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INTRODUCTION

Cryptography is the science of using mathematics to hide data behind

encryption. From ancient times to the present, secret messages have been sent.

Classically, the need for secret communication has occurred in diplomacy and in

military affairs, Now, with electronic communication coming into widespread use,

secrecy has become an important use. Just recently, with the advent of electronic

banking, secrecy has become necessary even for financial transactions. Hence, there is

a great deal of interest in the techniques of making messages unintelligible to everyone
except the intended receiver. One of the earliest cryptographic systems was used by

around 50 B.C. In this project, you will be introduced to basic mathematical principles

and functions that form the foundation for cryptographic methods.

The project consists of five chapters.

In chapter 1, we have given some basic definitions and result on cryptography

and mathematical concepts that are needed for the subsequent chapters.
In chapter 2, we have discussed some basic simple cryptosystems.

In chapter 3, we have studied discrete logarithm problem and elliptic curve
discrete logarithm problem along with both Diffie Hellman Key Exchange and Elgamal

Public Key Cryptosystem.

In chapter 4, we have studied Integer Factorization and RSA Cryptosystem.

In chapter 5, we have discussed some applications of Cryptography especially

for chapter 3 & 4.
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CHAPTER 1

PRELIMINARIES

Definition: 1.1

The discipline devoted to secrecy systems is called cryptology.

Definition: 1.2

Cryptography is the part of cryptology that deal with the design and

implementation of secrecy systems.

Definition: 1.3

The message to be transmitted is called Plaintext.

Definition: 1.4

The coded form of the message is called Ciphertext.

Definition: 1.5

In cryptography codes are called Ciphers.

Definition: 1.6

The process of writing the plaintext in the coded form is called

Encryption. The process is also called Enciphering.

Definition: 1.7

Decryption / Deciphering process is reverse to Encryption.

Definition: 1.8

Alphabets is a collection of symbols. It also referred to as characters.



Definition: 1.9

Let a and b be two integers. We say a is congruent to b modulo an integer

m if m | a-b and denote it as a = b (mod m).

Definition: 1.10

A statement like a = b (mod m) is called a congruence and the integer

m is called the modulus.

Definition: 1.11

A cryptosystem is a structure or scheme consisting of a set of algorithms

that converts plaintext to ciphertext to encode or decode messages securely.

Definition: 1.12

Matrix multiplication involves the action of multiplying each row vector

of one matrix by each column vector of another matrix.
Definition: 1.13

A Primitive root mod n is an integer g such that every integer relatively
prime to n is congruent to a power of g mod n. That is, the integer g is a primitive root

(mod n) if for every number a relatively prime to n there is an integer z such that a =

(g°(mod n)).
Definition: 1.14
The discrete logarithm problem is defined as given a group G, a

generator group G. Discrete logarithm problem is not always hard. The hardness of

finding discrete logarithms depends on the groups.



Definition: 1.15

ElGamal cryptosystem can be defined as the cryptography algorithm
that uses the public and private key concepts to secure communication between two
systems. It can be considered the asymmetric algorithm where the encryption and

decryption happen by using public and private keys.
Definition: 1.16
Different Hellman Key exchange also called exponential key

exchange, is a method of digital encryption that uses numbers raised to specific powers

to produce decryption keys on the basis of components that are never directly

transmitted, making the task of a would be code breaker mathematically over

whelming,
Definition: 1.17

One key (public key) is used for encrypt the plaintext to convert it into

ciphertext and another key (private key) is used by receiver to decrypt the ciphertext.

Definition: 1.18

An elliptic curve is a mathematical object that can be described by a

deceptively simple equation:
V=X + AX +B.
Definition: 1.19

Let p be an odd prime number and let a be a number with p + a. we say

that a is a quadratic residue modulo p if ais a square modulo p, i.e., if there is a number



¢ so that ¢2=a (mod p). If a is not a square modulo p, i.e., if there exists no such c, then

a is called a quadratic nonresidue modulo p.
Definition: 1.20

Let a and b be integers and let b be odd and positive.

The Jacobi symbol (a / b) is defined by the formula:

©-E" @) ¢)6)"
Definition: 1.21
In mathematics, particularly in the area of arithmetic, a modular

multiplicative inverse of an integer a is an integer X such that the product ax is

congruent to 1 with respect to the modulus m. In the standard notation of modular

arithmetic this congruence is written as
ax =1 (mod m).
Definition: 1.22

Laws of exponents states that the base is the variable that is repeatedly

multiplied by itself. Exponents show the repeated number of times where the number

can be multiplied.

Definition: 1.23

Probabilistic encryption is the use of randomness in an encryption
algorithm, so that when encryption the same message several times it will, in general,

yield different ciphertexts.
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CHAPTER 2

SOME SIMPLE CRYPTOSYSTEMS

2.1 INTRODUCTION

A need to send and receive confidential information has always been there ever
since. There are times when we need to send messages and secret infox‘mation to a select
few without being known to all in general. Number theory has been used very
successfully for this purpose. Using the prime numbers and theory of congruences a
discipline called Cryptography has evolved that serves the purpose. Cryptography is
the study of methods used to send messages in disguised form so that only the intended
recipient can read it (from the Greek kryptos meaning hidden and graphein meaning to
write).

In the language of cryptography, where codes are called ciphers, the information
to be concealed is called plaintext. After tra.nsformation to a secret form, a message is

called ciphertext. The process of converting from plaintext to ciphertext is said to be

encrypting (or enciphering), whereas the reverse process of changing from ciphertext

back to plaintext is called decrypting (or deciphering).
2.2 SOME SIMPLE CRYPTOSYSTEMS

In this chapter let us have a look on some simple cryptosystems such as,

e Shift Cipher

o Substitution Cipher
o Hill Cipher

e Vigenere Cipher

e Permutation Cipher



Definition: 2.2.1

Suppose a and b are integers, and m is a positive integer. Then we write a = b
(mod m) if m divides b — a. The phrase a = b (mod m) is called a congruence, and it is

read as "a is congruent to b modulo m". The integer m is called the modulus.
2.3. SHIFT CIPHER
Definition: 2.3.1
LetP = ¢ = K = Zy For 0 <K <25, define
ek (x) = (x + K) mod 26
and
di(y) = (y —K) mod 26
(xy € Z2g).
Remark: 2.3.2

For the particular key K = 3, the cryptosystem is often called the Caesar Cipher,

which was purportedly used by Julius Caesar.

We would use the Shift Cipher (with a modulus of 26) to encrypt ordinary
English text by setting up a correspondence between alphabetic characters and residues
modulo 26 as follows: A < 0, B « 1,..., Z < 25. Since we will be using this

correspondence in several examples, let's record it for future use:

A|B|C|D|E|F | G|H|TI |J|K |L|M

o 1| 2] 3| 4] 5 6 7 8 91 10 11| 12




13 14 15 16 17 18 191 20 | 21| 22 | 23 24 | 25

Example: 2.3.3

Suppose the key for a Shift Cipher is K = 11, and the plaintext is

wewillmeetatmidnight.

We first convert the plaintext to a sequence of integers using the specified

correspondence, obtained the following:

22 422 8 11 11 12 4 4 19
0 1912 8 3 13 8 6 7 19
Next, we add 11 to each value, reducing each sum n;odulo 26:
7 157 192222 2315154
11 4 23 19 14 24,19 17 18 4

Finally, we convert the sequence of integers to alphabetic characters, obtaining the

ciphertext:
HPHTWWXPPELEXTOYTRSE.

To decrypt the ciphertext, Bob will first convert the ciphertext to a sequence of integers,
then subtract 11 from each value (reducing modulo 26), and finally convert the

sequence of integers to alphabetic characters.




Example: 2.3.3

Using the shift cipher with key = 12, what will be the result after decrypting the
message “TQXXA"?

The decryption process is (the y here represents a letter from ciphertext): (y — K) mod

26

The given data,

Shift cipher with key K = 12

Ciphertext = “TQXXA”

The plain text of the letter “T” = (19 - 12) mod 26 =7=H
The plain text of the letter “Q” = (16 — 12) mod 26 =4=E
The plain text of the letter “X” = (23 - 12) mod 26 =11=L
The plain text of the letter “X” = (23 —12) mod 26 = 11=L
The plain text of the letter “A” = (0 - 12) mod26=12=0
Hence the correct answer is HELLO.

2.4 SUBSTITUTION CIPHER

Definition: 2.4.1

In a substitution cipher, each numeric equivalent n of plaintext letter is a two

digit numerical plaintext. The encryption is done according to the rule
E(n) = an + b (mod 26), 1 <a <25, gcd(a, 26) =1,0<b<25.

The pair (a,b) is called encryption key.



Example: 2.4.2

Suppose we have a literal plaintext message: ‘I LOVE TO DO

MATHEMATICS’. Taking a = 3, b = 2 as the encryption key, the coding is done as

follows:

We first write the numerical equivalent of the message. This is
0811142104191403141200190704120019080218.
Next multiply all these numerics by 3 (mod 26). We have

2407161112051609161000052112100005240602.

Then we add 2 (mod 26) to each of the numerics. This gives
0009181314071811181202072314120207000804.
Once again we go to write literal equivalents. Thus, we have

AJSNOHSLSMCHXOMCHAIE

If we arranged the original message in blocks of 4, the encrypted message reads as
AJSN OHSL SMCH XOMC HAIE.

Example: 2.4.3

Suppose we have the encrypted message: VKYAQVAKEC, where encryption

has been done with a linear cipher E(n) = 17n + 10 (mod 26).

Notice that C(n) = 23n + 4 (mod 26). For, the inverse of 17 modulo 26 is 23 and
if C(n) = cn + d (mod 26), then ¢ = 23 and d = 4 as the simple computation shows. To

decrypt the message once again we, convert this message into its numerical equivalent

which is



21102400162100100402

Next we multiply all these numerics by 23 (mod 26), we have

15220600941500221420
Then we add 4 (mod 26) to each of the resulting numerics, which give
19001004081904001824
Now convert this last set of numerics into literals again to obtain
TAKEITEASY.
Thus the decrypted message is: “TAKE IT EASY’.
2.5 HILL CIPHER

Definition: 2.5.1

Hill ciphers are block codes, in which every n-letter block of literal plaintext is

transformed into n-letter block of ciphertext for some n > 2. Working again with a 26-
letter alphabet A-Z, let M be an invertible matrix over -2—27. Group the plaintext as

column vectors C) of length n. Then the encryption map E is given as
E(X) =M X (mod 26),

Where X = (m1,ma,...,mx)" is numeric equivalent of plaintext n-letter column vectors
block and ajj, 1< i < n, 1<) < n are entries of the matrix M . The matrix M is the

Encryption key.

10



Example: 2.5.2

Let us consider the plaintext message: ‘HE WHO DARES WINS THE WAR'.

Let the matrix M = (2 g) be the encryption key.

Clearly, |M] = 7 and ged(7,26) = 1. The coding rule with Hill cipher for the given

encryption key is E(m,n2) = (Sm + 3n2 (mod 26),6m + Sna (mod 26)). The numeric

cquivalent of the plaintext in pairs is
07 04, 22 07, 14 03, 00 17, 04 18, 22 08, 13 18, 19 07, 04 22, 00 17

To encode, we first notice that there are 10 columns vectors. To find the ciphers, we

first compute

C=(5 3)(0722140001 2213190400)
6 5/\0407031718 0818072217

- (21 01012522 04151208 25)
1011210710 1612190407/

The numeric equivalent of required ciphertext is
21, 10, 01, 11, 01, 21, 25, 07, 22, 10, 04, 16, 15, 12, 12, 19, 08, 24, 25, 07
The literal codes in pairs are
VK , BL, BV, ZH, WK, EQ, PM, MT, IY, ZH
Thus the coded message is VKBLDNZHWKEQPMMTIYZH.

Example: 2.5.3

Let us decrypt the cipher: ‘EQPM’ where the encryption key is M equal to M.

23 7

14 23). Numeric equivalent of ‘EQPM’ is 04161512.

Notice that M ™' = (

11



Since the encryption is to be done in pairs. So, we find
P-(5 )0 12)=(s 10)
Hence the numeric equivalent of the message sent is
22081318
and the literal message is: WINS.
2.6 VIGENERE CIPHER

Definition: 2.6.1

Let m be a positive integer. Define P = ¢ = K = (Z26)". For a key K =

(ki,k2,. .. skm), we define

eK(X1,%2,... %m) = (x1+ ki,x2 + ko, Xm + kem)
and

Ak (Y1,Y250-Ym) = 01 = k1y2— Ko .ym=Kim),
where all operations are performed in Zas.

Example: 2.6.2

Suppose m = 6 and the keyword is CIPHER. This corresponds to the numerical

equivalent K = (2,8,15,7,4,17). Suppose the plaintext is the string

Thiscryptosystemisnotsecure.

We convert the plaintext elements to residues modulo 26, write them in groups of six,

and then "add" the keyword modulo 26, as follows:
197 818217 24 1519 14 18 24

12



28157417 2 815 7 417

211523256 8 0 23 8 21.22 15

1819 412 81813141918 4 2

2 8157 4172 8157 417

20 11919 12 91522 825 8 19
20 17 4
2 8 15
22 25 19
The alphabetic equivalent of the ciphertext string would thus be:
VPXZGIAXIVWPUBTTMJPWIZITWZT.

Example: 2.6.3

Suppose m = 6 and the keyword is CIPHER. This corresponds to the numerical

equivalent K = (2,8,15,7,4,17). Suppose the ciphertext is the string
VPXZGIAXIVWPUBTTMJPWIZITWZT.

We convert the ciphertext elements to residues modulo 26, write them in groups of six,

and then "add" the keyword modulo 26, as follows:
21152325 6 8 0 23 821 2215

2 8157 4172 8157 417

19 7 8 18 2 1724 1519 14 18 24

13



20 1 19 1912 9 1522 8 258 19

2 8157 4172 815 7 4 17

1819 4 128 18 131419 18 4 2
20 17 4
2 815
22 25 19
The alphabetic equivalent of the plaintext string would thus be:
thiscryptosystemisnotsecure.
2.7 PERMUTATION CIPHER

Definition: 2.7.1

Let m be a positive integer. Let P = ¢ = (Z26)™ and let K consist of all

permutations of {1,...,m}. For a key(i.e., a permutation) m, we define
en(X1,. .., Xm) = (Xa(1)s- - -» Xn(m))
and
Ax(V1sees Ym) = O Do Y2 ),
when n'! is the inverse permutation to 7.
Example: 2.7.2

Suppose m = 6 and the key is the following permutation n:

X 1 2 3 4 5 6

n(x) 3 5 1 6 4 2

14



Note that the first row of the above diagram lists the values of x, | < x < 6, and the
second row lists the corresponding values of m(x). Then the inverse permutation 7« ~!
can be constructed by interchanging the two rows, and rearranging the columns so that

the first row is in increasing order. Carrying out these operations, we see that the

permutation z ! is the following:

X 1

|
|
(x) 3] 6 1 5 2 4

Now, suppose we are given the plaintext
shesellsseahellsbytheseashore.
We first partition the plaintext into groups of six letters:
shesel | 1sseas | hellsb | ythese | ashore

Now each group of six letters is rearranged according to the permutation =, yielding the

following:
EESLSH | SALSES | LSHBLE | HSYEET | HRAEOS
So, the ciphertext is:

EESLSHSALSESLSHBLEHSYEETHRAEOQS.

Example: 2.7.3

The ciphertext can be decrypted in a similar fashion, using the inverse

permutation 7 ! as follows:

Let us consider the above cipher text.

15



Now we partition the cipher text into groups of six letters

EESLSH | SALSES | LSHBLE | HSYEET | HRAEOS

Now each group of six letters is rearranged according to the permutation « 1. yielding

the following:

SHESEL | LSSEAS | HELLSB | YTHESE | ASHORE

So, the plaintext is

shesellsseashellsbytheseashore.

16
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CHAPTER 3

DISCRETE LOGARITHMS & ELLIPTIC CURVE
DISCRETE LOGARITHM PROBLEM

3.1 THE DISCRETE LOGARITHM

The first published public key construction, due to Diffie .and Hellman, is

based on the discrete logarithm problem in a finite field F,, where F, is a field with a

prime number of elements.
Definition: 3.1.1

Let g be a primitive root for F, ;s and let 4 be a nonzero element of F,. The

Discrete Logarithm Problem (DLP) is the problem of finding an exponent x such that
g*= h (mod p).

The number x is called the discrete logarithm of h to the base g and is denoted by

logg(h).

In other words, let G be a group whose group law denoted by x . The Discrete

Logarithm Problem for G is to determine, for any two given elements g and 4in G, an

integer x satisfying

Il
=

g*g *g * e ¥gE

x times

17




Example: 3.1.2

The number p = 56509 is prime, and one can check that g =2 is a primitive
root modulo p. How would we go about calculating the discrete logarithm of h=

386797 The only method that is immediately obvious is to compute
2223 2% 25 26 27 ... (mod 56509)

Until we find some power that equals 38679. It would be difficult to do this by hand,

but using a computer, we find that loga(h) = 11235. We can verify this by calculating

2!'25mod 56509 and checking that is equal to 38679.
3.2 DIFFIE - HELLMAN KEY EXCHANGE

Definition: 3.2.1

Let p be a prime number and g an integer. The Diffe — Hellman Problem
(DHP) is the problem of computing the value of g** ( mod p ) from the known values

of g*(mod p) and
g’(mod p).

The Diffe — Hellman key exchange algorithm is summarized below

Public parameter creation

A trusted party chooses and publishes a (large) prime p and an integer g having

large prime order in Fp" .

Private computations

Alice ' Bob

Choose a secret integer a. Choose a secrete integer b.

18



Compute 4 =g (mod p). Eompute B =g’ (mod p).

Public exchange of values

Alice sends A to Bob — A

B — Bob sends B to Alice

Further private computations

Alice Bob
Compute the number B* (mod p). Compute the number 4 (mod p).
( The shared secret value is B° = ()= g4 = (")’ = AP(mod p)

Table: 3.2.2 Diffie -Hellman key exchange

Example: 3.2.3

Alice and Bob agree to use the prime p = 941 and the primitive root g = 627.
Alice chooses the secret key a = 347 and computes 4 = 390 = 627*47 (mod 941).
Similarly, Bob chooses the secret key b = 781 and computes B =691 = 627**" (mod
941). Alice sends Bob the number 390 and Bob sends Alice the number 691. Both of
these transmissions are done over an insecure channel, so both 4 =390 and B = 691
should be considered public knowledge. The numbers a = 347 and b = 781 are not

transmitted and remain secret. Then Alice and Bob are boyh able to compute the

number

470 = 62734778 = 4°= B* (mod 941),

So 470 is their shared secret.

19




/

33 THE ELGAMAL PUBLIC KEY CRYPTOSYSTEM

The Elgamal public key encryption algorithm is based on the discrerz 1og

problem and is closely related to Diffie — Hellman key exchange. In this secuon #¢
Jescribe the version of the Elgamal PKC that is based on the dicrete logzrim

problem for ;" , but the construction works quite generally using the DLP iz zmy

group.
Public parameter creation
A trusted party chooses and publishes a large prime p and zn
element g modulo p of large (prime) order.
Alice Bob
Key creation
|

Choose private key 1 <a<p-—1. 1
Compute 4 = g° (mod p). |

Publish the public key A.

Encryption

' Choose plaintext .

{ Choose random element &

Use Alice’s public key A to compute
; ¢1 = g*(mod p) and c; = m A® (mod p).
|

| Send ciphertext ( ¢;, c2 ) to Alice.

| Decryption

' Compute (c/)" - ¢; (mod p). ;

20
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antlty 1S equal to m.

This qU

Table: 3.3.1 Elgamal key creation, encryption and decryption.

grample: 3.3.2

Alice uses the prime p = 467 and the primitive root g = 2. She chooses a = 153

pe her private key and computes her public key
to

A=g"=21% =224 (mod 467).

Bob decides to send Alice the message m = 331. He chooses a random element, say

ne chooses £ = 197, and he computes the two quantities

;=297 =87 (mod 467) and c2=331.224""=57 (mod 467)
The pair (¢1,¢2) = (87, 57) is the ciphertext that Bob sends to Alice.
Alice, knowing a = 153, first computes
x= () = P4 =873 = 14 (mod 467 ).
Finaily, she computes
c2x=57.14=331 (mod 467)
and recovers the plaintext message m.
3.4 ELLIPTIC CURVE DISCRETE LOGARITHM PROBLEM

Definition: 3.4.1

Let E be an elliptic curve over the finite field Fp and let P and Q be points in

E(F,). The Elliptic Curve Discrete Logarithm Problem ( ECDLP ) is the problem of

finding an integer n such that Q = nP. By analogy with the discrete logarithm problem

forp *
'R, we denote this integer n by

21




n=logr(Q)

snd we call n the elliptic discrete logarithm of O with respect to P
. 0r,

Example: 3.4.2

Consider the elliptic curve

E: V=X +8X+7overFy.

ThepointsP=(32, 53 ) and Q= (39,17 ) are both in E( F+3 ), and it is easy to
verify (by computer ) that
o=11F, S0 loge (Q) =11.

| Similaﬂy’R:(35’47)EE(F73)andS=(58,4)EE(F73),andaﬂersome

computation we find that they satisfy R=37P and S=28 P, so

logp(R)=37 and logp (S) =28.

Finally, we mention that # E ( F73) = 82, but P satisfies 41P = 0. Thus P has order 4

= 82/2, so only half of the points in E( F73 ) are multiples of P.

For example, ( 20, 65 ) is in E(Fr), but it does not equal a multiple of P.

3.4.3 The Double—and-Add Algorithm

It appears to be quite difficult to recover the value of n from the two points P
DLP. However, in order to use€

and 0 =nP in E(F,), thatis difficult to solve the EC

the function

ZHE(FP), anP’

22



for CrypIOTPIY: W need to efficiently compute nP from the known values  ang p

(s large, WE certainly do not want to compute nP by computing P, 2P, 3P. 4P

However, since the operation on an elliptic curve is written as addition instead of

multiplication, we call it “double-and-add” .

We first write 7 binary form as

n=no+nl-2+"2-4+”3'8+ ......... +n.2 withng,mi,..... ,n €
0,1}
(We also assume that n-=1) . Next we compute the following quantities:
Q=P, 01=200, 0=201,...,0-=20n.
Notice that Qi is simply twice the previous Qi-1, so
0i=2P.

These points are referred to as 2-power multiples of P, and computing them requires

r doublings.
3.5 ELLIPTIC DIFFIE - HELLMAN KEY EXCHANGE

Definition: 3.5.1

Let E(F,) be an elliptic curve over a finite field and let P € E(F,) . The

Elliptic Curve Diffie - Hellman Problem is the problem of computing the value of

mnP from the known values of 7P and n2P .

Remark: 3.5.2
Elliptic Diffie — Hellman key exchange requires Alice and Bob to exchange

Points on ap elliptic curve.
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Qi E(F») consists of two coordinates O = (xg, yo) , where xg and yg are

A PO

s of the finite field Fp , so it appears that Alice must send Bob two numbers in
glﬁm

However, those two numbers modulo p do not contain as much information ass

p

abitrary pumbers, since they are related by the formula
wo

Yot =xg*+Axp+B inF,.

Note that Eve knows 4 and B, so if she can guess the correct value of xg , then
here are only two possible values for yg , and in practice it is not too hard for her to
actually compute the two values of yg .

There is thus little reason for Alice to send both coordinates of Q4 to Bob,
since the y-coordinate contains so little additional information. Instead, she sends Bob
only the y-coordinate of Q4 . Bob then computes and uses one of the two possible y-

coordinates. If he happens to choose the “correct” y, then he is using Q4 , and if he

chooses the “incorrect” y (which is the negative of the correct y), then he is using -O4

In any case, Bob ends up computing one of
+ ngQua = = (nanp) P

Similarly, Alice ends up computing one of +(nans)P . Then Alice and Bob use

the x-coordinate as their shared secret value, since that x-coordinate is the same

regardless of which y they use.

Public parameter creation

A trusted party chooses and publishes a (large) prime p

an elliptic curve E over F, , and a point P in E(F) .
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/""" Private computations

Alice BOb
<os a secret integer n4 . Chooses a secret integer np .
Choo©
Ccomputes the point Q4 = naP . | Cqmputes the point Qp = nzP .

Public exchange of values

Alice sends Q4 to Bob — Oy

Qs < Bob sends Op to Alice

Further private computations

Alice Bob

Computes the point 740z . Computes the point nzQy .

The shared secret value is n4QOp = na(nsP) = npg(naP) = nzQa .

Table: 3.5.3 Diffie-Hellman key exchange using elliptic curves

Example: 3.5.4

Alice and Bob decide to use elliptic Diffie-Hellman with the following prime,

curve, and point:
p=3851, E:Y’=X°+324X+ 1287, P=(920,303) € E(Fsss1) .
Alice and Bob choose respective secret values ng= 1194 and nz = 1759 , and then
Alice computes Q4= 1194P = (2067 ,2178) € E(F3ss1) ,
Bob computes Qp=1759P = (3684 ,3125) € E(F3ss1) ,

Alice sengg Q4 to Bob and Bob sends Q5 to Alice. Finally,
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& computes naQp=1194 (3684 ,3125) = (3347, 1242 ) € E(Fas)),

Alic

Bob cOMPULEs npQa = 1759 (2067 ,2178 ) = (3347, 1242 ) € E(F1s) ,

 and Alice have exchanged the secret point ( 3347 , 1242 ) . As explained in
Bo

nark 3.5.2 , they should discard the y — coordinate and treat only the value x =
Re

3347858 secret shared value.

Alice and Bob decide to exchange another secret value using the same public

parameters as in Example: 3.5.4

p=3851, E: Y =X +324X + 1287, P=(920,303) € E(Fsss1) -

However this time they want to send fewer bits to one another. Alice and Bob

respectively choose new secret values n4 = 2489 and np = 2286, and ass before,

Alice computes Q4 = n4P = 2489(920, 303) = (593, 719) € E(F3ss1) ,

Bob computes Qg = ngP = 2286(920, 303) = (3681, 612) € E(F3ss1).

However, rather than sending both coordinates, Alice sends only x4 = 593 to Bob and

Bob sends only x5 =3681 to Alice.
Alice substitutes xp = 3681 into the equation for E and finds that

V8* = x5% + 324 x5 +1287 = 36813 + 324 . 3681 + 1287 =997 .

Alj
ICe needs to compute a square root of 997 modulo 3851.
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b 8 prime satisfying p = 3 (mod 4). Let a be an integer such that the

Let P

p)has 3 solution, that is such that a has a square root modulo p. Then

b= a(p+l)/4 (modp)

. . 2 —
Jlution; hat is, it satisfies b* = a (mod p).
isas

(o+1)4is a square root of b modulo p. So Alice sets
Therefor® b

y8= 997(3851+ 14 = 997963 = 612 (m0d 3851).

It happens that she gets the same point Op = (xz , ys ) = (3681, 612) that Bob used,

she computes 1405 = 2489(3681, 612) (509, 1108).

Similarly Bob substitutes x4 = 593 into the equation for £ and takes a square root,

v =x4’+324 x4 + 1287 =593% + 324 . 593 + 1287 = 927,

ya = 9270851+ /4 = 92793 = 3132 (mod 3851).

Bob then uses the point Q4 = (593, 3132), which is not Alice’s point Q4 , to compute

mQ4 = 2286(593, 3132) = (509, 2743). Bob and Alice end up with points that are

negatives of one another in E(F ), but that is all right, since their shared secret value is

the x-coordinate x = 509 , which is the same for both points.

36
ELLIPTIC ELGAMAL PUBLIC KEY CRYPTOSYSTEM

Alice and Bob agree to use a particular prime p, elliptic curve E, and point P €
EF ). Al
»)- Alice chooses a secret multiplier 74 and publishes the point Qu = naP as her

W :



. Bob's plaintext is a point
. : AVt

: \ment and computes

Ao

&

Ci=kpP

g5 the WO points (C1, G)) to Alice

C-niCi=(M+ kQA) -

, cover the plaintext.

Me g

( P) . He chOOs
lnteger kt
0}
and
=M,
) WhO computes
n =
A(kP) M+ k(nAP) \nA(kP) <y

The elhptlc Elgamal public key Crypto
anzed

N Table 36.1
Public Paramete, Creation
A trust

ed party choogeg and publishes 5 (large) Prime
b

an elliptic curve g over F,

» and a point p in EF).

Ch

00S€ a private keyny .
Compute Q4=n4Pin E(F,).

| Publish the Public key o, .

T

Key creation

|

Encryption

Choose plaintext M € E(F)) .

Choose a random element £.

Use Alice’s public key Q4 to compute
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Ci=kP € E(Fp).

and Co =M+ Q4 € E(Fy).

