q\ eyt S Haadra

(ANGEL MERCY. J) (HARITHA. S)
A Seltn “Preett M. Shalius

(SELIN PREETHI. A) (SHALINI. M)

3 .Mu\‘aAnh“ﬁ/S“"“L

(MARIA ANTONY SNOWBA. J)

ACKNOWLEDGEMENT

First of all, we thank Lorq Almighty for showering his blessings to undergo this project.

With immense ple

asure, we register our deep sense of gratitude to our guide
Dr. Sr. S. Kula

ndai Therese M.Sc., B.Ed., M.Phil.,, Ph.D. and the Head of the
Department, Dr. V. L. Stella Arputha Mary M.Sc., M.Phil., B.Ed., Ph.D. for having
imparted necessary guidelines throughout the period of our studies.

We thank our beloved Principal, Rev. Dr. Sr. A.S.J. Lucia Rose M.Sc., M.Phil., Ph.D.,
PGDCA for providing us the help to carry out our project work successfully.

Finally, we thank all those who extended their helping hands regarding this project.

BASICS OF PYTHON AND
MATHEMATICAL
COMPUTATIONS USING
PYTHON
PROGRAMMING

PREFACFE

The topic of our Project "BASICS OF PYTHON AND MATHEMATICAL COMPUTATIONS
USING PYTHON PROGRAMMING", focuses on underlying concepts of the discipline and
behavioural aspects in python module and mathematical expressions. Python is probably one
of the few programming lnnguagcs which is both simple and pow erful. This is good for
beginners as well as for experts, and more importantly, is fun to program with. This project

aims to help you learn this wonderful language and show how to get thinzs done quickly and

painlessly - in effect "The Anti-venom to your programming problems’.

Basics in python. mathematical operations on arrays, relevant examples and references w2 also
heen discussed to scaffold the readers on the necessary concepts. After brief learninz. = v
natural progression to apply the learned concepts and practices in real life. Python has ~ - e

of applications in almost all areas of Data science which have been discussed in our proj-on e

Project is structured into five chapters :

Chapter 1 presents briefly the basics of python in arithmetical operations.

Chapter 2 deals with Python NumPy module which is used to create vectors. We use

numpy.array() method to create a one dimensional arrary i.e. a vector.

Chapter 3 introduces the symbols and operations, factorizing and expanding expressions, pretty

printing and solving equatiions respectively.

Chapter 4 focuses on creating matrices, ranspose, addition, subtraction, determinants, scalar

multiplication and solving linear equations
om lists or tuples, subsets, supersets and

(Jhapler 8 deals with set construction, creating sets Ir

powersets and Set operations

¥

CONTENT

Chapter 1
1.1 Arithmetic Operators
1.2 Comparison operators 191
1.3 Python Package NUMPY i ceecasasaesessssssasssssssssmmmsssssssssseee 13
TR R T T S —— 14
1.3.2 BASiC AFTAY OPCTAtONS ..ovuvuruuuuuuuueeeeessneesessssssssssssssssssssssssssssssssmssssssssssssssssssss 15
14 ATTAY CPCATION ittt sa st sssssssess e saseassasasasesssssasmssssasaasassasasssssss 16
1.4.1 Python program to demOonStrateceeeeeeerereusisrssssssassssssssamasssasssasssesess 17
Chapter 2
2.1 VECIOTS coiiceeiiietieinttiiseneniestenansieeessesseseessesessssssstssssssssssassssasssssnsansssssnssesssrssnsansssssnsss 19
IS (7 3 (1 (- s asnesssessessrssesmmeems B SIS G 19
73 ASSIgNMENt VErSUS COPYINE woceerucuiusereinimsesnssmssssessesssunsassssensssssssasmssmssas st 20
24 Z/ETO VECTOTS weeeeeruererernssesssssssssnsassstssasssssssssssssssssstssassssssssassstssstasssasssasesssssssssasssssssinsss 20
R Ve) oY [11377 [enae R R U R 21
26 Scalar-vector MUltiPlCAtION c..cu.ciuerussrussesusisssssmussenmssssanssmmssemssessssssssmss s 22
27 CHECKING PrOPEITIES esrvvuusssssssmussssssssssssssssssssssssssssssssssmmmmsssmmssssss s s 22
28 IIDEE PLrOQUC weuunnnerssssssssssssssssssssssssssss s 23
2.9 Complexity of vector COMPUEALIONS covvrrreeesssssssssssssssssssmmmssmsssssss e 24
Chapter 3
3.1 Defining symbols and OPEIALIONS corseressssssssssssssmsss s s st s 26
32 Factorizing and Expanding EXPIESSIONS corsreessssssssssssssssssssss s 27
R N O ——————— 28
34 SubSHHULNG i VAIIES wovsrsrsssssssssstssts st 29
R L T T ——————— 30
Ceeesessssesesassesassesssnaunssssesassess 31
3.5.1 Solving Quadratic EQUAIONS ot
31

..

3.6 Solving a system of linear equations

Chapter 4

B0 MBITICES oot o oo sss s s sERTERSSSRSSEES0020 33
411 Creating Matrices from the entriesmeessssesssssessmmssssssmmmmmssesssss 33

4.1.2 INAEXING CNMFICS w.oviivvviviivuueerusianiauianaioooaiosmssasssssaaaassssssssssssss s sssssesssesss 33

4.1.3 EQUAlItY OF MALFICES wouiiiiiuiiuiivieissssss s sisassssssssssssssssasssssssssissssassssssssssssssss 33

4.1.4 ROW aNA COIMN VRCTOTS w..vvvvvvvvvanrsivssnsssssisssssasssssssesssssssessasssssssssssssesssssssssss 33

4.1.5 SHCINg aNd SUDMALIICES wuuvurieirinsisisisssssisssessssessssssssssssssssssasssssssssssssssssseess 34

4.1.6 BIOCK MALFICES wocuuininitiiiisiccientesesissses s sssssssssssssssasssssssssssasassasssssasmsssssssssssssss 34

2 Zero and identity MALFICES w..uiiiecuiiuerecressesseseeseesesssscssrsssssssssassssssssssasessssassssssesess 34
4.3 Transpose and additioncoiiiiiiiiiiiiiiiiiiinnneernrn e . 35
4.4 Matrix — matrix multiplicationcc.cveiiiiiiiiinieeeiiirnneeasnnnensnnerersrees 36
45 DeterMINANTS .oouiiviiiiiiiiiienteriieeeienseensseecssssosssssssnsssssssasasssssnssssssrosorross 36
4.6 Left and right INVErSesciiuiiiiiiiiiiniiiiitiiiiiieeersrieseenaesarnsnsersnnnseses 38
4.7 Solving linear eqUationsccoviiiuiiiiiiiiiiiieiiuniienennnsasaeeenneessnnas s einen 39

Chapter 5

5.1 WHRAL’'S 2 SEE? onvrerrenereeeeecnsosssessrsssnsassnsstossassssnsnssssstanssssassassnsonsoscsssces 40
50 Set COMSIUCTION «eeneerrnernssnressssssssssrnsesesssreomeassuoemesststssstetainstnananns o 40
5.2.1 Checking Whether a Number Is in etccciimimmiieeeenn 41
5.2.2 Creating AN eMPLY SEleeecerrtrimmmmsmsestsinntiiiiitittis i 41
5.2.3 Creating Sets from Lists or Tuplescccocoviiimniimin 41
5.2.4 Set Repetition and OFAeroooieniieiiiiiimiiiinsit e 41
5.3 Subsets, Supersets, and POWer Sets ... 42
5.4 Set Operationso.vvvereeerseireonessicnes teeeesseseneteetaeIINttEttNTtNasET saneTasansieine +
5.4.1 Union and INtersECtioneeevecerererrsstamenisniarisenisniittititiiisinms 44
5.4.2 CartesSian PrOUUCE o.vvveeeeuenrveeresersiseimarnasssisiiiaetiieaiiittisitimmiss 46

6 Applications of PYHRON ©oveeiiiiii e s e s s 47
T COMCIUSION +evvnrnenessrseeeeseeeseesenenetsesensnsaessarsasrasanasrssesnsnssesenersetstiisss 51
B REIEICICES +.vvvneveeereessnseeseeseneeseesnesasesensannasesssannannasssnussssansssess sttt os 52

1. i : i
Python arithmetic operations
python operators

thon Operators in gene "¢ US : i '
Pyth p i general are used to perform operations on values and variables. These
are standard symbols used for the purpose of logical and arithmetic operations.
1.1 Arithmetic Operators

,\nth'm.du .x perat lf\.’HL used to performing mathematical operations like addition, subtraction,
multiplication, and division.

‘ 1
| |
|
Operator Description Syntax |
|
J
!
B]
- Addtion:adds two operands x+y |
.
- Subtraction:subtracts two operands X-y
| ’
* Multiplication: multiplies two X*y |
operands i
|
|
T . e [
/ Division (float): divides the first x/y |
operand by the second
- |
// Division (floor): divides the first x /'y |
operand by the second
Modulus: returns the remainder when
the first operand is divided by the second

9

* %
second

Examples of Arithmetic Operator
a=9
b=4

Addition of numbers
add=a+b

Subtraction of numbers

sub=a-b

Multiplication of number

mul=a*b

Division(float) of number

divi=a/b

Division(floor) of number

div2=al/lb

Modulo of both number

mod=a%b

Power

p:a**b

print results
10

\
\/———1

Power-
©r: Returns first raised to power

— |
—]

Examples of Arithmetjc Operators in Python

print(add)

print(sub)

print(mul)
print(div 1)
print(div2)
print(mod)
print(p)

Output

o

6561

1.2 Comparison operators

Comparision ~ of relational ~ operators ~ compares the values. It either

returns True or False according to the condition.

Operator Description Syntax
- Greater than: True if the left operand is | x>y
greater than the right
- [Less than: True if the left operand is less | x <y
than the right e

11

- and is greater than or equal to the right

(1' 10: 'I .

Not e
ual to ~ Trye if
qual to — Trye i operands are not
equal
‘\

-_—

Greater th.
ater than or equal to True if the left

oper.

Less than or equal to True if the left

operand is less than or equal to the right

Examples of Comparison Operators in Python

#Examples of Relation

a=13

b=33

#a>bis False

print(a > b)

#a<bis True

print(a < b)

#a=="bis False

al Operators

12

print(a == b)
#a!=bis True
print(a !=b)
#a>=Dbis False
print(a >= b)
#a<=bis True

print(a <= b)

Output

False
True
False
True
False

True

1.3 Python Package Numpy

Numpy is a general-purpose array-processing package. It provides a high-performance
multidimensional array object, and tools for working with these arrays. It is the fundamental
package for scientific computing with Python.
Besides its obvious scientific uses, Numpy can also be used as an efficient multi-dimensional

container of generic data.

Array in Numpy is a table of elements (usually numbers), all of the same type, indexed by a

tuple of positive integers. In Numpy. number of dimensions of the array is called rank of the

13

size of the Array. Arrays ¢ .
YS can also be created wit, the use of various data types such as lists.

es, etc. The type
tup! ype of the resultant array ments in the

uences is deduced from the type of the ele
seq -

Python program for

Creation of Arrays

import numpy as np

Creating a row 1 Array

arr = np.array([1, 2, 3])
print("Array with Rank I: \n",arr)

Creating a row 2 Array
arr = np.array([[1, 2, 3],
(4,5, 6]
print("Array with Row 2: \n", arr)

Creating an array from tuple
arr = np.array((1, 3, 2))
print("\nArray created using "

"passed tuple:\n", arr)

Output

Array with Rank 1:
[123]

Array with Rank 2:

[[123]

14

(45 6]
Array created using passed tuple:

[132]

1.3.2 Basic Array Operationg

| . : e
N UMpy, arrays allow a wide range of operations which can b

formed on a parti .
pel particular array or g combination of Arrays. These operation includes some

basic Mathematical operation as wel] a5 Unary and Binary operations.
Python program to demonstrate
basic operations on single array
import numpy as np
Defining Array 1 l\oaf‘
a=np.array([[1, 2],

[3, 41D
Defining Array 2
b = np.array([[4, 3],

(2, 11D
Adding 1 to every element
print ("Adding 1 to every element:", 2+ 1)
Subtracting 2 from each element

print ("\nSubtracting 2 from each element:", b - 2)

sum of array elements

Performing Unary operations

print ("\nSum of all array "
"elements: ", a.sum())

Adding two arrays

15

Performing Binary Operations
print ("\nArray Sum:n®, g 4y,
Output’

Adding 1 to every element.
[(23]

[45]]

Subtracting 2 from cach elemen:
[0-1]]

Sum of all array elements: 1
Array sum:

(15 5]

(5 5]]

1.4 Array creation

There are various ways to create arrays in NumPy.

« For example, you can create an array from a regular Python list or tuple using

the array function. The type of the resulting array is deduced from the type of the

elements in the sequences.

Often, the elements of an array are originally unknown, but its size is known. Hence,
NumPy offers several functions to create arrays with initial placeholder content. These
minimize the necessity of growing arrays, an expensive operation.
For example: np.zeros, np.ones, np.full, np.empty, etc.

To create sequences of numbers, NumPy provides a function analogous to range that
returns arrays instead of lists.

arange: returns evenly spaced values within a given interval. step size is specified

linspace: returns evenly spaced values within a given interval, num no. of element
) €nts are

returned.

16

» Reshaping appy, We
* C

with shape (al, a2, a3, ...n :r:e "hape Method to reshape an array. Consider an arr)
shape (b1, b2, b3 * AN). We can reshape and convert it into another array with
al x a2 x a3 aN ’-‘b T M) e only required condition 15°

b x b2 b3 . x M . (i.c original size of array remains

unchanged.)
Flat :
. ten array: W, €an use flagge
n

. . n 2 . i tO One
dimension. | aceepts order 'cthod 1o get a copy of array collapsed 1N

- argument, pe : r). Use
F* for column major order . Default value is C* (for row-major orde)

1.4.1 Python program to demonstrg¢
| a
array creation techniques e

import numpy as np

Creating array from list with type float

a=nparray([[1, 2, 4], [5, 8, 7]], dtype = 'floar)

print ("Array created using passed list:\n" a)

Creating array from tuple

b=np.array((1 , 3, 2))
print ("\nArray created using passed tuple:\n", b)

Creating a 3X4 array with all zeros

¢ = np.zeros((3, 4))
print ("\nAn array initialized with all zeros:\n", ¢)

% Create a constant value array of complex type
d = np.full((3, 3), 6, dtype = '‘complex’)
print ("nAn array initialized with all 65."

"Array type is complex:\n", d)

Output
Array created using passed list:
[[1. 2. 4]

[5. 8. 7.]]
17

Array created using p
[132]

assed tuple:

array initialized with g zeros;
An
[[0. 0. 0. 0.]

[0. 0. 0. 0.]
(0. 0. 0. 0.]]

An array initialized with al] ¢s. Arr
‘“ 6.40 6.0, 6.+0.j]
[640 6.40 6.+0,j']
(640 6.40] 6.+0,]]

ay type is complex:

18

2.1 Vectors ZVECTORS

The simplest Way to repreg
e

‘ ctor is
constructed by giving the list of ¢
e

n : ¢
tvectors in Python is using a list structure: AV

m

ments
separated by commas. The assignm
en

€Nts surrounded by square brackets with the el€
lenQ)

t - . ist. The
function returns the size (dimension) Operator = is used to give a name to the list
In[] :x=[~1.l.0.0,3.6,_7.2]
len(x)
Out[] :4

Some common mist
akes. Don’ i re 0 US®
on’t forget the commas between entries, and be sU

uare i i
square brackets. Otherwise, you’|] get things that may or may not makes sense in Python
but are not vectors.

In[] :x=[-1.10.03.6-72]

Out[] :File "<ipython-input-1-18f108d7fed41>", line 1

x=[-1.10.03.6-7.2]~
SyntaxError: invalid syntax

Here Python returns a SyntaxError suggesting the expression that you entered does not make

sense in Python.
Another common way to represent vectors in Python is to use a numpy array. To do so, we
must first import the numpy package.
In []: import numpy as np
x = np.array([-1.1, 0.0, 3.6, -7.2])
len(x)
Out[]: 4
We can initialize numpy arrays from Python list. Here, to call the package we put np. in front
of the array structure.
Note: we have parentheses outside the square brackets. A major advantage of numpy arrays
is their ability to perform linear algebra operations which make intuitive sense whep we are
working with vectors.
2.2 Indexing
A specific element x; is extracted with the expression x[j] where jis the index (which rung from
0ton - 1, for an n-vector).
In[] :import numpy as np

19

X = llp-arra)’([‘| . 0.0
[] ’ My
OUI[] $3.

3.6, -7‘2])

If we used array indexing on the Jef

the corresponding elemeny changc:“

In[]:x[2] = 20.0 “
print(x)

[-1.10.20.-7.2]

-1 is a special index in Pythor :
1. It s g
In[] :x[-1] 1s the index of the last element in an array-
Out[]:-7.2

, .
2.3 Assignment versus copying
ng for those

The behavior of an assignment statement y = x where x is an array may be surprisi
who use other languages like Matlab or Octave. The assignment expression gives a new name
v to the same array that is already referenced by x instead of creating a COPY of x.
In[] :import numpy as np

x = np.array([-1.1, 0.0, 3.6, -7.2])

y=x

x[2] =20.0

print(y)
[-1.10.20.-7.2]

To create a new copy of array X, the method copy should be used.

In[] :import numpy as np

X= np.array([-l .1,0.0,3.6,-7.2])

y = x.copy()
x[2] = 20.0
print(y)

(1.1 0.3.6-7.2]

2.4 Zero vectors

We can create a zero vector of size nusing np.'/.crus(n). I'he cxprcssim\ “P-l.el'oS(len(\)) create
‘ S
a zero vector with the same dimension as veclor X,

In[] :import numpy as np
np.zeros(3)

20

out[] :array([0., 0., 0.1
Unit vectors
We can ‘create the ith unit veetor of |ep
Inl] :mport numpy ag np
i=2
n=4

gth n using index.

X = np.zeros(n)

x[i] =1

print(x)

[0.0.1.0.]
Ones vectors
We can create a ones vector of size n using np.ones(n). The expression np.ones(len(x)) creates
a ones vector with the same dimension as vector x.
In[] :import numpy as np

np.ones(3)

Out[]:array([1., 1., 1.])
Random vectors
Sometimes it is useful to generate random vectors to check our algorithm or test an identity. In
python, we generate a random vector of size n using np.random.random(n).
In[] :np.random.random(2)

Out[] :array([0.79339885, 0.60803751])
2.5 Vector addition

Vector addition and subtraction
If x and y are numpy arrays of the same size, x+y and x-y give their sum and difference,

respectively.
In[] :import numpy as np
= np.array([1,2,3])
y= np.array([100,200,300])
print(‘Sum of arrays:', X*Y)
print('Difference of arrays:, X-y)
Sum of arrays: [101 202 303]

Difference of arrays: [-99 -198 -297]

21

ou can expres
;/n []: imzortsnt:z:;a:l;;eqor Product either as a*x or x*a.
X = np.array([1,2,3])
print(2.2*x)
Out[] :[2.24.4 6.6)
You can carry out scalar-vector division as x/a.
In[] :import numpy as np
X = np.array([1,2,3])
print(x/2.2)
[0.45454545 0.90909091 1.36363636]
Remark: For Python 2.x, integer division is used when you use the operator / on scala
example, 5/2 gives you 2. You can avoid this problem by adding decimals to the integer, i.e.,
5.0/2. This gives you 2.5.