Send ciphertext (C) ,C2) to Alice.

Decryption

je: 3.6.1 Elliptic Elgamal key creation, encryption and decryption
Table: 2%
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CHAPTER 4
INTEGER FACTORIZATION AND RSA
41 Fermat’s Little Theorem, Euler’s Theorem and Roots Module pd
Theorem: 4.1.1 ( Fermat’s Little Theorem ).
It states that a” =a (mod p) for every prime number p and every a.

proof:

Let us assume that p is positive and not divisible by a. The idea is that if we

write down the sequence of numbers

4,2a,3,....,0-Da e (1)

and reduce each one modulo p, the resulting sequence turns out to be a rearrangement
of

13253’---’p—1- ---------------- (2)

Therefore, if we multiply together the numbers in each sequence, the results must be

identical modulo p:

ax2ax3ax... x(p-Na=1x2x3x.. . x(@-1) (modp)

Collecting together the a terms yields

@' (p-1)!=(p-1)! (modp).

Finally, we may “cancel out” the numbers 1,2, ..., P~ 1 from both sides of this

equation,
Obtaining

aP~1 =1 (mod p).
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Th corem: 4.1.2 (Euler’s Formula for pq).

Let p and g be distinct primes and let
g=ged(p—1,g-1).

Then
(P~ ¢~ D/&=1 (mod isfvi
a P9) for all a satisfying ged (a, pg) = 1.
In particular, if p and g are odd primes, then
q @~ Xa = D2=1 (mod pg) for all a satisfying ged (a, pg) = 1.

Proof:

By assumption we know that p does not divide a and that g divides g — 1,

so we can compute

a(P~ g —1/e = (g ~ Dyg ~ /e since (g — 1)/g is a an integer,

=10 - /2 (modp)  sincea? '=1 (mod p)
from Fermat’s Little theorem

=1 (mod p) since 1 to any power is 1!

The exact same computation, reversing the roles of p and g, shows that

g(P — g ~D/g=1 (mod g).

This proves that g (» ~ ¢ ~ /¢ - 1 is divisible by both p and by ¢; hence it is divisible

by pg.
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- positiO“‘ 4.2.3

Let p be a prime and let e > 1 be an integer satisfying ged (¢, p — 1) = 1 Si
,p—1)=1Sincee

yas 80 ;nverse modulo p —1, say

de=1(modp-1).
Then the congruence

x* = ¢ (mod p)
has the unique solution x = ¢ (mod p).

Proof:
If ¢ = 0 (mod p), then x = 0 (mod p) is the unique solution and we are done. So
we assume that ¢ 0 (mod p). The proof is then an easy application of Fermat’s little

theorem (Theorem: 4.1.1). The congruence de = 1 (mod p — 1) means that there is an

integer k such that
de=1+k(@-1).

Now we check that ¢ is a solution to x° = (mod p) :

(c%¢ = ¢# (mod p) law of exponents,
= ¢! *4¢~D(mod p) sincede=1+k(p-1)
=c. (¢~ ")*(mod p) law of exponents again,
=¢. 1¥(mod p) from Fermat’s little theorem,
= ¢ (mod p).

This completes the proof that x = ¢* is a solution to x*= ¢ (mod p).
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to see that the solution is unique, sup
, suppose that x| and x
7 are both

n order
ons 10 the congruences. We've just proven that z% = z (mod p) for any nonzero
ot 50 We find that
qEn*E )iz = ()'=x"*=x (modp).

, are the same modulo p, so it has at most one solution

us ¥ and X

,roposition: 4.1.4

Letpand g be distinct primes and let e 2 1 satisfy

ged (e, - Dg-D)=1.

gince e has an inverse module (p—1)(g — 1), say

Je=1 (mod (p— 1)@ - ).

Then the congruence

X = ¢ (mod pq)
has the unique solution x = ¢4 (mod pq).

Proof:

We assume that ged (¢, p9) = 1; Using Euler’s Formula (Theorem: 4.1.2).

e is an integer k such that

The congruence de =1 (mod (p— 1@~ 1)) means that ther

de=1+k(- INCER)]
a solution to x*=¢ (mod pq) :

Now we check that ¢ is

law of exponents,

(¢ = ¢* (mod pg)

o= ™D (mod rq) sincede=1+k@®@- 1)(g-1»

33




. letes the proof that x = ¢ is 5 gojy
This comP ution to the congryence I :
- it remains to show

hat the solution is unique. Suppose that y = U is a solution Then

= ek (p-1)g -1 i
W=y q )(modpq) smcede=1+k(p-1)(¢1"1)

= W), (W~ g~ DY* (mod 24)

= d 1- 1
= (). 17 (mod pq) using Euler’s formula (Theorem: 4 | 2)

= ¢ (mod pg) since u is a solution

Thus every solution is equal to ¢ (mod Dq), so this is the unique solution.

Remark: 4.1.5

Proposition: 4.1.4 gives an algorithm for solving x = ¢ (mod.pq) that involves
first solving de = 1 (mod (p - 1)(¢ - 1)) and then computing ¢/ mod pg. We can often
make the computation faster by using a smaller value of d. Let g=ged (p -1, g - 1)

and suppose that we solve the following congruence for d :
= (P-D@-1)
de=1 (mod = )

Euler’s formula (Theorem: 4.1.2) says that a?~X¢=1/¢=1 (mod pg). Hence just as in
the proof of proposition: 4.1.4. if we write de=1+k (p = 1)(¢ = 1) /g, then
()= e =l +kG-Da-DE=¢ (™ Dg-1/8 Y= ¢ (mod pq).

Thus using this smaller value of d, we still find that ¢/ mod pq is a solution to

x* = ¢ (mod pgq).
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and certainly best known such SYstem, Rg tos}'stem, the £

Ajs TSt inveneq
| Shami Namegq after its (publi )
Rivest, Adi Shamir, and Leonarg Adlemgy, <) in

Ventor 5, ROn

The security of RSA dependy on the following dichot
omy:

Problem, Soye the Congruence ye=

¢ (mod N) for the variab)e .
* Easy. Bob, who knows the values of p ang 9> can easily solye f,
’ T Xx
as described in Proposition 4.14.

* Dichotomy. Solving x¢ = (mod N) is easy for a person who possesses

certain extra information, but it is apparently hard for all other people.

The RSA public key cryptosystem is summarized in Table: 4.2.1

L Bob Alice
Key Creation
Choose secret primes p and g.
Choose encryption exponent e
with ged (e, p—-1) (g—-1)) = 1.
Publish N= pg and e.
Encryption

’ Choose plaintext 7.
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Use Bob’s public key (N, e)

to compute ¢ = m* (mod N).

Send ciphertext ¢ to Bob.

/ Decryption

Compute d satisfying

Lg=1(mod = 1) (g=1).

Compute m’ = ¢ (mod N).
Then m’ equals the plaintext m.

L,/'—

Table: 4.2.1 RSA key creation, encryption, and decryption

ExampleZ 4.2.2

We illustrate the RSA public key cryptosystem with a small numerical example.
Of course, this example is not secure, since the numbers are so small that it would be
easy for Eve to factor the modulus N. Secure implementations of RSA use moduli M

with hundreds of digits.

RSA Key Creation
e Bob chooses two secret primes p = 1223 and g = 1987. Bob computes his public

modulus

N=p.q=1223.1987 =2430101

* Bob chooses a public encryption exponent e = 948047 with the property that

ged (e, (p—1) (g — 1)) = ged (948047 , 948047) = 1.
RSA Encryption

* Alice converts her plaintext into an integer

.
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m=1070777

sntisfying 1< m <N
o Alice uses Bob's public |, W ‘

€)=
243019 48041 1 g
€= 107077794104 .

473010y (
o Alice sends the cipherteyy , 1473513 ¢, Boh
ob,

¢=m(mod N),

Mod 2430|o|)‘

RSA Decryption

» Bobknows (p-1) (g1

=1222. 1986 = 2426892, S0 he cqp solve

ed=1(mod (p-1) (4 Dy 948047 44 1 (mod 24689y

for d and find that ¢ < 1051235,

Bob takes the ciphertext ¢ < 1473513 ang computes

¢ (mod N), 1473513105123551070777 (mod 2430101),

The value that he computes is Alice’s message m = 1070777,

4.3 Probabilistic Encryption and the Goldwasser-Micalj Cryptosystem,

The Goldwasser-Micali (GM) cryptosystem is an asymmetric key encryption

algorithm developed by Shafi Goldwasser and Silvio in 1982, GM has the distinction

of being the first probabilistic public-key encryption scheme which s provably secure

under standard Cryptographic assumptions.

Suppose that Alice wants to use public key cryptosystem to encrypt and send
Bob 1 bit, i.c., Alice wants to send Bob one of the values 0 and 1. At first glance such
40 arrangement seems inherently insecure. All that Eve has to do is to enc:ry.ptft1 t::z
Possible plaintext m = 0 and m = 1, and then she compares the encrypnon.sb‘l”‘ -
ciphertext. More generally, in any cryptosysiem for which the set of possible p

, the one
: , ic key until she finds
1S Sma]] Eve can encrypt every plaintext using Bob’s public key
that Alice’s,
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and the?

The idea is that Alice chooses both a plaintext m and a random string of data r

she uses Bob’s public key to encrypt the pair (m, 7). if the value is random

Gve will not be able to range of messages and random value used.

then

Letpand g be (secret) prime numbers and let N = pq be given.
For a given integer a, determine whether a is a square modulo N,

i.e., determine whether there exists an integer u satisfying

u*=a (mod N).

I

Note that Bob, who knows how to factor N = pg, is able to solve this problem

easily, since

a is a square modulo pg if and only if (%) =1 and (s) =1.

Eve, on the other hand, has a harder time, since she knows only the value of N. Eve can

compute (-:-,) , but suppose that N = pq is a product of two primes.
Then,
®=G)=0 0
We see that there are two ways in which (%) can be equal to 1, namely 1 =1.1 and
I=(1). 1.
(%) = (%) =1, so a is a square modulo pgq.

(%) = (i;-) =—1, so ais nota square modulo pq.

This does not tell her whether a is a square modulo N.
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Choose secret primeg Pand g,

Choose a with () = (2)

=\1
.

Publish N=pg and 4.

Encryption
Choose Plaintext », {0,1).

Choose Tandom valye rwithl< , < N.

Use Bob’s Public key ( N,a)to compute

C=={ rzmodNifm=0,
ar?mod N if m = 1.

Send ciphertext ¢ to Bob

Decryption
: — ]
Compute (;). Decrypt to

Table: 4.3.1 Goldwasser-Micali probabilistic public key cryptosystem

icali s as advertised, since
ltis easy to check that the Goldwasser-Micali cryptosystem works as a

2 ifm =0,
%) =1 ifm

G =()=-1 wmes
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- Alie chooses T randomly, the set of values th
a
t Eve sees when Alice

=0 consists of all possible squares modulo N. and the set of
) set of values that E
ve

m = 1 consists of '
all possible numbers c satisfying (5) =
N

Eve obtain if she computes the Jacobi symbol (—c-)
N ’

= (), then ¢ = /* (mod N), s0
=)= - Q-0

s als0 equal 10 1.

. a\ _ 9‘_ _
(Note that Bob chose a to satisfy (;) = (q) =1)
ardless of the yalue of N, 80 the Jacobi symbol gives Eve no

Thus( )\s equal t0 1, reg

useful information.

Example: 4.3.2
Bob creates 8 Goldwasser-Micali public key by choosing
p = 2309, g="5651 N=pq= 13048159 97 6283665-

property that ( ) (‘) =-1.He

ret.

publishes the pair (N, a)and keeps

Note that a has the

is, she chooses ” =

primes P and g S€¢
_ 0. To do this:

the values of the
ob the plamtext bit m

s by sending BO
She then computes

Alice begin
1to 13048158

1642087 at random from the interval
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nd sends the ciphertext ¢ = g 513747 to B |
0b,

‘ (0513742)
by computing (—53re=) = |

c=ar’ = 6283665 112009842 <

401627 (mog 13049,

).

240
1627

Bob decrypts ¢ = 2401627 by Computing ( i ):. ~1, which
9 » VI tells him thy the

plaintext bitm=1,

Finally, Alice wants to send Bgj, another plaintext bt

= 1. She chooses the
random value r = 11442423 and computes

¢ =ar’ = 6283665 . 114424232 = 4099266 (mod 13048159),

Notice that the ciphertext for this encryption of m = 1 is completely unrelated to the

previous encryption of m = 1.

4099266
2309

Bob decrypts ¢ = 4099266 by computing ( ) = -1 to conclude that the plaintext

bitism=1,
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revealing any i i
y information about the mess
age to the o
ther party

Time stamping i
g 15 very simi
el bt ] ilar to sending a registered |
, but provides an additi etter thy
1tio ou
. nal level of proof. It can prove th gh the U.S.
specific document.  Possi at a recipie .
2 R0 ot nt rec
ssible applications include Patent eived a
applications copyri
» copyright

the t iti i
ransition to electronic legal documents possible

5.1.2 Electronic money

The definiti i
nition of electronic money (also called electronic cash or digital cash)

iS a term . # . .
that is still evolving. It includes transactions carried out electronically with a

net tr
ansfer of funds from one party t0 another, which may be either debit or credit

d. There are both hardware and software

can be either anonymous or identifie

implementations.

ntity of the customer and ar®

o not reveal the ide
al the identity of

Anonymous applications d
S. [dentified spen

ore general forms of signature s¢

ding schemes reve

b oo
ased on blind signature scheme
hemes. Anonymous

th
e customer and are based on M
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s are the electronic analog of cash, while identified schemes are the electronic
7
soh®’ . edit car

of 8 debit or credit card. There are also some hybrid approaches where

onts €0 be anonymous with respect to the merchant but not the bank or

pa)/In

anonymou
jrectly to the spender’s identity).

s to everyone, but traceable (a sequence of purchases can be related, nut not

linkedd
Encryption 18 used in electronic money schemes to protect conventional
like account numbers a transaction amounts, digital signatures can

ransaction data

replace handwritten signatures or a credit-card authorizations, and public-key

encryption can provide confidentiality. There are several systems that cover this

range of applications, from transactions mimicking conventional paper transactions

with values of several dollars and up, to various micropayment schemes that batch

extremely low cost transactions into amounts that will bear the overhead of encryption

and clearing the bank.

5.1.3 Kerberos

Kerberos is an authentication service developed by MIT which uses secret-key
ciphers for encryption and authentication. Kerberos was designed to authenticate

requests for network resources and does not authenticate authorship of documents.

In a Kerberos system, there is site on the network, called the Kerberos server,
to perform centralized key management and administrative functions. The server
Mmaintains a key database with the secret keys of all users, authenticates the identities
of users, and distributes session keys to users and servers who need to authenticate
one another. Kerberos depends on a trusted third party, the Kerberos seer, and of the

Sev .
€t Were compromised, the integrity of the whole system would be lost. Kerberos 1s
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5,1.4 Anonymous remailerg

A remailer is a free S€rvice that Strips off
Off th

€ header ipfor .
: Otmation f;,
electronic message and om an
Passes long only the Content, pg impo
rtant to note that th
€

end point, it’s nearly impossible to retrace.

Here’s a typical scenario-the sender intends to post a message to a news group

via three remailers. He encrypts the message with the last remailer’s public key. He

sends the encrypted message to remailer.

1. Which strips away his identity, then forwards it to remailer.

2. Which forwards it to remailer.

3. Remailer 3 decrypts the message and then posts intended newsgroup

Encryption using
remailer 3 public key

plaintext | ciphertext . m

plaintext

. posted to
m . NCWSEIOups

Remﬂiler 3 p

rivate key

Figure: 5.1.5
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1.6 Disk encryption

Disk encryption programs encrypt your enter hard disc so that you don’t have

o WOTTY about leaving any traces of the unencrypted data on your disk.

PGP can also be used to encrypt files In this case, PGP uses the user’s private

key along with a user-supplied password to encrypt the file using IDEA. The same

password and key are used to unlock the file.

5.2 APPLICATION OF DIFFIE - HELLMAN KEY EXCHANGE

Now, we are going to learn some applications of Diffie Hellman Key

Exchange.

5.2.1 Secure socket layer (SSL)

Netscape has developed a public —key protocol called Secure Socket Layer
(SSL) for providing data security layered or between TCP/IP and application
protocols. SSL supports data encryption, server authentication, message integrity, and

client authentication for TCP/IP connection.

The SSL Handshake protocol authenticates each end of the connection with
the second of client authentication being optional. In phase 1, the client requests the
server’s certificate and its cipher preferences. When the client receives this
infOrmation, it generates a master key and encrypts it with the server’s public key,
then sends the encrypted master key to the server. The server decrypts the master key
With its private key, then authenticates itself to the client by returning a message
®nerypted with the master key. Following data is encrypted with keys derived from

the master key. Phase 2,clent authentication , is optional. The server challenges the
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. H :responds by returning the client’s <i
jthe HEP 1ent's signature on the challenge with

¢ - certificate.
oo

= <os the RSP pUbliC-kC}' cryptosystem fi ) o
SL uses RS or the authentication steps, After

PR Secure Sheu
:’-’

sSH s 8 network security protocol very common for secure remote login on
N — The secure shell has come to replace the unsecured Telnet on the
work and FTP on the system, mostly because both Telnet and FTP do not encrypt

4ata, and instead send them in plaintext. SSH, on the other hand, can automatically

encrypt: authenticate and compress transmitted data.

The key exchange protocol itself is a component of the SSH, as a whole,
particularly responsible for parties agreeing upon the keys used by the various
primitives later in the SSH protocol. This is the first stage of the SSH algorithm, and

it happens before the establishment of session keys.

The protocol proceeds in three stages. The first of these is the “Hello” phase,
where the first identification is done. A list of supported algorithms is involved here
after the first “Hi” message, and this list details the supported Diffie-Hellman key
groups, among other things. The second stage sees the two parties agree upon a

shared secret key, session identifier and digest are use to generate the application

keys,

Currently, the “differ -hell man- group I-shall” method is practiced in the key
ex .
“hange, Prescribing a fixed group on which all operations are performed. The key

“hange is then signed with the hoist key to provide host authentication.
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; 3 1P Security

5

‘+v is an extensi .
[p securtty sion of the Internet Protocol it is 4 guite of
O provrsis
the Internet i :
0 quced by Engineering Task Force to aid ify « sonf
onfiguring

- oo cations channel between multiple machines, Operation at the P |
ayer of the

» Jen-1ayer model, it does its job by authenticating and encrypting IP packets

Like the previous protocol, IPSec uses D.H and asymmetric cryprograghy w
stablish identities, preferred algorithms, and a shared secret. Before IPSec can begin
encrypting the data stream, some preliminary information exchange is necessary.
This is accomplished with the Internet Key Exchange protocol. IKE uses DH w
ce a shared secret via the usual mechanisms, and then authenticate each ofher;

produ
after that, the secret key is used for encryption purposes. This shared secret key is

ever exchanged over the insecure channel.

5.3 APPLICATION OF ELGAMAL PUBLIC KEY CRYPTOSYSTEM

< 32 bits

Source Port Destination Port

Sequence Number

Acknowledgement Number

Data Offset Reserved Flags Window
(sliding window)
Checksum Urgent Pointer |
Options Padding

Data
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e TCP communication partal is the most widely used
Y us transport |
ayer

. o the vast majonty of applicatio Sth
\’\\:“\\“- T *Pplication, With few exceptions . within ﬂm \
[ L]

< . the TCP packet structure is displaved wirh i
o 18 displayed with it S internal fields labeled

aowit
|

_Jication that will be discussed exists as an ont; s

e 3PP Optional feature withj

n the TCP

.\'\‘:\\\\L Besides existing asan option within the Protocol, the use of this opti "

. 8 ion wi

a0 sdditional check some each packet, located at the beginning of the payload
oa

ection. which will provide additional error - detection capabilities

puring 3-Way Handshake

During the initial 3-way handshake of the TCP protocol, each end of the TCP
channel will indicate in the in the “options’ portion of their handshake packet that it
want to use encrypted [Ine]. If you both user’s indicate that they want to use
encrypted data transport the each user’s packed payload which is placed into the *
data’ portion of the packet will from this point be encrypted using the public — key
received from the other user.

After initialization

The TCP protocol, at this point will begin computing additional checksum
after sending each packet, by encrypting the whole data portion of the packet and
multiplying each portion of the ciphertext by each other and using that as the
checksum (leaving the original checksum portion of the packet, as only a checksum
over the non-payload data, allowing the recipient to distinguish between errors in the
packet overload and the packet payload). Thus multiplicative checksum will be placed
at the front of the * data’ portion of the packet. The homomorphic property comes in
handy at this point as it allows for the checksum to be calculated by original senders

d intermediate carries directly on the encrypted data, making it simpler to be
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pandled in embedded hardy settin
8s

and aljoy:
. Wi
erTOrS n paCkCtS as they are traveling , ng thc nelWork A
0 0

thejr dest:

Stingt;
them before they waste furthey bandWid Nation 4,
th' y dropping

5.4 APPLICATION OF Rg 4 A—
STE

In this section, we are dj

RSA Digital Signature

The original RSA Paper described pog, the RSA

RSA digital signature Scheme,

de = 1(mod(p-1) (g-1))

Note that if Samantha were doing RSA encryption, then e would be her encryption
exponent and d would be her decryption exponent. However, in the present setup d is

her signing exponent and e is her verification exponent.
In order to sign a digital document D, which we assume to be an integer in the
range

1< D < N, Samantha computes

g = D% (mod N).

Samantha
Key Creation

49




Choose secret primes p ang q
Choose verification exponent With
God (6, (P10 (@-1) = 1.

publishN=pq and e,

/—_\

Compute d statisfying

de=1(mod (p-1)(q-1)),

|
|

Sing document D by computing

s= D% 9 mod N),

Veﬁﬁ_
Compute S¢ mod N and verify that it i

equal to D.

Table: 5.4.1
Victor verifies the validity of the signature S on D by computing
S¢mod N
And checking that is equal to D. This process works because Euler’ formula
S€¢ = D% = D(mod N)
The RSA digital signature scheme is summarized in the above table

' i p

N. This is
t of D modulo

f d ent D Eve needs to find a eth roo

%r8e a signature on a docum
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v

nticﬁl 1o the hard problem underlying RSA decryption, in which the plaintext is th
e

ide

i root of the ciphertext.
¢l 1

' te the RSA encrypti : :
As illustra ryption, one can gain a bit of efficiency by choosing
8nd e to SatiSfy

de = 1(mod (p-1)(g-1) )
gcd(p-1,4-1)

RSA signature key creation

gamantha choose two secret primes p = 1223 and q =1987 and computes her

public modulus

N =p.q=1223. 1987
samantha choose a public verification exponent e = 948047 with the property that
god (e,(p-1)(q-1) ) = god (94807,2426892) = 1
RSA signing

Samantha computes her private singing key d using the secret values of p and q to

compute (p-1) (q-1) =1222 . 1986 = 2426892 and then solving the congruence
ed =1 (mod (p-1) (g-1) ) , 948047 . d =1 (mod 2426892 ) .
She finds that d =1051235.
Samantha selects a digital document to sign,

D=1070777 with 1sD< N.

She computes the digital signature

S=D?(modN), S= 1070777105%° =153337 (mod 2430101 ).
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N
)

yublishes the digital signature

0l
il
G

D= 1070777  and S = 153337

RSA vorlﬂcnllon

anatl ges Samantha’s i ;
Vcrl!‘lC““o“ use public modulus N and verification exponent ¢ to

compute

¢ 948047 =
s¢ mod N, 1070777%48%47 = 1070777 (mod 2430101 ).

He verifics that the value of S modulo N is the same as the value of the digital

document D = 1070777.
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CONCLUSION

In this project we have learned about cryptography. We have proved many

d introduced an idea about Diffie Hellman Key Exchange,

!
(peorems an Elgamal

ography and RSA Cryptography. And also we have established a deep knowledge
cryP

p understanding on encryption and decryption. Thus we come to know how our
an

ages are securitized while communicating and mathematics behind its working.
mess

tography has more applications in Securing Sensitive Emails, Protecting
CryP

Conﬁdential Files, Encrypting Database Records, etc.
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INTRODUCTION
The concept of Fibonacci numbers was first discovered by Leonardo de Fibonacci
depisa. The Fibonacci series was derived from the solution to a problem about rabbits.
The problem is: Suppose there are two new born rabbits, onc male and the other
female. Find the number of rabbits produced in a year if

1) Each pair takes one month to become mature

2) Each pair produces a mixed pair every month, from the second month

3) All rabbits are immortal.

Suppose, that the original pair of rabbits was born on January 1. They take a
month to become mature, so there is still oply one pair on February 1. On March I,
they are two months old and produce a new mixed pair, so total is two pair. By
continuing like this, there will be 3 pairs in April, 5 pairs in May and so on. The
numbers 1,1,2,3,5,8,... are Fibonacci numbers. They have fascinating property: Any
Fibonacci number, except the first two, is the sum of the two immediately preceding

Fibonacci numbers. (At the given rate, there will be 144 pairs rabbit on December 1).

This yields the following recursive definition of the nth F ibonacci number F,

Fp=Fp1+Fan23
Closely related to Fibonacci numbers are the Lucas numbers 1,3,4,7,11,... named

after Lucas. Lucas number L, are defined recursively as follows



Lp=Lpy+Llp2n23
There is a huge interest of modern science in the application of the Golden
Section and Fibonacci numbers. The Fibonacci numbers K, and the term of the
sequence 0,1,2,3,5..... Where in each term is the sum of the two previous terms,

beginning with the values Fy = 0, and F; = 1. On the other-hand the ratio of two

consecutive Fibonacci numbers converges to Golden mean or Golden section,

1+V5
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CHAPTER -1
Preliminaries

1.1 Division Algorithm

Let a and b be two integers, where b > 0. Then there exist unique integers ¢ and
rsuchthat a=bqg+7r,0<r<b

Definition: 1.2

An integer a is said to be divisible by an integer d # 0 if there exists some integer

¢ such that a = dc

Definition: 1.3

If a and b are integers, not both zero, then the greatest common divisor of a and b,
denoted by gcd (a, b) is the positive integer d satisfying
l.d|aand d
2.If c|a and c|b then c|d
Theorem:1.4 (Divisibility)
For any integers a, b, ¢
1. If a|b and c|d, then ac|bd
2.If a|b and b|c, then a|c
3.1f a|b and a|c, then a|(bx + cy) for arbitrary integers x and y
Definition: 1.5
Two integers a and b, not both of which are zero, are said to be relatively prime
whenever ged (a,b) =1
1.6 Euclidean Algorithm
Euclidean algorithm is a method of finding the greatest common divisor of two
given integers. This isa repeated application of division algorithm.

Let a and b two integers whose greatest common divisor is requized.