Scalar-vector addition. In Python, you can add a scalar a and a numpy array (vector) X using

rs. For

x+a. This means that the scalar is added to each element of the vector. This is, however, NOT
a standard mathematical notation. In mathematical notations, we should denote this as, e.g. x
+al, where x is an n-vector and a is a scalar.
In[] :import numpy as np
X = np.array([1,2,3,4])

print(x + 2)

[3456]
2.7 Checking properties
Let’s check the distributive property

B(a+b) =pa+pb
which holds for any two n-vector a and b, and any scalar B. We’ll do this for n = 3,and randomly

generated a, b, and B. (This computation does not show that the property always holds; it only

show that it holds for the speciﬁc vectors chosen. But it’s good to be skeptical and check

identities with random arguments.) We use the lincomb function we just defined.

22

In [] : lmport numpy as np

a= np.random.random(?)

print(‘a ', a)
print(’b :' k)
print(‘beta ', beta)
print("LHS lhs)
print('RHS . rhs)
Out{] :a:[0.81037789 0.423708 0.76037206)
b:[0.45712264 0.73141297 0.46341656]
beta : 0.5799757967698047
LHS : [0.73511963 0.6699422 0.70976778]
RHS : [0.73511963 0.6699422 0.70976778]
Although the two vectors lhs and rhs are displayed as the same, they might not be exactly the
same. due to very small round-off errors in floating point computations. When we check an
identity using random numbers, we can expect that the left-hand and right-hand sides ot the
identity are not exactly the same, but very close to each other.
2.8 Inner product
The inner product of n-vector x and y is denoted as x T'y. In Python the inner product of x and
y can be found using np.inner(x,y)
In{] :import numpy as np
x = np.array([-1,2,2])
y = np.array([1,0,-3])
print(np.inner(x,y))
Ou|] : -7 ' . ‘ ‘
/\llcrnutivcly, you can use the (@ operator 10 perform inner product on numpy arrays.
Inf] . import numpy as np
x = np.array([-1,2,2])
y = np.array([1,0,-3])
X@y

23

Net present value. As ap €Xample, th
t
(NPV) of a cash flow vector ¢ iy,
s per

i -period j)
in[] :import numpy as np, interest rate r

¢ = np.array([0.] :0.1,0.1,1. 1) #cash flow vector
n = len(c)
r=0.05 #5% Per-period interest rate
d = np.array([(1+r)**
NPV =c@d
print(NPV)
1.236162401468524

-iforiin range(n)])

In the fifth line, to get the vector d we raise the scalar 1+r element-wise to the powers given in

the range range(n) which expands to 0, 1,2, ..., n-1, using list comprehension.

2.9 Complexity of vector computations

Floating point operations. For any two numbers a and b, we have (a+b)(a=b) = a?—b? .When

d b, they need
y should be

acomputer calculates the left-hand and right-hand side, for specific numbers a an
not be exactly the same, due to very small floating point round-off errors. But the
very nearly the same. Let’s see an example of this.
In[] : import numpy as np

a = np.random.random()

b = np.random.random()

lhs = (a+b) * (a-b)

rhs = a**2 - b**2

print(lhs - rhs)

4.336808689942018e-19
Here we see that the left-hand and right-hand sides are not exactly equal, but very very close.

Complexity. You can time a Python command using the time package. The timer is not very
accurate for very small times, say, measured in microseconds (10—6 seconds). You should run

the command more than once: it can be a lot faster on the second or subsequent runs.
] :import numpy as np

import time

a = np.random.random(1 0**5)

b= np.random.random(lo**S)

24

Out[] :.7

Net preser
1t v
alue_ As value

an examp)e . resent
(NPV) of a cash figy, Ple. the following code snippet finds the net p

vector ¢ s
W .
In[] S impo Ith Per-period interest rate r
port Numpy a5 np 7 .

¢ = np.array([0.) 0.

1.0.1
n = len(c) J1)) #eash flow vector

=0.05 #5% ne i
70 Per-period interest rate

d= np.array([(1+r)*+
NPV =c@d

print(NPV)

-i foriin range(n)])

1.236162401468524
In the fifth line, to get the vector d we raise the scalar 1+r element-wise to the powers given in

the range range(n) which expands to 0, 1,2, ..., n-1, using list comprehension-

2.9 Complexity of vector computations
Floating point operations. For any two numbers a and b, we have (atb)(a—b) = a?~b* .When

a computer calculates the left-hand and right-hand side, for specific numbers a and b, they need

not be exactly the same, due to very small floating point round-off errors. But they should be
verv nearly the same. Let’s see an example of this.
In[] : import numpy as np
a = np.random.random()
b = np.random.random()
lhs = (a+b) * (a-b)
rhs = a**2 - b**2
print(lhs - rhs)
4.336808689942018¢-19
Here we see that the left-hand and right-hand sides are not exactly equal, but \ ery very close
Complexity. You can time a Python command using the time package. The timer is ;1L)t \er.\'
accurate for very small times, 3y, measured in microseconds (10~6 seconds) You should ru'n
the command more than once; it can be a lot faster on the second or subsequent runs.
In[] :import numpy as np
import time
a = np.random.random(10**5)

b= np.rand()m.rundmn(10**5)

24

AND SYMBOL1c MATH WITH

SYMpy
3.1 Defining symbo|g and operag;
ions

Symbols form the

buildi ~ i T rm symbol is
just a general name for the x ys " blocks of symbolic math. 1he term
. NS, S, as,

and bs you yse in equations and algebraic expressions.

eating and using s < vl
g;tem;ts: & Symbols will lef g do things differently than before. Consider the following
>>>x=1
>>>x+x+1
3

Here we create 3 label, x, to refer to the number 1. Then, when we write the
statement X + X + 1, it’s evaluated for us, and the result is 3. What if you wanted the result in
terms of the symbol x? That is, if instead of 3, you wanted Python to tell you that the result is
2x+1? You couldn’t just write x +x + 1 without the statement x = | because Python wouldn’t
know what x refers to.

let us write programs where we can express and evaluate mathematical
expressions in terms of such symbols. To use a symbol in your program, you have to create an
object of the Symbol class, like this:
>>>from sympy import Symbol
>>>x = Symbol('x")
First, we import the Symbol class from the sympy library. Then, we create an
object of this class passing 'x' as a parameter. Note that this 'x' is written as a string within

quotes. We can now define expressions and equations in terms of this symbol. For example,

here’s the earlier expression:

~>> from sympy import Symbol
“=>x = Symbol('x')

X+ x+ 1

2%x + 1

Now the result is given in terms of the symbol X. In the statement

%= Symbol('x'), the x on the left side is the Python label. This is the same kind of label we’ve

Used before, except this time it refers 10 the symbol x instead of a number more specifically, a

Symbol object representing the symbol 'x". This label doesn’t necessarily have to match the

26

SymbO] either we could ha\/c

Used 4 labe| like

the preceding Statemeng as fo))
3 Owsg-

>>>a= Symbol('x')

A0t varl instead. So, it's perfectly fine to write

>>>a+a+l

2*x+l

d . -
efine oy OWN symbolic expressions. let’s learn more

dO) functi decomposes an expression into its factors. and the
expand() function expands ap ¢ i » et’s tes
pa ¢ Xpression, expressing it as a sum of individual terms. [et’s test

aut these functions with the basic algebraic identity x? — y2 = (x + y)(x — y). The left side of
the identity is the expanded version, and the right side depicts the corresponding factorization.
Because we have two symbols in the identity, we’'ll create two Symbol objects:
>>> from sympy import Symbol
>>> x = Symbol('x")
>>> v = Symbol('y")
Next, we import the factor() function and use it to convert the expanded version
on the left side of the identity) to the factored version (on the right side):
>>> from sympy import factor
>>> expr = x**2 - y**2
>>> factor(expr)
D-¥)"(x+y)

As expected, we get the factored version of the expression. Now let’s expand the

‘actors 1o get back the original expanded version:
“=~ factors = factor(expr)
7~ expand(factors)

 Shly y*#)
. in ¢ I l' t‘uC[O[‘S, and then call [[lc‘
[‘ ac y CXPI'CS&IUI] In a new dbc
W store |hC 'dLl()fILCd

. , is. we receive the original expression we started with.
“pand() function with it. When we do this,

; . Centity x° + 3xAy F Xy Py = (X E v
Let's try it with the more cmnphculcd identity x* 1 3X7y)
" , 2 LK
T expr= x443 4 Zuxhh2hy 4 Fayryrr2 by
>>5 1,
"> factors = factor(expr)

>>s factors (X +y)**3

27

>>> expand(factors)

xu3 + 3ﬁx**2*y + 3"X"_v“2 . yasy

Th
e factor() function 1S able
> o f

et d then the cxpand(’)
function expands the factorizeq eXpress; an
S10n 1oy r

actorize the q;xprc:(irm.

eturn to the original expression.

If you try t
V1o factor
Ctorize on.

an e _ o
N expression for which there's no possible fac torizati

the original expression is returned by ¢y
v the

factor() function. For example. see the following:

s> eXpr=x 4ty 4+ xty
~>> factor(expr)
y X - \

LI

1.3 Pretty Printing

I you want the expressions we've been working with to 100k 2 bit nicer
when you print them, you can use the pprint() function. This function will print the expression
in away that more closely resembles how we’d normallv write it on paper. For example, here’s
an expression:)
>>> expr = X*x + 2*x*y + y*y

If we print it as we’ve been doing so far or use the print() function. this is
how it looks:
>>> expr x**2 + 2*x*y + y**2

Now, let’s use the pprint() function to print the preceding expression:
>>> from sympy import pprint
>>> pprint(expr)
x+ Z'X'y +y?

The expression now looks much cleaner—for example, instead of having a

vunch of ugly asterisks, exponents appear above the rest of the numbers.

You can also change the order of the terms when you print an expression.

Consider the expression | +2x + 2%
Trrexpr=] 4 2% x 4+ 2¥x**2
“77 pprint(expr)
2% 2 4
The terms are arranged in the order of powers 0F X, from highest to lowest,

I”‘A‘ ' . N v hi A Ay ¥
Youwant the expression in the opposite order, with the highest power of X lust, you can make

that 1, . ; f
lat hdppcn Wllh lhc inil prin!i”g() function, as ‘U“U\\.\.

28

777 from Sympy import ini' prin“

. 2 : - ng
>>> inn_prlntlng(order-'rcv-lex'
,>> pprint(expr)

1 + 2-x + 2'!1

)

The init priming() functic

M i first alled with the keyword
srgument order=rrev-Jex’, rst imported and called w ’

This ind;
S indicate |
es that we want SymPy to print the expressions so that

print the lower-power terms firsy.
1.4 Substituting in Values

Let’s se W w |
S see i e
how we can yse SymPy to plug values into an algebraic

oression. This will '
AApressio let us calculate the value of the expression for certain values of the

variables. Consider the mathematica| expression x2 + 2xy + y* , which can be defined as

L)

follows:
>>> x = Symbol('x")
>>>y = Symbol('y')
>>> x*X + X¥Y + X¥y + y*y x**2 + 2¥xry 4 yra)
If you want to evaluate this expression, you can substitute numbers in for the
svmbols using the subs() method:
>>> expr = x*x + x*y + x*y + y*y
>>> res = expr.subs({x:1, y:2})
First, we create a new label to refer to the expression and then we call the
subs() method. The argument to the subs() method is a Python dictionary, which contains the

wo symbol labels and the numerical values we want to substitute in for each symbol. Let’s

check out the result:
e res

y
You can also express one symbol in terms of another and substitute

“ordingly, using the subs() method. For example, if you knew thatx = 1 =y, here’s how you

U”, .t/ e . 1 :
I evalyate the preceding expression:

>>> “Xprsubs({x:1-y})

Y4 uyn e
Yy + 1)+ (-y + 1)**2
If you want the result to be simplified further for example, if there are terms

the
hay Cance| e,

ach other out, we can use SymPy’s simplify() function, as follows:
’

29

>77 expr_subs = expr.subs({y. -y}
_»> from SYmpy import simp|ig,
> simplify(expr_su bs)

we create a new labe|

. ; eXpr sy F substitutin
=1y in the expression. We then im D%, & pefer. (o, the esuit oF SEREE -
port the simplify() function from SymPy and call it.

. result turns out to be 1 be
The cause the other terms of the expression cancel each other.

>h there was a simpli :
\Jthoug plified version of the expression in the preceding example. you had

& SymPy to simplify it usj T
o 85k ! ‘ ”_p y using the simplify() function. Once again, this is because SymPy
o any simplificat i : -
won't do any simp 'on Without being asked to. The simplify() function can also simplify

icated expressions, s : . -
comphc p uch as those including logarithms and trigonometric functions, but

+e won't getinto that here.

15 Solving Equations

SymPy’s solve() function can be used to find solutions to equations.
When vou input an expression with a symbol representing a variable, such as X, solve()
czlculates the value of that symbol. This function always makes its calculation by assuming
the expression you enter is equal to zero—that is, it prints the value that, when substituted for
the symbol, makes the entire expression equal zero. Let’s start with the simple equation
y-5=7. If we want to use solve() to find the value of x, we first have to make one side of the
equation equal zero (x — 5 — 7 =0). Then, we’re ready to use solve(), as follows:
>>> from sympy import Symbol, solve
-z x = Symbol('x")
rexpr=x-5-7

“~ solve(expr)
1)

e we use solve(), it caleulates the value of 'x' as 12 because that’s the value that makes the

LAV
PEssIon (x — 5 — 7) equal to zero.

Note that the result 12 is returned in a list. An equation can have multiple

Olution for example, a quadratic cquu(iun has two solutions. In that case, the list will have all
9 [*

'.hc , ! M
Olutiong as its members. You can also ask the solve() function to return the result so that

Cach . .
me ap * o e) [P TS el) S « «
mber i dictionary instead. Each dictionary 18 composed of the ymbol (variable name)

and .
S valye I : of) .n solving simultaneous i
alue (the solution). This 18 especially useful when s g 8 equations

30

where we have more than o
n¢ var

‘ahlc L

dictionary., we know which o I Ive for hec
< l So'vin y Ulion COtree Aute when the solution 1s returned as a
T
3.5 < Q"‘drﬂic Equat PRS0 which variable
““Huatio o
Now we' -
. - We'l
| ! learn how e
Can
IM nccdlng '0 “T"(' ite g‘-*‘r\.P\ a & _— X “ s
w Ut the form Wag | o ¢ solve() function to find the roots
1. >>> from sympy ‘"‘P"ﬂ ki § %ee an example
e
2. >>> X = Symbol('y)
e L i DY S
4. >>> solv e(expr, dk.t:-rr‘ﬂ

& (x4} Ix: o)

The solve() function '
Ction is first imported at | We then define a symbol. x. and an

~aression corresponding t . "ot
o P 2 10 the quadratic equation, x**2 + S*x + 4, at 3. Then. we call the
vel) tion wi : el
wive() func iy e preceding expression at 4. The second argument fo the SOTVEL
cunction (dict=True) specifies that we want the result to be returned as a list of Python
~tionaries.

Each solution in the returned list is a dictionary using the symbol as a ke¥ matched

QO0Ls

Jith its corresponding value. If the solution is empty. an empty list will be returned. The ©
. the preceding equation are —4 and —1, as you can see at 5 The roots of the squation

.2 - x = 1 =0 are complex numbers. Let’s attempt to find those using solve():
>>> y=Symbol('x")

>>> expr=x**2+x+ 1

»>> solve(expr, dict=True)

(13 -172 - sqrt(3)* 12}, {x: 172 + sqrt(3)*1/2}]

1 1 inary ¢ indicated by the |
as expected with the imaginary component i dic \

Both the roots are imaginary,
symbol.

1.6 Solving a system of linear equations

Consider the following two equations
2x + 3y =06
Ix +2y=12

{ind the pair of values (X, Y) that satisties both the equations.
Say we want 10 11

find the solution for a system of equations like this one.
o hne

We can use the solve() function

ols and creat€ the two equations.
b N

First, we define the two SY"‘b
”>>X = Symbol('x')
31

>>> ¥ = Symbol('yy
se>exprl = 2%y 4 3oy M
s> exprl = 3Itw s 30y gy

‘N Towgy T v

m *f’:v\ 4 they peproaqrn vl :”“l "“pr:'
respectively Note how we “ve ed Ry the epresaiot ‘

w the XAty } ! s | pero [wWe moved
. " 1] winvg @iy the wrthy ¢ jrHa '
the right side of the given - '

- 1o the feft tide) Ta find the wlution we all the

function with the rep EXPIECe 1y fmmm 2 fuple
s>> solve((expri, expr), dict-71 rwe)
(S, 24/8))

At mentioned eatlier,
Ve can see that the value of x s

;""v":‘)

M“’l the solution back as a dictionary 15 useful here
24/5 and the value of y is -6/3 Let's verity whether the
wihunon we got really satisfics the cquations. To do so. we'll first create a label, soln, 1o refer

w the solution we got and then use the subs() method to substitute the corresponding values of
» and 1 1n the two expressions:
=22 woln = solvet(exprl, expr), dict=True)
»2> soln = soln]0]
o eaprisubsi(x:soln|x], visoln|y]})
t
wor expr 2 subst {x:soln|x|, y:soln|y]})
¢
The result of substituting the values of x and y corresponding to the solution in

B twe expressions is zero.