Since gcd(a, b) = ged(|al,|bl), it is enough to assume that a and b are positive
integers. Without loss of generality, we assume a > b > 0. Now by division
algorithm, a = bq, + r;, where 0 <7, < b. If it happens that r; = 0, then b|a and
ged(a,b) = b. Ifry # 0, by division algorithm
b=rq;, +1; where 0<r, <r,. Ifr,=0, then process stops. If 7, #0 by
division algorithm 7; = r,q; + 73, where 0 <73 <1,. The process continues until
some zero reminder appears. This must happen because the reminders 711,72,73, -
forms a decreasing sequence of integers and since ¥ — 1 < b, the sequence contains at
most b non-negative integers. Let us assume that 7,1 = 0 and r;, is the last non-zero
reminder. We have the following relation: |

a=bqg,+1r,0<nry,<b
b=rq,+n,0<rn<n

12 =r2q3+r3,0 <T'3 <7‘2

Th-2 = Tn-1Gn + T, 0 <1 <Thg
Th-1 = Taqn+1 + 0
Then, gcd(a,b) =1,
Theorem: 1.7 (Fundamental Theorem of Arithmetic)

Any positive integer is either 1 or prime, or it can be expressed as a product of
primes, the representation being unique except for the order of the prime factors.
Definition: 1.8

Let m be fixed positive integer. Two integers a and b are said to be congruent
modulo m if a —b is divisible by m and symbolically this is denoted by a =

b(mod m). We also used to say a is congruent to b modulo m



Theorem: 1.9
1. a = a(mod m)
2. Ifa = b(mod m), then b = a(mod m)
3. Ifa = b(mod m),b = c(mod m), then a = c(mod m)
4. If a = b(mod m), then for any integer c,

(a+c) = (b+ c)(modm); ac = bc(mod m)
Definition: 1.10

Fibonacci Numbers are the numbers in the integer sequence defined by the
recurrence relation F, = F,_; + F,—, foralln > 2withFy =0and F; =1
Definition: 1.11

Lucas Numbers are the numbers in the integer sequence defined by the
recurrence relation L, = Lp_q + Ly_pforallmn>1andLy, =2 andL; =1
1.12 Golden Ratio

The Golden Ratio denoted by ¢, is an irrational mather-natical constant,
approximately 1.61803398874989. In mathematics two quantities are in the golden
ratio of the sum of quantities to the larger quantity is equal to the ratio of the larger

quality to the smaller one. Two quantities a and b are said to be in the golden ratio if

a+b_a_
a =y~
Then ﬁﬂ’.=1+ﬁ
a b
=1+-
17
1+42=9
p:=9p+1
p?—p—-1=0



145
T2

¢ = 1.61803398874989
@ =1.618

Definition: 1.13

A golden rectangle is one whose side lengths are in golden ratio, that is

approximately 1: Lk

Construction of Golden Rectangle

A Golden Rectangle can be constructed with only straightedge and compass by
this technique

1. Construct a single square.

2. Draw a line from the midpoint of one side of the square to an opposite corner.

3. Use the line as radius to draw an arc that defines the height of the rectangle.

4. Complete the golden rectangle
1.12 Golden Spiral

In a Golden rectangle, starting with the smallest one on the right connect the lower
corner to the upper right corner with an arc that is one fourth of a circle. Then
continue the line into the second square with an arc that is one fourth of a circle.
Continue this process until each square has an arc inside it, with all or them connected

as a continuous line. This line looks like a spiral.
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CHAPTER 2
PROPERTIES OF FIBONACCI AND LUCAS NUMBERS
2.1 THE SIMPLEST PROPERTIES OF FIBONACCI NUMBERS
Theorem:2.1.1 The sum of the first n Fibonacci numbers is equal to
Faaua =1
Proof: We have
F, =F;—F,

F,=F, -Fs,

Foo1 = Frya — B,
E, = Fhiz — Fnsq
Adding up these equations term by term, we get
Fi+FR+F+ 4+ F=F,—F=Fi—1
Theorem: 2.1.2 The sum of first n Fibonacci with odd suffices is equal to F7,

Proof: We know

F1 = Fz,
F3=F —F,
Fs = F5 = F4,

Fon-1 = Fan = Fan-2
Adding up these equations term by term, we obtain
Fy+F3+Fs+ -+ Fm-1= Fon
Theorem: 2.1.3 FZ + FZ + -+ F{ = FiFni1

Proof: We know that

FiFiss — Fie1Fi = Fe(Fisr = Fi1) = F§



F12 = F1F2,

Fzz = F2F3 - Fle,

F? = FyFayy — Foer P
Adding up these equations term by term, we get
F24+F}+ - +F:=F,Fyp
Theorem: 2.14 F,,,,,, = F,_1F,, + F,Fpp11.
Proof: We shall prove the theorem by the method of induction on m.
Form = 1, we get
Fh41 = Fh—1F, + E,F 41 = F,,_1 + F, which is true.
Suppose thatitistrue form =kandm=k+1
We shall prove it is also true that m = k + 2.
Let Foyp = Fpey1Fi + FyFryq and
Friks1) = Fr-1Frs1 + FoFiq
Adding these two equations, we get
Frs+2) = Fn-1Frs2 + FoFias
Hence Fpim = Fn—1Fm + EiFmia
Theorem: 2.1.5 F2,; = FyFpi + (1)
Proof: We shall prove the theorem by induction on n
We have since, FZ = FyF3 —1 = 1, the assertion is true forn = 1
Let us assume that the theorem is true forn = 1,2, ...,k
Then adding Fy41Fn+2 to both sides', we get
F%.4 + Fpe1Fpiz2 = FraaFpiz + BiFpe + (1)
Which implies that
Fry1(Fps1 + Fre2) = Fuya(Fy + Fryq) + (-1)°

8



This simplifies to F41Fps3 = F2,, + (=17
Finally, we have, FZ,, = Fyy1Fpyp + (—1)"*?
2.2 NUMBER-THEORETIC PROPERTIES OF FIBONACCI NUMBERS
Theorem: 2.2.1
For the Fibonacci sequence gcd(F,, Fpyq) = 1foreveryn =1
Proof: Let gcd(F,, F,,+1) = d > 1. Then d|F, and d|F,;4+4
Then F, 41 — E, = F,,_; will also be divided by d
Again, we know that F, — F,,_; = F,_,
This implies d|F,,—,
Working backwards, the same argument shows that d|F,_3, d|F,_4 ... and
finally that d|F; = 1. This is impossible.
Hence gcd(F,, Fp4q) = 1 foreveryn =1
Theorem: 2.2.2 Form = 1,n = 1, F,,, is divisible by F,
Proof: We shall prove the theorem by induction on n
For n = 1 the theorem is true.
Let us assume that E, |Fm, forn = 1,23 ...,k
Now Fk+1) = Fmk + Fn = Fnk-1Fn
= FukFne1 + En
The right-hand side of the equation is divisible by F,
Hence d|Fpk+1)
Lemma: 2.2.3 If m = nq + r, then gcd(Fy, F,) = gcd(F., )
Proof: Observe that gcd(Fn, F) = gcd(Fag+r, Fy)

= ged(Fug-1F + FonFren Fa )

= gcd(an_1Fr, Fn)



Now, we claim that gcd(an_l, f';l) =1

Letd = ged(Fpy-1, F,)

Then d|Fyq-; and d|F,

Also, that F,|F,,

Therefore d|F,,

This d is the positive common divisor of Fhqand Fpyoq

But gcd(Frq-1,Foq) = 1. This is an absurd.

Henced =1

Theorem: 2.2.4 The greatest common divisor of two Fibonacci number is again a

Fibonacci number.

Proof: Let F,, and F, be two Fibonacci number.
Let us assume that m = n.
Then by applying Euclidian Algorithm to m and n,

We get the following system of equations

m=qn+nrn,0s<n<n
n=qr;+r,0=rn<n
r =qary+ 1,0 =13 <73
Tp—2 = qntn-1t 0S5 < Th-1
-1 = An+1™n 40

Then from the previous lemma

gcd(Fp, Fr) = ged(Fry, o)

= ng(F;l’ Frl)

= ng(F;'n-—z’ Frn)

10



Since 1, |Tm-1, then £, |F
Therefore gcd(Fr"_l,F,,n) =F,
But 7;, being the last non-zero reminder Euclidian Algorithm for m and n is equal to
gecd(m,n)
Thus gcd(E,,, E,) = F,, where d = gcd(m,n)
Theorem: 2.2.5 In a Fibonacci sequence Fp, |F, if and only if m|n
Proof: If E,|E,, then gcd(Fy, F,) = En
But we know that gcd (F, F) = Fgeammn)
This implies that gcd(m,n) = m

Hence m|n
Theorem: 2.2.6 The sequence of ratio of successive F ibonacci numbers Fp+1|Fn

.. . F
converges to a Golden ratio i. €., - - —:_1—*—1 =@
n

Proof:

) F
We consider the sequence 1, = —;ﬁ, forn=1,2,3..
n

Then by definition of Fibonacci Numbers, we have

When n — oo, then we can write the above equation in limits

x=1+%

%% = 14+ x
= g8 g1
=0

11
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F,
Hence, lim,,_,c 'l'f‘ =@
n

2.3 BINET’S FORMULA FOR FIBONACCI AND LUCAS NUMBERS

. \/—
Lemma: 2.3.1 Let a =--=and B = 3—‘/’—so that a and S are both roots of the
equation x? = x + 1. Then, F, = \/_ﬂ ——foralln >1

Proof: When n =1, F; = 1 which is true.

Let us assume that it is true forn = 1,2,3,...,n

k-1_ pk-1 k_pk
Then Fy_y = ETB and Fy = = ﬁﬂ

Adding these two equations, we get

ak . ﬁk
Fe+Fey=—=Q+a ) +—=@0+p
k k-1 \/g( ) _\/g( ﬂ )
(k+1) 4 g (k)
Then Fy4q = “—753—
Lemma: 2.3.2 Let a = 1+\[— and [ = ,so that a and B are both roots of the

equation x2 = x + 1. Then L, = a™ + ", foralln = 1.
Proof: Forn=1,L; =1
Then the theorem is true forn = 1.
Let us assume that it is true for n = 12,3, s
We have to prove that it is true for n = k+1
Now, L4 Lyeg = 0% 2¥% 4 5 & =t
Ly = a*@Q +a ) + 41+ 871
— =ak(1+a—-1)+p*A+p-1)

+1 =

12



2.4 RELATION BETWEEN FIBONACCI AND LUCAS NUMBERS
Theorem: 2.4.1 L, = Fp_q + Fpyq,forn>1
Proof: We know that Liyr = Lg + L4
Lisr = (Fe—1 + Fiy1) + (Fi—2 + Fi)
Liyy = (Femy + Fy—z) + (Fic + Fies1) Lisa
= F + Fie42
Theorem: 2.4.2 Foralln =2 1, F,, = L, F,
Proof: Now
LoFy = (@™ =™ (@™ + ")
LoF, = 2 (a®™ — g7
LuFy = Fon
Lemma:2.4.3 L4 —Lp 1Lyt =5(-1D"forn=1.
Proof: Induction L2,; — LpLnsz = Lpn-1Ln+1 — L3
=5(-1"
Lemma: 2.4.4 2F op, = Fply + FiLy
Proof: By induction

Froim+1 = Fpam + Frim—-1

(Falm + EnLn) +35 (Falin-1 + Frn—1Ly)

N

= 2 (Fu(lm + Ln-1)) = Ln(Fn + Fn-s)

(Falm+1 + LnFini1)

N =

Theorem: 2.4.5 Further two relations
(@)L - 5E? = 4(-1)"
(b)Llns1ln — SFp4rFn = 2—1)"
Proof: (@)L — 4((=1)" + E?) = (Fpe1 + Fpo1)? = 4(Fue1Fov1)

13



= (Fayq = Fyy)?
= Fnz
(b)Ln+2lnsr = SFniaFpiy = (L + Ly)Lnsy = 5(Fpi1Fy)F,,
= Lot + LnLnyy ~ SFis1 = 5FyFrys
= L1 = 5F2,; +2(~1)n
= 4D 4 2(=1) = 2(=1)"
2.5 FIBONACCI AND LUCAS IDENTITIES
Theorem: 2.5.1 Y'F, =F,,, -1

Proof: Using the Fibonacci recurrence relation, we have

F1=F3—F2

Fz—F4—F3

F3=F5—F4
Fo-i=Fonn— K

E,=Fu2— Funa
Adding these equations, we get
Y1F = Fue —F=Fp—1

Theorem: 2.5.2 X7 Fi—1 = Fan

Proof: Using the Fibonacci recurrence relation, we have

F1=F2—F0
F3=F4_F2
F5=F5_F4

Fop-3 = an_z — Fan-4

an"l pos FZn - an"'z

14
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Adding these equations, we get b Foiq = Fy, — By R,

For example, 21 Faoy = F20 = 6765
Corollary: 253  Y1F, = B =1
proof: X1Fa =X1F —3¥1F, .
=(Fen = 1) = Fy, (by theorem)
= (Fansz — Fn) -1
= Fan+1 =1 (by the Fibonacci recurrence relation)
Corollary: 2.5.4 B™ = BF, + F,_, , wheren >

Proof: Let up, = (@™ = ™) /5, wheren > 1

Then u1=ﬂ=£=1 d

V85

— @=B* _ (a+B)(a-pB) _
U = N N =1

Suppose n = 3. Then

an—l_ﬁn—l an—Z_Bl’l-Z

Un—1 e Up—2 = NG + J5

_a™ % (a+1)-B""%(B+1)
- Vs

_ an—z_az_Bn—z_Bz

V5

— =Bt _

% T U
Thus, u,, satisfies the Fibonacci recurrence relation and the two initial conditions.
This gives us an explicit formula for F; : F;, = up
Theorem: 2.5.5 Y3 F? = FyFpys

Proof: Whenn = 1,
1
1

So, the result is true whenn = 1

15



Assume it is true for an arbitrary positiye integer k-
le(Fiz = FiFyq
Then, X{** FZ = Tk p2 4 B
= FiFievy + F2,
= Fes1(Fe + Fiyy)

= Fevilpss (by the Fibonacej recurrence relation)

So, the statement is true whenn = k + 1. Thus it is true for every positive integer n

For example,

Y B = Fy2sF;, = 75,025.121,393 = 9,107,509, 825

16
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CHAPTER 3

PASCAL’S TRIANGLE
3.1 BINOMIAL COEFFICIENTS

Let n and k be non-negative integers. The binomial coefficient (D is defined by

nl

™ ={mif 0<k<n
0 otherwise

Theorem: 3.1.1

Let0 < k < n.Then (3) = (")

25
For Example, (%)

25\ _ (20) _
(zs—zo - (5) = 53,130
The next theorem gives a recurrence satisfied by binomial coefficients. It is called

Pascal’s identity,

Theorem: 3.1.2 (Pascal’s identity). Let nand k be positive integers, where k < n.
Then ()= G+ (%)

3.2 PASCAL’S TRIANGLE

The various binomial coefficients (Z), where 0 < k < n,canbe arranged as a

triangular array, called Pascal’s triangle.

(g) & tow0
(1) - 10w 1

hoh e
o

Figure 3.1
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Figure 3.2
Pascal’s triangle has many intriguing properties. Some of them are:
1) Every row begins with and ends in 1.
2) Pascal’s triangle is symmetric about a vertical line through the middle. This is so
by Theorem 3.1.1
3) Any interior number in each row is the sum of the numbers immediately to its left
and right in the preceding row. This is true vby virtue of Pascal’s identity.
4) The sum of the numbers in row n is 2
The next theorem shows how the binomial coefficients can be used to find the
Binomial Expansion of (x + y)™. It can be proved using PMI or Combinatorics the
former is a bit long, while the latter is short.
Theorem: 3.2.1 (The Binomial Theorem).

Let x and y be any real numbers and n any non-negative integers.

n
Then (x + y)" = zr_o(';)xn'fyf

The binomial theorem has some interesting and useful by products. They are given in

the next two corollaries.

18



Corollary: 3.2.2

o= 300

r=0

(1 = x)" = Z(_l)r (:) X'
r=0

Corollary: 3.2.3

Feole) = 2°
no(-17 () = 0
Sroaa(7) = Zreven(r)
3.3 FIBONACCI NUMBERS AND PASCAL’S TRIANGLE
How can Fibonacci Numbers be extracted from Pascal’s triangle? To see this,
consider the array. Now add the numbers al-ong the northeast diagonals. The sums are

1,1,2.3.5,8y45 - and they seem to be Fibonacci Numbers. In fact, they are, as the next

theorem, discovered by Lucas in 1876, confirms.
1
s

/ 2
// 3

| / 1

6 4
5 10 10 5

Figure 3.3 Pascal’s Triangle

Theorem: 3.3.1(Lucas, 1876)

(n-1) i
=y oy —j—1
Letn> 1. Then, F, =Z£=3 (n i )

19



proof: We will prove the result using the strong version of PMI Since (%) = 1 = F,
' 0

the statement is true when n = |

Now assume it is true for all positive integers < k, where k > 1. By Pascal’s identity,

5 e k
we then have ZEO("‘T‘) = ZEO k=i~ =By Zk/z(k_f_l).

i-1

Suppose k is even. Then

B & 0

2

ST R e

i=0 i=0 i=0

z(k-l)/z k- 1—2) T 2 (k-—l 1) (k/z)

k—z k—t—z (k-1)
Lo( )+ZL0(kll)
= Fy-1 + Fy
S Feei 000 sesssessmmesenesaseess (3.1)

So, the formula works when k is even.

It can similarly be shown that it works when n is odd.

Consequently, it is true whenn = k+1

Thus, by the strong version of PMI, the formula is true for all positive integers n.

For Example, Fg =Y2.,(°7)=1+4+3=8

FraBio(5)=1+45+6+1=13

It follows by the Lucas formula in Theorem 3.3.1 that K,,=Z§§=]0(";"')

Satisfies Fibonacci recurrence, where K; =1 = Fand K; = 2 = F3

The Lucas formula is a special case of an interesting result derived in 1950 by Steven
Vajda to see this, we use a bit of operator theory.

Let S, = §,(x) =Eiao("") ¥ and ASn = Sner = S

20
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Then, AS,, = leo[('“il-i) = (n-i—[) ] xt
= Yizo ?_—f
= /20 ("'}’:"1) i+t
K28, = &AL,
=ASp41 — AS,
= Zeol("i) = (o1 o
= Tizo(}5) «
= Xjz0 (n]—izl) gt

Then, 425, = A5, = jol("7) + ("2 %7+

Sn+2 — Sn+1 = ijo (nj—-j) g
= xS,
Thus, S, satisfies the recurrence Sp43 — Spe1 — XS, =0, where S =1 = 5;

T . . . 1+V1+4
Its characteristic equation is t?- t - x = 0 withrootsr = -Tx- and

1-V1+4x
2

S =
So, the general solution of the recurrence is S,= Ar™ + Br", where A and B are
constants.

It follows by the initial conditions Sg =1= S, thatA = -r—_—rs— and B = >

S=r
+1_.n+1
Thus, S,(x) = ———
1 frevIFaR\"t | rrevaEa\ Mt
= [(EE) ()1 (3.2)

In particular, S, (1) gives Binet’s formula for Fy, 4
Formula (3.2) has other interesting by products.
Suppose, for example, x = 2

21
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n—-i [ _ 2n+1_(_1)n+1
Then, Liz0 ( i )2 N
f = 2)1+1_(_1)n+1
Numbers of the form Jp.4 : are the well-known Jacobsthal numbers,

named after the German mathematics Ernst Jacobsthal, where n > 0 Formula (3.2) is
Binet’s formula for the Jacobsthal polynomial Jns1(x) = S, (x), where n = 0;

]

Jn1(x) = Z (n L_ i) 2

=0

So Jacobsthal numbers and polynomial can be computed from Pascal’s triangle with
appropriate weights.

When x = —1, formula (3.2) yield another interesting case

1+V3i 1—V3i )
Y5l _ ginfsgnd § = 120% = g,

Then r =

o ZE]O(—l)i (ni—i) — _\% [e(n+1)in:/3 _ e—(n+1)i1r/3]

_ 2sin(n+1)n/3
- V3

{ 0, if n =2 (mod 3)

- (—1)[3], otherwise
Where iv—1 and [t]denotes the floor of the real number t.
The case x = —1/4 is also an intersecting one. We leave it for the curious-minded to

pursue. It follows by the identity. Ly = Fp41 + Fa-1 and Theorem 3.4 that Lucas

numbers also can be extracted from Pascal’s triangle. Each Ly is the sum of the

diagonal sums on rising diagonals n + landn-1
3.4 ANOTHER EXPLICIT FORMULA FOR La
Using Theorem 3.3.1 and the identity Ly .= Fns1 t Fa-1 , We can develop

another explicit formula for L

Lp= Foer + Fr-

22



2I[c_]o( )+2[(n 2]/2)(71 k— 2)
G ne ”
=207 peeey
B3 + 28 (e

_Zk ol (n “) + (n_k' )]

B n ey
k=0n~—k( k )

For example, Lg = ¥2_ =05 k(5 k)

=2

0+I0+10
=1+5+5=11
3.5 CATALAN’S FORMULA
In lieu of using the rising diagonal of Pascal’

s triangle, we can use its rows to

computer Fibonacci numbers. To see this, we expand Binet’s formula using the

binomial theorem:
F= (5 - (=)

1 [n_;];] n )Sk
T gn-1 z:k,=o (2k+1

Catalan discovered this formula in 1846.

]
But, by Corollary 3.2.3, 2 = 3,2 (1)

Consequently, we can rewrite Catalan formula with a more aesthetic appeal

()+ ()5 + (S + (IS 4o
OO 0O

We can similarly show that

_ (J';)+('z‘)5+(;‘)52+(2)53+ ...............
s (B)+(B)+(B)+()+-

23
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For exmple)
0D s
Fr = e e e =12
B @+G) 5+(Ds*+(Ds® _ 1856

O+ O+0+ 0 e 29
Additional Identities

We can use Binet’s and Lucas formula with the binomial theorem in tandem to
derive an array of Fibonacci and Lucas identities.

To begin with, notice that
(D = Qo+ QR+ QP+ QF: + QR + (QFs
=0+5+104+20+15+5 = 35
= Fyo
Moré generally, we have the following identity
Theorem: 3.5.1 (Lucas) Let n > 0 .Then Z{Lo(’i‘) Fi=F,,
Proof: Since @ = @ + 1 and f? = 8 + 1, by Binet’s formula , we have
(@ = AZi=o() Fi= Zio()(@ - B
= T @ - Tl
=1+a)"-(1+p)"
= q2n — gan
?:o(?) F = Fay
A similar argument yields yet another identity by Lucas, when n> 0
ol gl TP S —— (33)
For example, Sieo(D) L = (Lo + (D)La + ()L, + (3L + ($)La
=2+4+184+16+7 = 47

24
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Theorem: 3.5.2 Letn= 0, Then, ?:0(_1)“1(?) Fi=F,

proof: BY Binet's formula and Corollary 322,
we have (a— B) LHS = = Zko(Dl(=a) - =B
=-l-am-a-pm
= g"_gn
LHS = E,
For example,
DT Q) E=-QFo + (R = O)F, + ()R, - (O)F, + ()R
= 0+5—10+20-15+5=5=F5
We can show similarly that
FoCD'(Dli=Le (3.4)
wheren 2 0

For example,

20D L= Qo = (DL + (D)le = Bl + (4L

2-4+18-16+7 =1L,
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CHAPTER 4

FIBONACCI MATRICES

i THE Q_MATRIX

.t we will demonstrate a close link between matrices and Fibonacci numbers.
FlrS )

To this, consider the matrix

o=l ol

Notice that 10l =-1. where | M| denotes the determinant of the square matrix M.

men @[} olli ol

-[; 1l
-1 olli il
[ 1]
simiady, 0*=[3 3]
Theorem: 4.1.1 Let n > 1. Then Q™ =[F}f~:1 pf:l]

Proof: Clearly, the result is true when n = 1. Now assume it is true for an arbitrary

positive integer k:

Qk= [Fk+1 Fk]
F Fi—

Then Qk+1= Qle

=[Fk+1 Fk][l 1]
F, F.4Jl1 0

=[Fk+2 Fk+1]
Feyw — Fy

S0, the result is true whenn = k + 1 also

T e
hus, by PML, the result is true for all positive integers n.

26




[lows by Theorem 4.1.1 that trace (sum of the diagonal elements) of the matrix

It fo

gris P+ Fama™ Ln

42 CASSINI’S FORMULA REVISITED

Theorem 4.1.1 yields Cassini’s formula as a delightful dividend: see the next
corollary.
Corollary: 4.2.1 Letn = 1.Then, Fpyq Fpoqy — E2 = (—1)"
proof: Since [Q| = —1, it follows by |Q™| = (=1)"
But, by Theorem 4.1.1, |Q™| = Fp4q Fiq — E?
Thus, Fp41 Fpe1 — E2 = (=1
Interestingly, the Cassini-like formula Ly Ly — F2 = 5(=1)""* also follows by

Theorem 4.1.1 To see this, first notice that

e-B I+B 9-B 1

So |Q% + I| = 5. Since Fp+;+ Fu1 = Ln, then we have

F, 5 > P
n+1 s n—-1_ |‘n+2 n+1]+[ n n 1]
20 ne B 1T lE

o @[

Q™™ (Q% + DI=Ln+s Lni- L7,
Since |Q™™* (Q% + NI=1Q"7*|.1(Q* + DI
= 5(FyFp—2 — Fi-1) = 5(-1D)"7%,
this implies Ly,qL,_, — L2 = 5(—1)""1
43 FIBONACCI ADDITION FORMULA
Using Theorem 4.1.1, we can develop an addition formula for Fibonacci numbers,

as the next corollary shows. Although the corollary lists four addition formulas, they

are basically the same.
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ry: 4.3.1

COrO“ﬂ
Faent! o Fm+1Fn+1 23 Fan ............. (41)
mt
o A A R (4.2)
fron = FnFres ¥ P e — 4.3)
et = TR O (4.4)
proof:

Qm+n = Qan

m+n+1 m+n ] [ m+1 ][ n+1
m+n m+n- Fm-
- [Fm+1Fn+1+Fan Fm+1Fn+FmF _1]
Fan+1 ilf —1Fn Fan + 5 —IF =1

Equating the corresponding elements yields the given identities.
In particular, let m = n. Then identity (4.1) yields Lucas’ formula
F? + iy = Fanas
Likewise, identity (4.2) yields
Fppn = Fo1Fy + BiFeq

= F(Fper + Fa-1)

= F,L,
Fyn also equals

(Fatr = Famq) (Pt + Fro1) = Fier = Fieq

Addition formula (4.2), coupled with the charming identity 5, = F, Ly can be used to
evaluate an interesting infinite product, studied in 1980 by J. Shallit of Palo Alto,
Californig,

E
Xample: 4,3.2 Evaluate the infinite product

P=(1+)(1+2) (1+6m) .................

28
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. == oo_ 1 1 ) .
golution: Notice that P = [[7=,(1 + anﬂ_l') - To evaluate this product, we will first

prove two results.

1) To prove that Fon_qLon = Fonea_| +1
Using the identity Fms1+ Fm-1 = Ly , Cassini’s formula, and the Fibonacci addition
formula, we have
Fanoqlon = Fon_y(Fongy + Fyn_y)
= Fon_yFongy + Fn_y
= Fon_aFangy + [FonFopn_p — (-1)2"1]
= (Fpn_qFonyq + FanFon_p) +1
= Fanyanogy +1
= Fyni_ +1
2) To prove that [[{-; L,i = Fyn+1
Whenn=1,LHS = L, = 3 = F, = RHS, so the result is true whenn = 1.
Now, assume it is true for an arbitrary positive integer .
Then using the identity F,,,, = F,, L,,, we have
o g = TR L Lgna
= Fors1lyiss
= Fyez
So, the result is true for all positive integers n by PMI

With this machinery at our disposal, we are now ready to evaluate the given product.

Let P, = $=1(1+ - )

Fon+1_4

1+F, n+1
— m ghti

Then, B, = [Taea 52—
an+l_g
=Hm an_len
= Fon+1_,y

29
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R
B
y‘ Fon .
l ::l 1, ‘ . " SRR
P .
Fonaa
- -~ -
Fyman
Fomat
P = lim —&—
m s ";,,|.' i
- &, th g()ldcn ratio
\nother immediate consequence of the addition formula is a fact that
AL
B EnFno Wherem >n> 1.
mn

Consequently, Fum > B, where m >n > 1. It also follows by the addition

iormula that Fnn | Fa
Next, we will develop an addition formula for the Lucas family.

Corollary: 4.3.3 Liysn = Fnealn + Bnln-r e
Proof: Using the identities (4.1) and (4.4), we have

Frnin+1 = Fne1Fner + Enba

Frin-1 = Fn+1Fn-1 + EnFn2
Adding, Fnins1 + Fnen-1 = Fne1(Fper + F —1) + Fn (B + Fac2)

Lin = Fms1ln + Enln-a
Corollary 4.3.1 can be used to derive two additional formulas linking the

Fibonacci and Lucas families.

Corollary: 4.3.4

3R - WR RS Y S —— (4.6)

2Linen = Ligly #5FpFy eeesessssssassasinns (4.7)

[;S" 4 . o .
" the fact that Q™=n = Q™mQ~", we can derive another Fibonacci identity:

FnFs = FyFppy = (1) Fpen  eeeeessssssssssenns (4.8)
t is 5 9. & .
also called d'Ocagne’s identity, after the French mathematician Philbert
Mau;
Ice d’QO¢; _ L 5 o S
¢ d"Ocagne. Clearly, it is generalization of Cassini's formula.
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agne’ . identity has an interesting Lucas counterpart
o Lpbn+1 = Inlm+1 = ST Lk (4.9)
L,Ls — Lalg = 29.11 =7 .47 = 5(-1)°F,_,

dentity (4.7) has an interesting by product. To see this, it follows from the identity

2Lcan = Lygly(miod 5)
that

Leti+)= h+ k.Then LiLj = 2Liyj = 2Lp 4
= LyL,(mod 5)
For example, LsL, = 11.29
=47.7

= L8L4(m0d 5)

4.4 The M-Matrix
Closely related to the Q-matrix is the ‘M-matrix, studied by Sam Moore of the

Community College of Allegheny County, Pennsylvania:

11]

M=[1 2

We can show by PMI that M™ = [an—1 Fa, ]'
Fan Fans1

Where n > 1; then

M_n___[ ! FZn/FZn—l ]
Fan-1 |F2n/Fan—1 Fant1/Fan—1

; § .
Since (rfl) = a, it follows that

lim

M 1l a] _ 1 a ]
n—oo Fap—q a az

- a l+a

Thug
» the sequence of Fibonacci matrices {M,,/F;,-1} converges to the matrix

A:[i 1ia],wheren21.

kewis
® Sequence {Q™/F,,_, } also converges to the matrix[clz i i a]

31




Next, we will investigate a generalized version of the M-matrix

4.5 A Generalized M-Matrix

Let A= [1 1 +x]' We will compute its ower, scale them to make their
p

leading entries 1, and then find the limit of the resulting sequence of scaled matrices.