4.1 Matrices

i« constructed in Pyvthon ac
in (1A= np.array([(ﬂ.l.d.ﬂ.l]. (13.4.¢6 1.0

A shape
Out | J:(3.4)

d.l.R.O,:]])

4.1.2 Indexing entries

We get the ith row jth column entry of a matrix A using A[i—1. j-1] since Python
starts indexing from 0.

in [1-A[0.2] #Get the third element in the first row

{ {1 1.
Ou |- 4

4.1.3 Equality of matrices

== B determines whether the matrices A and B are equal. For numpy arravs A\ and
£ the expression A == B creates a matrix whose entries are Boolean, depending on whether
“e corresponding entries of A and B are the same. The expression sum(A == B) gives the
fumber of entries of A and B that are equal.
© 0 A =np array ([0,1,4,0.1], [1.3,4,6,1], [4.1,8,0,2]])
B=A.copy()
A==

attay(l True, True, True, True),
[True, True, True, Truel,
[True, True, True, Truel))
e Row ang column vectors
Mol sthion, novectors are the same as nox L omatnees, there is a subtle difference

P g 1V, column vector and a row vedtol

43

Out[]: array([[1., 0., 0., 0,),
(0.1.,0.0,)
(0.0.1.,0,
(0. 0.0 1)

piagonal matrices

In standard
: n : : i
"athematical Notation, diag(1. onal 3x3 matrix with

] 2 is a diag
diagonal entries 1; 2. 3)is a dias

2.3 Inp
Ython, such a matrix can be created using np diag().
In []:x =nparray({[0, 1, 2), '

(3.4, 5),
(6. 7. 8]))
print(np.diag(x))
Oou[]: [048]
3 Transpose and addition

Transpose

In Python, the transpose of A is given by np.transpose(A) or simply A.T
in []: H=np.array([[0.1,-2,1], [2,-1,3,0]])

HT
Out] |- array([[0, 2],
(1,-1],
[-2,3],
[1.01D

Addition, subtraction, and scalar multiplication
In Python, addition and subtraction of matrices, and scalar-matrix multiplication,
vt follow standard and mathematical notation.
U= nparray([[0,4], (7,0, [3,1]D
V= nparray(([1,2), [2,3], [0,4]))
14 Y

{ {
M array(((1, 6)

l‘) ‘515
| [3,51))
T 2.2

(}I’”‘I] P
SArray((o. | 8.8,

35

[15.4,0.),
[6.6.2.2))

n
i ” \;"{H'IJU'\CI_V. we

ln \Th(‘n‘
p- € pPr¢ n ™
h P Xiucl of Natrices Aa IR
. 18 ohtamned with A 4

-an compute the matri
can comp! atnx producy USIng the furs
= e Tunction np matmul()

- A= np.arrawv({|- } Z m X

I [] - [l , e Jy l-l. I' »‘”]')“ h\ 1 atr
B' n a : - - | l

P r‘ra_\(” ' ll. [“.‘L].“.n”)”‘ by matrix

- \ ci‘ “ | a v

out|]: ([3.5 -4.5]]

4.5 Determinants

A special number that can be calculated from a square matrix is known as
e Determinant of a square matrix. The Numpy provides us the feature 10 calculate the
sererminant of a square matrix using numpy.linalg.det() function.
Syntax

numpy.linalg.det(array)
Example 1

Calculating Determinant of a2X2 Numpy matrix using numPP‘-“”‘“é'dc“'

function.

= importing Numpy package

‘mport numpy as np

crezting 2 2X2 Numpy matrix

© rray = np.array([[50, 29), [30, 44]D)

¢ Displaying the Matrix

"

ot “Numpy Matrix is:")

nin_array)

* celculating the determinant of matrix

1 np linalg.deun array)
I nDeterminant of given 2X2 matrix:")
?"h’a”lrxlh_jc(”

"ulput

Numpy Matrix is:[[5V 29l

(30 44]]

36

Dcterminam of given 2x2 Matrix |14
. 0

In the above example, we cale
ulate the ”ﬁﬂ'mmnm of the 2X2 square matrix.

Calculating Determinan linalg detO)

. (\f A ‘xl \JIIYY‘-“\\ matrry uang numpy
function

importing Numpy package
|mpoft NUMPY as np
sopentng A3X3 nUMpY matrix
array = np.array([[55, 25, 15), (30, 44, 21.[V1, 45,77
+ Displaving the Matrix
Ant"Numpy Matrix is:™)
Arintin_array)
¢ calculating the determinant of matrix
4et = np.linalg.det(n_array)
-1 " nDeterminant of given 3X3 square matrix:")
orint(int(det))
Output
Numpy matrix is:[[55 25 15]
(3044 2]
[11 4577]]

Ueterminant of given 3x3 square matrix: 137180

' the above example, we caleulate the Determinant of the 3X3 square matrix.

Example 3

Calculating Determinant of a5X5 Numpy matrix using numpy.linalg det()

MNCLOn
P importing Numpy package
Mpon numpy as np
¥ porting Nump) putk‘agt’
Mpon numpy as np
y HEatng a SX5 Numpy matrix
n arryy np.array((]5, 2, |, 4, 0]

19, 4, 2, 5, 2],

37

[11, S, 7. 3, 9],

[5.6‘6.7.2L

[7.5.9, 3. 31
4 Displaying the Matrix

prim(nN“mp_\' Matrix is:")

print(n array)
¢ calculating the determinany of matri
L& ‘IX
det = np.linalg.det(n_array)
int("\nDeterminant of gj
pnni(antot given 5X5 ¢
2 Square matrix:"
prim(inl(dcl)))

Qutput
Numpy matrix is q5 21 4 6]
94252
[1157 3 9]
[566 7 2]
[7593 3]
Determinant of given 5x5 square matrix: —2003
4.6 Left and right inverses
In []: A=np.array([[-3,-4], [4,6], [1,1]])
B = np.array([[-11,-10,16], [7,8,-11]])/9 #left inverse of A
C = np.array([[0,-1,6], [0,1,-4]])/2 #Another left inverse of A
#Lets check
B@A
Out] J: array([[1.0000000e+00, 0.0000000e+00],
[-4.4408921e-16, | .0000000e+00]])

I [:C@A

Outf J: array([[1., 0.),
(0., 1.]])

Inverge

If A is invertible, its inverse is given by np.linalg.inv(A). You'll get an error if A

I8 00t inyer:
ot invertible, or not square

3 [):A = np.array([[1,-2,3], [0,2.2], [-4,-4, -4]])

38

5.
PLAYING wiTH SETS

5.1 What’s a set?

.. ALMEc T collection of distinct objects , often called elements OF members. T WO
characteristics of a set make it different from just ;n collection of objects. A €t is “well
defined,” meaning the question “Is a particular Object);n this collection?” always has a clear
yes OF N0 answer, usually based on a rule or some given criteria. The second characteristic is

two me C
that no mbers of a set are the same. A set can contain anything——numbers, PeOPlL.

things, words , and so on. Let’s walk through some basic properties of sets as we learn how 10
work with sets in Python using Sympy

5.2 Set construction

In mathematical notation. you represent a set by writing the set members enclosed
in curly brackets. For example. {2, 4, 6} represents a set with 2, 4, and 6 as its members. To
create a set in Python, we can use the FiniteSet class from the sympy package, as follows:
>>> from sympy import FiniteSet
>>> s = FiniteSet(2, 4, 6)
>>> 8
{2,4, 6}

Here, we first import the FiniteSet class from SymPy and then create an object of this class by
passing in the set members as arguments. We assign the label s to the set we just created. We
can store different types of numbers—including integers, floating point numbers, and
fractions—in the same set:

>>> from sympy import FiniteSet

>>> from fractions import Fraction

>>> 5 = FiniteSet(1, 1.5, Fraction(1, 5))

> g

0/5,1,1.5)

The cardinality of a set is the number of members in the set, which you can find by using the

len() function:

> 6=

FiniteSet(1, 1.5, 3)

>
>> len(s)

40

has multiple instances of 4 number,
. > the .
instances are discarded: Number is added to the set only once, and the other

,>> from Sympy import FiniteSe¢
_»>members =[1,2,3, 2]
>>> FiniteSet(*members)

(1,2, 3}

o even though we i .
Here, © g | passed in a list that had two instances of the number 2, the number 2
ag once in i
appears only the set created from that list. In Python lists and tuples, each element 1S
stored 1n 8 particular order, but the same is not always true for sets. For example, we can print

out each member of a set by iterating through it as follows:
->> from sympy import FiniteSet

>>> s = FiniteSet(1, 2, 3)

>>> for member in s:

print(member)

2

1

3

When you run this code, the elements could be printed in any possible order. T his is because
of how sets are stored by Python—it keeps track of what members are in the set, but it doesn’t
keep track of any particular order for those members. Let’s see another example. Two sets are

equal when they have the same elements. In Python, you can use the equality operator, ==, 10
check whether two sets are equal:

>>>from sympy import FiniteSet

>>> s = FiniteSet(3, 4, 5)

>>>t = FiniteSet(5, 4, 3)

>>> g ==

True

Although the members of these two sets appear in different orders, the sets are still equal.

>3 Subsets, Supersets, and Power Sets

A set, s, is a subset of another set, L, if all the members of s are also members of t.

For ®Xample, the set {1} is a subset of the set {1,2}. You can check whether a set is a subset
0
fanother et using the is_subset() method:

42

>>>s = FiniteSet(1)
>>>t= FiniteSet(],z)
>>> s.is_subset(t)

True

>>> t.is_subset(s)

False
Note that an empty set is a sulyg
’ S 4 subset of ever) i L can see
- : y set. Also et i bset of itself, as you ¢an >
in the following: <any setisasu
~>>> s.is_subset(s)
True

~>> t.is_subset(t)

True
Camn 1] ’ 1 :
Similarly. a set. t, is said to be a superset of another set, s, if t contains all of the members

contzined in s. You can check whether one set is a superset of another using the is_superset()
method:

>>> s.is_superset(t)

False

>>> t.is_superset(s)

True

The power set of a set, s, is the set of all possible subsets of s. Any set, s, has precisely 27/s!
subsets, where || is the cardinality of the set. For example, the set {1,2, 3} has a cardinality of

3,50 it has 2° or 8 subsets: {} (the empty set), {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, and {1, 2,
3}. The set of all these subsets form the power set, and we can find the power set using the
powerset() method:

“=> s = FiniteSet(1, 2, 3)

722 ps = s.powerset()

“ZZ s

011,25, 11,35, {1, 2, 3}, {2}, {2, 3}, {3}, EmptySetO)

—

As the power set is a set itself, you can find its cardinality using the len() tunction:

>>> e

8

n(ps)

The Cardinality of the power set is 2°s), which is 2*= 8.

43

.od on our definition f
Bascd Ola subget
> any ty

0 .
a5 well as supersets of each other, g S€ts with the exact same members would be subsets
* BY co

n . ;
trast, a set, s, is a proper subset of t only if all the

members of s are also in t anq t has a |
ea

St . . .)
only @ proper subset of t if Containg | One member that is not in s. So if s = {1,2,3},1t’s

D 2 1
»and 3 plus at least one more member. This would

n that t is a pro
also mea proper Supers g
Clofs, You €an use the is proper subset() method and the

” Jroper_superset() method to check for these relat i

,>> from sympy import FiniteSet | ROSes
,>> s = FiniteSet(l, 2, 3)
FiniteSet(1, 2, 3)

>>>t=

>>> s.is_proper_su bset(t)
False

>>> t.is_ proper_superset(s)

False

Now. if we re-create the set t to include another member, s will be considered a proper subset
of t and t a proper superset of s:

>>> t = FiniteSet(1, 2, 3, 4)

>>>s.is_proper_subset(t)

True

>>> t.is_proper_superset(s)

True

5.4 Set Operations

Set operations such as union, intersection, and th

combine sets in certain methodical ways. These set operations are extremely useful in real-
have to consider multiple sets together. Later in this

e Cartesian product allow you to

world problem-solving situations when we

chapter, we’ll see how to use these operations to apply a formula to multiple sets of data and

“lculate the probabilities of random events.

34.1 Union and Intersection
The union of two sets is a set that contains all of the distinct members of the two
S€1S. In set theory, we use the symbol U to refer to the union operation. For example, {1, 2}

U{2, 3) [,2,3}.In SymPy, the union of these two sets can be created

will result in a new set, {
usj :
"IN the union() method:

from sympy import FiniteSet

44

5.4.2 Cartesian Product

The Cartesi
rtesian prodyct of two set
SCIS Createg

by taking an element fron, o 8 set that consists of all possible pairs

made acl
1 Se N . - -
. For example, the Cartesian product of the sets L

21 and (3.4} is {(1.3). (1, 2), (2, 3. (2. 4y
AT ~In Symp

. s N v. vou can find the Cartesian product of
(WO sets by simply using the multiplicaﬁ(m o
) Operator:
5>> from sympy import FiniteSet

>>> 8 = Fi“ifeset(lg 2)

.o~ t = FiniteSet(3, 4)

= p= s*t
=>>p
L2 x 3.4
This takes the Cartesian product of the sets s and t and stores it as p. To actually see each pair
in that C artesian product, we can iterate through and print them out as follows:
>>> for elem in p:
print(elem)
(1,3
(1,4
2,3)
2.9

Each clement of the product is a tuple consisting of a member from the first set and a member

from the second set.
The cardinality of the Cartesian product is the product of the cardinality of the individual sets.

We can demonstrate this in Python:
#2= len(p) == len(s)*len(t)

True

46

APPLICATIONS OF PYTHON

We are livin i -
n
& 1n a digity| world that is completely driven by chunks of code.

Every industry depends on s : ili
oftware for its proper functioning be it healthcare, military,

king. research, and the |;
ban e list goes on. We have a huge list of programming languages that

One of these is Python which has emerged as

st lucrative a iti .
the mo nd exciting Programming language. As per a survey it is observed that

facilitate the software development process

pvthon is the main coding language for more than 80% of developers. The main reason
behind this is its extensive libraries ang frameworks that fuel up the process.

Python has been at the forefront of Machine learning, data science, and
artificial intelligence innovation, Further, it provides ease in building a plethora of
applications, web development processes, and a lot more. In this blog, we will discuss the

Pvthon applications in a detailed manner.
1. DATA SCIENCE

Python is open source, interpreted, high level language and provides great approach for
object-oriented programming. It is one of the best language used by data scientist for various
data science projects/application. Python provide great functionality to deal with
mathematics, statistics and scientific function.It provides great libraries to deals with data
science application.

One of the main reasons why Python is widely used in the scientific and research
communities is because of its ease of use and simple syntax which makes it easy to adapt for

people who do not have an engineering background. It is also more suited for quick

prototyping.

According to engineers coming from academia and industry, deep learning frameworks

available with Python APIs, in addition to the scientific packages have made Python

ncredibly productive and versatile. There has been a lot of evolution in deep learning Python

frameworks and it’s rapidly upgrading.

In termsg of application areas, ML scientists prefer Python as well. When it comes to areas
like building fraud detection algorithms and network security, developers leaned towards
a4, while for applications like natural language processing (NLP) and sentiment analysis,
devclopcrs opted for Python, because it provides large collection of libraries that help to solve

Comp|ex business problem easily, build strong system and data application,

47

5. Machine Learning and Artificial Intelligence

Machine Learning and Artificial Intelligence are the hottest subjects right now.

python along with its inbuilt librarjeg and tools facilitate the development of Al and ML

algorithms. Further, it offers simple, concise, and readable code which makes it easier for
A} «

developers to write complex algorithms and provide a versatile flow. Some of the inbuilt

libraries and tools that enhance Al and M|, processes are:

Numpy for complex data analysis

. Keras for Machine learning

SciPy for technical computing

. Seaborn for data visualization
3. Web Development

It is one of the most astonishing applications of Python. This is because Python comes up
with a wide range of frameworks like Django, Flask, Bottle, and a lot more that provide ease
to developers. Furthermore, Python has inbuilt libraries and tools which make the web

development process completely effortless. Use of Python for web development also offers:

« Amazing visualization
« Convenience in development
+ Enhanced security

+ Fast development process

4. Game Development

With the rapidly growing gaming industry Python has proved to be an exceptional option for
game development. Popular games like Pirates of the Caribbean, Bridge commander, and
Battlefield o use Python programming for a wide range of functionalities and addons. The
Presence of popular 2D and 3D gaming libraries like pygame, panda3D, and Cocos2D make

the ¢, .
game development process completely effortless.

48

< Goftware Development

python is just the perfect option for software development. Popular applications like Google,

Netflix: and Reddit all use Python. This language offers amazing features like:
platform independence
Inbuilt libraries and frameworks to provide ease of development.
pphanced code reusability and readability
High compatibility
\part from these Python offers enhanced features to work with rapidly growing technologies

ke Machine learning and Artificial intelligence. All these embedded features make it a

~opular choice for software development.

Following are some useful features of Python language

It uses the elegant syntax, hence the programs are easier to read.

. Itis asimple to access language, which makes it easy to achieve the program working.

The large standard library and community support.

The interactive mode of Python makes its simple to test codes.

. In Python, it is also simple to extend the code by appending new modules that are
implemented in other compiled language like C++ or C.

« Python is an expressive language which is possible to embed into applications to offer a
programmable interface.

« Allows developer to run the code anywhere, including Windows, Mac OS X, UNIX, and

Linux.
+ Itis free software in a couple of categories. It does not cost anything to use or download

Pythons or to add it to the application.
WHAT IS THE FUTURE OF PYTHON FOR DATA SCIENCE?

/

"5 Python continues to grow in popularity and as
ience will inevitably continue to grow. As we advance

the number of data scientists continues to
NCregee . i
¢, the use of Python for data s¢
el N TS q 2a? ‘L) . ‘
achine learning, deep learning, and other data science tasks, we'll likely see these

ad .)
ibraries in Python. I

Vanceme . . thon has been well-maintained
tments available for our use as | y atnte
| many of the top companies use Python

an(cont;
tinuousy growing in popularity for years, ane

tod . 1 b e .
ay, With it continued popularity and growing support, Python will be used in the industry

fo
T Yearg t0 come

49

CONCLUSION

python is a concise and extremely powerful language that is rapidly gaining popularity. It
pas been the epicenter of most amazing technologies like Al, automation, and machine

. o F it is use facili
earning: Further, d to facilitate hot subjects like data analysis and data visualization.

Progrmnming language can be a key in your hand for your perfect dream job in the software
industry- In today’s market, Python has been declared as the most used and most demanding
pmgmmming language of all. As the language is getting dominant in all major fields:
panging from software development to machine learning and data analytics, Python has been

geclared as the language of the year 2018. Hence It currently occupies 37 percent of

programming language market.

51

he Complete Reference Complete Reference Series Martin C. Brown Edition illustrated

m T .
ocborne/McGraw-Hill, 2001 ISBN 007212718X, 9780072127188

) Automate the Boring Stuff with Python Practical Programming for Total Beginners Al

geigart Edition illustrated, reprint No Starch Press, 2015 ISBN 1593275994,

0781593275990
| https: /www.studytonight.com/python/

B
4 https: /www.geeksforgeeks.org/python-operators/

5 hitps: ‘www.w3schools.com/python/

52

QUEUEING THEORY

Project Report submitted to

ST.MARY'S COLLEGE (AUTONOMOUS), THOOTHUKUDI

Affiliated to

MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI

In partial fulfilment of the requirement for the award of degree of

Bachelor of Science in Mathematics

Submitted by

NAME

MEGI. B
PRAVEENA. S
RASIKA. T

VARSIGA AROCKIYA FRANCIS. A
VINNARASL. M

Under the Guidance of

Dr. A. PUNITHA THARANI M.Sc., M.Phil., Ph.D.

Associate Professor of Mathematics and COE

St. Mary’s College (Autonomous), Thoothukudi.

e,
|
-

MR ¢

TR

Department of Mathematics
St. Mary’s College (Autonomous), Thoothukudi
(2021 - 2022)

REG.NO.
19AUMT26
19AUMT34
19AUMT36
19AUMT48
19AUMT49

CERTIFICATE

We hereby declare that the project report entitled "QUEUEING THEORY" being
submitted to St. Mary’s College (Autonomous), Thoothukudi affiliated to
~ Manonmaniam Sundaranar University, Tirunelveli in partial fulfilment for the
award of degree of Bachelor of Science in Mathematics and it is a record of work done

during the year 2021 - 2022 by the following students:

NAME

MEGI. B

PRAVEENA. S

RASIKA. T

VARSIGA AROCKIYA FRANCIS. A
VINNARASIL. M

$Bnature of the Guide

r. A. Punitha Tharani
M.Sc., M.Phil.,Ph.D.,

Associate Professor,
Dept.of Mathematics,
St.Mary's College (Autonomous),
Thoothukudi - 628 001.

SR
Signature xaminer

REG.NO.
19AUMT26
19AUMT34
19AUMT36
19AUMT48
19AUMT49

\(‘(,.,.grf,\\.« A-(?MJ\‘\.Q f‘(ﬂj

Signature of the HOD

Dr. V.L. Stella £
MASCA.T\A Pt
Head & Asst Professor
St. Mary's College
Thoothuku

Signature of the Principal
Principal

§t. Mary’s College {Autononwus)
Thoothukudi - 628 001,

DECLARATION

W_e _hc'“:b)’ declare that the project report entitled "QUEUEING THEORY", is our
original work. It has not been submitted to any university for any degree or diploma.

E Mk’(j" 9 Raveona
(MEGI. B) (PRAVEENA. S)
T (IQOLS‘ALA A ‘ \/W '_?ﬁ_

(RASIKA. T) (VARSIGA AROCKIYA FRANCIS. A)

ML Vinnay a4
(VINNARASL M)

ACKNOWLEDGEMENT

First of all, we thank Lord Almighty for showering his blessings to undergo this project.

With immense pleasure, we register our deep sense of gratitude to our guide
Dr. A. Punitha Tharani M.Sc., M.Phil., Ph.D. for having imparted necessary
guidelines throughout the period of our studies.

We thank our beloved Principal, Rev. Dr. Sr. A.S.J. Lucia Rose M.Sc., M.Phil., Ph.D.,
PGDCA and the Head of the Department, Dr. V. L. Stella Arputha Mary M.Sc.,
M.Phil., B.Ed., Ph.D. for providing us the help to carry out our project work
successfully.

Finally, we thank all those who extended their helping hands regarding this project.

CONTENT

1.Introduction
2.Definitions
3.Notation
4.Queuing system
a)Element of Queuing
b)Deterministic Queuing system
c)Probability Distribution in queuing system
5.Classification of Queuing System
6.Definition of transient and study states
7.poisson’s Queuing system
a)Model |
b)Model Il
c)Model 11
d)Model 1V
e)Model V
f)Model VI
g)Model VII
8. Limitation of Queuing theory
9. Application of Queuing theory
10. Conclusion

11.Reference

10
16
16

17
24
24
29
32
35
37
38
39
40
41

QUEUING THEORY

INTRODUCTION

Queuing theory is a branch of mathematics that studies and models the act of
waiting in lines. This paper will take a brief look in to the formulation of the queuing
theory along with examples of the models and applications of their use.The goal of
the paper is to provide the reader with enough background in order to properly model
a basic queuing system in to one of the categories we will look at ,when possible.
Also, the reader should begin to understand the basic ideas of how to determine use
full information such as average waiting times from a particular queuing system

A common situation that occurs in everyday life is that of queuing or waiting
in a line. Queues (waiting lines) are usually seen at bus stops, ticket booths, doctors'
clinics, bank counters, traffic lights and so on queues are also found in workshops
where the machines wait to be repaired; at a tool crib where the mechanics wait to
receive tools; in a warehouse where items wait to be used, incoming calls wait to
mature in the telephone exchange, trucks wait to be unloaded, airplanes wait either to
take off or land and so on.

In general, a queue is formed at a queuing system when either customers
(human beings or p entities) requiring service wait due to the fact that the number of
customers exceeds the number of service facilities, or service facilities do not work
efficiently and take more time than prescribed to serve a customer. Queuing theory
can be applied to a variety of operational situations where it is not possible to
accurately predict the rate (or time) of customers and service rate (or time) of service
facility or facilities. In particular, it can be used to determine the level of service (either
the service rate or the number of service facilities) that balances the following two
conflicting costs:

(1) cost of offering the service
(i) cost incurred due to delay in offering service

The first cost is associated with the service facilities and their operation, and
the second represents the cost of customer's waiting time. Obviously, an increase in
the existing service facilities would reduce the customer's waiting time.

Conversely, decreasing the level of service would result in long queue(s). This
means an increase (decrease) in the level of service increases (decreases) the cost of
operating service facilities but decreases (increases)the cost of waiting. Figure
illustrates both types of costs as a function of level of service. The optimumservice
level is one that minimizes the sum of the two costs.

Queuing Costs vs. Level of Service

__ Total expected | “
cost |
t " | Costof
|/ ~operating the

% service facility
per unit time

Cqst of waiting
cutomers per

unpt time .
Optimum

-~ service level

Level of Service

QUEUING THEORY

Since cost of waiting is difficult to estimate, it is usually measured in terms of
loss of sales or goodwillwhen the customer is a human being who has no sympathy
with the service. But, if the customer is a machine waiting for repair, then cost of
waiting is measured in terms of cost of lost production. Many practical situations in
which study of queuing theory can provide solution to waiting line problems are listed
in Table

Situation | Customers | Service Facilities
Petrol Automobiles | Pumps/Passionel
pumps

(station)

Hospitals Patients Doctors/Nurses/Rooms
Airport Aircraft Runways

Post office | Letters Sorting System

Job Applicants Interviewers
interviews

DEFINITIONS
Customer: A person (or object) arriving at a service station for availing service.

Service station (or Service facility): The place where service is provided to the
customers.

Queue: A line or a sequence of people/objects awaiting their twin to be attended to or
serviced.

Waiting time in queue: The time that a customer spends in the queue before being
taken up for service. It is the difference between the time of arrival of a customer and
the time at which the service station takes-up the service for the customer.

Line length (or queue size) This refers to the total number of customers in the system
who are actually waiting in the line and not being serviced. Queue length may be
defined as the number of units waiting in a queue or present in a system.

NOTATIONS
The notations used for analyzing of a queuing system are as follows:
n = number of customers in the system (waiting and in service)
P,= Probability of n customers in the system
A = average (expected) customer arrival rate or in the queuing system

K = average (expected) service rate or average number of customers served per unit
time at the place of service

A Average service completion(1/u)
;_ P Average inter arrival time(%)
p = traffic intensity or server utilization factor
P, = probability of no customer in the system, 1-(3/p)
s = number of service channels (service facilities or servers)
N = maximum number of customers allowed in the system

L= average (expected) number of customers in the system (waiting and in service)

3

L,= average (expected) number of customers in the queue (queue length)
L= average (expected) length of non-empty queue

W, = average (expected) waiting time in the system (waiting and in service)
W, = average (expected) waiting time in the queue

Py, = probability that an arriving customer has to wait (system being busy),
1-Py= (A1)

QUEUEING SYSTEM

The mechanism of a queueing process is very simple. Customers arrive at a
service counter and are attended to by one or more of the servers. As soon as a
customer is served, it departs from the system. Thus a queueing system can be
described as consisting of customers arriving for service, waiting for service if it is
not immediate, and leaving the system after being served. The general framework of
a queueing system is shown below.

Queueing system

Input Customers {,] Queue Service Served
source Mechamsm customers

¥

Queue Discipline

Figure 1. Basic queueing model structure (Balsam and Marin, 2007; Adan and Resing,
2015).

ELEMENTS OF A QUEUEING SYSTEM

The basic elements of a queucing system are as follows:

1. Input (or Arrival) Process. This element of queueing system is
concerned with the pattern in which the customers arrive for service. Input source can
be described by following three factors:

(@) Size of the queue. If the total number of potential customers requiring
service are only few, then size of the input source is said to be finite. On the other
hand, if potential customers requiring service are sufficiently large in number, then
the input source is considered to be infinite.

Also, the customers may arrive at the service facility in batches of fixed size or
of variable side or one by one. In the case when more than one arrival is allowed to
enter the system simultaneously (entering the system does not necessarily mean
entering into service), the input is said to occur in bulk or in batches. Ships discharging
cargo at a dock, families visiting restaurants, etc. are the examples of bulk arrivals.

(b) Pattern of arrivals. Customers may arrive in the system at known (regular
or otherwise) times, or they may arrive in a random way. In case the arrival times are
known with certainty, the queueing problems are categorized as deterministic models.
On the other hand, if the time betweet successive arrivals (inter-arrival times) is
uncertain, the arrival pattern is measured by either an arrival rate or inter arrival time.
These are characterised by the probability distribution associated with this random
process. The most common stochastic queueing models assume that arrival rate follow
a Poisson distribution and/or the inter-arrival times follow an exponential distribution.

(c) Customer’s behaviour. It is also necessary to know the reaction of a
customer upon entering the system. A customer may decide to wait no matter how
long the queue becomes (patient customer or if the queue is too long to suit him, may
decide not to enter it (impatient customer). Machines arriving at the maintenance shop
in a plant are examples of patient customers. For impatien customers,

(i) if a customer decides not to enter the queue because of its length, he is said
to have balked.

(if) if a customer enters the queue, but after some time loses patience and
decides to leave, then he is said to have reneged.

(iii) if a customer moves from one queue to another (providing similar/different
services) for his personal economic gains, then he is said to have jockeyed for position.

The final factor to be considered regarding the input process is the manner in
which the arrival pattern changes with time. The input process which does not change
with time is called a stationary input process. If it is time dependent then the process
Is termed as transient.

2. Queue Discipline. It is a rule according to which customers are selected
for service when queue has been formed. The most common queue discipline is the
"first come, first served (FCFS or the first in, first out" (FIFO) rule under which the
customers are serviced in the strict order at their arrivals. Other queue discipline
include: "last in, first out” (LIFO) rule according to which the last arrival in the system
Is serviced first.

This discipline is practised in most cargo handling situations where the last item
loaded is removed first. Another example may be from the production process, where
items arrive at a workplace and are stacked one on top of the other. Item on the top of
the stack is taken first processing which is the last one to have arrived for service.
Besides these, other disciplines “selection for service in random order” (SIRO) rule
according to which the arrivals are serviced randomly irrespective of their arrivals in
the system; and a variety of priority schemes-according to which a customer's service
Is done in preference over some other customer.

Under priority discipline, the service is of two types:

(i) Pre-emptive priority. Under th the customers of high priority are given
service over the low priority customers. That is lower priority customer's service is
interrupted (pre-empted) to start service for a priority customer. The initial service is
resumed again as soon as the highest priority customer has been served.

(if) Non pre-emptive priority. In this case the highest priority customer goes
ahead in the queue but his service is started only after the completion of the service of
the currently being served customers.

3. Service Mechanism. The service mechanism is concerned with service
time and service facilities. Service time is the time interval from the commencement
of service to the completion of service. If there are infinite number of servers then all
the customers are served instantaneously on arrival and there will be no queue.

If the number of servers is finite, then the customers are served according to a
specific order. Further, the customers may be served in batches of fixed size or of
variable size rather than individually by the same server, such as a computer with
parallel processing or people boarding a bus. The service system in this case is termed
as bulk service system.

In the case of parallel channels "fastest server rule” (FSR) is adopted. For its
discussion we suppose that the customers arrive before parallel service channels. If
only one service channel is free. then incoming customer is assigned to free service
channel. But it will be more efficient to assume that an incoming customer is to be
assigned a server of largest service rate among the free ones. Service facilities can be
of the following types:

(a) Single queue-one server, i.e., 0ne queue-one service
channel, wherein the customer waits till the service point is ready to take him in for
servicing.

Single Server Queue

YWaiting line
(queue) Dispatching Departures

Arrivals discipline
m—. Server | I
. = arrival rate

)‘—" T = service time

w = itcs waiting P = utilization

T, = waitling time

l |

== =1

= itcms resident in gucuing system
7, = residence time

3

(b)Single queue-several servers wherein the customers wait in a single
queue until one of the service channels is ready to take them in for servicing.

Queue or

Arriving Customers Served
~

~
SR z Z Customer
Waiting line

Service facility

(c) Several queues-one server wherein there are several queues and the
customer may join any one of these but there is only one service channel.

C walomosers
—eOOOCO Servece ¥ ocsbn P

(d) Several servers. When there are several service channels available to
provide service, much depends upon their arrangements. They may be arranged in
parallel or in series or a more complex combination of both, depending on the design
of the system's service mechanism.

{ ' >

o { ; >
OO0+ | i

; 38 e

el J—n

Revvrew Riatioms

By parallel channels, we mean a number of channels providing identical service
facilities. Further, customers may wait in a single queue until one of the service
channels is ready to serve, as in a barber shop where many chairs are considered as
different service channels; or customers may form separate queues in front of each
service channel as in the case of super markets.

For series channels, a customer must pass through all the service channels in
sequence before service is completed. The situations may be seen in public offices
where parts of the service are doneat different service counters.

4. Capacity of the System. The source from which customers are generated
may be finite or infinite. A finite source limits the customers arriving for service. i.e.,
there is a finite limit to the maximum queue size. The queue can also be viewed as one
with forced balking where a customer is forced to balk if he arrives at a time when

queue size is at its limit. Alternatively, an infinite source is forever "abundant” as in
the case of telephone calls arriving at a telephone exchange.

OPERATING CHARACTERISTICS OF A QUEUEING SYSTEM:

Some of the operational characteristics of a queueing system, that are of general
interest for the evaluation of the performance of an existing queueing system and to
design a new system are as follows:

1. Expected number of customers in the system denoted by E (n) or L is the
average number of customers in the system, both waiting and in service. Here, n stands
for the number of customers in the queueing system.

2. Expected number of customers in the queue denoted by E (m) or Ly, is the
average number a customers waiting in the queue. Here m= n-1, i.e, excluding the
customer being served.

3. Expected waiting time in the system denoted by E(v) or W is the average
total time spent by a customer in the system. It is generally taken to be the waiting
time plus servicing time.

4. Expected waiting time in queue denoted by E (w) or W4is the average time
spent by a customer in the queue before the commencement of his service.

5. The server utilization factor (or busy period) denoted by P (= A/u) Is the

proportion of time that a server actually spends with the customers. Here, A stands for
the average number of custome arriving per unit of time and p stands for the average
number of customers completing service per of time.

The server utilization factor is also known as traffic intensity or the clearing
ratio.

DETERMINISTIC QUEUEING SYSTEM

A gqueueing system wherein the customers arrive at regular intervals and the
service time for each customer is known and constant, is known as a deterministic
gueueing system.

Let the customers come at the teller counter of a bank for withdrawl every 3
minutes. Thus the interval between the arrival of any two successive customers, that
is the inter-arrival time, is exactly 3 minutes. Further, suppose that the incharge of that

9

particular teller takes exactly 3 minutes to serve a customer. This implies that the
arrival and service rates are both equal to 20 customers per hour. In this situation there
shall never be a queue and the incharge of the teller shall always be busy with servicing
of customers.

Now suppose instead, that the incharge of the teller can serve 30 customers per
hour, i.e.. he takes 2 minutes to serve a customer and then has to wait for one minute
for the next customer to come for service. Here also, there would be no queue, but the
teller is not always busy.

Further, suppose that the incharge of the teller can serve only 15 customers per
hour, i.e., he takes 4 minutes to serve a customer. Clearly, in this situation he would
be always busy and the queue length will increase continuously without limit with the
passage of time. This implies that when the service rate is less than the arrival rate,
the service facility cannot cope with all the arrivals and eventually the system leads to
an explosive situation. In such situations, the problem can be resolved by providing
additional service facilities, like opening parallel counters. We can summarize the
above as follows:

Let the arrival rate be A customers per unit time and the service rate be p
customers per unit time. Then,

(i) if X >y, the waiting line (queue) shall be formed and will increase
indefinitely: the service facility would always be busy and the service
system will eventually fail.

(i) if A <y, there shall be no queue and hence no waiting time: the
proportion of time the service facility would be idle is 1-A/u.

However, it is easy to visualize that the condition of uniform arrival and
uniform service rates has a very limited practicability. Generally, the arrivals and
servicing time are both variable and uncertain. Thus, variable arrival rates and
servicing times are the more realistic assumptions. The probabilistic queueing models
are based on these assumptions.

PROBABILITY DISTRIBUTIONS IN QUEUEING SYSTEMS

It is assumed that customers joining the queueing system arrive in a random
manner and follow a Poisson distribution or equivalently the inter-arrival times obey

10

exponential distribution. In most of the cases, service times are also assumed to be
exponentially distributed. It implies that the probability of service completion in any
short time period is constant and independent of the length of time that the service has
been in progress.

In this section, the arrival and service distributions for Poisson queues are derived.
The basic assumptions (axioms) governing this type of queues are stated below:

Axioml. The number of arrivals in non-overlapping intervals are statistically
independent, that is, the process has independent increments.

Axiom 2. The probability of more than one arrival between time t and time ¢ + At is o
(At), that is, the probability of two or more arrivals during the small time interval At
Is negligible

Thus P, (Af) + Py (A1) +o (At) = 1.

Axiom 3. The probability that an arrival occurs between time t and time ¢ + Az is equal
to A At + o (At).

Thus P (At)= A At + o (Ab).
Where A is a constant and is independent of the total number of arrivals upto time t .
At is an incremental element and o (At) represents the terms such thatAltirr(l) %Att) =0

1. Distribution of Arrivals (Pure Birth Process)

The model in which only arrivals are counted and no departure takes place are called
pure birth models. Stated in terms of queueing, birth-death processes usually arise
when an additional customer increases the arrival (referred as birth) in the system and
decreases by departure (referred as death) of serviced customer from the system.

Let P, (t) denote the probability of n arrivals in a time interval of length t (both waiting
and in service), where n > 0 is an integer. Then Pp(t +At) being the probability of n
arrivals in a time interval of length t + At (making use of axiom 1) is as follows:

Pn (t + At) = P{n arrivals in time t and one arrival in time At}
+ P {(n-1) arrivals in time t and one arrival in time At}
+ P{(n-2) arrivals in time t and two arrivals in time At}
Foeenn. + P{no arrival in time t and arrivals in time At). for n > 1.

11

Making use of axiom 2 and axiom 3, this difference equation reduces to
Pn (t +At) = Py (t) Po (At) + Pp.a(t) Pi (At) + 0 (At)
= Py (1) [1 - KAt - 0 (At)] + P na(t) {A At + 0 (At) } + o (AL)
where the last term, o (At), represents the terms
P[(n-K) arrivals in time t and k arrivals in time At] 2<k<n
The above equation can be re-written as
Pn(t+At) — Py (t)= -AALPh(t) +AAL. P 4(t) + 0 (At)

Dividing it by At on both sides and then taking the limit as At-—> 0, the equation
reduces to

SR(t) = —AP() + APy (8). m=1. L (A)

For the case when n=0.