The characteristic equation of A is given by |4 — AI| = 0; that is,

P
[ 1" 14x-2=0
-(x+2)A+x=0.

So, the characteristics roots are r(x) = 1 + % (x —Vx2 + 4) and

s(x) = 1+%(x+\/x2 +4)

Next, we will find a characteristic vector (%) associated with r. To this end, we solve

the equation A (-'5) =7 (-:f) We can easily choose (%) = (:11-)

- - ; ; 1
Similarly, we can choose the characteristic vector associated with s to be (5_—1) Then

A_[ril s—1”0 ]ril .sil]—1

The expression a(x) == +'x ** and B(x) = ——' will play a significance role in

the study of Fibonacci and Lucas polynomials.

Since (r = 1)(s — 1) = —1, we then have

-1
= r—1 s—l][ ”r—l sill
=-s—1—r1‘11 sil][ron SO"HfSL:}‘ —11]
(s — Dr" —(?“—1)3 st —rn
= s—r[ st—rh (S—l)s"-(r-—l)r"]

Scaling this matrix to make its leading entry 1 gives the matrix
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§Meypn

1 S .M . T
_ (s=1)rn=(r-=1)sn
By, sh—rht (s=1)s"—(r—1)rn
(s=1r=(r—-1)s"  (s=1)r—(r-1)s"
1 1—(r/s)n
_ (s=1)(r/s)"~(r-1)
1~(r/s)" (s=1)—=(r=1)(r/s)"

(s=1)(r/)*=(r-1) (s~1)(r/s)"~(r-1)

Since x > 0,(r/s)" = 0 as — oo

[, L
. i 1_
Soy W B =13 s
|1~  1-r
_ 1 s—1
T ls—1 (s—1)*2

In particular, let x = 1
Thens = a + 1= a?
[1 a

So lim M™ = ]
a «

n—oo

], as found earlier.
Next, we will find the eigenvalues of the Q™. In the process, we will employ the well-

known formula L2 —5EZ = 4(—=1"
4.6 EIGENVALUES OF Q"

Let A = (a;;) and [ the identity matrixof the same size. Then the equation |A —

Al|=0 is the characteristic equation of matrix A. Its solution are the eigenvalues.

To find the eigenvalues of @™, first we will find its characteristic equation

Using Cassion’s Formula, We have

F, E ]
n_ = n+1 n
joratl =[5 g

=(Fp41-A)(F; —1'1)'17112
=A%-(Fp41tFn-1)A + F LD iy
=2% = LA H(=D)"

So, the characteristic equation of Q™ is
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At =LA + (=17* =

Using the quadratic formula, the eigenvalues of Q™ are given by

i Ly fol—-‘t(—i)“

2

— Lni’\/?Fn
2

= g, gn
Thus, we have the following result.
Theorem: 4. 6. 1 The eigenvalues of Q™ are a™ and g™
Corollary: 4.6.2 The eigenvalues of Q are a and 8

When n =1, equation (4.10)becomes A2 —A — 1 = 0, which is the charististic
equation of Q. But Q2 —Q —I1 =0. Thus Q satisfies its characteristic equation,
illustrating the well-known Cayley-Hamilton Theorem: ¢ Every square matrix
satisfies its characteristic equation ” |
Since Q2 = Q + 1, it follows by the binomial theorem that

Q™ =(Q+1)"
= Yk=0 G:) Q¥

Equating the corresponding elements from both sides, We get

Fu=(1) R+ ()Rt 4 (2)

Fanss = (o) P+ (1) Pt -+ (3) P

Next, we will see how I.D. Ruggles and Hoggatt in 1963 derived summation formula
using the Q-matrix
SUMMATION FORMULA

Using PMI, we can use establish that

(1+Q+QZ+,,,+QT'-)(Q.._1)=Qn"1—1 ................ (411)
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since 10 — I| = =1+#0,Q — I is invertible.
nce 02 =Q+1,0> = Q = 1thatis, Q(Q - 1) =/
Thus, by equation (4.1), we have
I+Q+Q*++Q"=(Q*t —DQ
= QM2

Equating the upper right-hand element in this matrix equation, we get the desired

summation formula,

n
> Fe=Frua =1
k=1

Next, we will verify study four 2 X 2 matrices related to the Q —matrix. Joseph
Ercolano of Baruch College. New York, investigated them. They too, have interesting

Fibonacci and Lucas implications.

We will begin with a definition. Let A and B be two n X n matrices. Then A is
similar to B if there exist an invertible matrix M such that A = MBM~1, that is,

AM =MB
1) The first matrix we will study is A = [‘: 2] How are A and érelated Both

have the same characteristic polynomial. x2 — x — 1, and hence the same eigen-values

a and B. Both have the same determinant:|4| = —1 =|Q|. Both have the same

trace @ + f = 1. Finally,Q is similar to 4, since Q = MAM~* where M = [‘; _1a

This is true, since

O [ B Pl L A

Since Q = MAM™1, it follows that Q™ = MAM™,
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n
g0 Q" is similar to A" = [ 5 ﬁon] Since similar matrices have the same trace and
Jeterminant, it follows that trace

AM=at 4+ B =Ly =Fyy +F,p = trace Q"
Likewise, |A"| = 1Q™| yields Cassini’s formula for Fibonacci numbers.
We can extract additional properties using the similarity of Q™and A™.

Since Q™M = MA™, we have

Frs1 Fn][a 1 =[a 1][&“ 0
E Fualll 1 —allo ,8"]

[aFnH +F Fa _aFn] _[an+1 p"
O.’Fn + FTI.+1 FTI. - aFn_l - an ﬂn—l]

This implies

aFpyy +Fp=a™t (4.12)
Fuor—aFp=p" 4.13)
@Fy + Fppr=a™ (4.14)
Fo—aFp =™ (4.15)

Notice that Binet’s formula for F, follows from equation (4.14) and (4.13) and also

from equations (4.14) and (4.15)

1
- 1
2) The next matrix we will study is B = [é 1 |- Then
4 2
)
B=|;
5 1
K sl
L, B
g2 = |2 2 2
5 1
F, sl
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B3=2

More generally, we can confirm that

= Ln Fn
1
R i,

Bt =

The trace invariance between f™and A" yields Binet’s formula for L, Since
Q™and B" are similar, they have the same trace; this implies Ly =Fy41 +Fyoy,
1 5
;Li ":Fnz = Fn41Fy1 — E};
Thatis L, —5F% = 4(1)"
Similarly, between Q™ and B™ yields the same result.

11]

3) Next, we will investigate the matrix C = [_ i 3

-F, E
Then C" = [ -2 fn ]
= —F,  Fpy

Matrices C™, Q™, A™, and all similar. Similarity with Q™ yields
Foyz —Fpa =1L,
FrizFpp = (1™
Trace invariance between C™and A™ gives Fnu; — Fpp =a™ + " =L, and the
determinant invariance between C™ and B™ gives the identity
F? = FasaFaa = JLa = 1B

Thatis, L2 = 9F% — 4Fp4;Fn_2

_ _ i 1
4) Finally, Consider the matrix D = [_5 _2]

= Ln+1 Fn ]
Then D" = BT

Its similarly with Q™ A™, B™, and C" yields the following results. You may conform

lhem_
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Lnsiln-1 + FpyiFy_y = 6F2
Lypsilp_q—35 Frij' = [=1)y*
Ly +4LpyqLy_y = 25F2
Lnyz —Lp_; = Foy2Fn_;
Lnsi1ln-1 —Fpi2F, -2 = 41;‘712
Consequently, both L3, + 4Ly, 1L,y and Lyy1Ly,_q — Fyy,F,_, are squares.
Next, we introduce another 2 X 2 matrix R, introduced by Hoggatt and Ruggles in
1964. Coupled with the Q-matrix, it will give us Cassini’s formula for Lucas numbers.

4.7 R-MATRIX

A 12
The R-matrix is givenby R = [2 _1]
Using the identities Lny1 = Fny1 + 2Fy, Ly = 2Fn4q = Fo, 5Fpyq = Lngy + 2Ly and

SF, = 2Ly4q — Ly, it follows that

n — 1 2 [Fn+1 Fn
RQ"= [, 4] E  F.,
=[Ln+1 Ln

Ln Ln—l

1 21 R ]_ [Ln+1 Ly ] 2
This implies [2 _1][ E Ro=lly Eu ;that is

Lyt — L% = (=5)(Fps1Fn-1— %)
= 5(_1)n—1
Thus, Lys1ln-1 — L3 = (=11 i s
This is Cassini’s formula for the Lucas family

. . & )
Next, we will re-derive Cassini’s formula for Fibonacci numbers, using Cramer’s rule

for 2 x 2 linear systems.

4.8 CASSINI’S FORMULA REVISITED

We will first review Cramer’s rule. The 2 x 2 linear system
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ax+by=e
X+dy=Ff

has a unique solution if and onlyifad — pc = ¢

e b -
Itisgivenbyx:H Y= [; eg]
c d c d]

In particular, consider the linear system

Fx + Bty = Fo.1 and

Fooix + Fyy = S
Since (Fy, Fr41) = 1,it follows by the Fibonacci recurrence that x = 1=y isthe
unique solution to this system.

[ Fn Fn+1
By Cramer’s rule, we then have y = [F"H Fn

=1

n  Fney
Frn¢1  Fn

Thus, F,Fy 45 — Frf+1 = F;zz — Fn-1Fn4q s thatis Frio By — F73+1 = ~(Fas1Fn-1 — Fnz)
Let p, = Fr41Fn—1 — E%.Then this equation yields the recurrence p,, = —Dn-1 Where
P =F2F'0‘F12 = —1

Solving this recurrence, we get p,, = (—1)™

Thus, Fpy1Fy_y — F2 = (—1)"
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CHAPTER 5

APPLICATION OF FIBONACCI AND Lycas NUMBERS
5.1 FLOWERS

Fibonacci numbers also appear in plants and flowers, Some plants branch in such

a way that they always have a Fibonacci number of growing points. Flowers often

have a Fibonacci number of petals, daisies can have 34, 55 or even as many as 89

petals. The number of petals in a flower consistently follows the Fibonacci sequence.

Famous examples include
* 1 petal: White Cally Lily
* 3 petals: Lily, Iris
* 5 petals: Buttercup, Wild Rose, Larkspur, Columbine (Aquilegia)
* 8 petals: Delphiniums
* 13 petals: Ragwort, Corn Marigold, Cineraria,
* 21 petals: Aster, Black-eyed susan, chicory

* 34 petals: Plantain, Pyrethrum

* 55, 89 petals: Michaelmas Daisies
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A panicularly beautiful appearance of Fibonacci numbers is in the spirals of seeds

. a seed head. In sunflower the arrangement of the seeds at its centre appears to be
1

spiralling outwards both to the left and right direction. The pattern of seeds within a
sunflower follows the Fibonacci sequence as 1,2,3,5,8,13,21,34,55,89,144.......

Each number in the sequence is the sum of the previous two numbers. In
sunflowers, the spirals you see in the centre are generated from this sequence — there
Jre two series of curves winding in opposite directions, starting at the centre and
sretching out to the petals with each seed starting at a certain angle from the
neighbouring seeds to create the spiral.

At the edge of a sunflower if we count those curves of seeds spiralling to the left
as we go outwards, there are 55 spirals. At the same point there are 34 spirals of seeds

spiralling to the right. A little further towards the centre and you can count 34 spirals

to the left and 21 spirals to the right. The pair of numbers are neighbours in the

Fibonacci series.

5.2 FIBONACCI SPIRAL

The Fibonacci numbers are found in the arrangement of seeds on flower heads.
There are 55 spirals spiraling outwards and 34 spirals spiraling inwards in most daisy
or sunflower blossoms. Pinecones clearly show the Fibonacci spirals. Fibonacci spiral
can be found in cauliflower. The Fibonacci numbers can also be found in Pineapples
and Bananas (Lin and Peng). Bananas have 3 or 5 flat sides and Pineapple scales have

Fibonacci spirals in sets of 8, 13, and 21. Inside the fruit of many plants we can

observe the presence of Fibonacci order.
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8 parallel rows of

I3 parallel rows of 21 parallel rows of
scales spiralling scales spiralling at - scales spiralling

gradually a medium slope at a steep slope

Fibonacci spiral are also found in various fields associated in nature. It is seen in
snail, sea shells, waves, combination of colours: roses cte in so many things created
in nature,
5.3 HUMAN HAND AND FINGERS

Humans exhibit Fibonacci characteristics. Iivery human has two hands, cach one
of these has five fingers and each finger has three parts which are separated by two
knuckles. All of these numbers fit into the sequence. More over the lengths of bones

in a hand are in Fibonacci numbers.
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J creates a golden section in relation to our arm, as the ratio of our forearm to
yr han

o

hand is 1.618, the Divine Proportion
our

1: 1.618 oo

R T EE

Golden spiral even found in the finger prints of the human.

5.4 HUMAN EMBRYO
During the human embryo development, the human embryo gradually unfolds

itself in such 4 way that it is exactly similar to the golden spiral unfolds itself as it

PIns farther away from its centre.




5.5 ARCHITECTURE

One of the earliest examples can be found in the Great Pyramid of Giza

Let b be the base of a triangle which goes from the midpoint of a side of a pyramid
to the centre of the square base. Let a be the diagonal up the side of the pyramid from
the same midpoint of the side to the very top of the pyramid. For the Great Pyramid,

the approximate lengths of a and b are 612.01 feet and 377.9 feet approximately

respectively.
a _ 612,01
b~ 3779
=1.62 which is very close to the golden ratio
56 HUMAN TEETH

The front two incisor teeth form a golden rectangle with a phi ratio in the height to
the widh, The ratio of the width of the first tooth to the second tooth from the centre

Phi. The ratio of the width of the smile to the third tooth from the centre is phi.
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5.8 IN POETRY

A limerick, according to Webster’s dictionary, is a nonsensical poem of 5 lines, of
which the first, second, and fifth have 3 beats, and the other two have 2 beats and
rhyme. The following limerick, for example, is made up of 5 lines; they contain 2

groups of 2 beats and 3 groups of 3 beats, a total of 13 beats. Once again, all numbers

involved are Fibonacci numbers.

A fly and a flea in a flue 3 beats
Were imprisoned, so what could they do? 3 beats
Said the fly, “Let us flee!” 2 beats
“Let us fly!” said the flea 2 beats

So they fled through a flaw in the flue. 3 beats

Total = 13 beats

G.E. Duckworth analysed the Aeneid, an epic poem written in Latin by Virgil, the
“greatest poet of ancient Rome and one of the outstanding poets of the world™.

Duckworth discovered frequent occurrences of the Fibonacci numbers and several

V M - . . :
anations in this masterpiece

1,3,4,7,11, ... < Lucas sequence
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1.,4,5,9, 14, ..,
ks 3, 11,17, ..
1,6,7,13,20, ...
2,3,5,8,13, ...
37 10,17,27, ...
4,9,13,22,35, ...
b, 13, 19, 32,61, ...

The mathematical symmetry Virgil consciously employed in composing the
Aeneid brings the harmony and aesthetic balance of music to the ear, since ancient
poetry was written to be read out loud. According to Duckworth’s investigations into
Virgil’s structural patterns and proportions, there is evidence that even Virgil’s
contemporary poets, such as Catullus, Lucretius, Horace and Lucan used the
Fibonacci sequence in the structure of their poems. Duckworth’s study lends
credibility to the theory that the Fibonacci sequence and the Golden Section were
known to the ancient Greeks and Romans.

5.9 FIBONACCI IN MUSIC

The Fibonacci sequence of numbers and the golden ratio are manifested in music
widely. The numbers are present in the octave, the foundational unit of melody and
harmony. Stradivarius used the golden ratio to make the greatest string instruments
cver created. Howat’s research on Debussy’s works shows that the composer used the
golden ratio and Fibonacci numbers to structure his music. The Fibonacci
Composition reveals the inherent aesthetic appeal of this mathematical phenomenon.
Fibonacci numbers harmonize naturally and the exponential growth which the

ibonaccj S€quence typically defines in nature is made present in music by using
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i notes. The intervals between keys on a piano of the same scales are

pibonact

Hbomcci numbers.

8 white
13w &b

The golden ratio plays a significant role in the design of the violin, one of the

beautiful orchestral instruments. The point B where the two lines through the centres

of the f holes intersect, divides the body in the golden ratio % =«

' (S

—a
Il
C '
B
|
a

scidoe AC : :
Bt.‘udcs,a = @, so the body and the neck are in the golden proportion.

It now follows that

AD AC cD
—_— = —=—=
AC AB BC
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CoNCLUSION:

In this Project, we discussed about the Fibonacci and Lucas numbers and its
wide range of applications. We have presented the link between the Matrix and
Fibonacci and Lucas numbers. Happily our project revealed that the Fibonacci and

Lucas numbers is not only a concept in mathematics but also occurs in our day-to-day

life.
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INTRODUCTION

The field of Mathematics plays a vital role in various fields. The place
of differential equations in Mathematics. Analysis has been the dominant branch for
300 years and differential equations are the heart of Analysis. In Mathematics the
term “Ordinary Differential Equations” also termed as ODE is an equation that
contains only one independent variable and ;)nc or more of its derivatives with respect
to the variable. Ordinary Differential Equations have important applications and are a
powerful tool in the study of many problems in the natural sciences and in technology
and they are exclusively employed in mechanics, astronomy, physics, and in many

problems of chemistry and biology. Differentiation can help us solve many types of

real world problems.

The Project consists of five chapters.

In chapter 1 , we have given some basic definitions and results on ordinary

differential equations that are needed for the subsequent chapters.

In chapter 2 , we have discussed about the first order differential equations.

In chapter 3 , we have discussed about the second order differential

equations.

In chapter 4 , we have discussed about the power series of ODE

In chapter 5 , we have discussed about the special functions of power series
like regular singular points ,derivation of Frobenius series , Bessel’s equation and

series and the theorems and problems o
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Chapter 1
Preliminaries
Definition: 1.1

A differential equation of the form f(x,y)dy = g(x,y)is said to be

homogeneous differential equation if the degree of f(x,y) and g(x,y) is same.
Definition: 1.2

A function of form F(x,y) which can be written in the form t™ f(x, y)is said to

be a homogeneous function of degree n, for k # 0 the differential equation

M (x,y) dx = N (%,y) dy = 0 is said to be homogenous if M and N are homogeneous

function of the same degree.

Definition: 1.3

The equation p(x,y)dx + Q(x,y) dy = 0 is an exact differential equation if
there exists a function f of two variables x and y having continuous partial derivatives

such that the exact differential equation is separated as follows
ux (x,3) = p(x,y) and uy (x,y) = Qx,y)
Therefore, the general solution of the equation is u(x,y) = ¢

Where “C” is an arbitrary constant.

Definition: 1.4

An integrating factor is a function by which an ordinary differential equation

can be multiplied in order to make it integrable. For example a linear first-order

ordinary differential equation of type
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DriP@Y®O =q®, 0 e 1)

Where P and Q are given continuous function, can be made integrable by letting v (x)

be a.function such that
V) =[p ) dx andd—%=p(x) ............... )

Then e¥ ®) would be the integrating factor such that multiplying by y (x) gives the

expression t
2 [ev@y(x)] = eV [¥X) :
o [Py ()] = e [dx +Pp() y() :| ------------ ~3) t

= e"®q (x)

Definition: 1.5

Linear Differential Equations is an equation having a variable , a derivative

of this variable and a few other functions. The standard form of a linear differential

equation is % + Py = Q and it contains the variable y and its derivatives.

S ——.

Definition: 1.6

A point X is a singular point of the differential equation

e —r——————————————

y' + P(x)y’ + Q(x = 0if one or both of the coefficient function P(x) and Q(x) are

not analytic at x,.
Definition: 1.7

One of a class of transcendental functions expressible as infinite series and

occurring in the solution of the differential equation is called as Bessel function.

xzdzydi + xdydx = (n* — x%)y
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Definition: 1.8

-t2 Hy , 2
et =32 By t = Hy(x) + Hix)t+ E%)t— S

The function e?*~*" is called the generating function of the Hermite polynomial.

Definition: 1.9

The Radrigues Formula for the Hermite Polynomial is given by

Ho(x) = (=1)" ¥ 2= (e=%)

dxn
Definition: 1.10

An Indicial cquation also called as characteristic equation is a recurrence

equation obtained during application of the frobenius series method of solving a

second order differential equation.

Definition: 1.11

If two functions f(x) and g(x) are defined on an interval [a, b] and have the
property that one function is a constant multiple of the other, than they are said to be

linearly dependent function on[a, b]
If f(x) = kg(x) then f(x) and g(x) are linearly dependent.

Definition: 1.12

If neither of the functions f(x) and g(x)is a constant multiple of the other

than they are called linearly independent.

(¥ Scanned with OKEN Scanner




Definition: 1.13
An infinite series of the form y=Yp o nX" =aot+aiX +ax + ...

is called a power series ina x. In general y = g @n(¥ — X)" is a power series

in (x = xg).
Definition: 1.14 ) ;

For every power series Y., a, X" there exists a positive real number R such

that series Y%, an X" is convergent if |x| <R and divergent if [x| > R. The i

§
. . . an
number R is called radius of convergent where R = lim,,_ (—m;) |

Definition: 1.15

fx) = ¥no ) (x ) ——=—_ (X-Xo)" is Taylor series of f(x) at x,

e R

fF(x) = Xneo - ( )x is Taylor series inx,=0

Definition: 1.16
The point x = a of the interval L is said to an ordinary point of the differential

equation (1) if each x is analyticatx =a.

£

caald
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¢ Solutions of First Order Differential E
quation.

25
: 421
coblé +
Solve y' =y by direct methoq and p
W Serieg Methoq , d
n €Xplaip
an
gisore? o
Sol"tio
Giveny' =¥
pirect mefhod
Doy
& y 7 = dx
ntegrating bohsides O
n
logey=x+c
Ny = ge",

power series method

| Assume Y= Zw Oanx”=a0+a1X+a2 x% 442 x" 4 is the power series
s n=

solution of given differential equation.

Giveny' =Y
[0}

nL..
y=z anx"=a0+a1x+a2 xz + - tapX t

n=0
. - xn 4o
y'=ay 4280 % + 33 %7 o tna xR
=3, )
"t
-1 x
+2a, x + 383 %% F oo +nag " O
a) 2

n + 2ot
y =agtayxtay &+ o
E(luating the constant term

a; = Qg

Equating the coefficient of x term

2a2 =aq
el
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efficient ofx? term

: e cO
o™ "
az — -a—o- —_— 92
a3 =73 23 3!
g the coefficient ofx™term
t1
gque

(n+ 1 )an+ 1 =an

Qn _ )
Wl " n 41 (n+1)!

ay=agtapxtay X% + kg xn 4

2

aogX
!

: i T~

= ao+aox+

x 22 % x"
=+ttt +to+)

y = ape”
problem: 4.2.2
Solvey'x =y
Solution:
Direct method

y1x=y=>y=§=§%=§ = %
tegrating both sides, we get
logy=1log x +log c
Y =cx
Power sepies method

Assume y= X0 a,x™s a solution of the given equation.

29
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yl= YA
B na, xn~
=1
lo =
ciivc“" o
-1 . '
19204
n = m_ a le.
w’onanx Zn—o n
nr
2 ver
Y’ﬁ1x+2a2x *

gt xiha
gl ating the constant term
ag =0
: quatiﬂg the coefficient of x term
a, = a4
Equating the coefficient ofx? term
20, =a;=a, =0
Equating the coefficient ofx3 term
daz = az=>a; =0
Equating the coefficient of thent*term
| na,=a =a, = 0
~y = agta;x+a; x2 + -
2y =a1x

From this no change,

43 .
Second Order Differential Equation(Ordinary Points):
Deﬁnition: 4.3.1

The point x = g of the interval Tis said to an ordinary point of the

Giffara,«
eNtia] ®Quation I if each by (x) is analyticat X = a.

30
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ré oy n or d
mn inary pO- Of th I i
; dlfferentlal equatiO
n

1he°
L

yu + P(x)y’ =iy Q(x)y =0

e arbitrary con —
and a1b ary constants, They, there exist ~(1)
d

w8 Jet @0 q
' uti ) ‘ ue funcg;
is a solution of equatjop ()ing — tlon y ) that
eighbg

gtisfies the initial conditions y(x,) = % and 1y
5 0 = al. F

Proof-

the sake of convenience, we restrict o
For Ur argument to the cage which at
n="0 This permits us to work with power series in rather than x -y and
~ %, an
volves 10 real loss of generality. With this slight simplification, the hypothesis of

the theorem is that P(x)and Q (x)areanalytic at the origin and therefore have power

series expansions.
Px)= X, PaX "=Po+P1 X P X + @
Q)= Y Qnx"=tqo tqux+qy x” + 6)

that converge on an interval |x| < R , for some R > 0. Keeping in mind the specified

hitial conditions, we try to find a solution for (1) in the form of a power series

y- Zntoanx”=ao+alx+az xz + ser \
Vithradius of convergence at least R. Differentiation of (4) yields
ys ) 2 e ~(3)
2""0 (n+1)an+1x"=al + 23, x + 3azXx + oo
2 + ..-----‘"""'(6)
" ™o —_—
x x
ZM (+1)(n+2)a,,x"= 22, + 2.323% T 3.4a4
ling o that
W follows from the rule for multiplying POWe serl
31 )
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p(Y = ( ) LZO (n+1)a“+1xn]

= Yo o[zk_o Pn-k(k + Dayy,]xn

..
-
-
--------
-
.....
~

oG

=0 n=0

-,
..
——e.

pstitating (6), (7), and (8) into (1) and adding the serjcs tem by term, e o
Lk € obtaj

0 < =
Z [(n+ 1)(n+2)ay42 + Z Prk(k+1)a,; + Z Gk | X7 =
k=0 k=0 -

n=0

pave the following recursion formula for the g,
50 W

(n+1) (n+2)an+2 = — Zk:o [(k + 1)pn-rayss + qn_kak] ........... ~(9)

for n=0, 1, 2,--- this formula becomes

20, = — (Poo + do%o);

23a; = — (p1a1 + 2Pz + 41a0 + GoG4),

3.4a, = — (P2ay + 2p1az + 3Poas + 4200 + 4101 T Qo2

Problem: 4.3.3

Find the ordinary point of the differential equation

¥+ xy'+(x? + 2)y=0
Solution;
PX)=x ,Q(x) = x2 + 2 are analyticatall points.

s, Q'(x) = 2x

Bvery poin, is an ordinary point.

32 y
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Using POWer series method {,, find ¢,
Solution:
giveny' 0¥ +y=0
P(x) =0 and Q(x) = 1 are analyy
~ILUC o
=P(x) and Q(x) are analyy;, "

0
=x =0 isan ordinary Pointg

_ ' ns .
pssame y= Do P18 the solution opge g
Ientia

y’ = Z:?:l na, x"-1

y" = Y= n(n — 1)a, x"-2

y'+y=0

e ]

Zzn(n = Dayx"? + Z 4,x = g
n=

n=0

k-4 o
‘ ;(n +2)(n+ Dapx™ + Z a,x" =
- n=0

Equating the coefficient ofx™term

(n+2)(n + Day, = —a,=a,,, =

(n+1)(n+2)
= =% _a
n=3,a; = T
- — —a4 -a
n a 4 ’ a6 — ? _— T'o.

. 2 3 4
~y(x) = a0+a1x_aox _a et

2! 3! 4!
x2 x* b
= ao(l—-z—'+—d:!——a+ )+ oy (x

Y(*) = agcosx + a, sinx.

33

© gen
era] solution of
Y's

V= 0
l equation'
x3 x5 )
= —3—! + -5_!
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r0ble
S0

the legendre equation |
olve Y Powe ©r Serjeg e
Sthog
Solllti"ll
Leg®
- x)y" —2xy' + P(P + Dy=g

ndre’s equation is

-
-
Rl
_____
~——
.,
Ly

. 2.1 _ ’
g =%ty 2xy +P(P+1)y=0' i

D'vide 1) by (1 - x?) , we get
I

2x ,  P(P+1)

T2 Y Tz Y=0

Y~ 1= x2 1= x2

—2x PP +
P(x)=1_x2 ! (x)'"—rx\l)

p(x) and Q(x) are analyticatx =0

~x = 0 is an ordinary point.