Py(t + At) = Py(t)Py(At) = Py(t)[1 — AAt — o (At)]

Rearranging the terms and then dividing on both sides by At. taking the limit as At —
0, we have

SRM=-aP® (B)

To solve the n+1 differential-difference equations given in (A) and (B), we make use
of the generating function

0 (zt) = Z P.(£). 2"
n=0

in the unit circle |z| < 1.

Now multiplying the differential-difference equations given in (B) and (A) by z°, z,
z?z". respectively and then taking summation over n from 0 to oo, we get

— d
Z &Pn (t)Zn = - A@(Z; t) + /‘lZ ®(Z’ t)
n=0

This can also be written as

12

£ 0t = Az - 100
An obvious solution of this differential equation is
® (z,t) = C ezt
where C is an arbitrary constant.

To determine the value of C, we use the initial condition that there is no arrival by
time t->0 and this gives

® (z,0) = Po (0) + Z P.(0)Z" = 1
n=1

Now, P, (0) =0 for n > 1. Therefore, C = 1.
Hence, ®(z,t) = ere-DL L (©)

Now, . Q) (Z t)lz 0 — Pl(t) (Z) (Z t)lz 0~ = 2! Pz(t)
—— 0 (2,6)|,00 = 1! By(t)
Using the value of ¢ (z, t) as given in equation (C), we get
Po(t) = e™*¥, Pi(t) = At)e ",
P,() =—~()e™, B =—@AD"e™ "

The general formula, therefore is

(lt)

P,(t) = e M forn>0

which is the well-known Poisson probability law with mean At. Thus, the random
variable defined as the number of arrivals to a system in time t, has the Poisson
distribution with a mean of At arrival or a mean arrival rate of A.

2. Distribution of Inter-arrival Times (Exponential Process)

Inter-arrival times are defined as the time intervals between two successive arrivals.
Here, we shall show that if the arrival process follows the Poisson distribution, an
associated random variable defined as the time between successive arrivals (inter-
arrival time) follows the exponential distribution f(t) = Ae~**and vice-versa.

13

Let the random variable T be the time between successive arrivals; then
P(T>t) =P (no arrival in time t) = Py (t) = e~
The cumulative distribution function of T denoted by F(t) is given by
F(t) = P(T< t)=1—P (T>t)
=1-Po () =1-e 4 t>0
The density function f(t) for inter-arrival times, therefore, is

f(t)== F () = Ae™, 10

The expected (or mean) inter-arrival time is given by E (t) = f0°° t. f(t) dt
= fooo AteMdt
=1/A

where A is the mean arrival rate.

Thus, T has the exponentialdistribution with mean 1/ A. We would intuitively expect
that, if the mean arrival rate is A, then the mean time between arrivals is 1/A.
Conversely, we can also show that if the inter-arrival times are independent and have
the same exponential distribution then the arrival rate follows the Poisson distribution.

3.Distribution of Departures (PureDeath Process)

The model in which only departures are counted and no other arrivals allowed are
called pure death models.Thequeueing system starts with N customers at time t=0,
where N > 1. Departures occur at the rate of u customers per unit time. To develop the
differential-difference equations for the probability of n customers remaining after 't
time units, Pn (t), we make use of similar assumptions as was done for arrivals. Let
the three axioms, given at the beginning of this section, be changed by using the word
service instead of arrival and condition the probability statements by requiring the
system to be non-empty. Let us define

LAt = probability that a customer in service at time t will service during time At. For
small time interval At > 0. u At gives probability of one departure during At. Using the
same arguments as in pure birth process case, the differential-difference equations for
this can easily be obtained.

14

Pn. (t + At) = Pp(t) {1-uAt + o (At)} + Praa (1).{1 At + 0 (At)}, ISn<N-1
Po(t+At) =P, (t)+ P, (t){uldt+o(At)}, n=0
Pn (t + At) =PN (t). (1-p At + 0 (At)},n=N

Re-arranging the above equations, dividing them by At on both sides and then taking
the limits as At 2 0, we get

d
EPn(t)=—uPn)+ ubP () 0<n<N-1, t>0

d
Epo(t)= pP(t); n=0,t=0

G Pn@©=—pPy(©; n=N,t20

The solution of these equations with initial conditions :

(1; n=N #0
I:’n(o)_{O; n#+N
can easily be obtained as earlier. The general solution to the above equation so
obtained is

(u)N ekt

oo ;1 <n <N and Py (t)=1-3N_, P, (t)

P, (t) =

which is known as a truncated Poisson law.

4. Distribution of Service Times

Making similar assumption as done above for arrivals, one could utilize the same type
of process to describe the service pattern. Let the three axioms be changed by using
the word service instead of arrival and condition the probability statements by
requiring the system to be non-empty. Then we can easily show that, the time t to
complete the service on a customer follows the exponential distribution:

_ (ue Ht; t>0
S(t)_{o . t<0

Where p is the mean service rate for a particular service channel. This shows that
follows exponential distribution which mean 1/p . The number, n, of potential services
in time t will follow the poison distribution given by

15

® (n) =P {n service in time T, if servicing is going on throughout T}

= WDV e
n!

Consequently, we can also show that

P [no service in At] = 1- u At + o (At) and P [one service in At] = uAt + o(At)

CLASSIFICATION OF QUEUEING MODELS

Generally queueing model may be completely specified in the following symbolic
form :

(a/blc) : (dle).

The first and second symbols denote the type of distributions of inter-arrival times and
inter-service times, respectively. Third symbol specifies the number of servers,
whereas fourth symbol stands for the capacity of the system and the last symbol
denotes the queue discipline.

If we specify the following letters as:
M = Poisson arrival or departure distribution.
E = Erlangian or Gamma inter-arrival for service time distribution.
Gl = General input distribution,
G= General service time distribution.

then (M/E}, /1) : (oo /FIFQO) defines a queueing system in which arrivals follow Poisson
distribution service times are Erlangian, single server, infinite capacity and “ first in,
first out” queue discipline.

DEFINITION OF TRANSIENT AND STEADY STATES

A gueueing system is said to be in transient state when its operating characteristic
(like input, mean queue length, etc.) are dependent upon time.

If the characteristic of the queueing system becomes independent of time, then
the steady state condition is said to prevail

If Pn(t) denotes the probability that there are n customers in the system at time
t,then in the steady state case, we have

16

tlim P,(t) = PB,(independent of t)

Due to practical viewpoint of the steady state behaviour of the systems, the
present chapter is simply focused on studying queueing systems under the existence
of steady-state conditions. However the differential-difference equations which can
be used for deriving transient solutions will be presented.

POISSON QUEUEING SYSTEM

Queues, that follow the poison arrivals (exponential inter-arrival time) and
Poisson service (exponential service time) are called Poisson queues. In this section,
we shall study a number of Poisson queues with different characteristics.

Model 1 ((M/M/1): («/FIFO). This model deals with a queucing system having
single service Thennet. Poisson input, Exponential service and there is no limit on the
system capacity while the inmers are served on a "first in, first out™ basis.

The solution procedure of this queueing model can be summarized in the
following three steps:

Step 1. Construction of Differential Difference Equations. Let pn(t)be the
probability that there are n customers in the system at time t. The probability that the
system has n customers at time (t+At) can be expressed as the sum of the joint
probabilities of the four mutually exclusive and collectively exhaustive events as
follows :

Pn(t+At)=Pn(t).P [no arrival in At].P[no service completion in At]
+pn(t).P[one arrival in At].P[one service completed in At]
+Pn+1(t).P[no arrival in At].P[one service completed inAt]
+Py.1(t).P[one arrival in At].p[one service completed inAt]

This is re-written as:
Pa(t+ At)= pa(D)[1 — LAt + o(AD)][1 - pAtto(At)] + Pu(t)[AAL][LAL]
+Pnsa(D)[1 — AAt +o(At)[[uAt + o(At)]+pn-1(t)[AAL + o(A)][1 -ut + o(At)]

Or Pu(1+At) — pa(t) = -(A + p)AtP(t) + pAtP(t) + o(At)
Since At is very small, terms involving (At)? can be neglected. Dividing the above
equation by At on both sides and then taking limit as At — 0, we get

17

d/dt(pn) = '(7& + }l)pn(t) + lJ.Pn+1 (t)+ }LPn-l(t) , N = |

Similarly, if there is no customer in the system at time (t + At), there will be no service
completion during At . Thus for n=0 and t > 0, we have only two probabilities instead
of four. The resulting equation is

Po(t+ At)= po(){1 — AAt + 0(At)} + P1(t) {uAt +o(At)} {1 — AAt + o(At)}
or Po(t+At) — po(t) = -AAtPy(t) + nAtP1(t) + o(At).

Dividing both sides of this equation by At and then taking limit as At —> 0,we get
d/dt(po(t)) = -Apo(t) + HP4(t) ; n=0

Step 2. Deriving the Stendy-State Difference Equations. In the steady-state. Py(t)
Is independent of time t and A <u when t— o .Thus P, (t) = P,and

Consequently the differential-difference equations obtained in Step 1 reduce to
0=-(A+ W)pn+ WPraa+APr1 ; n>1

and 0=-AP, + uP1;n=0

These constitute the steady-state difference equations.

Step 3.Solution of the Seady-State Difference Equations. For the solution of the
above difference equations there exist three methods, namely, the iterative method,
use of generating functions and the use of linear operaters.Out of these three the first
one is the most straightforward and therefore the solution of the above equation will
be obtained here by using the iterative method.

Using iteratively, the difference-equation yield

2
P.-2P,, Po= Py - 2po = (2) P,
© U U 7
= (%), -2 p.= (2 i - (2"
P3—(7)Pz . P;= (u) Po,, and ingeneral P,= (u) Po .
NOW, Pn+1 = M-_#Pn'ipn-l) n=> 1 .
U I

Substituting the values of P, and Py.1, the equation yields

_ M__‘u i n i & n—-1 _ & n+1
Pra=ZE (2) Po-2(2) Pa=(5) P
Thus, by the principle of mathematical induction, the general formulae for P,, is valid
forn>0
18

To obtain the value of P, ,we make use of the boundary condition };;_, Pn=1

1=, (%)”Po =Po Yoo (%)”; since P,= (%)”Po

= Poﬁ, since (§)< 1

This gives o=1- (%)

Hence, the steady- state solution is

P,= (%)”(1 — %)= p"(1-p);p= (%)< I,and n>0.

This expression gives us the probability distribution of queue length.

Characteristic of Model |

(i)Probability of queue size being greater than or equal than or equal to k, the number
of customer is given by

P(n>k) =¥, P = Xien(1 = p)p* = (1-p)p"Tizrn P = (1-p)P" Xz P

=(L-p)p"L P* = % =p"

(if)Average number of customer in the system is given by
E(n) = XasonPn=Xa_on(1 — p)p"= (1 —p) Zrzonp™ = p(1 —)Xo np™ "
w d d woo)
= P(1-p)nzo " = P(1 =Py~ Xnzo ™, since p <1

p A

:p(l_p)u—lp)z REEPI
(iii)Average queue length is given by
E(m) =Ym-omPn, Where m=n-1
being the number of customer in the queue excluding the customer which is in service.
E(m) =Xri(n— DPn =271 mpn— X1 By
= Y=o MPn - [X5=o Pn — Po]

19

= - [1pl=5-p

=p?/ (1-p) =2%/(n—2) .

(iv)Average length of non-empty queue is given by

E(m) _ A? L _#

E(mlm > 0) = P(m>o0) B u(p—21) (&)2 _/,L—/l '
@

2
since P (m>0)=P(n>1)= X7 B —Po—Pi= (%)

(v)The fluctuation (variance) of queue length is given by
V(n) =X5oln — E(M)]?Pn= X5_o n*Pn— [E(M)]?
Using some algebraic transformation and the value of P, the result reduces to

Pt [P M
V) = (=P, L—p] a-p)? (-2

Waiting Time Distribution for Model 1.

The Waiting time of a customer in the system is, for the most part, a
continuous random variable except that there is a non zero probability that the delay
will be zero, that is a customer entering service immediately upon arrival. Therefore,
if we denote the time spent in the queue by w and yy(t) denotes its cumulative
probability distribution then from the complete randomness of the Poisson
distribution, we have

Y,(0) = P(w=0) (No customers in the system upon arrival)
=Po = (1 —p).
It is now required to find yy(t) fort>0

Let there be n customers in the system upon arrival then in order for a customer
to go into service at a time between 0 and t, all the n customers must have been served
by time t. Let sy, S, Sa,...... ,sndenote service times of n customers respectively. Then

W= s, (n>1) and w=0 (n=0).
The distribution function of waiting time, w, for a customer who has to wait is given
by

20

Pw<t)=P[XL;s;<t]; n>1 andt>0.

Since, the service time for each customer is dependent and identically distributed,
therefore its probability density function is given by pe™*{(t > 0), where p is the mean
service rate. Thus

Yh(t) = Yo pn X P(n — 1 customer are served at time t) xP(1 customer is served in
time At)

mi (1 2) () S

The expression for yy(t) , therefore ,can be written as

Wo() = P(W<t) =3, By [Wa() dt

=X (1=)" [Y2 et = (1-p)p Y e Bty B2 ot

=(1-p)p J e ™M= Pt

Example 1: A road transport company has one reservation clerk on duty at a time. He
handles information of bus schedules and makes reservations.Customers arrive at a
rate of 8 per hour and the clerk can service 12 customers on an average per hour. After
stating your assumptions, answer the following :

(i)What is the average number of customer waiting for the service of the clerk?
(i) What is the average time a customer has to wait before getting servie?

(iii) The management is comptemplating to install a computer system to handle the
information and reservation .This is expected to reduce the service time from 5 to 3
minutes. The additional cost of having the new system works out to Rs. 50 per day, If
the cost of goodwill of having to wait is estimated to be 12 paise per minute spent
waiting before being served. Should the company install the computer system?
Assume 8 hours working day .

Solution:
We are given
A = 8 customers per hour and p = 12 customers per hour.

(1) Average number of customers waiting for the service of the clerk(in the system):

21

y) 8
—— = —— = 2 customers.
u—A 12-8

E(n) =
The Average number of customers waiting for the service of the clerk(in the queue)

A2 8xs8
u(u—21) 12(12-8)

(i1) The Average waiting time of a customer (in the system) before getting service :

E(m) = or 1.33 customer.

E(v) = =1 hour or 15 minutes.
u—-1 12-8

The Average waiting time of a customer(in the queue) before getting service:

A _ 8

EW) = s ™ mas

1 -
== hours or 10 minutes.

(iii) We now calculate the difference between the goodwill cost of customers with one
system and the goodwill cost of customers with an additional system. This difference
will be compared with the additional cost (of Rs . 50 per day) of installing another
computer system .

An arrival waits for E(w) hours before being served and there are A arrivals per hour
. Thus, expected waiting time for all customer in an 8-hours day with one system

= 8AXE(w) =8 X 8 X % hrs. or6—64 X 60 minutes ,i.e., 640 minutes.

The goodwill cost per day with one system = 640 x Rs. 0.12 = Rs. 76.80
The expected waiting time of a customer before getting service when there is an
additional computer system is:

8 _ 8
20(20-8) 20 x12

o 1
E(w’) = or%hr.

Thus expected waiting time of customer in an 8-hour day with an additional computer
system is
8\ X E(w") =8 x 8 x % hr. = 128 minutes.
The total goodwill cost with an additional computer system
=128 x Re. 0.12 = Rs. 15.36
Hence, reduction in goodwill cost with the installation of a computer system
= Re. 76.80 — Rs. 15.36 = Rs. 61.44

22

Whereas the additional cost of a computer system is Rs.50 per day , Rs.61.44 is the
reduction in goodwill cost when additional computer system is installed, hence there
will be net saving at Rs.11.44 per day. It is ,therefore, worthwhile to install a computer.

Example 2 :In the production shop of a company the breakdown of the machines is
found to be poisson with an average rate 3 machines per hour . Breakdown time at one
machine cost Rs. 40 per hour to the company. There are two choice before the
company for hiring the repaireman. One of the repairman is slow but cheap , the other
fast but expensive . The slow-cheap repairman demands Rs. 20 per hour and will repair
the broken down machines exponentially at the rate of 4 per hour. The fast expensive
repairman demands Rs. 30 per hour and will repair machines exponentially at the
average rate of 6 per hour. Which repairman should be hired ?

Solution . In this problem ,we compare the total expected daily cost for both the
repairman. This would equal the total wages paid plus the downtime cost.

Case 1: Slow-cheap repairman

A = 3 machines per hour and p = 4 machines per hour.

. . 1 1
Average downtime of a machine = it 1 hour.

The downtime of 3 machine that arrive in an hour = 1 x 3 = 3 hours.
Downtime cost = Rs. 40 x 3 = Rs. 120,
charges paid to the repairman =Rs 20 x 3 = Rs. 60
Total cost = Rs. 120 + Rs 60 = Rs 180.
Case 2 : Fast-expensive repairman

A = 3 machines per hour and p = 6 machines per hour

1

. . 1
Average downtime of machines = i3 hour

The downtime of 3 machines that arrive in an hour = % x 3 =1 hour.
Downtime cost = Rs. 40 x 1 = Rs. 40,
charges paid to the repairman = Rs. 30 x 1 = Rs.30

Total cost = Rs. 40 + Rs. 30 =Rs. 70.

23

From the above two cases , the decision of the company should be to engage the fast-
expensive repairman.

Model 11 {{(M/M/1) : (co/STRO)}.This model is essentially the same as Model I,
except that the service discipline follows the SIRO — rule (service in random order)
instead of FIFO — rule. As the derivation of P, for model | does not depend on any
specific queue discipline, it may be concluded that for SIRO-rule case, we must have

Pi=(1-p)p", n>0
Consequently , whether the queue discipline follows the SIRO-rule or FIFO-
rule the average number of customers in the system ,E(n) , will remain the same. In
fact E(n) will remain the same as any queue discipline provided, of course, P, remains

unchanged. Thus, E(v) = % E(n) under the SIRO — rule is the same as under the FIFO-
rule .

This result can be extended to any queue discipline as long as P, remain
unchanged. Specifically the result applies to the three most common disciplines,
namely, FIFO, LIFO and SIRO. The three queue disciplines differ only in the
distribution of waiting time where the probabilities of long and short waiting times
change depending upon the discipline used.Thus we can use the symbol ut (general
discipline) to represent the disciplines FIFO, LIFO and SIRO, When the waiting time
distribution is not required.

Model T {{(M/M/1) :(N/FIFO)}.This model differs from that of Model 1 in

the sense that the maximum number of customers in the system is limited to N.
Therefore, the difference equation of Model | are valid for this model as long as n <
N.

The additional difference equation for n = N, is
Py(t + At) =Py (t)[1 — udt]+Py_,(t).[A4¢t] [1 — udt]+ O(At).

This gives, after simplification, the differential-difference equation

24

d
a Py(t) = —uPy (@) + APy_4 (t)

from which the resultant steady-state difference equation is
0 = —u PN + A PN—l

The complete set of steady-state difference equations for this model, therefore, can
be written as

uwpPy = AP
H.Pn+1 = (/1 +H)Pn_lpn_1 1SnSN_1

andﬂPN B APN—l

Using the iterative procedure (as in Model 1), the first two difference
equations give

B =(A/w" Py n<~N-1

Also, we see that for this value of B, , the third (last) difference equation
holds forn =N

Therefore, we have
P, = W™ Py =p" P, n<N andAW" =p

For obtaining the value of P,, we make use of the boundary conditions,
>N o P, =1. Therefore

N+1

1-p
P, , 1
1=PyYalop" =1 1-p = 1)

PO(N+1)J (p:l)

Thus

25

1_
(1_ Np+1’ (pil)
PO_{ 1
\y770 =D

Hence,

Ammo® 5 x1); 0<n<N

1_pN+1 ’

—,(p=1)

N+1

P, =

Remark. The steady-state solution exists even for p > 1. Intuitively this makes sense

since the maximum limit prevents the process from "blowing up". If N— oo, then the
steady-state solution is

Pn:(l - p)pn ; n <o
This result is in complete agreement with that of Model I.
Characteristics of Model 111

(i) Average number of customers in the system is given by
d
EMm)=Y-on By = PoXaton p™= Pop Xio %Pn

N
E(n) = Pop-= Y pnpp-t
n=0

1_pN+1
e

[1—-(N+1)p" + Np"*]
(1-p)?

_pl1-(N+1Dp" +Np™]

(1—p)(1—pW+D)

=p0p

Since P, = 11_p p#1

N+1’

26

(if) Average queue length is given by

E(m)=) (n = DR = EM) —) By=Em —(1-P)
n=1 n=1

_ p(1-p") . _ 1-p
—E(n)—m, since P, = m, (p:/:l)

p?[1—=Np"~t + (N —1)p"]
(1-p)(A—pN+1)

(iii) The average waiting time in the system can be obtained by using Little's formula,
thatis E(v) = {E(n)}/A where 1’ is the mean rate of customers entering the system
and is equal to (1 — Py). The average waiting time in the queue can be obtained by
using the relations

EW) = EWV)-1/u or EW) = {E(m)}/.

EXAMPLES

1.At arailway station, only one train is handled at a time. The railway yard is sufficient
only for two trains to wait while other is given signal to leave the station. Trains arrive
at the station at an average rate of 6 per hour and the railway station can handle them
on an average of 12 per hour. Assuming Poisson arrivals and exponential service
distribution, find the steady-state probabilities for the various number of trains in the
system. Also, find the average waiting time of a new train coming into the yard.

Solution
Here,A = 6 andu = 12sothatp = 6/12 = 1/2 = 0.5

The maximum queue length is 2, i.e., the maximum number of trains in the
system is 3(=N).

The probability that there is no train in the system (both waiting and in service) is
given by

27

1-p 1-05
1 _pN+1 - 1 — (0_5)3+1

Now, since P, = Pyp™, therefore
P, = (0.53)(0.5) = 0.27, P, = (0.53)(0.5)? = 0.13, and
P; = (0.53)(0.5)3=0.07
Hence, we get
E(m) = 1(0.27) + 2(0.13) + 3(0.07) = 0.74

Thus the average number of trains in the system is 0.74 and each train takes on an
average of% (= 0.8) hours for getting service. As the arrival of new train expects to
find an average of 0.74 train in the system before it.

E(W) = (0.74)(0.08) hours = 0.0592 hours or 3.5 minutes

2.Assume that the goods trains are coming in a yard at the rate of 30 trains per day
and suppose that the inter-arrival times follow an exponential distribution. The service
times for each train is assumed to be exponential with an average of 36 minutes. If the
yard can admit 9 trains at a time (there being 10 lines, one of which is reserved for
shunting purpose), calculate the probability that the yard is empty and find the average
queue length.

Solution: We have

PR L d p=—trai inut
_60X24_48 an H = 16 ramns per minutes

p=2A/u=36/48 =0.75

The probability that the yard is empty is given by

_ 1-p 1-0.75
0™ 1_pN+1 7 1-(0.75)10’

since N=9

28

_ 0.25_028
090

Average queue length is given by
2[1-NpN=1 + (N-1) pV]
(1—-p)(1—pN+1)

~ (0.75)%[1 = 9(0.75)® +8(0.75)°]
B 0.25[(0.75)10]

p

E(m) =

(1 - 0.303)

= (222) T =500

= (2.22) (0.70)

= 1.55

Model 1V (Generalized Model : Birth-Death Process). This model

deals with a queueing system having single service channel, Poisson input with no
limits on the system capacity . Arrivals can be considered as births to the system ,
whereas a departure can be looked upon as a death. Let

N = number of customer in the system

A, = arrival rate of the customers given n customers in the system

U, = departure rate of customers given n customers in the system, and
P, = steady-state probability of n customers in the system.

The model determines the values of P, in terms of 4,, and y,, . Now, from the axioms
of Poisson process , we observe that an arrival during the small time interval At is
negligible . This implies that for n > 0, state n can change only to two possible states
. state n — 1 when a departure occurs at the rate u,, and state n + 1 when an arrival
occurs at rate 4,,. State 0 can only change to state | when an arrival occurs at the rate
of A, . Since no departure is possible when the system is empty, u, is undefined.

29

Under steady-state conditions, for n > 0, the rates of flow into and out of state
n must be equal. This is illustrated in the transition-rate diagram given below :

A,o 7\,1 7\41-1 }\fn
K1 V5 Hn Hn+1

The balance equation is :

Expected rate of flow into state n = Expected rate of flow out of state n
i.e., An—1Pn—1t Un+1Prs1 = 4Py + by nzl
and U1 Py = AoPy n=0

Using the iterative procedure (as in Model 1), we have
A1 2o

A A+ A
Py==P,, P,== u1P1_ =Py = Py
Uq Uz Uz 23251
A+ A ArAq1 A
P3 - 2 .MZPZ_ _1P1: 241 OPO
Uus Uus Uzl U1

In general , we can write the following formula

Ap—1n— y) -1 4
p,= 222 0p n>1 or B, = P ?zol—#_l , n>1
i+

UnHUn—1.... 231 1
_ Antun Ans1 _ n A
Now Pn+1 _—Pn' — n—1_P0 i=0,.
HUn+1 Un+1 Hita

Thus, by mathematical induction the general value of P, holds for all n.
To obtain the value of Py, we use the boundary condition)7, P, = 1
Or Py+ Y7, P,=1,1t0get

Po=(1+ X, Ty -2

t=0 Hiva

30

Remark.P, = 0 if R.H.S is a divergent series . In case R.H.S is convergent , the
value of P, will depend on 4;’s and y;’s.

Special cases
Casel.WhenA,=Aforn>0;and y,=pnforn>1
Py =[1+ X7, (A/w"]* =1-p.
In this case ,therefore
P,=p"(1-p), forn>0.
This result is exactlt the same as that of Model | .
Case Il. When 4, =ﬁforn20and Unp =pforn>1.

ATL

nlum

Po=[1+Z%°:1]'1 :[1+ p+%p2+%p3+---]'1:e_l’

Pn:%p"e‘p fornZOandp:%.

Which is a poisson distribution with mean E(n) = p.

Case Il . When A4,,= forn>0;and u, =nuforn>1,

An

-1 - _p
n!u”] €

P0:[1+Z$10=1

Pn=%p"e‘p, fornZOandp=%.

Which is again poisson with mean E(n) = p ; and E(m) = 0, E(w) = 0.
In this case the service rate increases with the increase in queue length and

hence is known as a queueing problem with infinite number of channels , i.e.,
(M/M/x) : (o/FIFO). This model is known as a Self-service Model.

EXAMPLE

Problems arrive at a computing centre in Poisson fashion at an average rate of five per
day . The rules of the computing centre are that any man waiting to get his problem
solved must aid the man whose problem is being solved. If the time to solve a problem

with one man has an exponential distribution with mean time of % day, and if the

31

average solving time is inversely proportional to the number of people working on the
problem, approximate the expected time in the centre of a person entering the line.

Solution. Here A =5 problems per day, and p = 3 problems per day.

It is given that the service rate increases with the increase in the number of person.

U, = Nuwhen there are n problems and P, = %pne‘p
E(N) = Xn=0MPn = Xn=o T %p"e‘p =eP.peP=p= g or 1.67

Now, the average solving time, which is inversely proportional to the number of
people working on the problem, is given by 1/5 day per problem.

Expected time for a person entering the line is given by
L =13 -1
EE(n) =2 X3 days . days or 8 hours.

Model V {M/M/C) : (o/ FIFO)}. This model is a special case of Model 1V in
the sense that here we consider C parallel service channels. The arrival rate is A and
the service rate per service channel is .

The effect of using C parallel service channel is a proportionate increase in the service
rate of the facility to np if n < C and Cp if n>C. Thus, in terms of the generalized
model (Model 1V), 1,, and u,, are defined as

An =4, n=0
and Up=np if 1<n<C and Cp,ifn=>C.

Utilizing the above values of 4,, and u,, the steady — state probability of Model IV
becomes

APy
_— < < C
B npu(n-1)..()p’ =n="5
F = APy n > C
(C) (Cw)--(CW(Cp) (C-1)p (C-2)p...(DHp ’
= AR if1<n<C and% ifn > C
n! un cn=tcrun
1 i 1 :
_apnpo if1 <n<C and mpnPO ifn>~C

32

To find the value of Py, we use the boundary condition 7, P, = 1

Yoo Pt Yo B =1

1 0 1 —
Or [ZC o™ + Zn:cﬁpn] Py=1
41 o 1 n—-c1~1
Or P = [2%:%;;)” +0° Tiemrem (8)]
-1
c-1 1 12 € cu
[E + C! (u) 'Cu—l]

Remark. The result obtained above is valid only if C'l—ﬂ < 1; that is, the mean arrival rate

must be less than the mean maximum potential service rate of the system. If C =1,

then the value of P, is in complete agreement with the value of P, for Model I.

Characteristics of Model VV

(1) P(n > C) = Probability that an arrival has to wait
_ A/we cu
= Yn=c Pn = Xn=c oo CC, (/W™ Po =G ey Fo
(i) Probability that an arrival enters the service without wait
c(A/we

=1-Pn>C) or 1-
(i) Average queue length is given by

E(m):Z?f:c(n -CO)B, = Z;O=0 XPytrer forx=n-—c

= YrecX

crc-a/w °

ANC+x
X QR

E(M)= 5 (A/W)° Tz x. ()" Po
= SO/ P T (557%) s wherey= =
= S /Py ()
lﬂ(g) Py

T (C-1)!(Cu-2)?

(iv) Average number of customer in the system is given
Cc

/1#(“) Pq 1
E(n) =BM) + = o T

33

(V) Average waiting time of an arrival is given by
C

o2)'r

EW) = 7 EM) = o
(vi) Average waiting time an arrival spends in the system is given by
c
) =) + 2= — @1 e By
p (C-DICu-A? u

(vii) Average number of idle servers is equal to
C — Average number of customers served.

EXAMPLE

A Supermarket has two girls serving at the counters. The customers arrive in a poisson
fashion at the rate of 12 per hour. The service time for each customer is exponential

with mean 10 minutes .Find

(i) the probability that an arriving customer has to wait for service,
(i) the average number of customers in the system, and

(iii) the average time spent by a customer in the super-market
Solution. We are given

A =12 customer per hour, =10 per hour, C =2 girls.

_ [ge-11(az)" L 12y 0] 1
Fo = [Zn:on!(w) + () '] T4 (or 0.25)

21'\10 20— 12
(1) Probability of having to wait for service
mw>m——<fwjbo
B E(E)Z (20 12) i =045
(ii) Average queue length is
lﬂ(%)cpo _12x10x(1.2)2x0.25 _ 27

E(m) = (C-DI(Cu-)2 (2-1)1(20-12)2 40

Average number of customer in the system
A 27 12
E(n) = E(m) + T 10 +-=1.82 (or 2 customers) approx..

(iii) Average time spent by a customer in supermarket

34

E(v) = E(n)/A =1.82/12 = 0.156 hours or 9.3 minutes.

MODEL VI:{(M/M/C):(N/FIFO)}.This model is essentially the same as model V
except that the maximum number in the system is limited to N where N>C. Therefore,

utilizing the steady-state probabilities of model IV, with

A, =4 if 0<n<N; and O otherwise
And Mn=NLL if 0<n<C; and CpifC<n<N
We get
n
~(3) Py 0<n<c
Pn= ni " A
cg ()P0 € Sn<N
11,2 1 A L
Where Py = {2625 " + Zhc omeg O
c-1Mn 4 L Aefq_ (Ayw-ce) e 17T
[[+ g - e |
= -1
c-1dyn L (A LA
[Zezidr+ 5B w-c+n| 5 A=1

Remark. If we take N— oo and consider A/Cp < 1, then the reduced result corresponds
to that of Model V. Also, if we take C = 1 then the reduced result corresponds to that
of Model I.

Characteristics of model VI
(i) Average queue length is given by

2
(ke
E(m)= Zrl\{:c(n - C)B, gzc(n - C) C!gn_c Py

(i) Average number of customers in the system is given by

E(n)=E(m)+C-P, yézp Eomeer

n!

(ili) Average waiting time in the system can be obtained by using Littles’s
formula, that is,

E(v)=[E(n)]/A> where A’=A’(1-Py) is the effective
arrival rate.
35

Average waiting time in a queue can be obtained by using
E(w)=E(v)-1/u or E(w)=[E(m)]/X".
EXAMPLE

A car servicing station has 3 stalls where service can be offered simultaneously.
The cars wait in such a way that when a stall becomes vacant, the car at the head of
the line pulls up to it. The station can accommodate at most four cars waiting
(seven in the station) at one time. The arrival pattern is Poisson with a mean of one
car per minute during the peak hours. The service time is exponential with mean 6
minutes. Find the average number of cars in the service station during peak hours,
the average number of cars per hour that cannot enter the station because of full
capacity.

Solution. Here A = 1 car per minute , u = 1/6 car per minute, C = 3,

N=7p=Au =6and

Po=|B3Tb 6" + X, 1X_6n]_1

3n-33!

Expected number of cars in the queue is
— (Cp) -
= Gz AP = (= PN =€+ 1)p7)
(3x6)3x6 1

- 31(-5)2 "1141 (1- 6° — ('5)(5)(6)4)

= 3.09 Cars
Expected number of cars in the service station

E(n) = 3.09 + 3-Py 320" (6)" 6.06 Cars

Expected waiting time a car spends in the system
6.06 _ 0.06

E(v)= = =0.121
Since, P, —%(—)"PO for C < n<N

Expected number of cars per hour that cannot enter the station is
60APy = 60><1><P7—60><

36

1
- x—— = 30.3 cars per hour
313 1141

Model VII {M/M/C} : {C/FIFO}.This model is essentially the same as Model
VI except that here N = C. Therefore, we consider the situation where no
waiting queue is allowed to form. This gives rise to stationary distribution

known as Erlang’s first formula and can be easily obtained by using the result of
Model VI with N = C. Thus, we have

P, = % (ﬁ)"P0 if0< n< C and 0 otherwise

Where Py = [Zn 0]

The resultant formula for P, is itself called Erlang’s Loss Formula.
EXAMPLE

A tax consulting film has three counters in its office to receive people
who have problem concerning their income, wealth and sales taxes. On the
average 48 persons arrive in an 8 hour in a day. Each tax adviser spends 15 on
an average on an arrival. If the arrivals are poissonly distribution and the service
time are according to exponential distribution,

Find
1)The average number of customers in system
2)Average number of customers to be served
3)Average time a customer spends in the system
Solution:

Here C=3, A=48/8=6 per hour

u:%X60=4 per hour

c11 An LAY G]_1
Probability P,= [Z u) +C! (u) ()

+3() 5

A1 /w2 3p
[1+u+2(u) e 6 ‘3u— A]

-1

1l
—
Ng
39
1
or
S
/N
I~
N——"
S

1
[1+3+1(2) +(3/2)2 3x4]

2 2 6 3X4—-6

37

1
[14342]+2 2
2 8] 48'12-6

1
29 9

— 4=
8 8
8
39

= 0.21

1) Average number of customers in the system,

Au(A/W)° p 42

s~ c-Di(c,-2)>" 0 T

_6><4><(3/2)2>< 021 +3
—21(12 - 6)2 02 +7
=1.74

2) Average number of customer waiting to be served:
2
Lq:LS-H

=1.74-3
2
=0.24

3) Average time a customer spends in the system:

_ Ly _ 174

V|/S_

A 6
=0.29%hour

=17.4 minutes

LIMITATION OF QUEUING THEORY

e The problem resolving is based on mathematical distributions and
assuming (the client’s behaviour is predicted, but no one guarantees the
100 per cent accurateness).

e Situations that take place in real life are usually complex and get beyond
the philosophy and mathematics, which means that doubt remains no
matter how accurate you are

e Many companies have multi-channel services when one client has to
receive services from several operators, and this can mean that customers

38

would often have to fall in a new queue soon after they get out of the
previous one

o It takes much effort, time and energy to analyse a particular situation and
solve the problem using the theory (this method is expensive).

APPLICATION OF QUEUING THEORY

(i)Application in communication system

Applicability of queueing theory through Markov process is alsofound in the field
of communication system. This chain is based on the condition that the past,
present and future all of them are independent. The natural laws of jump chain
done within Markov chain process is also one of the examples of the queueing
theory in communication system.

(i)Applications in Health Care Systems

Queuing theory is “The mathematical approach to the analysis of
waiting lines in Health care setting”.Queuing system is very beneficial in the
health care systems as well. One of the biggest hurdles in health care
organizations is the fact that patients have to wait in long queues for their turn to
be assisted. Queuing system minimizes the time that customers have to waste in
waiting and utilizing their resources and servers. These servers include the nurses,
hospital beds, doctors and other health care services. When a person chose to stop
waiting in a queue, he complies with the phenomenon of reneging. This decision
Is dependent on the length of the queue and the amount of stamina that a patient
has to wait in a line. Health care organizations attain dysfunctional equilibrium
through exceeding server capacity by reneging. This example can be understood
through the example of emergency units in the hospital (Tian & Zhang, n.d). Most
of the patients quit emergency departments without even getting treated for their
health problem due to capacity, arrival rate and utilization. Statistics and data
collected from this amount of number of people leaving, health care organizations
determine the rate of revenue loss. The Same queuing method can also be utilized
to minimize the reneging factor in health care organizations. One way of doing
this is by categorizing patients according to the service they require. Also we use
the telecommunication system to avoid queue length byreserving previously
appointment to consult a doctor.