Assume Y= Y=o a,x"is the solution of the given differentia] equation

=4
!
= n—
y Znanx .
n=1

y”= Z:?:Z n(n - 1)an x"2 = Z:::O(n + 2)(71 + l)an+2 X"

y" —x2y" = 2xy' + P(P + 1)y =0

Z(n +2)(n+ Day, x™ — x? Z n(n—1)a,x"
n=0 ‘n=2
Znan n-1 +P(P+1)Zanx“‘

n=0

Zw [(n+1) (n+2)a, +2—n(n— 1a, = 2na, + p(P +1)aq]a"=0
n=0

E ‘
ating the coefficient of x™ term

+ 1)(1 = 0
(n+1) (n+2)an +2 = n(n - 1)an - 2na, + P(P n

— p(p+1)an
(n+1) (n+2)a +2=n(n- 1)a, + 2nan A

34
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= P(p
Ty,
[(n—1)+2n~P(P +1
@) Gy —— a,

a, 2=

=

_n(n—1+2)— P(P+1
(n+1) (n+2) a

n

n(n +1) - P(P + 1)
(nt1) (n+2)

__n(n+1)— P(P+n+1§n)
- (n+1) (n+2) a,

_n(n+1)_ P(P+n+1)

() (ni2)

(P+l‘l+1)_ (n‘P)

+2=
" (0+1) (n+2)
—P(P+1
n=0,a2=2\!)a0
-1 @ =P+A0-p _
n=1,a=m TP, =%
_ _(P+3)(2- p)
n=2, a _ P+3)p=yyp
v 12 waz
n=3, (P+4)(3 P) (P+4)(P‘3)(P+2)(P_1)
20 120 Z
_P+ae+(P-3)(p-1)

51 a

= P(P+1 _
y= a, [1_ (2! ) 2 +P(P+3)(I;-'+1)(P 2 4 +] +a1[ (P+z)3(lp D3,

P+4)(P+2)(P-3)(p-
—+2)(P-3)(P-1)
51 xS Sk ]
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CHAPTER 5




T IERS
Special Functiop,
of Poyy,
I'Serje

i pgular Points

v

5,1
511
Qeﬁni“on'

i fnctions SSMIECDY he product gy ey 7
’ A0

%0 Then X0 15 called the regular Singular poin of the differe
' n

are analyﬁc at

tia] €Quatiop,

y If ei Q) are ot analy
called the irregular singular points of the differentjy) €quatiop,

tic at o then x, i
qpeorem’ 5.1.2
Let Xo be an ordinary point of the differentig] €quation y

POy + Quoy =0 g
ypmda be arbitrary constants. Then there exists 5 unique functjop Y(x) that is analytic
10158 solution of given equation in a certain neighbourhood of this point, ang satisfies
jeinital conditions y(Xo) = ao and Y'(XQ) = a1 . Furthermore, if the power series expansions
ip(x) and Q(x) are valid on an interval [x —xo|<R, R > 0, then the power series expansion

of this solution is also valid on the same interval._
Proof:

For the sake of convenience, we restrict our argument to the case in which X =0.

Tis permits us to work with power series in X rather than x —Xo, and involves no real loss

i : is that P(x) and
"eeraity. With this slight simplification, the hypothesis of the theorent s that P(x)

W

i i sions
U analytic at the origin and therefore have power series expan

2 ||||||||
P(x) = Y% pox" = pot pix tPX + evaen
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.
------------
.

...........

I ©)

with radius of convergence at least R. Differentiation of (3) yields

y' = Zn=o( + 1anux"’ =a;+2ax + 33,52 +

and yn = Z:;o(n + 1) (Tl + 2)an+2xn = 2a2 + 2'3a3x + 3.43.4)(2 "

........ — 5
1t now follows from the rule for multiplying power series that
P)Y' = (Enzo Pnx") [Enzo(n + 1) anx"]
= Yn=1[Zk=0 Prk(k+1)ag]x" — (6

o0 n
And  Q()y = (Zazo qnX") (Xnmo anx") = Eimo(ke=o dnk k) X' ————(7)

i i i by term, we
On substituting (5), (6), and (7) into given equation and adding the series term by term
obtain

+ Tl= n-k ak]
wol(n+ 1)(n + 2)ana + Ti=ol(k + D+ Li=0q

S0 we have the following recursion formula for the ap:

0
()02 = - X0_o[(k + L)Pakdirs F ookl

Forn= 0,1,2,...... this formula becomes

37
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98y =~ (Podi * Qoo )

9. 383=— (p1ar + 2poa, + Q139+ qpg, )

—

3 das=— (P21 + 2piay + 3poa; + qya, + ay +qgq, )
0d2

mulae determine a; a3, ...,

i, In terms of
) % and a; sg the Iesulting serjes A3)

. formally satisfies the given equation ang the given i
which 0 : © 8Iven initial condjtions :
100S 1S uniquely

determi“ed by these requirements. Suppose now that we can Prove that the ger
€ seéries (3), with

s coefficients defined by formula (8), actually converges for |x|< R. Thep by th
. ¢ general

ireory of power series it will follow that the forma] Operations by which (3) was mad t
¢ to

atisfy the given equation termwise differentiation, multiplication, and term-by-term

addition—are justified, and the proof will be complete.

Example 5.1.3

Locate and classify its singular point on the x-axis of the differential equation
Yx-1)y" - 2(x-1)y'+3xy =0
Solution:.

X(x-1)y"- 2(x-1)y+3xy =0
(1] 2 (] =
Y'-5Y * sy =0

- 3
PX) =2 and Q) =g

P(x) and Q(x) are not analytic at x=0 and x=1

Therefore, x=0 and x=1 are the singular points.

38
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Casc (i)

en X0 is a singular point, xP(x)=2

W ® 2 x'Qy< 3 _
(e-1)
eor®s x=0 is an irregular singylar POInt. [ Sine b
T . © XP(x) are n
, _ Ot analytic gt v
S are analytic at x=0 ] € at x=0 ang
Casc (ii)

=11 ingul int, (x- () = Z2(x-1
when x=1 is a singular point, (x-1)P(x) _T) and (x-1)2Q(x) = 31
x2

(x-l)P(X) and (x-l)zQ(x) are analytic at x=] Therefore, x=

L'is an regular singular point,

[ Since, (x-1)P(x) is analytic at x=1]
Example : 5.1.4
Determine the nature of the point x=0 for x’y" - sinxy = 0

Solution:

sinx

Px)=0 and Q)= =

P(x) is analytic at x=0 and Q(x) is analytic at x=0

xP(x) is analytic at x=0 and sz(x) is analytic at x=0. Therefore, x=0 is an irregular

singular point,
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oBENIUS SERIES:

rential equation of the form 77y

giffe TP@)zu'tq(g), <

gingular point z=0

2
- m + a X + azx + ---------- e ) = .M
=x" (0T a1 ) = agx™ + g xm

¥

y' i maoxm-l o al(m"'l)x“‘ = az(ln+2)x"’+l +

""""""""

= m(m-1)aox™? + ay(m+1)mx™" + ao(m+2) (m+1)x™ +

--------

2x2[m(m-1)?10xm-2 + ay(m+mx™! + ay(m+2)(m+1)
al(m+1)x“' + az(1n+2)x'"+] +

alme +....] . 0

[m(m-1)ag + aj(m+D)mx + ax(m+1)(m+2)x* +....] + [max + a(m+hx? +.....] +

i[mao'*'(m"'l)alx + ay(mH2)x* +......] - % [ag+ aiX + @’ +..evnn] =0

1
[m(m-1)ay + aj(m+1)mx + a2(1'n+1)(m+2)x2 L PR ]+(5+ x) [map + (mtl)ax +
(M+2)apx*+. ... ]- % [ag+aix+agk’F. ... ] =0

Equating the constant term,

1
=> aom(m+1)+-;-a0m--:-ao =0 —®

¢ to
. rant of each power of x
WE COnlbine comesponding powers Ofx and equatlng thc COCfﬁClent

Zem,
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Lt D2 =
ot g (1M F [';' (m+1) - -;-] aj i "
) F3 D L)+ (1) =0

207 (m-)+sm-3 - =0 5

This 8 called T INDICIAL EQUATION of fe differential equation. Its roots are
m2—m+ é— m- .;. =0
om?-m-1 =0
=0

(m-1) (m+)

1
m=1;m=-7
2

we now using the remaining (2) to calculate @, @2 yoeeee-

r each of this values of m ,

Fo
lin (2) , we get the equation ,

interms of ao. For m=

ap + 2y [(1+1)+§(1+1)-§-] =0

1
ao+2a1+a1—-;al =0

== _"5 -2
> a=a and ar =40

. 4
=1 in (3) we get, a; =340

When m = -1,
= ; (2) we get, a1 =-a0 and whenm

When m = =1
m=—in (3
2 y ( ) ”egCt;aZ"-;ao

=1,

Theref,
ore,
We have the following two frobenius seies solution , W€ put 2

41
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B e
E)mmple: 5.2.1
Find the incidial equation and the solutiop of the following ¢quation
Gy X I (3x*+2)y =0
golution
Y S y=0
)= 2x:;25x 25 04 Q) = 3: 2

When x=0 , xP(x) and x2Q(x) both are analytic at x=0. Therefore, x=0 is regular singular

point,

The initial equation is m(m-1)+pm+q=0

m(m-1) - 2m +2=0

2 5 1

_m-—-m+-=
m’ -m--m+> 0
m? - 2m + = =0

4
4m*—-9m+2 =0

(4m-1)(m-2) =0

dm=1; m=2

42
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€7 () dx

= J—oo

= [ [y er e

dxn

] Hn(X) dx

by RODRIGUES FORMULA g

-x? dx]}

nces (X o n
" riren g e
,f [(—1)“—e ~x? 1 Ho(x) dx
u= Hn(x) dv = ‘ ( e"‘z) dx
Uees dn-l
du=Hu(x) d i
fudv=uv- [vdu
dn-l - o0
=DM { [ g e ™1 5, - [ Hi e
=== f.c:o :;:—11 e Hy'(x) (1)
[ Since, e =0 as x- ]
dn-l —y2
Take u= Hnl(x) dv:m-_—le X dx
n-1  _,2
u =H,"(x) dx V=g
Therefore from (1) we get
44
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( 1)n+1{[H & )dnze‘xz]oo

. like this we get,
¢ding
proc®

e ——1)n+nf ’ e-x H()'
;W dx= ( =00 gxn-n (}\ _ |
@ Wul'n [ R M) dy

[

(%) 8

i polynomlal of degree n with highest POWer term gg 9n,n

Thcrefore, 4, (x) = 2"l

® (= -x% An .
Therefore, f-mW“‘W“ dx f— e 2'nldx= nl2f % dg

o e (S, e b

Thus m = n, fjom WinWhn dx=n!2" ‘\/-TE

Whenm # 1, [ WinW,dx=0
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In this project,

g . Ordinary Differential Equations hay, Importapt appl

EQUation Cations apq are
{ ool in the study of many problems iy fp, — a
powerfu ral science gpg technology

They & very natural way to describe many things in the universe, We pa
' V€ proved

many heorems USINgG Many CONCepts in differential equafion which are hayi
avmg

pplications in various fields. These definitions and theorems can be extengeq t
: 0

er ficld of mathematics. They have applicarions in the variety of fes i

Eng'meefing field, Medical fields etc. These equations can be typically solved using

either analytical or numerical methods. It is a truism that nothing is permanent except

change; and the primary purpose of differential equations is to serve as a tool for the

study of change in the physical world.
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INTRODUCTION

Game theory is an approach to modelling hchaviout: in situations where the
outcome of your decisions depends on the decisions of others, Game theory is the study
of strategic, interactive decision making among rational individuals or organizations.
Game theory is a branch of applied mathematics that provides tools for analyzing
situations in which parties (called players) make decisions that are interdependent. This
interdependence causes each player to consider the other player’s possible decisions (or
strategies) in formulating strategy. In addition, a player need not be an individual; it
may be a nation, a corporation, or a team comprising many people with shared interests.
A solution to a game describes the optimal decisions of the players, who may have
similar, opposed, or lﬁixed interests, and the outcomes that may result from these
decisions. Game theory is applied for determining different strategies in the business
world. It offers valuable tools for solving strategy problems.

Game theory is not just theory it’s also applied in many areas. The use of game
theory has expanded and applied to economics, business, biology, computer science,
political science, psychology and philosophy. Game theory can describe a number of
specific phenomena: interpersonal relations, competition, war and political affairs.
From a historical aspects game theory can be identified in the works of ancient
philosophers. It is applied to develop theories of ethical or normative behavior.

Economists and philosophers have applied game theory to understand rational behavior.
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CHAPTER 1
PRELIMINERIES
Definition: 1.1
Game theory is a Mathematical subject that is commonly used in practical life.
It is applicd to various other non-mathematical fields too. Game theory explains how a
stratcgic game is played. It determines the way or order in which the players should
make moves. It considers the information for the players at each decision point.
Decfinition: 1.2
A competitive situation is called as a game if it has the following properties:
1. There are finite number of participants called players.
2. Each player has finite number of strategies available to him.
3. Every game results in an outcome.

Definition: 1.3

In game theory, an outcome is a situation which results from a combination of
player's strategies. Formally, a path through the game tree, or equivalently a terminal
node of the game tree. A primary purpose of game theory is to determine the outcomes

of games according to a solution concept.

Definition: 1.4
The expected outcome per play when players follow their optimal strategy is
called the Value of the game.

Definition: 1.5

If the value if the game is zero (there is no loss or gain for any player), the game

is called Fair game.




Definition: 1.6

The Strategy for a player is the list of all possible actions (or moves or courses
ofaction) that he will take for a every pay-off (outcome) that might arise. It is assumed
that the rules governing the choice are known in advance to the players. The outcome
resulting from a particular choice is also known to the players in advance and is
expressed in terms of numerical values. Here, it is not necessary that players have a

definite information about each other strategy.

Definition: 1.7

The particular strategy (or complete plan) by which a player optimises his gains
or losses without knowing the competitor’s strategies is called Optimal strategy. In

other word’s the strategy that puts the player in the most preferred position irrespective

to the strategy of his opponents is called as optimal strategy.

Definition: 1.8

A decision rule which is always used by the player to select the particular course
of action. Thus, each player known in advance of all the strategies out of which he
always select only one particular strategy irrespective of the strategy others may choose

and the objective of the players is to maximize gains or minimize losses. It is known as

pure strategy.

Definition: 1.9

When both players one guessing as to which course of action is to be selected
on a particular occasion with some fixed probability it is a Mixed strategies game.
Thus, there is a probability situation and objective of the players is to maximize

expected gains or to minimize expected losses by making a solution among pure

strategies with fixed probabilities.



Definition: 1,10
The pay-off I terms if gains or losses, when players sclected their particular can
be represented in the form of a matrix, called the Pay-off matrix.
Definition: 1.11
A Saddle point of a pay- off matrix is that is that position in the pay-off matrix
where maximum of row minima coincides with the minima of the column maximal.
The saddle point need not be unique.
Definition: 1.12
If in a game the gains of one player are exactly the losses to another player,
such that sum of the gains and losses equals zero, then the game is said to be Zero-sum
game. Otherwise it is said to be non-zero sum game.
Definition: 1.13
If a game involves only two players (competitors), then it is called a two-
person game. However, if the number of players are more than two the game is known
as n-person game. .
Definition: 1.14
A game in coalitional form is said to be of constant sum if v(5)+(X\5) = v(&X)
For all SEP(X). If additionally, v(X)=0, the game is described instead as zero-sum
Definition: 1.15
A game in coalitional inessential if X}=; v({{}) = v(X). Otherwise, the game
is essential.
Result: 1.16

Any Two Person Zero-Sum game is inessential.
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CHAPTER 2
TWO PLAYER ZERO-SUM GAMES
Definition: 2.1

A game with only two persons is said to be two-person zero-sum game if the
gain of one player is equal to the loss of the other.
2.22 x 2 PAYOFF MATRICES

We consider initially the simplest case a 2 x 2 payoff matrix where cach player
is presented with a single choice. As a motivational example, consider the game of two
finger Morra, described by

(5 2

This game is related to an ancient Roman guessing/gambling game, micare
digitis (to flash with fingers); however, in this simple formulation, it is the parity of the
total, rather than a successful guess of its value, which determines the victor. Each
player reveals either 1 or 2 fingers, with the winnings being the total number of fingers
shown. If the total is odd, Player 1 wins; otherwise Player 2 wins (giving rise to the
negative entries in the é.bove payoff matrix). .

The purpose of studying the .strategirc form 1s to atte_mpt to determine a strategy
for each player that is in some sense optimal. The ideal scenario for Playerl is that there
is a strategy that always enables him to win any given play of the game. Howevér, such
games are likely to be few and far between, and willing participants for the role of
Player 2 even rarér.

However, we can more usefully tackle a refinement of this question, namely
determining whether there is a strategy for player 1 which, in the long run, they might
expect to profit from. For any play of the game, Player 1 can pick either option 1, or

option 2. Their return will then depend on the strategy employed by Player 2 for that

5



particular play. We may supposc that Player 1 chooses option I with probability p,,
cither in accordance with some plan or simply by chance; choosing option 2 the rest of
the time, i.c., with probability py = 1-p1. We will refer to this as a mixed strategy,
although it is worth nothing the special case of a purc strategy, where {p, q} = {0,1}
and thus only one options ever used.

The objective for Player 1, therefore, is to devise a mixed strategy that
maximizes their payoff, At the same time, Player 2 is trying to minimize the payoff of
Player 1, since this maximizes their own pay off (by the zero-sum condition). Whilst
neither player is aware‘of the particular option the other intends to take in a given play
of the game, their calculations can take into account this motivation on the part of their
opponent. Perhaps surprisingly, this does not descend into endless second- guessing,
and should Player 1 find an optimal mixed strategy, they can even safely pre-declare
the mix (although not a given move) without giving an advantage to Player 2. We shall
illustrate how this arises for 2 finger Morra, then consider generalizations to any 2 x 2
game. Note, however, that we have once again sidestepped some considerations of
utility theory in our acceptance of expected pay out as a good measure of the worth of
a game, especial if the number of plays is to be small. ‘

2.2.1 A STRATEGY FOR PLAYER 1

Can Player 1 guarantee a certain minimum (and preferably positive) pay off?

Note that if she employs the mixed strategy (py,p), then her return depends on the

strategy of Player 2;

» If Player 2 opts for ‘1°, then the return for Player 1 is -2 (if she played) or3
(if she played 2). Thus on average, she may expect a payoff of —2p, +

3p;

o If Player 2 opts for ‘2°, then Player 1’s expectation is 3p;-4p,




If, therefore, we seck an expected payoff ol at least V regardless of Player 2's
strategy, then we require
*=2py +3p, 2V
*3p,—-4p, 2V
As a first attempt, consider the casc of equality:
V=-2p;+3p; = 3p2 — 4Pz
7p2=5p1

7(1-p1) =5p1

7=12p1
7 _
1z P

. . 7
Thus we have a mixed strategy %,-15—2 where the expected payoff is =2 +

f; =3 % — 4;55. So Player 1 can guarantee an expected return of ¥z per play (over

5
3 rCian
a large number of plays).

2.2.2 A STRATEGY FOR PLAYER 2

Analogously to the duality theorem in linear programming, we may determine
whether it is possible for Player 1 to ensure a greater expectation by seeing whether
Player 2 is able to cap their losses at the % per play presented above.

In fact, Player 2 can minimize their losses in this way (and thus Player 1 must
be content with the value of ') by the same strategy. For Player 2 the expected payoffs

are 2p;- 3p, when Player 1 opts for ’1’ and -3p,+4p; when she opts for ’2’; so with a

: 75 S
mixed strategy of > Player 2 expects —-% in either case.



So, on average, Player 1 values the game as being good for at least %pcr play,
whilst Player 2 can ensure it is n worse than —% per play for them, i.e., it is at best
\\'m-th% to Player 1. This is an example of general behaviour,

2.3 GAMES WITH SADDLE POINT

A point at which a function of two variables has partial derivatives equal to zero
but at which the function has neither a maximum nor a minimum value.
2.3.IMINIMAX AND MAXIMIN PRINCIPLE:

Consider the pay matrix of a game which represents payoff of player A. Now,
the objective of the study is to know how these players must elect their respective
strategies so that they may optimize their pay off such a decision making criterion is
referred to as the minimax-maximin principle.

For player A minimum value in each row repr'esents the least gain (pay-off) to
him if he chose his particular strategy.

These are written in the matrix by row minima. He will then select the strategy
that gives largest gain among the row minimum values.

This choice of player A is called the maximin principle, and the corresponding
gain is called the maximin value of the game denoted by v.

For player B (who is assumed to be the loser), the maximum value in each
column represents the maximum loss to him if he chooses his particular strategy.

These are written in the pay-off by column minima. He will then select the
strategy that gives minimum loss among the column maximum values.

This choice of player B is called the minimax principle, and the corresponding

loss is the minimax value of the game denoted by v.



Theorem 2.3.2 (Minimax Theorem for a game with a saddle point).

Letag; beasaddle point for a game in strategy form given by X, Y and A. Then
the game has value a;;, achieved when Player | plays the pure strategy x; and Player 2
the pure strategy y;.

Proof:

Player 1is guaranteed o payoffolat lcast a;; by using strategy x; since for any
strategy choice y;, by Player 2, Alx,y)) = ai; = aj since ay; is the minimum of row i.
Thus V 2a;;.

Player 2 is guaranteed a payoffof at least —a; j by using strategy y; since for any
strategy choice x; by Player 1, the payoff to Player 2 is —A(x;,yj) =—a;; = —a;as
a;j = a;; by virtue of being the maximum of column j.

Thus -V = —a;; and so V<a;;. Hence V= a;; and the pure strategies are

Xi V-
2.3.3 Procedure to determine saddle point:
Step 1:
Select the minimum element in each row and enclose it in a rectangle
Step 2:
Select the maximum element in each column and enclose it in a circle

Step 3:

Find out the element which is enclosed by the rectangle as well as the circle.

Such element is the value of the game and that position is called as the saddle point.




Example: 2.3.4

Find the optimal plan for both the player

Player B

! I 11 v

I -2 |0 0 5

Player A

n 4 2 1 3
1 -4 -3 0 -2

v 5 3 —4 2

Solution:

We use maxmin-minimax principle for solving the game.

Player B

T T Tl Row Minimum
I |-2].0 0 5 ) '
Player A . '
ml 4|2 |{Y] 3
= 1
IHr|-4|(-3} 0 -—-2‘ £y
IV ]| 5 3 |—-4) 2 -46 :
Column Maximum | 5 3 @ 5

Select minimum from the column maximum values.
i.e. Minimax = 1, (marked as circle)
Select maximum from the row minimum values

i.e. Maximin =1, (marked as rectangle)

10




Player A will choose strategy 11,

which yields the maximum payoff of 1
Player B will choose strategy III,

The value of game is 1, which indicates that player A will gain 1 unit and player
B will sacrifice 1 unit.

Since the maximin value = the minimax value = 1. Thefefore, the game has
saddle point and the game is not fair game (since value of the game is non zero)

Also maxmin = minimax = value of game, therefore the "game is strictly
determinable.
It is a pure strategy game and the saddle point is (A-Il, B-I1I) |

The optimal strategies for both players given by pure étrategy, P‘layer A must

select strategy II and player B must select strategy III.

11
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CHAPTER 3
GAMES WITHOUT SADDLE POINT

Two person zero sum game is a basic model in game theory. There are two
players, cach with an associated sct of strategics, while one player aims to maximize
ner pay-off, the other player attempts to take an action to minimize this pay-off. In fact,
there are several methods for finding solution of games without saddle points.
3.1 MIXED STRATEGIES

There are some games for which no saddle point exists. In such cases both the
players must determinc an optimal combination of strategies to find a saddle
(equilibrium) point. The optimal strategy combination for each player may be
determined by assigning to each strategy its probability of being chosen. The strategies
so determined are called mixed stratégies because they are probabilistic combination of

available choices of strategy.

The value of game obtained by the use of mixed strategies represents least pay-
off which player (A) can expect to win and the least which player (B) can lose. The
expected pay-off to a player in a game with arbitrary pay-off matrix [ai j] of order m X

n is defined as

E(p,q) = X2, Xit1Pi @i Qi
= PT AQ (in matrix notation)
Where, P = (P1,02) e eveeesPm) and Q = (qy,q2, «ws oo o0, Gy) denotes the
mixed strategies for player A and B.
Also, Py + Patvevevenen D = land g + ga+en e+ g = 1
A particular strategy with particular probability a player chooses can also be
interpreted as the relative frequency with which a strategy is chosen from the number

of strategies of the game.

12



11 DOMINANCE PROPERTY OF REDUC)

3 Nf:'l‘m-:sw.l-:mf':'ma GANME

Ve can sometimes reduce the <iom o
: educe the size of a game's pay-off matrix by eliminating a

e of action which is so infer
course of action which is so inferior to another as never to be used. Such a course of

action 18 said to be dominated by the other, The concept of dominance is especially

useful for the evaluation two — person zero sum games where a saddle point does not

exist.
3.1.2 GENERAL RULE

; ; ! )
1. If all the clements of a row, say k" arc less than or cqual to the corresponding

C th . .
clements of any other row, say 7" then k" row is dominated by the r" row

2. If all the clements of a column, say k" are greater than or equal to the

corresponding clements of any other column, say rth | then k" column is

dominated by 7" column.
3. Omit dominated rows or columns.
4. If some linear combination of some rows dominates ** row, then 7" row will
be deleted. Similar argument follows for columns.
Example: 3.1.3
Reduce the size of the game whose matrix is given by

Player B

I II I

Player A

II -3 -3 4

I11 2 -3 4

13
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We observer that no saddle point exists, Consider /5 and 111" column’s from
the player B's point of view we observe that pay-off in the /1174 column is greater than
the corresponding clement in the /5% column regardless of player A’s strategy.

Evidently, the choice of I/1™ strategy by the player B will always result in the

greater loss compared to that of selecting the /5¢strategy.

Hence, deleting the I1/,.gcolumn which is dominated by I, the reduced size pay-

off matrix is obtained.

I II
I -4 6
11 3 3
111 2 3

Again, if the reduced matrix is looked at from player A’s point of view, it is seen
that the player A will never use the //™® strategy which is dominated by 111,

Hence, the size of the matrix can be reduced further by deleting the 11™¢ row,

Hence the reduced matrix is

14
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3.1.4 DIFFERENT SOLUTION METIHODS
A mixed strategics game can be solved by different solution methods such as
1. Algebraic method
2. Arithmetic method
3. Analytical or Matrix method
4, Graphical Method and
5. Linear programming method
These methods will be discussed in detail in the next section
3.2 ALGEBRIC METHOD
This method can be used to determined probability value by using different
strategies by players A and B. This method becomes quite lengthy when number of
strategies for both are large.

Consider the game where pay-off matrix is [a f]mxln

_ Let (P1, Dz wve eve weees Pm) @0nd (qq, Qg - e e, Gn) be the probabilities with
which players A and B adopt their mixed strategies (Ay,Ay, wiyAp) and
(By, B2, «wrv s Bn) _respectively.
| If V is the value of game, then the expected gain to player A for this game when

player B select strategies one by one is given by left hand side of simultaneous

equations respectively.

Since player A is the gainer and expects at least V, we must have where,

15
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|
i

appytagpt+...... tay,py 2V

A1 + QP2+ .. +”2m.”nt eV
. APy + Qapataia, +ay,p 2V
thl‘C‘
P, + P+ wovennnt Phn=1and B =2 0Vi

Similarly, the expected loss to player B when player A adopts strategies
(Ay, Az A,n) can be determined since player B is the loser we must have where,
a11q1 + Q21G2 + vty @ 2V

Q12G1 + A22G2 Fovvvenn o FA2q2 2V

AQmqr + Aomat .. ... +aymGn =V
Where, a; + g2 + cooieinninnnne. +q, =1 and q; = 0Vj values of p;’s and q;'s
from (1) and(2), these inequalities are conside:ed as equations and then solved for given
unknowns.
However, if the system of equat10n§ 50 ob£a1ned is mconsxstent then at least one
of the inequalities must hold as strict inequality. The solutlon can now be obtained only

by applying trial and error method.

Example: 3.2.1

In a game of matching coins with two players, suppose A wins one unit of value
when there are two tails and loses 1/ o unit of value when there is one head and one tail.
Determine the pay-off matrix, the best strategies for each player and the value of the

game to A

Solution:

The pay-off matrix for the given matching coin game is

16
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PLAYER B

PLAYER A [“1 ~1/2
-1/2 0

As the pay-off matrix docs not have a saddle point, the g
b}

ame can be solved by
rebraic method for pl; » -
algebrat player A, let Py and p, e probabilities of sclecting a strategy A

and Az, respectively,
Then the expected gain to pl

ayer A when player B uses its B and B; strategies

is given by,
—P-12P, >y —____ (1)
=1/2P +0.P,2V —— - __ (2)
Where,
PrtPp=1 —— ©)

From (2) we get P, = =2V

Substituting the value in (1) we get P, = —6V

Substituting the value of P, and P, in (3) we get P, =0.25,P, = 0.75,and V = —1/8
For player B, let q; and g, be the probabilities of selecting strategies B,and

B, respectively. Then, the expected loss to player B when player A uses its strategies

A; and A, is given by '

1—1/2q;2V ——————— (4)
-1/2q,+0.g, 2V ————=——— (5)
h+qg=1 ——————— (6)

We get, q; = 2V, q; = —6V substituting the values of q; and g5 in (6). We get
V=-1/8,q, = 0.25,q, = 0.75.
Hence the optimal strategies for players A and B are (0.25,0.75) and

(0.25, 0.75) respectively and the value of the game V = —1/8.

17
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Arithmetic method provides an casy technique for obtaining the optimum ’
_ ;
slrl\‘fﬂics for cach player in (2 % 2) pames without saddle point this method consists
of the following steps.
Step 1
Find the difference of two number i : ;
wmber in column [ put it under the column [/

ncg\ccling the negative sign if oceurs.
Step 2
Find the difference of two numbers in column /1, and put it under the column
1, neglecting the negative sign if occurs,
Step 3
Repeat the above two steps for the two rows also, the values thus obtained are

called the oddments, these are the frequencies with which the players must use their

courses of action in their optimum strategies.

Example: 3.3.1

Two players A and B showing each other, put on a table a coin, with head or tail
up. A wins ¥ 8 when both the coins show head and ¥ 1 when both are tails. B wins
3 when the coins do not match. Given the choice of being matching player (A) or non-

matching player (B) which one would you choose and what would be your strategy?

Solution:

The pay-off matrix for player A is given by

Player B
H T
-3
Player A H 8
T -3 1

18



\;in\‘,\‘ no S:l(ll”tf l\nilll '
N N l,\
ll\“”(' ”\Jll ”l(‘ ”l.“”“ll \“ ' “
L 1] l"'_IL"' Wi hL' Ini,'(L'd
\“i“cl‘“l s

step 1

Taking the difference of (w
£ ilerence of two numbers i column [ we fi 18 - (=3)
cimd 8 - (=3) =11 and
put it under column /1,

- 2
Step 2

put number 4 (neglecting negative sign) under column /
Step 3 '

Repeat the above two steps for the two rows also, thus for optimum gains

player A musts use strategy H with probability 11/15 and strategy T with probability

4/15, while player B musts use strategy H with probability 4/15 and strategy T with
probability 11/15.

Step 4

To obtain the value of game any of following expressions may be used.

Using B’s oddments

B plays H, value of the game, V = g 2X8+11x(=3)
11+4

-1
=3
15

B plays T, value of the game, V = ?4X(-3)+11x1

11+4
=3 ;_;
Using A’s oddments
A plays H, value of game, V=X %ﬁn
=3

19




8 .

. A% (=3)1
o T, value of game, V = g XD 11
A plays A1

-1
- (e
* (15)

The above values of V are equal only if the sum of the oddments vertically and

horizonmny arc cqual cases in which it not so will be discussed later thus, the complete

<olution of the game is

11) "
15 5

2. Optimum strategy for B is (ﬁ;,i—;—)

1. Optimum strategy for A is (

:.1|"‘

i’

3. Valuecofthe game AisV = f—:—;

Thus the player gains X ( ) i.e., he loses ?— which B, is turn gets.

Remark: 3.3.2

Even though arithmetic method is easier than the algebraic method but it cannot
be applied to larger games.
3.4 MATRIX METHOD

If the pay-off matrix of a game is a square matrix, then optimal strategy mixture
as well as value of the game obtained by the matrix method.

The solution of a two person zero sum game with mixed strategies with a square

pay-off matrix may be found by using the following formulae.

[1 1]Padj1 = Player A’s optimal strategy

[1 1] Pcof[l]

[ 1] Pcof1 = Player B’s optimal strategy
[1 1lpags [1]

Value of the game = (Player A’s optimal strategies) * (Pay-off matrix Fyj)

(Player B’s optimal strategies) Where P,4j= adjoint matrix.

20




=cofactor matrix, Player A'S Optima) stratepie

Peof

| D's optimal strategies are in g form of
¢ - '

LAt the form of g row

acolumn vector
or AN N

yee

This method can be used for finding o solution of 4 ¢,

L game with size more than

[owever, in rare cascs, the solution violates,
How
2.

2

The solution violates, the nonnegative condition of probabilities that is =

0 although the requirement py+ .. 4y = Nt tqy =1 s

0,0i %
satisﬁCd-
E,\-nmplﬂ 34.1
Solve the following game afier reducing it (o o 2x2 game,
Solution:
Player B
B, B, B,
Player A 4, |6 2 7]
AE 5 1 6

Reduction to 2x2 matrix;

In the given Pay-off matrix, the third row is dominated by second row and third

column is dominated by the first column.

Hence, by the dominance property, the matrix is reduced in to

Player B
15 7
Player A -6 2

Calculation of Pyg4j and Peor

Paaj = [—26 —17] and FPeor N [? —16]

: - boa% 7] _[-4 -6l _[4 ]
Player A ‘s optimal strategies —[ 1][ —26 _17][1] = =

-10 10

21
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aie solution can be broken i 1)e ‘
E coptimal dratepy combination for player A

nO=2/8 Py 6/10=Y5 where 1P e ,
" 411072/ and cwhere Iy and | ytepresenta the probabilities of player

AN

g his strategies Ay and .r\;n-,-.pn-ti\,.-[y
A'SY '

gimilarly, the optimal strategy combination for player I8's optimal strategies

(1 )l[ ""l 5] (s 8|

T e

This solution can also be broken down into the optimal strategy combination for

player B3 is obtained as player B as qi =5/10=1/2 and 42=5/10=1/2, where q; and qz
represent the probabilitics of player B's using the strategies By and By, respectively

Value of the game

v = [2/; 3/5][6 2[1/] =4

3.4.2 ANOTHER FORM OF MATRIX METHOD: (matrix oddment method for
nXn games)
Algorithm:
Step 1
LetA = (a; j)an be a pay-off matrix of a game.
Obtain a new matrix C, whose first column is obtained from A by subtracting

the second column from the first.

The second column is obtained by subtracting A’s third column from the second
column and so on until the last column of A is taken care of.

Thus, ¢ is an nx(n-1) matrix.
Step 2

Obtain a new niatrix R, from A, by subtracting its successive rows from the

preceding ones, in exactly the same manner as was done for columns in step 1.

22




Thus R is an (n=1) > nmatrix,

step 3

petermine the magnitude of oddments corresponding to each row and each

column of A.

The oddment corresponding . R R M T .
The ] B 1o the iy, row of A is defined as the determinant

(Gl where G 18 obtained from C by deleting the i), row.

Sin’li]m']y~

the oddment corresponding to the f,;, column of 4 = IRy| is defined as the

detcnninam where Ry is obtained from R by deleting the f,;, column.

Step 4
Write the magnitude of oddments (after ignoring negative signs, if any against

their respective rows and columns).

Step 5

Check whether the sum of the row oddments is equal to the sum of column

oddments.

If so, the oddments expressed as fractions of the grand total yields the optimum

strategies.

If not, the method fails.

Step 6

Calculate the expected value of the game corresponding to the optimum mixed

strategies determine above for the row player (against any move of the column player.

Example: 3.4.3 : B
1 0 2
Solve the following problem by the method of matrices A |3 0 0
0 2 1

23
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jon:

Solll(

The matrees C and R are as follows

1, =k 2 0 2
(I 3 “] s l 3 =2 =1

-2 1
Now
€= |-?2 1| =3-0=3
e=l% —-12|=1“4=—3 ,
6= ; =0+6=6
Ry = ._02 _:21 =0+4=6
Rz = _32 -21 =2-6=-4
R=|7 Sp=e-0=¢
The augmented pay-off matrix is
i Row oddments
1 0 5 3
3 0 5 3
0 ) 1 -
Column oddments 4 i Z -

Sum of columns oddments = Sum of row oddments
Thus optimum strategies for Player A are (i = i) or (1 2
us 0p 1212 12 P
, 3 4 4 4 1= i
The optimum strategies for Player B are ( TICTLET ) or (3 '3

The value of the game, v=1x%+3x%+0><-;-=1.
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 GRAPHICAL METHOD
eV

The (l|-:l]\hlc'.\] method 18 useful for the pame wheye the I‘-l\'-l!ll matrix is of the

1<2. That s, the game wi e sianiae '
76 2X0 orn game with mixed strategies that only two pure strategics

for on¢ of the players in the Two Person Zero-sum game
\ ) "
Optimal strategies for both the players assign non-zero Probabilities to the same

pumber of pure strategics. Therefore, if one player has only two strategics, the other

will also uses the same number of strategics.

Hence, this method is useful in finding out which of the two stratcgics can be
used. Consider the 2xn pay-off matrix of a game without as saddle points

Player B

B, B,.. B,

Player A 4 [

ail Ai3 .. am ]
Az

Q21 Qz2... Qazp

Let the mixed strategy for player A is given by Sa = [f;1 1;2],
1 2

Where P, + P, =1and P, > 0,P, > 0

Now for each of the pure strategies available to B, expected pay-off for player A would

be as follow
B’s pure move A’s expected pay-off E(P)
B, Ey(P) = an Py +ax P,
B, E3(P) = ayaPy + agpP,
B, En(P) = apnPy + azn Py
25
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o o Bwould beliketo ¢ . . _ , )
I'he plu)u [ ket choose that pure move H’, against for which [;,(!')
_, unimum forj = Lo Letus denote this minimum expected pay-off for A by,
gl
p = min{E(P).j = 1,.0m)
The objective of player A is select Py and hence P, in such a way that v is as
e 88 possible.

Jar

This may be done by plotting the straight lincs, E(P) = ayPy + ag Py =

(aij = azj)Pr + az;(U = L2,.....,n) as lincar function of P,

The highest point on the lower boundary of these lines will give maximum
expected pay-oft among the minimum expected pay-off” s on the lower boundary (lower
envelope) and the optimum value of the probability P; and P,.

Now the two strategies for player B corresponding to those lines which pass
through the maximum point can be determined.

It helps in reducing the size of the game to (2x2).

The (mx2) games are also treated in the same way except that the upper

boundary (upper envelope) of the straight lines corresponding to B’s expected pay-off

will give a maximum expected pay-off to player B and the lowest point on this

poundary will then give the minimum expected pay-off (minimax value) and the

optimum value of probability qi and qa.

|
Example: 3.5.1 :
i
Solve the following 2x5 graphically : i
Player B ;
B, B, B; B, Bs ,
Ajr2 -1 5 -2 6
Player A A, [_2 FEEg e iy :
|
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The game does not have a saddle point, Let the probability of player A

Lo Ap and Axinthe strategy combination i« e ,
l,]n}“‘!' Hon is denoted by P, and P, respectively
p,=1="

where 2

Then, the expected pay-off (gain) 1o player A will be

/'B'fs pure strategy } A's expected pay-off (El)
—— B, Py =2p,
— B, =Py + 4P,
— B, 5P, - 3P,
— B, —2P + P,
— Bs 6P; + 0P,
[

This five expected pay-off lines are plotted on the graph below.

Here, P; is measured on the x-axis. Since, P; cannot exceed 1, the x-axis is cut-
offat P =1.

The expected pay-off of player A is measured along y-axis.

From the game matrix, if player B plays B, the expected pay-off of player A is
2 when A plays A3 with P; and -2 when A plays A, with P; = 0.

These two extreme points are connected by a straight line, which shows the
expected pay-off of A when B plays B;.

Four other straight lines are similarly drawn for B;, B3, B, and Bs.

27
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r‘ 4 O

3 \
I -3 4 Maximum point
o -4

The maximum point shows that the reduced pay-off matrix is for player A is
Player B
B, B,

A

A, A . !
Let S = ( P: P:) be the mixed strategy for player A . Then, the strategies
for player A. Then,
il Qz2—az, . 1-(-2) w3
b= (a1;+@22)=(@12+az1)  (2+1)=(=2-2) 7 and,

Pp=1-P=1-3/,=14/,
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L i "] be the p
S s 00 q o Cophimum rategien for l‘i wer 3. The

A=y (=) 1,
i "".(n"‘“n" (ayptagyy)  (291)-(=2 ” I and

=1l-q= '1/7 '
Value of the game
AyqQpp=yyiyy - 2(])—-(-—))(_2) =

v=E (ap+apa)=(agytay,) - (241)=(=2-2) 2/7

The optimum strategics are given by
S = ( A‘ AZ )
ATN\3/7 a7

- (Bl BZ B.’i B4 Bs
B7\3/70 0 47 o)

And the value of the game isy = ~2 /4

Remark: 3.5:2

We observe that by using graphical method, the 2xn game is converted into a
9x2 game and then solved by using standard method
3.6 LINEAR PROGRAMMING METHOD

A two person zero sum game can also be solved by linear programming

approach. The major advantage of using linear programming technique is that it solves

mixed strategy of any size.

To illustrate the connection between a game problem and linear programming.

Let us consider (m % n) pay-off matrix (a;;) for player A

Let Sy = [ﬁi j:] and Sg = [121 : Bn] be the optimum strategies for

) DR n

player A and player B.

Then, X2, pi = Xj=14i = 1.
29




ahen the expected gains g, (f = 1, ., e .
['hen the eX] B q;(J <)ol player A agannst s pure strategics

| be

wil

v =aulitanpytbay,p,,

g2, = ﬂtz?’l + (]22p2+.... +ﬂn|2pm

Im = Py + Gyt oy
And the expected loss L =1,....,n) player B against A's pure strategies will be
ly = anqy + ayq+ vty qy
ly = Q12Q2 + A2 Qo+ ... 05,0,
b = QmiGs + ApaGat ... +amngy
The objective of player 4 is to select P;(i = 1, 2,....,m)such that he can
maximise his minimum expected gains and the player B desires to select q;(j =
182,550 n) that will minimize his expected loss. Thus if we left,
U=minj¥i,a;p; (=1,2,....,n) and
V=max ¥ a;q;(i=12,...m)
The problem of two players could be

: vl Aa R = 1 P 5 p
Player A: Maximise u = minimize 5= ’i’;l;’ subject to the constraints

vy a;puand Ypp =1
P20(i=12...,m)
Playgr B: Minimizg v = maximize % = E}‘=1 % subject to the constraints
Yis1Gijqj SV an.dz g =1
q;=20(=12,...,n)

Assuming u > 0, v > 0, introduce a new variable defined by

30
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o Vo
' —l;lmuith :!(! L2 om,f L2,...,n)

y, the pair of hinear programming can be written aq

‘““.‘

or A Minmmse
playet’

) P~ ) 1 4 ) 1 A 1
Po=Dy A0 40 4y P, subjeet (o
Ayt aypyt 4o '
1/ 2P * e QP 2 I

P20 =1t0m and j =1 to n)

asy to note that the LPPs of the 2 players represe

is€ nta primal dual pair.

Therefore, by fundamental theorem of duality one can read the optimum
colution of one player, just from the optimum simplex table of the opponent.
That is, solve one player's LPDP,
Remark: 3.6.1

In case there are negative elements in the pay-off matrix and suitable constant,

then value of the game = value of the game - constant.

Example: 3.6.2

Solve the following game by using simplex method

Player B
1 -1 3
Player A |3 5 —3]
6 2. =2
Solution:

Since, some of the entries in the pay-off matrix are negative, we add a suitable

constant, say ¢=4 to each element.

Player B

5 3 7

PlayerA |7 9 1
10 6 2

Let the strategies for 2 players be
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Sa = Py Pll
b= By
Sn = l'h (12 Q3

Whet¢, Py+ Pt Py=1q 4 q+qy =1,

The linear programming problem for 1 is

. 1
Minimise V= Maxinize == ¥y -+ y, + y3 - subject to
Syv+ 3y, +7y; <1,
It 9y,+y; <1,

10y, + 6y, +2y; <1
yij 2 0 forj=123wherey; = %"—j = 1,2,3 introduce slack variable S§; =
0,5, = 0and S3 = 0
Starting table:

Table 1

We observe that y3 enters in to the basis and S; leaves the basis

e | Cj 1 1 1 0 0 0
Cs Yp Xp Y1 Y2 y3 i S Sy S3 Min
i ratio
0 S1 1 5 3 7 1 0 0 1 /,7
0 Sa 1 7 9 1 0 1 0 1 / 1
=0 S; |1 10 6 2 0 0 1 1 o
Zj—Cj -1 -1 -1 0 0 0
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pntroduce and drop S

1
pable?

”/ C; | | | () _” - “'
T ) . o T 1 NP Y — .
/ﬁﬂ Yo Xn N ya Ya 5 [P 54 Min
ratio
T 1, | 5, | 3, | 7 | N
T | e || | h 7 | © 01l %4
I 1
0 7 7 /7 /7 0 /10
S
0 1 |5
0 7 | 7 | /7 /36
== AR 0
zj—Ci
s
wWe observe that Y2 enters the basis and S; leaves the basis.
Gecond iteration:
— | 1 1 1 0 0 0
vcs | Yo ‘?{B Y1 Y2 Y3 S1 S2 53
R 1 2 N
T | ¥ | Yo | %5 | O Ul %o | Vo] ©
1| 1 11 "
1 Y2 /10 /15 1 0 1/60 7/60 £
1 24 B -
0[5 | M. | B | 20 e T
Zj-C e | s 0s3f0” [ Zhe | Y5 | - °

Since all the Zj — Cj = 0, current solution is optimum
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I/v . 1/5,11 =

» value of thegame, v 5 =4 = =y oy
™ '
m strategics for Bare

optimv!
P |
002 = Yioxs ="/
3
Making US€ of duality, the optimum strategies for player A are obtained.
2
1ot ey
P T 5= /3'

TR T TR At a1

AL o P Y g i e

> L i e i g:!a‘pﬁ.“ e

.
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CHAPTER 4
COALITIONAL FORM OF GAMI'S
N COALITIONAL FORM FOR - PLAVER GAMES
We now examine cooperative games, that is, ones in which players may enter
into pinding arrangements. Lach remains motivated by their individual utility payoff,
nd {hus can be expected to only enter an agrecment that s personally beneficial to
{hem However, We will also allow for transferable utility. That is, the participants in a
coalition may redistribute the total return to the coalition amongst themselves, rather
hant Keeping to the individual returns prescribed by the game. In cffect, this allows for
side payments from one player to another, to give the sccond an incentive to join a
coalition with the first. This, of course, assumes that the payoffs to each player are
inequivalent units, and represent a transferable commodity. In a genuine prisoner’s
dilemma, for instance, neither participant can accept jail time for the other; although
mutual cooperation will still arise as their best strategy.

We thus require two things: a rule for determining the return to any coalition;
and a means to decide which players will enter into the coalition. Broadly speaking, the
payoffs t0 the coalitions constitute the rules of the game, analogous to the payoff
matrices/functions in strategic form games; whilst the formation of coalitions represent
the plays (strategies).

Example: 4.1.1.

The bi matrix form of Two-finger Morra. As a two player game, there are four‘
possible coalitions- @, {1}, {2} or {1, 2}. v(®) = 0 is given, and since Two-finger
Morra is zero-sum the value gives that v({1}) = 1/12 and v({2}) = —1/12. Interpreted

directly, v ({1,2}) is the total return to the coalition when, working together, the players
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celectany entey i the bi matrie o
O .\dLL b natnx, Since the .

. abl¢ Clhe pame ig 70
aet 8 72Cro-

sum, this is always
(whit‘l‘ can be verified by nspection)
‘u_“\‘

inll““":

. that super additivity holds, and (e prand co
t >

Nolt alition offerg 5 return of 0,

ince Player 1 receives a payoff of / '
Sinc \ payotf of 1/12 by not cntering the grand coalition,

ould have to offer a side pavime .
player 2 would he { Payment of at least 1/12 to entice Pl

ayer | into a

But it would be irrational for Player 2 o offer any more than 1/12 to create the

oalition, since going it alone only costs him 1/ 2.
¢

Hence the distribution within the grand coalition would be the same as if it did

ot form players are indifferent to the formation of coalition, and the coalitional form

precisely mimics the strategic form,

This motivates some additional Definitiong,

Exanlple: 4.1.2
Individual payoffs in the simple majority game with symmetric distribution can
be described by the following table, where the rows denote the options for Player 1 and

the columns the options for Players 2 and 3 (as an ordered pair):

(1, 1) (1,2) G, 1) (3,2)

—— '

2| (1/2,172,-1)  (1/2,1/2,-1) 0,0,0) -1, 1/2,1/2)

3110 (1/2, -1,.1/2) 0,0,0) (172,-1,1/2) (-1,1/2,1/2)

Solution:

The value v ({1, 2, 3}) is determined by free choice‘of any of the 8 strategy
combinations, but for any such choice the sum of the payoffs is 0.

As always, v(@) = 0.
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o determine V() (and by syimmeqry
' YIEny v(2}) and VL3 we can consider

(2 and Jas acting as a single entity agp

. nnst Plave " X .
aye® il yer T the return to their coalition
plal

‘ e individual ce
it (he sum of the individual returns, whicl, they are motivated (o drive as high as
\L% / : ) ;

“g‘.‘siblc'
1 should be clear then that they will form 4 couple

o ensurcarcturn of 1, forcing

1yoffof-l onto Player 1, ensuring that p ({1}) =1
a l’h '

However, it is cnlightening to sce precisely why this occurs

By treating Players 2 and 3 as a single player with strategy sct A, B, C, D the

above table reduccs to

A B C D

2 (12,-172)  (172,-1/2) (0,0) -1,1)

| 3| (2,-172) 0,0 (1/2,-12) (-1,1)

This is a bi matrix for a 2 player strategic form game; more over it is the bi
x of the zero-sum game given by

(2 0 1)

matri

Further, column 4 dominates all other columns, so the strategic form reduces to

that column- giving the game a value of -1 for Player 1 (and hence of 1 for the coalition

of Players 2 and 3).

So the simple majority game is described in coalitional form by
‘(@) =v(X)=0
*v({1H=v({2h=v({3})=-1
*v({1,2})=v({1,3}) =v({2,3}) =1

Super additivity holds,
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gince v+ vl k) =~ 4 )

50 "(“.I.I(” for nny
(ation b j, k of the players.,

I\;‘U"" ' .

purther, the pame s zerossum; but it iy cssential

since (1D + v({2D) + v((3)) = —q - b(X)

Hence Any (WO PEISON ZEro-5um game is inessentig| does not generalise to any
A AHHAC 1O §
,.sum £ame; itis specific to the two-player case
0-4 ,

A1 1 C()ALITION/\L FORM OF A S'l'lh\'l'l*‘.(il(f FORM GAME,

The construction of the characteristic function used it the preceding example
A used, after suitable generalisation, for any strategic form game
cant ' e

. 11 =3 b ) '
Given a coalition S € P(X), we consider o two-player zero-sum game between

qwo team s and X\S.

The strategy sets for cach team consists of the cartesian product of the strategy
sets of the individual members of each team.,
The payoff to the coalition for any given combination of strategies is then
! determined by the sum of the payoffs to its members from those strategies.
v(S) is then determined by the value of the game, which (due to the Minimax
’ theorem) exists and can be found.
4.1.4 S-VETO GAMES
Of particular interest are the class of coalitional games known as S-veto games.
In these, a coalition is only effective if some subset S of the players are all members.

Thus this gives rise to characteristic functions of the form

(LBET
W ={;5g 7

For instance, S = {1} gives rise to a dictatorship by Player 1 (an inessential
game) whereas S = X forces the grand coalition to form for any player to receive a

payoff- or, considered as a voting system, a unanimous verdict.
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. icated voting arrangements ¢: W
More complicalt B ATRIgements can be built upon veto systems, such as

\ v (1 1l eve .
- ns Security Council system of “pre; ) o ‘
[Iniwd Natons .« preat power unantmity™ which requires
‘L. ’

(l

e of all five permanent members (and any four of the ten non-permancnt

supl

{he , :
pers) 10 pass major resolutions,
oS
.n] w
e

12 SIIAPLE\’ VALUL

Given o coalitional form game (X, v) we seek to construct a value d(X, v) €

g for (he game, where the component (X, v) denotes the payoff to player (.

This can be interpreted as a measure of the power of player i in the game, since

. dicates {heir contribution to the grand coalition, were one to form.
jtin
An example of such a value is the Shapley value, constructed as follows. Given

pennutation r € (i.c., a bijection from X to X) we can consider the players as forming
a

he coalition one by one, in accordance with the ordering created by .
Thus the coalition is built by considering first the coalition consisting of Player
(1) then of players © (1) and 7 (2), and so on.
T )

By super additivity, the value at each step either increases or remains constant,
<0 we may assign to each player a non-negative payoff equal to this increase. Let

p;'.r denote the set of players who joined the coalition before Player i.
Therefore i = {ln()) <m(D}.

Then the value of Player i to the coalition is given by

Wpk U{i}) = v(px)-

However, it is unlikely that the payoff constructed in this way will be

independent of the ordering 7.

Thus we consider the value of a player to be their average contribution to the

formation of a coalition; where any ordering of players is equally likely. That is,
1 A ;
o, (X, v)= pors Znean(Pfr U {L}) - v(pr)
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e gize of Sy is the number of permutations of ()¢ sct of players X, namely nl
Sinc i ¥ L8 ’

piven permutation we m

ay determine Plaver ¢ I
| for any ne Player i*s contribution by the method

n]“

) pn:\’i‘“‘s paragraph.
h
n !

15"’\[:[,[‘:\' :\.\'IOI\IS
4

e construction, determining avernoe canteib g
The above ) mining average contributions to a coalition, is

inluiti‘wly foir.
wtion of fairness ¢ ) : T
However, the 1 f faimess can be made rigorous by requiring the

gisfaction of a number of axioms, some of which have been hinted at in carlier

discussion.

A number of desirable propertics for a value can be advanced.

For group rationality, the total value of the players should be the value of the
grand coalition. Thus, to assign a value to each player in X we require that

Yiso (X, v) = v(X)

A value should not a priori favour any particular player over another.

That is, should the return to any coalition featuring Player i and not Player j be
he same as the refurn to the ‘coalition with Player i replaced by Player j, then the values
of players i and j should be equal.

Any player whose presence in a coalition does not alter its payoff should receive

a value of 0.

Given games (X, v) and (X,w), then we can define the game (X,v + w) as

(w+w)(S) = v(S) + w(S).
Logically, we should require that
d(X, v+ w) = D(X,v) + P(X,w),

i.e., that the return of playing the sum of two games is the sum of the returns of

each game.

40



A function satisfying the Shapley axioms always existy

. {1 Yy sttucte \ "1 H -
The function & constructed in section 4.2 satistics the Shapley axioms: We can

arsively define pf via
peet

Pr ={ P =1
TTDETU) i

U Y s .
carther, We can consider qr = pr U {i}; in particular, q" = X. Thus

®X0) =% Tres, v(ak) - v(pl)

Sio @XM = Bio o Tnes, v(ak) - v(pk)

1

== Yines, iy (v(qft) - v(p’t‘))

I

A b

Zresn (T2 (v(ak) = v(ph) )+ (w(ql) - v(pi)))

I

Tnesn (2 v(ak) = Ty v (a5) + (wiad) - v(pd))
= Zresn (Va8 = v(@E™) +v(gh) — v(9))

= = Tres, (W (X) — v(g}) + v(qk) — 0)

= = Tores, V(X)

- -:-En! v(X)

= v(X)

Thus efficiency holds. Symmetry and the dummy axioms are immediate from

the Definition of ®;(X, v), whilst additivity follows from the linearity of ¥ and the

averagirlg process.
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.|-hcm'l‘|“ 4.3.2.