39

CONCLUSION

With the knowledge of probability theory, input and output models, and
birth-death processes, it is possible to derive many different queuing models,
includingbut not limited to the ones we observed in this paper. Queuing theory
can be applicable in many real-world situations. For example, understanding
how to model a multiple-server queue could make it possible to determine how
many servers actually needed and at what wage in order to maximize financial
efficiency. Or perhaps a queuing model could be used to study the lifespan of
the bulbs in street lamps in order to better understand how frequently they need
to be replaced.

The applications of queuing theory extend well beyond waiting in line at a
bank. It may take some creative thinking, but if there is any sort of scenario
wheretime passes before a particular event occurs, there is probably some way
to develop it into a queuing model. Queues are so commonplace in society that
it is highly worthwhile to study them, even if only to shave a few seconds off

one's wait in the checkout line.

40

REFERENCE

1.Samuel Fomundam, Jeffrey Herrmann (2007) A survey of Queuing

theory applications in Healthcare.

2.0perations Research by Kanti Swarup ,P K Gupta , Man Mohan ,
Priynshu Gupta.

3. Wayne L Winston, Operations Research: Applications and
Algorithms, 2"edition, PWS-Kent Publishing, Boston, 1991.

41

RECURRENCE RELATIONS ON COMBINATORICS

Project report submitted to
ST.MARY’S COLLEGE (AUTONOMOUS),THOOTHUKUDIL.
Affiliated to
MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI
In partial fulfillment of the requirement for the award of degree of

Bachelor of Science in Mathematics

Submitted by

NAME REG.NO
DasnavisRobanci.A 19AUMT09
Dilany.A 19AUMTI10
Sangavi.P 19AUMT38
Selliammal.R 19AUMT41
Spica.] 19AUMT45

Under the guidance of

Dr. V.L.STELLA ARPUTHA MARY M.sc.,M.Phil.,B.Ed. Ph.D.,

ematics

kudi.

Head & Assistant Professor of Math

St. Mary’s College (Autonomous), Thoothu

Vs
Y X
;‘.)‘il

Department of Mathematics

St. Mary’s College (Autonomous), Thoothukudi

(2021 - 2022)

CERTIFICATE

We hereby declare that the project report entitled "RECURRENCE
RELATIONS ON COMBINATORICS’" being submitted to St. Mary's
College (Autonomous), Thoothukudi affiliated to Manonmaniam Sundaranar
University, Tirunelveli in partial fulfillment for the award of degree of
Bachelor of Science in Mathematics and it is a record of work done during the

year 2021-2022bythefollowing students:

NAME

DASNAVIS ROBANCLA
DILANY.A

SANGAVLP
SELLIAMMAL.R
SPICA.J

Ve 8Cellz Acpsdine
Signature of the Guide

R
n\1

—

. - .
Signature ofthe Examiner

REG.NO.

19AUMTO09
19AUMT10
19AUMT38
19AUMT41
19AUMT45

Vi Srella Avp=ihs M Oae ;
7. v7Signature of the HOD =,

_, 3 College (Autoncmous

J

N ﬂfth;;g 11-628 001,
Signa ur%:)?thegx,‘inc’;pal

St. Mary's College (Autonomous)
Thoothukudi - 628 001.

DECLARATION
We hereby declare that the project entitled

“RECURRENCE RELATION ON COMBINATORICS” is our original work.
It is not been submitted to any University for any degree or diploma.

?Sdhqmmal. Dasnov'ts Boban A

(Selliammal.R) (Dasnavis Robanci.A)

SPica‘T A plla.nq
(Spica.J) (Dilany.A

'\Sanﬁaw'- P

(Sangavi.P)

ACKNOWLEDGEMENT

First of all. we thank Lord Almighty for showering his blessings to undergo
this project.

With immense pleasure, we register our deep sense of gratitude to our guide and
the Head of the Department, Dr. V. L. Stella Arputha Mary M.Sc., M.Phil.,

B.Ed., Ph.D. for having imparted necessary guidelines throughout the period of
our studies.

We thank our beloved Principal, Rev. Dr. Sr. A.S.J. Lucia Rose M.Sc., M.Phil.,

Ph.D., PGDCA for providing us the help to carry out our project work
successfully.

Finally. we thank all those who extended their helping hands regarding this
project.

RECURRENCE RELATION
ON |
COMBINATORICS

content

Introduction & Definition

1.1 First order linear Recurrence relation
1.1.1 Fibonacci sequence

1.1.2 Tower of Hanoi

1.2 Method of linear Recurrence relation
1.2.1 Back Tracking method

1.2.2 Forward chaining method

1.2.3 Summation method

1.3 Second order linear Recurrence relation

1.4 The Non-Homogeneous Recurrence relation

1.4.1 Characteristics equation

1.5 Recurrence relation using generating Function.

Reference

INTRODUCTION:

A wide variety of recurrence relations occur in models. Some of these recurrence
relations can be solved using iteration on some other adhoc technique. However, one
important class of recurrence relation can be explicitly solved in a systematic way.
There are recurrence relations that express the terms of a sequence as linear
combinations of previous terms.

This study of what are called either recurrence relations on difference equations
Is the discrete counterpart to ideas applied in ordinary differential equations.

Our development will not employ any ideas from differential equations but will
start with the notion of a geometric progression. As further ideas are developed, we
shall see some of the many applications that make this topic so important.

A recurrence relation is an equation that uses recursion to relate terms in a
sequence an array. It is a way to define a sequence on array in terms of itself
.Recurrence relations have applications in many areas of mathematics number
theory- the Fibonacci sequences.

Definition:

A recurrence relation for the sequence {a,} is an equation that expresses a,, in
terms of one or more preceding terms of the sequence, viz, ay, a4, ..., a,_1, forn >
n,. Here n, is used to define initial condition and is a non-negative integer.

A sequence is called as a solution of a recurrence relation if its terms satisfy the
recurrence relation.

The initial conditions for a sequence specify the terms that precede the first term
where the recurrence relation takes effect.

1.1 THE FIRST-ORDER RECURRENCE RELATION

Suppose n is a natural number, we define 2™ as

2M=222......... 2

n2’s
or

2'=2, and for k>1,2K*1 = 22K
We write 0!=1 and for k > 0, (k+1)! = (k+1)!k!.
A sequence is a function whose domain is some infinite set of integers (often
N) and whose range is a set of real numbers.
The sequence which is the function f : N—R defined by f(n) =
n’=1,49,16,...... (1)
The numbers in the list are called the terms of sequence , the terms are denoted
ag,a;ay.....
The sequence 2, 4, 8, 16, can be defined recursively like : a; = 2 and for
f>1, agy1= 2a setting k=1,2,3.... and a;=2 in (1) gives 2,4,8....
The equation ay,; = 2ay in (1), which defines one member of the sequence
in terms of a previous one, is called a recurrence relation. The equation a,=
2 is called an initial condition.

For example, we write ,

ap =2 and fork>0, a,, =2a, orwesay a; =2 and fork> 2, a;=
2ak_1 .

In (1), for instance, a,, = 2™ , we say that , a,, = 2™ is the solution to the
recurrence relation.

A sequence of numbers like 50, 64, 78, 92, where each term is determined
by adding the same fixed number to the previous one, is called an arithmetic
sequence. The fixed number is called the common difference of the sequence.

111

The arithmetic sequence with first term a and common difference d is the
sequence defined by

a; =a andk>1, ay,; = atd
The general arithmetic sequence, takes the form
a,a+d,a+2d, ...
and for n > 1, the n'"term of the sequence is a,, =a + (n— 1) d.

The sum of n terms of the arithmetic sequence with first term a and common
difference d is

S=-[2a+(n-1)d]

2

The geometric sequence with first term a and common ratio r is the sequence
defined by

a, =aand fork>1, ap,1=ray
The general geometric sequence, this has the form
a,ar,ar?®,ar3,............

the nt term being a,, = ar™ 1, the sum S of n terms (r # 1), S =a(1 — r")/(1

_r)

THE FIBONACCI SEQUENCE
The Fibonacci sequence,
fi;=1,f, =1 and for k > 2, fi., ;= fi+f_;the nth term
of the Fibonacci sequence is the closed integer to the number

=05

For example, a;=1and fork > 1
{ 1+ ax ifkis even

2

kg =
14+ ag,—, ifkisodd

Problem 1(Rabbits and the Fibonacci numbers)

4

Consider this problem, which was originally posed by Leonardo di
pisa, also known as Fibonacci in the thirteenth century in this book liber abaci.
A young pair of rabbits(one of each sex) is placed on an island. A pair of
rabbits does not breed until they are 2 months old. After they are 2
months old, each pair of rabbits produces another pair each month. Find a
recurrence relation for the number of pair of rabbits on the island after n
months, assuming that no rabbits over die.

o sl Low Gl s e e el a | |,
a8a ! 0 |
o8u 2 0 !

aa a8an , ,

o8N 2 W) 21 ! ! 2 | s

aNa N o8N n n 5

N WL W L W & W L W L) 6 s | s

8NN N
Solution.

Denote by f,, the number of pair of rabbits after n months. We will show
that f,, n=1,2,3...... are the terms of the Fibonacci sequence.

The rabbit population can be modeled using a recurrence relation. At
the end of the first month the number of pairs of rabbits on the island is f; = 1. Since
this pair does not breed during the second month f, =1 also. To find the number of
pairs after n months, add the number on the island the previous month, f,_; and the
number of new born pairs which equals f,,_, , Since each new born pair comes from
a pair of least 2 months old.

Consequently the sequence {f,} satisfies the recurrence relation and
the initial conditions uniquely determine this sequence the number of pairs of rabbits
on the island after n months is given by the nt fibonacci number.

Problem 2

A person invests Rs. 10,000/- @ 12% interest compounded annually. How
much will be there at the end of 15 years.

Solution.
Let A, represents the amount at the end of n years.
So at the end of n — 1 years, the amount is A,,_;.

Since the amount after n years equals the amount after n — 1 years plus interest for
the nth year.

Thus the sequence {A,} satisfies the recurrence relation
AII: Al’l—l + (012) An_1 = (112) An—l: n 2 1
With initial condition A, = 10,000.

The recurrence relation with the initial condition allow us to compute the value of
A, forany n.

For example, A =(1.12) A,
A, = (1.12) A,=(1.12)% A,

As= (1.12) A, = (1.12)34,

A, = (1.12)" A,

which is an explicit formula and the required amount can be derived from the
formula by putting n = 15.

So, A;s = (1.12)*° (10000).
Problem 3

Suppose that a person deposits $10,000 in a savings account at a bank yielding 11%
per year with interest compounded annually. How much will be in the account after
30 years ?

Solution.
To solve this problem. Let P, denote the amount in the account after n years.

Since the amount in the account after n years equals the amount in the account after

n — 1 years plus interest for the n'™® year, we see that sequence {P, } satisfies the
recurrence relation

P=P, ,+011P, , =(111)P,_,
This initial condition is P, = 10,000.
We can use an interative approach to find a formula for Pn.
Note that P, =(1.11) P,
P, =(1.11) P, = (1.11)% P,
P; =(1.11) P, = (1.11)3 P,

P,=(111)P,_, = (1.11)" P,

when we insert the initial condition P, = 10,000, the formula P,= (1.11)" 10,000 is
obtained.

We can use mathematical induction to establish its validity. That the formula is valid
for n = 0 is a consequence of the initial condition.

Now assume that P, = (1.11)™ 10,000.

Then, from the recurrence relation and the induction hypothesis.
P,,+1=(1.11) P,=(1.11) (1.11)™ 10,000 = (1.11)"*1 10,000.
This shows that the explicit formula for P, is valid.

Inserting n = 30 into the formula P, = (1.11)™ 10,000

Shows that after 30 years the account contains P;o = (1.11)3° 10,000 = $228,922.97

7

Problem 4
Solve the recurrence relation a,, = 7-a,,_, for n>1 given that a,=98
Solution.
Given recurrence relation is a,, = 7-a,,_; forn>1 — (1)
The given recurrence relation is a first order linear or homogeneous linear relation.
The generalsolution of first order linear or homogeneous recurrence relation of
a, =c™. ay — (2)
In eq (1) substituting n+1 in place of n, a,;1 =7.ap41-1
An+1 =1.0p —(3)
If a,=c™the a,.4=c""!
7.a,=c™c [a™" =a™.a"]
7.c"=c".c
Cc=7
Substituting c value ineq (2), a,, =7". a, — (4)
a, =98

Substituting n=2 in eq (4)

az = 72. ao

98 = 72. Ao
98

a :EIZ

Substitute a, value in eq (4)

a, =7".2

1.1.2 TOWER OF HANOI
Problem 5

The game of Hanoi Tower is to play with a set of disks of graduated
size with holes in their centers and a playing board having three spokes for holding
the disks.

The object of the game is to transfer all the disks from spoke A to spoke C by
moving one disk at a time without placing a larger disk on top of a smaller one. What
Is the minimal number of moves required when there are n disks?

Solution.

Let a,, be the minimum number of moves to transfer n disks from one spoke
to another. In order to move n disks from spoke A to spoke C, one must move the
first n — 1 disks from spoke A to spoke B by a,,_; moves ,then move the last (also
the largest) disk from spoke A to spoke C by one move, and then remove the n — 1
disks again from spoke B to spoke C by a,,_; moves. Thus the total number of
moves should be

This means that the sequence {a,, |n = 1} satisfies the recurrence relation

{an =2a,1 +1,n=>1 (1)

a1=1

Applying the recurrence relation again and again, we have
a,=2ay +1
a,=2a; +1=22ay,+1)+1
=2%qg,+2+1
as;=2a, +1=2(2%a,+2+1)+1
=23a,+22+2+1
a,=2a; +1=223ay+2?2+2+1)+1

=2%a,+23+2%2+2+1

a, =2" ag+ 2"+ 22+ .. 4241

=2"qay+2" — 1

Let ay = 0. The general term is given by

a,=2" —1,n> 1.

Given a recurrence relation for a sequence with initial conditions. Solving the
recurrence relation means to find a formula to express the general term a,, of the
sequence.

1.2 METHOD OF LINEAR RECURRENCE RELATION

1.2.1. Back Tracking Method

In this method, we shall start from a,, and move backward towards a,

to find a pattern, if any, to solve the problem.

To backtrack, we keep on substituting the definition of a,,

an-1, an-» and so on. Until a recognizable pattern appears.

10

1.2.2. Forward Chaining Method
In this method, we begin from initial (terminating) condition and keep on moving
towards the nt" term until we get a clear pattern.

1.2.3. Summation Method
To solve a first order linear recurrence relation with constant coefficient.In this
method, we arrange the given equation in the following form :

an—kq . = f(n) and then backtrack till terminating condition.

In the process, we get a number of equations. Add these equations in such a way
that all intermediate terms gets cancelled. Finally, we get the required solution.

Problem 6
Solve the recurrence equation a,, = a,,—; + 3 with a; = 2.
Solution.

Backtracking Method :
We have,

a, = ap,_, +3witha; =2

a,= a,_, +3+3(sincea,_; =a,_,+3)
= Qp_p +2x%3
=a,_3+3+2x3(sincea,_, = a,_3+3)
Ap_3+3%3
= au_4t3+3x3(since a,_3= ap_s+3)

= an—(n—1)+ (n - 1) x 3

=a; +3(n-1)

=2+ 3(n-1) (since a; = 2 is the terminating condition)
La,=2+3(n-1)

11

Forward Chaining Method :
Given, initial condition : a;= 2

Now ,a,= 2

a, =a;+3

a;=a, +3
= ay+2x3

a, = az+3
—aqu+2x3+3
—a;+3%x3
=a;+(4-1)%x3

na,=2+30n-1)

Summation Method :
The given equation can be rearranged as

as; — a,=3
a,—-a; =3
We stop here, since a, = 2 is given.
Adding all, we get
a,—a,=3+3+3+ ... + (n—1) times.
=3(n-1)
= a,=a; +3(n-1)

12

Problem 7

Solve the recurrence relation a,= a,_; + 3 with a; = 2 defines the sequence

2,5,8, ... :

Solution.

We backtrack the value of a,, by substituting the definition of a,,_;, a,,_,, and so

on until a pattern is clear.

ap = ap-1 +3
= (an—2+ 3) +3
= ((an-3t3)+3) +3

or

Eventually this process will produce a,, =
a,-(n-1)+(n-1).3

=q;+(n-1).3

=2+(n-1).3

ap = ap_1+ 3
=a,_,+2.3
=a,_3t+3.3

An explicit formula for the sequenceisa, =2+ (n—-1) 3

Problem 8

Write down the first six terms of the sequence defined by a;=1, ax;q =3a, +1
for k > 1. Guess a formula for a,, and prove that your formula is correct.

Solution.
The first six terms are

a, =1
a,=3a; +1=3(1)+1=4

13

a3=3a2+1=3(4)+1=13

a, =40,
as= 121,
Qg = 364

Since there is multiplication by 3 at each step, we might suspect that 3™ is involved
in the answer.

After trial and error, we guess that a,, =§(3” — 1) and verify this by mathematical

induction.
When n = 1, the formula gives,

%(31 —1) =1, which is indeed a,, the first term in the sequence.
Now assume that k >1 and that

1
ayp = E(3k — 1)
We wish to prove that,
1
Ar+1 = E(3k+1_ 1)
We have,
Ar+1 = 3a; +1

=3%@F-1)+1

Using the induction hypothesis,

1 3
Hence, ay41 =5 3k+1_ ~+1

= %(3"*1— 1) as required.

By the principle of mathematical induction, our guess is correct.
Problem 9

Backtrack to find an explicit formula for the sequence defined by the recurrence
relation b,, = 2b,,_, + 1 with initial condition b; =7

Solution.

14

We begin by substituting the definition of the previous term in the defining
formula.
b, =2b,_; +1

=2(2b,_,+1)+1

=2[2(2b,_3 +1)+1] +1

=23b, 3+4+2+1

=23 b3+ 2%+ 21 + 1.
A pattern is emerging with these rewriting of b,

(Note : There are no set rules for how to rewrite these expressions and a certain
amount of experimentation may be necessary.)

The backtracking will end at
by = 2" by oyt 272203 4 L +22+21+1
=n-1p, 4271 1
=7.2"1+ 2771 _1 (using b, = 7)
b,=8.2"1_1(or) 2"*2_1

Problem 10

Solve the recurrence relation a,, = a,,_;+ 2, n > 2 subject to initial condition
a, = 3.

Solution.

We backtrack the value of a,, by substituting the expression of a,,_4, a,,_, and so
on,until a pattern is clear.