The Shapley function is unique
I‘I'ﬂuf:

Th(_‘ S'\’Clo £ames d serib d ill secti
S dcesceribe scction 4, 4 are a l).’lSi.\‘ “l[’ the setof liti I
: coalttiona

gﬂlﬂcs:

ote First that the value of an S-ve .
N ¢ of'an S-veto same 1s completely determined fi tt
d from the

shaplcy axioms.
For a given characteristic function w
s the dummy axj
om ensures that
Dyxwy) = 0 forany i € S,
whilst the symmetry axiom ensures that if i J € S then
Dyoxws) = Pictws)s
that is, the members of the veto set 5 have equal value. Since (by the efficiency

axiom) the sum of their values is the grand coalition payoff wy(X) = 1it follows that

the individual values for members of S are I_ll'
N

By the same reasoning for Ws(X) = ¢ for an arbitrary constant ¢, we deduce

= (€S
O, (X, cwg) = [ISI :
0 igs

Now for an arbitrary characteristic function v, consider the set of constants ¢y

for T € P(X) constructed inductively on the size of T by ¢y = 0 and
cr = V(T) = Xscrs,rCs

Then
ZSE.’P(X) csws(T) = Xger Cs = Cr + Egcrsﬂ cs = v(T)

Hence v is uniquely determined by the coefficients cg and S-veto games Wy as

v = Ysep(x) CsWs(T)- By the additivity axiom.
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0, (X, v) = O(X, X CsWg) = ¥, roxy P(X, e

Cy

.l,lV_\-) = )..“{‘ "(xhr‘- |-;-|

: (D ’ " ' . .
(% p), and thus @ (X, v), arc uniquely determined by the constants ¢
So SIS Gy

4 SUAPLEY'S THEOREM

There CXISIS T UMIQUE value & (X, v) satisfying the Shapley axioms from the

Shap‘cy axioms , given by the random arrival formula
Bi(X,9) = = Fes, v(ph U (i) - u(p',tr)

Hence a unique valuc function, the Shapley value, exists. Further, the
socfficients Cs provide an alternative mean of calculating the value,
pxamples 4.4.1.

Consider three companies A, B and C, which seck to invest in a combined
project The project requires five million pounds in funding to be successful; the three
companies have investment budgets of 2, 3 and 4 million pounds respectively. What is
the worth of each company in terms of Shapley value?

Solution:
By considering the coalitions with sufficient funding, we observe that
v{4} = (B} = v{4} = v(g} = 0
v{4,B} = v{4,C} =v{B,C} =v{4,B,C} =1

Following the construction in theorem 4.3.2, we determine the values cr. cg is

zero by assumption, and so for each L € {4, B,_C }
cy =v({{L}) —cg0—0=0
ie.,
Cray = €ggy = €(cy = 0
Thus

capy = v({A BN = (cg + cpay + cy)=1-(0+0+0)=1
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qmmetty i

By
c(ap) = C(A0) = C(pc) = 1

pinallys this £IVES
cAre) = v({A, B, CY) = (co + ey + €my + €y + +egamy + Feua + c5.c))

~1-0+0+0+0+1+1+1)

®;({4,B,C)v) = e/ 1+ camy/2 + cacy/2 + capcy/3

It

0 1 1 -2
Ry

Wik

By the same argument,
&, (4, B, Chv)= P2({4,B,Chv) = ®;({4,B,C},v) = 1/3.
That is, no one company has more influence (or right to the profits) than any of
the others.
This is intuitively obvious from the problem formulation, since it is the simple
majority game.
No one company can afford the project, but any two can.
This can also be seen from the random arrival formula, as the value of a coalition
will only be increased when a second company joins, which, across the set of all

participations, is equally likely for any particular company.
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CHAPTER 5
wp AT
:\I I l.«l(_.t\ l I()NS ()lo' ‘:/\i\ll“ .lllll(
. LORY

| - CONOMICS AND BUSSINESS
e

C|.ll]] l]]L( 1 ’ b o i l I ' I S a
N ) 1S an 1 l L“"' ap ,lIC([ mn “l'l[l " mo ol l
t l(."ll.l“ ”ll CC i

ss for modeling the pattemns of behay

pusine tor of inlcrncling

agents. According to p.A.

: uelson and W. D. Nordhaus:
a

C ]

hous cholds, governments or others. Game theory

analyzes the way that two or more

. who interact in an arena s .
arties, who int an arena such as g market, choose actions
or strategies that

ioilﬂl)’ affect all Participants.”

Economists use ‘Game Theory’ as a too] ¢
0 analyze economic competition
¢l

economic phenomena such as bargaining, mechanism design, auctions, voting th
’ cory,

expe,-imental economics, political economy, behavioral economics etc.

Game theory is applied for determining different strategies in the business
world. It offers valuable tools for solving strategy problems. Many business strategies
are short or long-term plans to achieve sustainable profitability. A business can often
successfully position in the market with right strategy and a business will suffer in the
long run with wrong strategy.

Strategic behavior occurs regularly among executives, manager and investors in
business world. They must decide to enter into new markets, launch new products,
invest now or lose the opportunity to invest and make pricing and purchasing decisions.
Game-theoretic models are very potential tools for analyzing firm decisions. Game
theory models forces each player to consider the actions of others when picking their

strategy, in which one player may respond to the moves of his competitor. It provides

significant benefit to a decision maker.
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ILORY IN POLITICS
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AME . o litical affnice | |
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INTRODUCTION

The field of Mathematics plays a vital role in various fields. One of the
important areas in Mathematics is Machine Learning. Machine learning is the latest
in a long line of attempts to distill human knowledge and reasoning into a form that

is suitable for constructing machines and engineering automated systems.

As machine learning becomes more ubiquitous and its software packages
become easier to use, it is natural and desirable that the low-level technical details
are abstracted away and hidden from the practitioner. However, this brings with it the
danger that a practitioner becomes unaware of the design decisions and, hence, the
limits of machine learning algorithms. Primarily we focus on machine learning
algorithms and methodologies in basic mathematics related to machine learning such

as analytical geometry, Vector space, Matrices, etc.

The project consists of four chapters.

In chapter 1, we have given some basic definitions on analytic geometry

needed for the subsequent chapters.

In chapter 2, we have discussed the concepts and basic theorem of analytic geometry.
In chapter 3, we have discussed the different types of orthogonal projection.

In chapter 4, we have discussed the concepts of rotation and their properties.
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CHAPTER 1

PRELIMINARIES

Definition: 1.1

A norm is a function from a real or complex vector space to th‘c non-negative
real numbers that behaves in certain ways like the distance from the origin, it commutes
with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In
particular, the origin is a norm, called the Euclidean norms, or 2-norms, which may also
be defined as the square root of the inner product of a vector with itself.

Definition: 1.2

Inner products allow formal definitions of initiative geometric notations, such as
length, angles and orthogonality (zero inner product) of vectors. Inner product space in
which the inner product is the dot product or scalar product of Cartesian co-ordinates.
This concept of angles, length and distance turn R?or R® into Euclidean spaces. We want

to define these notions abstractly, for any V. The key ingredient is the inner product.

Definition: 1.3

~ The product of the Euclidean magnitude of the two vectors and the cosine of the
angle between them. However inner product as the dot product are more general
concepts with specific properties, X'y =", xy

Definition: 1.4

A bilinear mappingQis é,mapping with two arguments, and it is linear in each

argument, i.e.). When we look at a vector space V then it holds that for all x, y, z € V,4,

Y<€R that

Q(/lx+1,by,z=lQ(x,z)+1pQ(y,z) ........... @))

1
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Q(x,xy+1pz=m(x,y)+¢ﬂ(x,z) ............. )
Here (1) asserts that Q is linear in the first argument and (2) asserts that Q is linear in the
second argument.

Definition: 1.5

A symmetric A € R™" that satisfies Vx € V \ {0} : x" Ax > 0 is called
symmetric, positive definite or just positive definite. If only > holds then A is called

symmetric positive semi definite.

Definition: 1.6

The length of V is /(vi?| [+v;?) by Pythogoras theorem, so the norm
defined by the standard inner product on R? (or) R? gives the familiar length of a vector
in Euclidean space.

Definition: 1.7

Consider an inner product space (V,<¢;*>). Then d(x,y) = | x-y|l= m
is called the distance between x and y for x,y € V. If we use the dot product as the inner
product then the distance is called Euclidean distance.
Definition: 1.8

The distance between two vectors, inner products also capture the geometry of a
vector space by defining the angle w between two vectors. We use Cauchy Schwarz
inequality to define angle w in inner product spaces between two vectors X,y and this

notion coincides with our intuition in R? and R>. Assume that x#0, y#0 then

-1 < Y o
T

Therefore, there exists a unique w € [0,7],

(x:1y)

Cos w = i *



Definition: 1.9

A subspace of Rn is a subset V of R, satisfying:
1. Non-emptiness: The zero vector is in V.
2. Closure under addition: If u and v are in V, then u+v is also in V.
3. Closure under scalar multiplication: If vis in V and cis in R, thencv is
also in V.
Definition: 1.10
A subspace of a vector space consisting of vectors that under a given linear

transformation are mapped onto zero is called a null space
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CHAPTER 2
ANALYTIC GEOMETRY

2.1 Introduction

In this chapter, we will add some geometric interpretation and intuition to all
of these concepts. In particular, we will look at geometric vectors and compute their
lengths and distances or angles between two vectors. To be able to do this, we equip
the vector space with an inner product that induces the geometry of the vector space.
Inner products and their corresponding norms and metrics capture the intuitive
notions of similarity and distances, which we use to develop the support vector
machine in Classification with support vector machines.
2.2 Norms

Definition: 2.2.1

Let V be an inner product space define for every v €V. || v || = m, || vl is

called the norm of v, and V is called a normed space.A norm on a vector space V is
function
l-ll: V—R,
xlxlF
Which assign each v;ctor x it's length || X | |€ R, such that for all 1 € R and x,y €V the
following holds:

e Absolutely homogeneous: || Ax|| =| 2 | ||

o Triangle inequality: || x+y [ <[ x (| + |l ¥l

e Positive definite: || x ||> 0 and || x || =0 < x=0.
Remark: 2.2.2

i) By axiom of <, > we know that <v,v>> 0 and therefore [[vll is well

defined.



(i)  ||v|| coincides with the usual Euclidean length, in R/R>.

Theorem: 2.2.3

|l v || = V<v,v> is indeed a norm, ie). Satisfies the following three axioms:

@  llavii={alv]
() lIviz0,|v|=0ev=0
(i)  lu+v|<|ull+| v]| (triangle inequality )
Proof :

) | av || = V<ov, av>

= Vo<v,v>

= |af? <v,v>

= |of V<v,v>

= ol Ivll

(i) We will see now it follows from Cauchy Schwarz inequality.
Cauchy Schwarz inequality: [<u,v>| < || u || || v .
Let us show that the triangle inequality follows from Cauchy Schwarz:
lx+ ylI* = <xty , x+y>
=<x,X> + <X,y> + <y,x> + <y,y>
=[x + <x,y> +{x, y)+ [yl
<|[x[? + 2Rel<x,y>| + [|yll*
< [ + 2 [IxIl liyll + [Iyll®
= (Il + ltylh>.
Theorem: 2.2.4 (Manhattan Norm)
The Manhattan norm on R" is defined for x € R"s || x || = Xi=4|xil ;Where
Fig. 2.1 is absolute value. The left panel of Fig. 1.1 shows all vectors x €R? with || x ||

=1. The Manhattan norm is also called/; norm.
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Figure:2.1

Theorem: 2.2.5 (Euclidean norm )

The Euclidean norm of x € R® is défined as| x | = Wand computes
the Euclidean distance of x from he origin. The right panel ofFig. 2.2shows all vectors
x € R? with || x |l = 1. The Euclidean norm is also called lnorm.

2.3 Inner Product

We know that even simple vector spaces like R? or R? richer structure. If we
think of vectors in R? as arrows, then we have angles. We can measure length, and
even distance d(vi,v2) is the length of v2-vi.

If we admit an inner product, V is called an inner product space.
Definition: 2.3.1
Let V be a vector space over R or C, an inner product on V is an operation

defined on pairs of vectors, which gives a scalar H is denoted by <u,v> and satisfies
three axioms:

o <uyv>=(v,u) (over R<u,v>=<v,u>). Conjugate Symmetry

o <u,v>= o<u,v>

<utw,v> =<u,v>+ <w,v>. Linearity in first component.

o <v,v>2>0<v,v>& v=0. Positive definiteness



Example: 2.3.2

(1) V=R <x,y>=xy definps as inner product on R

1

2

x y?
@V=Rforx=(* |;y= v?

| defines this ig an inner product on R"
Xm Ym
called the standard inner product.<x,y> =y

= (X1y1 +Xay2 +. ..-‘*‘Xn}’n)

(3) V = vector space of integrable real valued function on [a,b] interval<f,g> =

b , .
fa f(x)g(x)dx is an inner product.<u, v> is an inner product. || v || =

) 1 1
—_ /(v
\](<v,v>) 1S a norm are <u,v> = ((vz) ] (vz)) =wvit+ uzvz

|G =) Coy

Remark: 2.3.3
There are many norms and matrices, even on R? there are norms. that can't be
defined via inner product.
Definition: 2.3.4
Let V be a vector space and Q: V xV —R be a bilinear mapping that takes two
vectors and map them onto a real number. Then
e A positive definite, symmetric bilin;aar mapping Q: V x V —R is called an
inner product on V. We typically write <x,y> instead of Q (x,y).
e The pair (V,<*,>) is called an inner product space or vector space with inner

product. If we use the dot product we call (V, <,+>) a Euclidean vector space.



Example: 2.3.5(Inner product that is Not the Dot product)

: —R?
consider V =R* If we define <x,y> = (X1y2+Xay1)+2x1y then <».+> is an i
*,*> is an inner

product put different from the dot product.

2.4 Symmetric Positive Definite Matrices
The idea of symmetric positive semi definite matrices is key in the definition
of kernels. Consider an n-dimensional vector space V with an inner product <e,+> : V

« V —R and an ordered basis B = (by,.....by) of V. Any vectors x,y €V can be written
as linear combinations of the basis vector so th =y =
so that x =)\1; Wb, and y =) A;b; €

V for suitable ¥j, 4; € R. Due to the bilinearity of the inner product, it holds for all

x,y €V that,

n n
> .b;
<xyz< Z%bi,zlyb] >
i=1 j=1

n n
Z Z W, < byby > A = 2TAY e (D)

i=1 j=1
Where A;j =< bj, b; > and %, are the coordinates of x and y with respect to the

basis B. This implies that the inner product <e,*> is uniquely determined through

A.Therefore, A is symmetric, the positive definiteness of the inner product implies

that

VxEV{0}: xTAx >0 oo )

Example: 2.4.1(Symmetric, Positive Definite Matrices)
Consider the matrices
9 6 9 6
a=[g 4= 5 3l
Ay is positive definitebecause it is symmetric and

£TAx = [1a%2] [2 g] [xz]



= [9X1 + 6x2 6x1 + sz] [xl]
X2

= Ox, 24 6x1%; + 6x,x, + 5x, 2
=(3%1 +2x,)2 —x, 25
From (2) A is symmetric but not positive definite becausexT4,x = 9 %, 2+ 122, %, +
3x, 2= (3% + 2X7)? — X, 2can be less than 0,
Theorem: 2.4.2
For a real valued finite-dimensionalvector space V and an ordered basis B of V, it
holds that <s*>: V X V — Ris an inner product if and only if there exists a
symmetric, positive definite matrixA € R™" with < x,y >= 2 TA9.
Proof :
The properties will holdA € R™*™ if is symmetric and positive definite.
e The null space (kernel) of A consists only of 0 because x” Ax>0 for all x#0.
This implies that Ax#0 if x#0.
o The diagonal elements a; of A are positive because a; =e; TAe; >0,
wheree; is the ith vector of the standard basis in R".
2.5 Length and distance
Norms that we can use to compute the length of a vector. Inner product and norms are
closely related in the sense that any inner product induces a norm
Ix]l=v<xx>
Definition: 2.5.1

The length of V isy/(V;? + V;2by the standard inner product onR? (or R?)

gives the familiar length of a vector in Euclidean space.



Yei

Theorom: 2.5.2 (Cauchy-Schwarz Inequality).

For an inner product vector space (V, <+, «>) the induced norm ||o|| satisfies the
Cau chy-Schwarz inequality [<x,y>| <|[x]| |ly]|.
Definition: 2.5.3(Distance)
Define d(u,v) = [fu-ll
= (<u-v, u-v>)
this coincides with the regular distance in R?. (also in R : d(x,y) = [x-y|)
Theorem: 2.5.4
Let d(u,v) = [[u-v|| is a metric on V defined by a metric satisfies four axioms.
(1) d(u,v)>0
() d@uv)=0=u=v
(i) d(uv)=(v,v)

(v)  d(uw)<d(uv) +d(v,w) ( the triangle inequality)

Proof:

1
Gip<u-—-v,u—v>=Kuyv>-<uv> —<v,u>+<v,v>)2

=(<v,v>—-<vu>—-<uv>+<uw >)1/2

=J?v—u,v—u>=d(v,u)

(iv) d(u,w) = [[u-w]| - [Ju-v+v-w]|
< [fu-vil + [[v-w
= d(u,v) + d(v,w)
2.5.5Angle in norm

We define cosa = ﬁl_lﬁ and we get the regular notion of angles in R?.
ul||lv

10




=V -V

V

Figure: 2.2
Example: 2.5.6 (Angle between vectors)
Let us compute the angle between x = [1,1]7 € R? andy = [1,2]" € R?;
where we use the dot product as the inner product. Then

<x,y> xTy 3
J<xy><yy> JxTxyTy V10

CoOSw =

and the angle between the two vectors is arccos (3/710) = 0.32 rad which corresponds

to about 18°.

Theorem: 2.5.7

If we define inR? w.v = |ju]| [[v]| cosa then we can show that u.v = wyv; +

U, v, =< u, v >therefore we define for u,v € V over R  in general.

<u,v>

[l

o = arccos

v

to be the angle between u and v(cosa =“i T”T:”) note that by Cauchy-Schwarz

inequality [<u,v>| < [Jull [[V]| and therefore |cosa| < 1.

~id




2.6 Orthogo“’llity

pition: 2.61

pefi
Two vectors X and y are orthogonal if and only if (¥, ¥) = 0 and we write

y Jdditionally, [lxll = 1= [lyl. i.e.), the vectors are unit vectors, then x and y are

orthog°“al'
An implication of this definition is that the 0-vector is orthogonal to every
vector in the vector space.
pefinition: 2.6.2
Consider an n- dimensional vector space V and a basis {by, ... ... ba} of V. If
<y b;> =0 for i=] L AFeskabsiiiras (1)
<bi, bi>= 1 forall ij=1,2,....... 0 ()

then the basis is called an orthonormal basis (ONB). If only (1) is satisfied, then the

basis is
called the orthogonal basis.

Note: 2.6.3(2) implies that every basis vector has length/ norm 1.

Example: 2.6.4(Orthogonal basis)

The canonical / Standard basis for a Euclidean vector space R™ an

orthonormal basis, where the inner product is the dot product of vectors.

In R?, the vector

b1 =1\,2 [ﬂ 3 bz =1\l2 [_}1]

1 171
<pipt>=b Tp=—=[11x—%
o 7l

= L X0
2
=0

IIball = b1 "by

12




=1v2[1 1] xwz[ﬂ
=1/2x 2
=

e can say p,andb2 form an orthonormal basis. Since <b; , b;>= 0 and <by, b;>
So,

= <b29 b2> = 1
21 orthogonal Complement
The orthogonal complement of U is denoted as U .

Uis a (D — M) dimensional subspace of V,

and contains all vectors in V that are orthogonal to every vector in U.

ThereforeUNU = {0}

e}

€2

A7
U Xel

Figure : 2.3

Any vector x €Vcan be uniquely decomposed into

x= %=1Ambm+ Z?_—HMEDJ bjalm ’¢j € R

Where (b ,bzyeceeeese byy) is a basic of U and (b1~ ,...bp_y )isa basicof U .

e The Orthogonal complement can also use to describe a plane U(2D subspace)

in a 3D vector space

13
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56 yector W with ||w||=1 which is orthogonal to the plane U, is the basis
b

vector of U .All vectors that are orthogonal to w must lie in the plane U.

The vector W is called the normal vector of U,

Figure : 2.4

The orthogonal ~complement of a line W through the origin in

RZis the perpendicular line of W' .
Theorem: 2.7.1
If A is an m matrix, then the null space of A and the row space of A are
orthogonal complements.
Proof: IfX is the null space of A thenAx =T
So,T; X =0 for eachi=1,...m
Let vbe any vector in the row space of A.
Sov=KiTi+...+*KnTm
v.x=(KiTi+...Kntm ) . X

=K:iTi. X+ ... KmTm X=0.

14
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5. Affine SPACE

Deﬁniﬁon: 2.8.1

ace A i
A Affine sp in a set of vectors such that there exists a vector subspace V

that eVerY element of A can be writtenas X, +7 foru€v

Remark: 2.8.2

Any general two-dimensional Affine transformation can always be expressed as
Translation, Rotation, Scaling, Reflection and Shearing of the object

Remark: 2.8.3 (2D Transformation — Translation)

i a c |
The general 2D Transformation matrix now become 3%3 [b d m]
0 0 1
[ a c L1
<[ £
w 0 o 11U
x =ax+cy+l
y'=bx+dy+m
w=1

Example: 2.8.5

1 —2
Compute W where W = span (7) ,( 3 )
2 1

Solution:

According to the proposition, we need to compute the null space of the matrix

1

1 0 ——
(1 7 2) ,RREF 17 _:
-2 3 2 0 1 5 -;
17 ;
é.

The free variable is x, so the parametric form of the solution set is

x1 — x3 2 5x3 .
== and the parametric vector

17’

15




ling by @ factor of 17, we see that
Seall

4_ gpan -5
whesen |

We can check out work:

e G-

2
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CHAPTER 3

ORTHOGONAL PROJECTION

5 Introd““io“

Projection ar¢ an important of linear transformation (besides rotations and

reﬂections) and play an important role in graphics, coding theory, statistics and

machin€ jearning. In machine learning, we often deal with data that is high-

dimensional. High-dimensional data is often hard to analyze or visualize. However,

high.dimensional data quite often possesses the property that only a few dimensions

contain most information, and most other dimensions are not essential to describe key
properties of the data. When we compress or visualize high-dimensional data, we will
Joss information. More, we can project the original high-dimensional data onto a

Jower-dimensional feature space and work in this lower-dimensional space.

91
1

g 0
s,

= )]

—4 —2 0 2 4
Ty
Figure: 3.1
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Let V be a vector space and U SV a subspace of V. A lincar mapping
- Uis(;alledaprojectionif1t2 =mem=n.

gince linear mapping can be expressed by transformation matrices, the
preceding definition applies equally to a special kind of transformation matrices, the
projection matrices Py, which exhibit the property that B2 = P,.

In the following , we will derive orthogonal projection of vectors in the inner
product space (R™,{.,.)) onto subspaces. We will start with one-dimensional
subspacess which are also called line. If not mentioned otherwise, we assume that the
dot product (x, y) = x"yas the inner product.

Definition: 3.2.2

Let V be a vector space and U SV a subspace of V. A linear mapping
1V = Uiscalled an orthogonal projection if Vv €V, u = m(v) is the closest v for
all vectors in U.

e Orthogonal Projection is a type of projection.
e Easy to check that 7 = was m(u) = u.

3.3 Projection onto One-Dimensional Subspaces (Lines)

Assume we are given a line (One-Dimensional Subspace) through the origin with
basis vector b € R™ The line is a one-dimensional subspaceU S R™spanned by b.

When we project x € R™ ontoV/, we seek the vectormy (x) € V thatis closest to x

19



a) Projection X € R%onto a Subspace U b) Projection of a two-dimensional
With basis vector b. vector x with ||x|| = 1 onto aone
dimenisional subspace spanned
by b.
Figure: 3.2

Using geometric ~arguments, Let us characterize some properties of the
projectionty x)

e The projectionmy(x)is closest tox, where “closest” implies that the
distance||x — 7y (x)||is minimal. It follows that the segmentm,(x) — xfrom
my(x)to x is orthogonal to U .The orthogonality condition yields{my (x) —
x, b) = 0.Since angles between vectors are defined via in the inner product.

e The projection my(x)of x onto U and therefore, a multiple of the basis vector
b that spans U. Hence, Ty (x) = Ab, for somel € R.1is the coordinates
ofm, (x) with respect to b.

In the following three steps, we determine the coordinate 4, the projection 1y (x) €
U,and the projection matrix P, that maps any X € R™ onto U.

1. Finding the coordinate A. The orthogonality condition yields

(x = 1, (x), by = 0 2223 (x — Ab,b) = 0

We can now exploit the bilinearity of the inner product and arrive at

20




3;

(x,b)—A(b,b) =0 = ) = {x,b) _(b,x

—

(b,b) ~ IIbII2

In this last step, we exploited the fact that inner products are s etric. If
ymmetric. If we

choose (- Mo be the dot product, we obtain

2= bTx bTx
bYb b2

[£1Ipll = 1, then the coordinate A of the projection is given by b™x
Finding the projection point my(x) € U. Since m,(x) = Ab, we immediately
obtain with that

(xlb) bTx
Ty\x) = Ab = =
u@) TR

Where the last equality holds for the dot product only. We can also compute

the length of my (x)
Imy GOl = 1 Ab I = |] Ibl
Hence, our projection is of length |A] times the length of b. This is also adds

the intuition that 2 is the coordinate of 7, (x) with respect to the basis vector b
that spans our one-dimensional subspace U.
If we use the dot product as an inner product we get
|bT x| bl
— = bl = |cosw]lixllbll == = |cosW lxll
Iy (O = gz lcoswil ipn = lcoswl

Here, w is the angle between X and b. This equation should be familiar from

trigonometry.  If llxll =1, then x lies on the unit circle. It followsthat the

rejection onto the horizontal axis spanned by bis exactly cosw, and the

length of the corresponding vector |my(x) = €OS w|.

Finding the projection matrix P;. We know that a projection is a linear
mapping . Therefore, there exists 2 projection matrix Fr, such that my(x) =
B,x. With the dot product as inner product and

21



—

my(x) = Ab = by = p 2% _ b

bz = Tpiz™
Wwe immediately see that
_ bbT
ST

that bb”T (and co i ;
Note ( nsequently,P) is a symmetric matrix (of rank 1), and

ip2l = (b, b)is ascalar.

Remark: 3.3.1

The projection matrix P projects any vector x € R™ is stili an n-dimensional
vector not a scalar. However, we no longer require n coordinates to represent the
projection, but only a single one if we want to express it with respect to the basis
vector b that spans the subspace U: A.

Example: 3.3.2(Projection onto a line)

Find the projection matrix Pgonto the line throughthe origin
spanned p[1 2 2]". b isa directionand a basis of the one-dimensional subspace
(line through origin).

Solution:

We obtain,

P_bbT_1;1 dftidZ
= 3 2 A 4

Let us now choose a particularx and see whether in lies in the subspace spanned by

b. For x= [1 1 1]T, theprojectionis

' i 1 2 2][1 " 5 1
my(x) = Ppx=g(2 4 4|[1/=3 10| € span||2||-
2 4 4111 10 2

- Note that the application of Pxto Ty (x) does not change anything, i.e., Pxn_U (x).

22



gxample: 3.3.3 (Projection onto One-Dimensiona] subspaces in R?)
m

4 ——— = o =
0. o Datapoints | i
— Subspace | |
02 [ | '
g 0.0

0d : >
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
X1
Figure: 3.3
Subspace U spanned by b = [1,0.5]7 € R? different data points are projected onto

subspaceU .

3.4 Projection onto 2 Two Dimensional Subspace

As in the 1D case , we follow a three-step procedure to find the projectionsn

u(x) and the proj ection matrix Py :

1. Find the coordinates A1, Az, - A of the projection (with respect to the

b-asis of U), such that the linear combination
(%) =Yz i bi
=BA4
B=[by,......, bu] ER™", A=[A1%2 o ATERM,

is closest to % € R". As in the 1D case, «closest” means “minimum distance”, which

implies that the vector connecting () € U and » € R" must be orthogonal to all
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oors of U. Therefore, we obtain m simu "

pasts vect Itaneous conditions (assuming the dot
Juot 8 the inner product)

0

.
(b, % -mu(8)) = b (%=my () ) =0

(Bumy %= T0(0) =bu' (% —7y(%)) =0
Jhich with mu(x) = BA, can be written as

bT(x—B)=0

me (»-B )=0

such that we obtain a homogeneous linear equation system

bs"
[« — BA]l =0 & BT(%-B1) =0
Bur”
< B"BA=B"%.
The last expression is called normal equation. Since by,....., b, are a basis of U and,

therefore, linearly independent, BT B € R ™™ is regular and can be inverted. This

allows us to solve for the coefficients coordinates ,
1=(B™B)' B
The matrix (B "B )" B T i also called the pseudo-inverseof B, which can be

computed for non-square matrices B.

It only requires that BT B is positive definite, which is the case if B is full

rank. In practical applications (e.g., linear regression), we often add a “jitter term” € 1

T R s o
0B’ B to guarantee increased numerical stability and positive definitiness .
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» can be rigorously derived using Bayesian inference.

«ridge

hi

fin 4 the projection wy(x) € U. We already established that @) = BA.
1.