Given Ap = ap_q +2 ..(1)

Replacing nby n—1in (1), we
obtain

15

Ap-1 = Apo *+2

Ap=an_t2=(a,_,+2)+2 From (1), ..(2)
=Qu_,t+2.2

Replacing n by n—2 in (1), we obtain
Ap-2 = Ap-3+ 2
So, from (2),

a, =(a,_3+2)+2.2

=a,_3+32
In general

Ap =Ap_ +K.2
Fork=n-1,a,=ap_n-1)+(n-1).2
=a; +(n-1).2

=3+(n-1).2
which is an explicit formula

1.3 THE SECOND-ORDER LINEAR Homogeneous Recurrence Relation
with constant coefficients
Letk e Z+and C,, (#0), C,,—1, Cr—s ,...... Cp—x (#0) be real numbers. If a,,, forn>
0, is a discrete function, then
Cnan + Cn—lan—l + Cn—zan—2+ ------ + Cn—kan—k = f(X), n=k
Is a linear recurrence relation (with constant coefficients) of order k. When f(n) =
0, for all n> 0, therelation is called homogeneous ; other wise, it is non-
homogeneous.
The homogeneous relation of order two :
Cnan + Cn—lan—l + Cn—Zan—Z =0 Nz 2.
A solution of the form a,, = Cr™, where C # 0 and r # 0 substituting a,, = Cr™ into
Chan + Cu1ap 1+ Cppay_5 =0
We obtain C,Cr"™ + Cp_1Cr™ 1+ C,_,Cr"* 2 =0,
with C, r # 0, this becomes
C'nr2 + Cn—lr + Cn—z =Y,

16

a quadratic equation which is called the characteristic equation.

1.4 THE NON HOMOGENEOUS RECURRENCE RELATIONS
The recurrence relations

ap + Cpo1q,_, =f(n),n=>1 .. (1)
ant Cp_1Qp_1 t Ch_nay_, =f(N),Nn=>2 ... (2)
Where c,,_, and c,_, are constants,
Cne1 # 01In (1), c,_p #0, and f(n) is not identically 0.

Although there is no general method for solving all non homogeneous relations,
for certain functions
f(n) we shall find a successful technique.

When c,,_; =—1, (1) gives, for the non homogeneous relation a,, — a,,_; = f(n), we
have

a; = ag +f(1)

a, =aq +1(2) =ay +1(2) +1(2)

as; =a, +1(3) =a, +f(1) +1(2) + {(3)

a, =ag+f(1)+ ... + f(n)

=ay + Xz, f(D)

We can solve this type of relation in terms of n, if we find a suitable summation
formula for Y, f(i)(a) The non homogeneous first-order relation

Apt Cp_1Qp_1 = kr™

where k is a constant and ne z*

(b) If r™ is not a solution of the associated homogeneous relation a,, +¢c,,_1a,,—1 =
0, then a,(P)=Ar™ , where A is a constant. When r™ is a solution of the associated
homogeneous relation, then

a,(P) = Bnr", for B a constant.

(c) The non-homogeneous second order relation
At Cp_10pn_q TCh_2Q5 2= kr™ .
Where Kk is a constant .

1.4.1. Characteristic Equation Method :

17

This method can be used to solve any constant order linear recurrence
equation with constant coefficient . This recurrence relation may be homogeneous
or non-homogeneous. Before attempting to solve any such problem, let us first,
understand what is characteristic equation for a given recurrence
equation and how to find it.

A recurrence equation of the mentioned type can be arrranged in standard
form as :
An + CIAN—1+ CzAN_2+ C3AN_3 = R.H.S (1)

Where C;, C,,C5 are constant coefficients and R.H.S. has one of the following
forms :

Form Examples

Homogeneous 0

A constant to the nt" 2N TS 2T \om

power

A polynomial in n 3,n? ,n?—n,n%+2n-1

A product of a constant to

the nt" power and a 2" (n? +2n—-1), (n—1)n® n6"
polynomial in n

A linear combination of (2" +3M2) (n? +2n—1)+5
any of the above

In the recurrence equation (1), assigning R.H.S. = 0, we get

An + ClAN—1+ CzAN_2+ C3AN_3 =0 (2)

This equation (2) gives the homogeneous part of the given recurrence equation.
Every recurrence equation has a homogeneous part . If the recurrence relation is
homogeneous then it has only homogeneous part and solving such equation is one
step process. On the other hand, if the given recurrence equation is non-
homogeneous then its homogeneous part is obtained by assigning R.H.S. equal to
zero.

A characteristic equation corresponds to homogeneous part of the given recurrence

relation.
The characteristic equation of (2) is given as:

18

x3+ cpx?Heyx+ ¢33 =0 ... (3)
This has been obtained by the following procedure :
(i) Find the order of the recurrence equation here it is 3.

(if) Take any variable (say x) and substitute

Ay, A1, Ay_y , by x3, x2, X respectively in the homogeneous part of the
recurrence equation.

Equation so obtained is called characteristic equation of the given recurrence

equation .

Example (1) :
The characteristic equation of the recurrence equation
Cn=3Cn_1 — 2Cn_» 1S given by

x2-3x+2=0,
Example (2) :
The characteristic equation of the recurrence equation
fn= fa—1tfn—2 1S Qiven by

x?2-x-1=0.

Example (3) :
The characteristic equation of the recurrence equation
A, —5A,_4 +t64,_,=2"+n isgiven by
x2—-5x+6 =0

Theorem 1.1

If the characteristic equation x2- r;Xx - r, = 0 of the recurrence equation a,, =
1 an,—1 + Ta,_, has two distinct roots s, and s, then a,, = u s* + vs7 isthe
closed form formula for the sequence where u and v depend on the initial condition

Proof.

Since s; and s, are roots of

19

x3-rx-r, =0 - (1)
We have
5%' 1151-17, =0 (2)

522‘ 115;-1, =0 (3)

Since u and v are dependent on the initial conditions
We have
a;= us,+ Vs,
And a, = us? + vs?
Now,
a,=usi +vs}

=us 2 s +vs)2s2
= usT™? [181+ 1] + Vs T2 [115+ 1]
From (2) and (3)

= rusP 4 rust2 + ryvst 4+ rpvsh 2

=r[usP 1 +vst 1] +7, [usP 2 +vsi 2]

= nap—q1 + 0y
(i.e) a,=u s + vs? isan explicit formula for the given relation .
There are four steps in the process :
Step 1 : Find the homogeneous solution to the homogeneous equation. This results
when you set the R.H.S. to zero. If it is already zero, skip the next two steps and
go directly to the step 4.Your answer will contains one or more undetermined
coefficients whose values cannot bedetermined until step 4.
Step 2 : Find the particular solution by guessing a form similar to the R.H.S. This
step does not

produce any additional undetermined coefficients, nor does it eliminate those from
step 1.

20

Step 3 : Combine the homogeneous and particular solution.

Step 4 : Use boundary or initial conditions to eliminate the undetermined constants
from the step 1.

Problem 11

What is the solutions of recurrence relation a,, = a,,_, + 2a,,_, witha, =2 and
a, =77

Solution :
The characteristic equation of the recurrence relation is r2 —r—2=0.
Itsrootsarer=2andr =—1.

Hence, the sequence {a, } is a solution to the recurrence relation if and only if
a,= <q 2" +oc, (—1)" for some constants «; and o, .

From the initial conditions, it follows that

Ap=2= 1+ X,
a=7=; .2+ (-1)

Solving these two equations shows that «<; =3 and o, = —1.,
Hence, the solution to the recurrence relation and initial conditions is the sequence
{a,} with
a, =3.2"—-(-1)".

Problem 12 °

What is the solution of the recurrence relation
a, = 6a,_,— 9a,_, with initial conditionsa,=1anda; =6 ?
Solution :
The only rootof r2 —6r+9=0isr = 3.

Hence, the solution to this recurrence relation is a,, = «<; 3"+ «, n3"
for some constants o«; and o, .

Using the initial conditions, it follows that

21

ap=1=0o4
a,=6=0¢; .3x,+.3

Solving these two equations shows that «; =1 and o,= 1.

Consequently, the solution to this recurrence relation and the initial conditions is
a, = 3"+ n3"

Problem 13
Find the solution to the recurrence relation
a, =6a,_,—1la,_, + 6a,_3 withinitial conditions a, =2, a; =5 and
32: 15

Solution :

The characteristic polynomial of this recurrence relation is r3 —6r2 + 11r—6=0
The characteristicrootsarer=1,r=2andr=3

Since r3-6r2 +11r—6=(r—1)(r—2)(r - 3)
Hence, the solutions to this recurrence relation are of the form
a,= o; . 1"+ «, . 2n +x5 . 3n.

To find the constants «; , <, and 5 .
use the initial conditions.
Thisgives ay =2= o + X+ X3
a=5= X +,.2+ 3 .3
a, =15= o +,.4+ x5 .9
When these three simultaneous equations are solved for o«;, o, ;.4 %3 we find
that o;=1, «,—land o3=2.
Hence, the unique solution to this recurrence relation and the given initial
conditions is the sequence {a, } with
a, =1-2"+2.3"
Problem 14
Find the solution to the recurrence relation
a, =-3a,_1—3a,_, — a,_3 With initial conditionsa, =1,
a, =—2and a, —1.

Solution :

22

The characteristic equation of this recurrence relation is 73+ 3r2 +3r+1=0
Since 73+ 3r% +3r+1=(r + 1)3, there is a single root r = — 1 of multiplicity
three of the characteristic equation.

The solutions of this recurrence relation are of the form
an = Xy (1" + o 1M(=1D)™ + o¢q n?(—1)"

To find the constant o«; o, &;,, <, use the initial conditions.
Thisgivesay =1= x4,

Ay =—2=—q0-K3— Xyq

a, =—1=x; g +2x;; +4 Xy,

The simultaneous solution of these three equations is
&0=1, o ; =3,and o<y, =2

Hence, the unique solution to this recurrence relation and the given initial
conditions is the sequence {an} with
a, =(1+3n-2n?) (=™

1.6 The Method of Generating Function

One of the uses of generating function method is to find the closed form formula
for a recurrence relation. Before using this method, ensure that the given recurrence
equation is in linear form.

A non-linear recurrence equation cannot be solved by the Generating Function
Method. Use substitution of variable technique to convert a non linear recurrence
(equation) relation into linear.

Solving a recurrence (equation) relation using generating function method
involves two steps process.

Step 1: Find generating function for the sequences for which the general term is
given by recurrence relation.

Step 2: Find coefficient of x2 or x depending upon whether the generating function
n!

23

The value so obtained will be an algebraic formula for an, expressed in terms of n
which is the position of a,, is sequence.

A generating function is a polynomial expression of the form
f(X)=ay +a;x + ax? +azx3+ ... +a,x™+ ... :
in which the coefficients a; are all zero after a certain point, a generating function
usually has infinitely many non-zero terms. There is an obvious correspondence
between generating functions and sequences.

Ao ,ay, Ap, ...
Ao+ a1 x + ax?+ azx3 + ... < Qg, A1, Az, A3, ono..
*If f(X) = ag + ayx+ ayx?+ ... and

g(X) = bg+ byx+ b,x?+ then
f(x) + 9(x) = (ao + bo) + (ay + by)x + (az + bo)x? +
f(X)9(X) = (aobo) + (a1bg + aghy)X + (aghy+ arby + azbg)x*+

The coefficient of x™ in the product f(x)g(x) is the infinite sum
Aobp + a1bp_q t azbp 57 ... + anby.

Problem 15

IFf(X)=1+Xx+ +x2....+x"+ ... and
gxX)=1-x+x2— +x3....+(=Dnx"+ ...,
find f(x) + g(x) and f(x)g(x).

Solution.

fO)+g() = (1 +x+x2+ . +x"+)+ (L x+x%—x3+ ..+ (- Dnx™.)
=Q+D)+Q-Dx+Q+2Dx%+ ... + @1+ (D) x™+ ...
=2+ 2x%+2x+ ...

fX)g(x) =@ +x+x%+ ... +x"+...). . L-x+x2-x3+... + (- 1)nx"+..)
=1+ [1(1) + 1(1)] x + [L(1) + 1(= 1) + 1(1)] 2+
=1+x%+x*+ x5+

Problem 16

24

Solve the recurrence relation a,, = 3a,,_; , n>1, given a, = 1.
Solution.

Consider the generating function

f(X) = ag + ayx + a,x? + +apx™ + of the sequence ay, a,, a,,
multiplying by 3x and writing the product 3xf(x) below f(x) so that terms involving
x™ match, we obtain

f(x) =ao+ax+ax®+ ... + A X"+
3xf(X) = 3ayx + 3a.x? +3a, (X" + ...

Subtracting gives

f(x) — 3xf(X) = ay + (a; — 3ap)x + (a, —3a;) x? + +(a, —3a,-1) x"+
Since ay =1, a; = 3a,.
In general, a,, = 3a,,_1, this says that

(1 —3x) f(x) = 1.
1

Thus, f(x)=
1-3x
We have i =1+ X+ x%+...... (*)
Using (*), f(x) =1+ 3x+ (3x)? +...... + (B3x)" +.......
=1+ 3x+ 9x?%+ + 3™ + ...

We conclude that a,,, which is the coefficient of x™in f(x), must equal 3™.
We have a,, = 3™ as the solution to our recurrence relation.

Problem 17
Solve the recurrence relation a,, = 2a,,_; —a,_, ,n>2,givena, =3, a; =— 2.
Solution.

Letting f(x) be the generating function of the sequence in question.

We have f(X) = ag+ a;x + a,x? + +a,x™+ ...
2xf(X) = 2apx+ 2a,x% + +2a, 1 x™+ ..
x2 f(X) = apx? + +a,_ox™
Therefore, f(x) — 2xf(x) + x%f(X)
= ag + (a; — 2a0)X + (az — 2a; + ag) x*+ +(an —2ap-1 +
An_p) X"+ ...

25

=3 - 8x.
Sinceay,=3,a;, =-2anda,, - 2a,,_, + a,_, =0forn> 2,
So, (1 —2x + x2) f(x) = 3 — 8x
(1 —x)? f(x) =3 - 8x
3—-8x
09 =5
=(1+2X+3x%+ ... +(n+1)x"+....) (3-8x)
=3-2Xx—Tx2-12x3 + +[3(n+1)-8n]x™ +
=3-2X—Tx?-12x3 + ... +(=5n+3)x"+ ...
Therefore a,, = 3 —5n is the desired solution.

Problem 18

Find the sequence {y,} having the generating function G given by
3 1
G(X) = E'l'

1-2x
Solution
We have
G(x) =3(1—x)"1+1-2x)1
=31 +Xx+x%+... +xm+ L) (L 20t +2%x2 4 + 20X L)
=@B+D+@+)x+B+2) + ... +(B+2M)x"+ ...
where
Yn=3+2"
Problem 19

Suppose a is a real number. Show that ﬁ IS the generating function for a certain
geometric sequence.

Solution

We have

i=1+x+x2+x3+ (1)
Replacing x by ax in (1), we see that
= 1+ax+ (ax)? + (ax)® + ...

1-ax
=l+ax+a’x®+a3x3+...

26

From this, we see that ﬁ is the generating function for the sequence 1, a?, a?,

as, .. which is the geometric sequence with first term 1 and common ratio a.
Problem 20
Prove that (1_1x)2 =1+ 2X+3x2+4x3 o+ (N+H DX+

Solution

1=(1-20)%1L+2x+3x%+....+(n+Dx"+...)
=(1-2x+x2)(1+2x+3x2 + +(n+1Lx™+....)
=1+[1(2) - 2(1)]x + [1(3) — 2(2) + 1(1)]x> + +[1(n+ 1) - 2(n)
+1(n—1)]x™ +
1=1, sincen+1-2n+n=0.
Expression for Generating Functions

If AX)= X2, a,x" then

Yo ax® = AX) —ag— agxt —....—au_xk?

n=k n 0o~ a1 k-1

¥ Qo1 x™ = xYAX) —ay —axt ——ag_,x*7?)
Y A x™ = x2(A(X)—ag — a;xt —......—ap_3x*73)

Yook n-ix™ = x(A(X))

Table of Generating Functions

Sequence a,, Generating Function A(X)
C(k,n) (1 + x)*
1 1
1—x
a" 1
1—ax

27

—1n 1
1+x
peT 1
1+ ax
C(k-1+n, n) 1
(1-x*
C(k-1+n, n)a™ 1
(1 — ax)k
C(k-1+n, n)(—a)" 1
(1 +ax)k
n+1 1
(1—x)?
n 1
(1—x)?
(n+2)(n+1) 2
(1-—x)3
(n+1)(n) 2x
(1-—x)3
n? x(1+x)
(1—x)3
(n+3)(n+2)(n+1) 6
(1-x)*
(n+2)(n+1)(n) 6x
a-x*
n3 x(1+ 4x + x?)
(1—x)?
(n+1)a™ 1
(1 —ax)?
na™ ax
(1 — ax)?
n2a® (ax)(1 + ax)
(1 - ax)3
n3a® (ax)(1 + 4ax + a*x?)
(1—ax)*

Theorem 1.2

28

If {a,}n=o IS asequence of numbers which satisfy the linear recurrence relation
with constant coefficients a,, + c;a,_1 + ...+ cra,_Where ¢, #0, and n >k,
then the generating function

P(x)

A(X) = Yoo apx™equals —=

Q(x)’
where
P(X)=ay + (a; + ciag)x! + +(ap_q +C1ap_y + -+
Ck—1a0) X!
Q(X)=1+cyxt+....... + cpxk.

Conversely, given such polynomials P(x) and Q(x), where P(x) has degree less
than k, and Q(x) has degree k, there is a sequence {a, },—-, Whose generating

function is A(x) = I;((’;))

Problem 21
Solve a™ - 8a,,_; +2la,_,—18a,_; =0 forn>3.
Solution.
Here, if A(X) =Yo=o a, x™ ,then
Dn=3n X" =8 ¥ san 1 x" +21 Y sa, o x" - 18 sa, 3x™ =0,
(A(X)-ay-a,xt-a,x?) — 8x1(A(X)-ay-a;xt) + 21x2(A(X)-ap) - 18x2A(X) =0

ag+(a;—8ag)x1+ (az— 8a;+21ag)x?
1-8x1+21x2-18x3

A(x) =
Since 1—8x+21x% — 18x3= (1—-2x1) (1 — 3x1)?
We see that there are constants C, , C, , C5 , such that

Cq Co C3
+ +
(1-2x) (1-3x) (1-3x)2

A(X) =

AX)= X2 o[C2™ + C,3" + C3n3(n+ 1,n)]x™
a,= C;2™ + C,3" + C5(n + 1)3™.

29

Conclusion:

First Order homogenous linear recurrence is in fact a geometric sequence

We studied characteristics of second and higher order linear homogenous
recurrence relations with constant coefficients. The non-homogenous recurrence
relations with constant coefficients. Different methods to solve such recurrences.
As most of the algorithms are recursive therefore to give analysis of such
algorithms, we have discussed his powerful technique.

Reference
[1] c.vasudev - Theory and problems on combinatorics — recurrence relation

[2] M.k sen chakaraborthy - Introduction to discrete mathematics - application of
recurrence relation.

30

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

{ "type": "Document", "isBackSide": false }