Therefore’
my(x) =B (B"B)"'BTx
) Fi nd the projection matrix Pr . From (1), we can immediately see that the
\ ; rojection matrix that solves Pr% = my (%) must be
P,=B (B"B)"' BT

Note: 3.4.1

The solution for pfojecting onto general subspaces includes the 1D case as a

If dim (U) = 1, then BT B € R is a scalar and we can rewrite the

special 08¢ -

it i T el BET ... .
projeCﬁon matrix in ) Pxr=B (B " B) BT as P, = o which is exactly the
projection matrix .

xample: 3.4.2(Proj ection onto a Two-dimensional Subspace)

. .
0 6

ForasubspaceU=span[ 11, |1]] €& R® and %= [0 € R®, find the
1 2 0

coordinates Aof % in terms of the subspace U, the projection point ny (%) and the

projection matrix Pz
Solution: First, we see that the generating set of U is a basis (linear independence)

1 0
1 1j.

1 2

and write the basis vectors of U into a matrix B =

Second, we compute the matrix BT B and the vector BT as

prp=[l 1 1]1 . J[L¥1r1 04142
0 1 2|} 3] lo+1+2 04144

£
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=[]

Third, we solve the normal equation BB ()= BTy to find A ;
3 3 [A.]_]= 6
= [3 51 4z [O]
_[5

pourth, the projection my (%) of % onto U, i.e., into the column space ofB, can be

directly computed via, my(®)=BA

<0

The corresponding projection erroris the norm of the difference vector between the

original vector and its projection onto U, i.e.,
Ix —= w0l =11 2 177
=6
(The projection error is also called the reconstruction error.)
Fifth , the projection matrix ( for any % € R3) is given by,
P, =B (B'B)'BT

1[5 2 —1]
=il2 2.2
olea 205
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. The projections 7u (w) are still vectors in R" although they lie in an m-
. n
dimensmnal subspace U € R". However, to represent a projected vector we

only need the m coordinatesAs, .., Am With respect to the basis vectors by,

b of U.

. n vector Spaces with general inner products, we have to pay attention when

*

computing angles and distances, which are defined by means of the inner

product. (We can find approximate solutions to linear equation systems using
projections)

Example: 3.4.4

Find the projection matrix onto the planex +y +z=0.

Soluton: A basis for this plane is (1, 0, —1) and (0, 1, —1). Putting these as the

columns of @ matrix. We get the following results:

1 0
A=10 1]

-1 -1
el 1 ol

waefy § s, 3]

[1+0+1 0+O+1]
0+0+1 0+1+1

2 1
—[1 z]

T 'l=_1— i
(ATA) " = s (adf A)
21
al =17 3
=4-1

=3
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2 —1I

=5 _1 2
a_[2/3 -1/3
1<
AN E=m13 5/
P=A(ATA)'A
1 0
2/3 -1/3
=0 1 [ ]1 0
[—1 —1] -1/3 23 g2 s
2/3  -173
’ . . ~1
The final projection matrix P = {—1 /3. 09 /3 §1§ g

linear Syste
m
A x=b without a solution.

0’0

Recall that this means that b does not Jje ; In the spap of A e, th
€ vector

b does not lie in the subspace spanneq by the columns of A. Given that the

linear

equation cannot be solved exactly,we can find an approximate solutioy,

< The idea is to find the vector in the subspace spanned by the columns of 4

that is closest to b, i.e., we compute the orthogonal projection of b onto the subspace

spanned by the columns of A.

The obtained solution is called the least—squaressolution(assuming the dot product as
the inner product) of an overdetermined system,

Remark: 3.4.6

We just looked at projections of vectors x onto a subspace U with basis vectors

{b1,....,.b} . The projection equation (1) simplifies greatly to

my(k) =B BT »

Since BTR = I with coordinates , 4 =B" % . (This means that we no longer have

to Compute the inverse (1) , which saves computation time.)
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p proJcC“"" onto General Subspace
3

O ihogo"‘ l l J ll nt 1 rs» “' ll onto I()W‘ "‘dimcnqlf f l h 2~
[ w 10onal su 1p3(_,,1 (}
R W y : Ted 4313 0 ')r f“.n'/

proiccﬂon nu(») onto U is necessarily an element of U. Therefore, th
: - s, they can be

rcPrCscmcd as the lincar combinations of the basis vectors b;,b b, of U
JTS $ P svvverny 0 , Juch

that mu(%) =y, Aibi

Theorent: 3.5.1

If the columns of A are independent, then ATA is invertible.

proof:

Actually, this is iff; if the columns of A are not independent, then A has a
nontrivial null vector, which is also a nontrivial null vector of ATA, so the latter can’t

be invertible. On the other hand, it ATA is not invertible, is has a nontrivial null vector

n.

Then ATAn = 0. So n"ATAn = 0. Thus (An)"(An) =0, so [|An|| = 0, and An =
0. Thus the columns of A weren’t independent after all.

Theorem: 3.5.2

A matrix is a projection matrix if and only if P =PT = P ;

Proof:

Let P=PT= P? ( properties of projection ) and let V be the column space of

P. We show that P projects onto this space. Certainly for any vector X, We have x =

Px+ (x — Px), and Pxis certainly in the column space. We need to show that x — Pxis

orthogonal to the column space. So let y be any vector in V, so that y = Pzfor some Z.

Then y+(x — Px) =y X~ yTPx=2"P'x~ /P x=z"Px—z'P’x = 2T Px— 2" Px= 0.

Corollary: 3.5.3
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., the projection Matrix onto a subgpqc, v, then 7
i > then 7 _

if P

IS the proiecs:
s orthogonal complement. Projection magygy
; _
ont0

proof
(-Px=x- Px, which is exactly whap

S left over wy,
€n we sp)j
n the above proof. Plit off the v

pastof X

6 Gram"SChmidt Orthogonalization
30

Projections are at the core of the Gram-

Schmidt method that allows yus to
constructively transform any basis (by,. -++.,bn) of an N-dimensiopg] vector space V int
nto

------

= orthogonal/orthonormal basis (u,, sUn) of V . This basis always exists (Liese
n
and Mehrmann, 2015) and span[by,.....b,] = Span[uy,.....u,].

The Gram-Schmidt or thogonalizationmethod iteratively constrycts an
orthogonal basis (uy,...... up) from any basis (B1,.....,by) Of V ag

u; =b;
Uk 1= by — Tgpanpuy, .. cessUkq) (b )
&=2,0c0,) evee, (1)
In (1), the ki, basis vector by is projected onto the subspace spannéd
by the first k - 1 constructed orthogonal vectors u; yoe e d3h > Uk-1.This projection is then

subtracted from by and yields a vector uy that is orthogonal to the (k - 1)

-dimensional

subspace spanned by vy JUgk.1.
Repeating this procedure for all n basis vectors b, ...... ,bn yields an orthogonal
basis (uy,...... u;) of V . If we normalize the u, weobtain an Orthonormal basis

(ONB) where lluk]| =1 fork=1,.....n.
3.6.1: Gram — Schmidt Process:

It is the Iterative method to build orthonormal basis. Assume the set {by,... ...

iy By
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ix B
them to matrix
ﬂ,;eﬂ“ate
100 Jaty Bn]

B,& [51’52, sie dve !
I GauSSian Elimination {0 the augmented matrix
Y.

PP
A (B~ BTIB~]

¢ will be the orthonormal basis.

ram-Schmidt Orthogonalization)

3 e

G
le: 3.6-2 (
g

@ () ©

@ Original non-o

w basis vector U1

rthogonal basis vectors by,bz.

(o) Frst 1 — b, and projection of b, onto the subspace spanned by ui

©) Orthogonal basis vectors Ui and up = b2 - Tspan[ui] (b2) .

: 2
Consider a basis (b1, b2) of R?, where b1 = [ O]and by = [ﬂ
Figure (a). Using the Gram-Schmidt method, we construct an orthogonal basis

R" as follows (assuming the dot product as the inner product):

ol

o =[]

u; = by - Tspan [u1 (bZ)

(g, u2) of

u,‘ul'r
= by~ D2
fluall?

-1 JE
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-G o
w =[]

Why Gram-Schmidt orthogonalization works ?

3.6
The Gram-Schmidt orthogonalisation process is fundamental to linear algebra

4its applications to machine learning for instance. In many courses it is presented
an

an algorithm that works without any real motivation.
as

The proof of the Gram-Schmidt (GS) orthogonalisation process relies upon a

recursive procedure which replicates why it works in 2 and 3 dimensions. We can see

why it works in low dimensions but in a 1000 dimensional space the fact that it works

relies upon- purely analytical properties and induction since you can’t actually

visualise the mutual orthogonality.

Note 3.6.4:

+ To obtain an orthonormal basis , which is an orthogonal set in which each
vector has norm 1 for an inner product space V ,use the gram Schmidt
algorithm to construct an orthogonal basis.Then simply normalize each vector

in the basis .

e For R,with the eudlidean inner product dot product ,we of course already

~

know

the orthonormal { (1,0,0.....,0) ,(0,1,0,....... ,0) 5000}

For more abstract spaces, however the existence of an orthonormal basis is not
obvious . The gram schdmit algorithm is powerful in that it not only guarantees the
existence of an orthonormal basis for any inner product space ,but actually gives the

construction of such a basis.
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v

ojé ction Onto Affine Subspace:
r

31:P

’

0 b,

a)Setting b) Reduceto projection

¢)Add support point back
onto vector subspace

into get affine projection.

We discussed how to projection a vector onto a lower — dimensional subspace
U.Inthe following , we provid a solution to project a vector onto an affine subspace.
Consider the setting in figure (a) . We are given an affine space L = x, + U, Where
b,, b, are basis vectors of U. To determine the orthogonal projection 7, (x) of x onto
L , we transform the problem into a problem that we know how to solve: the
projection onto a vector subspace. In order to get there ,we subtract the support point
%, from x and from L, so that L — xo = U is exactly the vector subspace U. We can
now use the orthogonal projection onto a subspace we discussed and obtain the
projection 7y (x — Xo), which is illustrated in figure (b) . this projection can now be
translated back into L by adding x, , so that we obtain the orthogonal projection onto
an affine space L as

m,(x) = x + my(x — Xo),

Where 7, (.) is the orthogonal projection onto subspace U , i.e., the direction space of

L; see figure c.
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so evident that distance of x from the affine space L is identical

from U, i.e.,
o the |
A L) = Ix = m (= 1 = (o + 11y (x = %))l
= d(x = %o, T (* = o)) = d(x = xo,U).

| use projections onto an affine subspace .
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CHAPTER 4

ROTATION

gebra, 8 rotation matrix is a transformation matrix that is used
$ used (o

In linear al
n i Euclidean space. For example, using the convention below. th
. the

rotatio
—sin 9] SO
5 rotates points in the x .
atri R" [sin p cosd y plane counter clockwise through

respect t0 the positive x axis about the origin of a two-dimensional

angle [ with

rdinate system. To perform the rotation on a plane point with standard

c00

CaﬂCSian

cOOl’dinateS

y), it should be written as a column vector, and multiplied by the

gt B M

Vs(xs

cos @

atrix K- Rv= [sin g cosb
if x and ¥ are the endpoint coordinates of a vector, where x is cosine and y is sine,
e above equations become the trigonometric summation angle formulae.

then th
an be seen as the trigonometric

4, a rotation matrix € summation angle formulae
ay to understand this is say

gle by a further 45°. We simply need to

Indee
we have a vector at an angle 30°

in matrix form- One W
from the x axis, and we wish to rotate that an,
at 75°.

compute the vector endpoint coordinates

-* ------------

M Y

: \‘ (2]

S

N B(ey) = [costEn 0)

E A \‘ ’.B‘]'I.l'é -------------- .’.;":

S Wi

b \0 2 E

i \‘ I" 0 -
—sinf e cosf

Figure: 4.1

36




is a linear mapping (more specifically, an automorphism of a Euclidean

rotﬁ‘tiorl

o ace) that rotates a plane by an angle 6 about the origin, i.e., the origin is a
vev B

1ol nt. For 2 positive angle 6 > 0, by common convention, we rotate in a counter
fixe :

.o direction. An example is shown in the figure, where the transformation
cloc
atriX is
’0.38 —‘0.92

‘ g Origjl}nl
‘ Rotated by 112.5° i ¥

Figure: 4.2
A rotation rotates objects in a plane about the origin. If the rotation angle is positive,
we rotate counter clockwise.

Important application areas of rotations include computer graphics and
robotics. For example, in robotics, it is often important to know how to rotate the

joints of a robotic arm in order to pick up or place an object, see the figure 4.3.
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Figure: 4.3

 robotic arm needs to rotate its joints in order to pick up objects or to place them

Th

Oon‘ectly-

4.2 Rotation in R?

Consider Athe standard basis e; = [(1)] , €= [g]of R?, which defines the standard

coordinate system in R% . We aim to rotate this coordinate system by an angle 6. Note

that the rotated vectors are still linearly independent and, therefore, are a basis of R%.
This means that the rotation performs a basis change.

Rotations @ are linear mappings so that we can express them by a rotation
matrix rotation matrix R(0). Trigonometry allows us to determine the coordinates of
the rotated axes (the image of @) with respect to the standard basis in R2. We obtain

o @)= [ gloe=[_ o5 ol

Therefore, the rotation matrix that performs the basis change into therotated

coordinates R(0) is given as:

cos@ —sin@
R(0) = [@®(e1) D(e2) = [S?ng cos 6

For Example: This rotates column vectors by means of the following matrix

multiplication

’ i
[l lme oo 15
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= L of 2 point (x. y) after rotation are:
g
s - /
! > =xcosd — ¥ smé

Vigure: 44
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i dard orientation of the coordinate system
on~ ‘
g

f 8 standard right-handed Cartesian coordinate systemis yseq
» With the X~

] the y-axis up, the rotation R(0) ;
N right and 0) is ¢ i
- . ounter clockwise. If a |efy-
: inate system is used, with x dj
sian ¢ oordina > W1 directed to the i
right but y directed

js clockwise. Such non-standard orientations are rare] d
y used in

atics put are common in 2D computer graphics, which often have the origin

mer and the y-axis down the screen or page.

Figure: 4.5

4.2.3 Common Rotation

A 180° rotation (middle) followed bya positive 90° rotation (left) is equivalent

to a single negative 90° (positive 270°) rotation (right). Each of these figures depicts

the result of a rotation relative to an upright starting position (bottom left) and

includes the matrix representation of the permutation ap plied by the rotation (cenife

night), as well as other related diagrams

AN



Figure: 4.6

o 180° and 270° counter-clockwise rotations:

= 0 1
0 7110 a1 o
24 Rclationship with complex plane

goee | (1)]2" [-61 .?1]= 1
The matrix is of the shape : [_xy i ]

form aring isomorphic to  the field of thecomplex numbers € . Under this

isomorphism, the rotation matrices correspond to circle of the unit complex numbers,

the complex numbers of modulus 1.

If one identify R? with C through the linear isomorphism (a,b) —a+ib the
action of a matrix of the above form on vectors of R? corresponds to the
multiplication by the complex numberx + iy, and rotations correspond to
multiplication by complex numbers of modulus 1.

Asieve : . : cost sint] . the above
ry rotation matrix can be written aS|_onp cost

Corres .
pondence associates such a matrix with the complex number

¢ Tl :
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2 - 3
o the R case, 1n R* we can rotate any two-dimensional plane

nal axis. The casiest way to specify the general rotation matrix is

g pow the images of the standard basis ¢, ¢, e; are supposed to be rotated,
1!

‘0 sp ure these images Rey, Rez, Res are orthonormal to each other. We can

general rotation matrix R by combining the images of the standard basis.

meaningful rotation angle, we have to define what “counter-clockwise™
a

To : ; , .
perate 111 more than two dimensions. We use the convention that a

m . . . .
anar) rotation about an axis refers to a rotation about an axis

at the axis “head on, from the end toward the origin”. In R , there are

rotations about the three standard basis vectors.

€3

(1

Figure: 4.7

e Rotation about the e;-axis
—sin@
Ri(0) = [®(e1) D(e2) D(es) I [sm g cosf

Here, the e; coordinate is fixed, and the counter clockwise rotation 18

Performed in the eye; plane.
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—sing 0 cosé

_ rotate the e1e3 plan® about the €, axis, we need to look at the e; axis fr
1S Irom

v
wtip” toWard the origin.
its
i the e3-ax1s
tion about
¢ Rotd
cos@ sinb .
Ry(0)=|—sin® €08 6 0
0 0 .
431 Basic rotation$
s basic rotation (also called elemental rotation) is a rotation about one of the

xes of 2 coordinate system. The following three basic rotation matrices rotate vectors
by a0 angle 0 about the x=J= or z-axis, in three dimensions, using the right-hand

le—which codifies their alternating signs. (The same matrices can also represent a

clockwise rotation of the axes.

For column yectors, each of these basic vector rotations appears counter

clockwise when the axis about which they occur points toward the observer, the

coordinate system is right-handed, and the angle 8 is positive. Rz, for instance, would

rotate toward the y-axis a vector aligned with the x-axis, as can easily be checked by

operating with R; on the vector (1,0,0):

R3(90)(1) . C°§90 sin90 07[1 o -1 011 0
; = |=sin90 cos90 O0||0]| =~ 0 S50 ol = |1
0 0 1110 o 0 110 0
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similar to the rotation produced by the above-mentioned two-

. matrix. See below for alternati : ;
6;1si0rml rotation mative conventions which may
- . ‘
Jin o actuauy invert the sense of the rotation produced by these matrices.
n
ap .
General Rotatiol
44 : : ,
other rotation matrices can be obtained from these three using matrix
_jcation- For example, the product .
R= Rz(a) Ry(ﬂ) RX(V)
cosaw —sina 0] cosp 0 sinf171 0 0
_ |sina cosa O|| O 1 0 ||lo cosv —sinv
0 0 1) l—sinf 0 cosBil0 sinv cosv
cosacosf cosasinfsinv — sinacosv cosasinfcosv + sinasin
= | sinacosp sinasinfsinv + cosacosv sinasinfcosv — cosasinv
—sinf . cosfsinv cosfcosv
represents 3 rotation whose yaw, pitch, and roll angles are a, B and y, respectively.

More formally; it is an intrinsic rotation whose Tait-Bryan angles are a, §, y, about

axes Z, Y X respectively. Similarly, the product

R=R(v) Ry(B) Rx(@)

cosv —sinv 0][cosB 0O sinfif1 0 0
= |sinv cosv 0 0 1 0 0 cosa =—sina
0 0 1) [-sinB 0 cospll0 sinax cosa

cosvcosfl cosvsinfsina — sinvcosa  cosvsinfcosa + sinvsina
= |sinvcosf sinvsinfsina + cosvcosa sinvsinfcosa — cosvsina
—sinp cosfsina cosfcosx

represents an extrinsic rotation whose (improper) Euler angles are @, B, 7, about

axesx, y, z,

These matrices produce the desired effect only if they are used to

remul 1 » . . . .
tiply column vectors, and (since in general matriX multiplication 1s
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Vv

ative) only if they are applied in the Specificd order, Th
+ The order of rotatio
n

ot com™
p ¢ is from right to left; the matrix adjacent tq th
operi®” ¢ column vector is the firsy
plied and then the one to the left. e
1CL0
be apP
. . +n p-Dimensions
tation 10 1
45RO
lization of rotations from 2D
The genera and 3D to n-dimens;
sional Euclidean
ector spaces can be intuitively described as fixingn - 2 dimensions and restrict the

rotation to @ two-dimensional plane in the n-dimensional space. As in the three

: we can rotate any plane d; .
dimensmnal case, y plane (two-dimensional subspace of R" ),

pefinition: 4.5.1 (Givens Rotation).

Let V be an n-dimensional Euclidean vector space and ® : V — V an

autornorphism with transformation matrix.

0 cos o 0 —sin 6 0
Rj(®)=| O 0 IG-i-1) 0 0
? 0 sin @ 0 cos 8 0
: 0 0 I(n—J)

for1<i< and 6 € R. Then R;; (6) is called a Givens rotation. Essentially, Rij (6) is

the identity matrix I, with

rii=cose,rij=—sin6,rji=smO,rﬂ=cos€).

4.6 Properties of Rotation

Rotations exhibit a number of useful properties, which can be derived by

considering them as orthogonal matrices
||R6(x)—-R9(y)||. In other words,

 Rotations preserve distances, ie., |x=yll =
ed after the

i unchan
rotations leave the distance between any two points g

transformation.

45



i.c., the angle between ROx and Réy equals the

) dimensions are generally not commutative.

three (OF more

g i0
Rotw"“’ in which rotations are applied is important, even if they
¢ e thc Ofdcr
‘rhd"fo he same point. Only in two dimensions vector rotations are £
e &
abot! E
il uch that R(¢)R(0) = R(B)R(9) for all @, 8 € [0, 27). They form 2
(atives S o
gommu 3 th multiplication) only if they rotate about the same
ian grou
Abeli?
an
point




CONCLUSION

This project brings the mathematical foundations of basic machine learning

s 1o the fore and collects the information in a single place so that this skills
conc®

narrowed or even closed. We have deeply discussed the concepts of the

gop is

goalytic 8%
tion. It has applications in nearly every other field of study and is already

metry used in machine learning along with the orthogonal projection and

heir rotd

veing implemented commercially because machine leamning can solve problems
2

pich are too difficult or time consuming for humans to solve.
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INTRODUCTION

The field of mathematics plays a vital role in various fields . One of important
field in mathematics is Cyber security and Coding Theory . They are still a young
subject . Cyber security originated in later 1970s and coding thory in later 19404
repectively. Cyber security has began with the project called The Advanced
Rescarch Projects Agency Network (ARPANET) . This was the connectivity
developed prior itself .Cyber sccurity is the applications of technologies , process and
controls to protect systems , networks , programs , devices and data from cyber
attacks. It aims to reduce the risk of cyber attacks and protect against the systems and
technologies . On the otherhand Coding Theory is the study of properties of codes
and their respective fitness for specific applications.It is worthwhile nothing that all
communications channels have errors , and thus codes are widely used . In addition to
practical application Cyber security and Coding Theory has many applications in
the theory of computer science .

The Project consists of five chapters.

In chapter 1, we have dicussed Preliminaries and results thst are needed for

the subsequent chapters.

In chapter 2 , we have discussed about the Abstract Algebra and its

principle of well ordering.

In chapter 3 , we have discussed about the Probability Theory and its main

concepts.

In chapter 4 , we have discussed about the Coding Theory and types of

codes.

In chapter 5 , we have discussed about the Cyber security and Pseudo

Random Number Generation.
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CHAPTER-1
PRELIMINARIES

Definition:1.1

A code is a set X such that for all x € X, x is a codeword .
Definition:1.2

An error correcting code is an algorithm for expressing a sequence of
numbers such thst any errors which are introduced can be detected and corrected
based on the remaining numbers .
Definition:1.3

The Mébius inversion formula u is defined by

lifn=1

(=¥ if nis the product

of k distinct prime factors
0 otherwise.

p(n): =

Definition:1.4

An ideal S is called a prime ideal if ab € S implies a € Sorb € S . An ideal
S in aring R is called maximal if for everyideal IwithScIC R, 1

or =R (S #R). If aring has a unique maximal ideal , it is called a local ring.

Definition:1.5

Let p(x),q(x) be open statements defined for a given universe.
The open statements p(x) and q(x) are called (logically) equivalent, and we write for

all x [p(x) < q(x)] when the biconditional p(a) <> q(a) is true for each replacement a
from the universe (that is, p(a) <> q(a) for each a in the universe). If the implication

p(a) =q(a) for each a in the universe), then we write for all x [ p(a) =q(a)] and say

that p(x) logically implies q(x).



Definition:1.6

For open statements p(x),q(x) defined for prescribed universe and the
universally quantified statement for all x [ p(x) — q(x) ], we define
1) The contrapositive of for all x [ p(x) — q(x) ] to be forall x [~q(x) == p(x)].
2) The converse of for all x [ p(x) — q(x) ] to be for all x [ q(x) — p(x) ].
3) The inverse of for all x [ p(x) — q(x) ] to be for all x [~q(x) = ~p(x) ] .
Definition:1.7

For any nonempty set A, B , any function f: AxA— B is called a binary
operation on A .If B € A , then the binary operation is said to be closed . (When

B S A we may also say that A is closed under f) .

Definition:1.8

For sets A and B, if D € A x B, then m, : D— A defined by ma (a, b) =3, is
called the projection on the first coordinate. The function s : D— B, defined by
ng (a, b) = b, is called the projection on the second coordinate.
Definition:1.9

If f: A—B, then f is said to be invertible if there is a function g: B—A such
thatgof=1,and fog=1;.
Definition:1.10

If f: A= B and B, € B, then £'(B)) = {x€A | f( x) € By} . The set £'(B)) is
called the preimage of B, under f.
Definition:1.11

Let f; g: Z" —R. We say that g dominates f (or f is dominated by g) if there

exist constants m €R* and k € Z" such that |f(n)| < m|g(n)| for all n €Z* , where n > k.



Definition:1.12

If £ is an alphabet and n € Z' , we define the powers of I recursively as
follows:
1) &' = X;and
2)E™'= {xy|x €L,y € L"), where xy denotes the juxtaposition of x and y.
Definiton:1.13

For an alphabet £ we define £° = {L}, where A denotes the empty string - that
is, the string consisting of no symbols taken from X.
Definition:1.14

If £ is an alphabet , then a) L' = U,”,; T"=U ¢z’ "

and b)I*=U,"« Z".

Definition:1.15
If w; , w2 € £” then we may write W, = X1,X3, ..., Xmand W2=Yi, Y2, .- - Yn»
form,n € Z*, and x|, X2, ..., Xm, Y1, Y2, . . . Ya € T . We say that the strings w; and

w; are equal, and we write w; =w,, if m=n, and x;=y; forall 1 <i<m.
Definition:1.16

Let w=XXz...X, €X' where x; € T for each 1 <i <n. We define the length
of w , which is denoted by |w|, as the value n. For the case of A, we have |\ |=0.
Definition:1.17

Letx,y € Z* withx = X1,X2,...,Xnand y=y;,¥a,... ¥a, so that each x;,
for 1<i<m,and eachy;, for 1 <j<n, is in Z. The concatenation of x and y , which
we write as Xy, is the string X;X2 ... Xm Y1 Y2 - - ¥n.

The concatenation of x and A is XA = XiX3 ... A Xy = X|X2 ... Xm=X and the

concatenation of A and x is XA = X;X2 ... A Xy = X(X2 ... X=X . finally, the

concatenation of Ais AA= A.
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CHAPTER - 2

ABSTRACT ALGEBRA

2.1 Integers

Definition:2.1.1

Throughout abstract algebra, the set of integers provides a source of examples.
In fact, many algebraic abstractions came from the integers.
For Example, If n and m are Integers with n<m then there exists a positive integer
t€z such that m = ntt.
Definition:2.1.2

Let S be a subset of z. Suppose that S has a following Properties:

1) n, €s, i.e there exists an element n, € s
2)foralln>ny, n € z ifn€s thenn+l € s
Theorem:2.1.3
Let x , y € z with y #0. Then there exist unique integers q and r such that x=q
y+r,0<r<yl.
Proof:
Let us first assume y > 0 Then y > 1.Consider the set

S = {x-u y | u€ z, x-uy>0} Since y >1 we have x-(-|x| ) y € s. Thus, S is a nonempty
set of nonnegative integers. Hence by the principle of well ordering, S must a have a
smallest element, say r. Since € S wehaver> 0 and r = x - q y for some q€z Then
X =qy+r. we must show that r <[y|. Suppose on the contrary that r> |y| =y Then
X -(q+l)y=(x—-qy)-y =r-y >0 so that r-yEs a contradiction since r is the smallest

non negative Integer in s and r-y <r. Hence it must be the case that r < |y|. This proves

the theorem in case y >0.



Suppose now that y < 0. Then |y| > 0. Thus there CXisly intogery q

v auch that
x=q’ |y}t r. 0 <r<|y| by the above argument. Since y < 0 |y| =

"y Hence x=.q" y 4 ¢
letq=-q".
Then x = qy + 1, 0 <r <y| the desired conclusion. The unj and r remaing to be
shown. Suppose there are Integers q’, r such that
x=qytr=qy+r
0<r'<|y,0<r<ly[thent’ -r=(q-q")y
Thus, [r' = 1| =g - q| |y| Now - |y| <’ =r<0and 0 <1’ < |yl Therefore If we add
these Inequalities - |y| <r’ - r <|y|. Since q - q" is an Integer we must have
0=1|q-q’|. It now also follows that r=r'|=0.Thusq-q"=0andr—r" =0 or q=q’
and r—r’. Consequently qand r are unique.
2.2 Relatively Prime
Definition:2.2.1
Letx , y € z. A nonzero Integer c is called a common divisor of x and y if
c|xandy.
Definition:2.2.2
A nonzero Integer d is called a greatest common divisor (g c d) of the Integers
x and y if
i. d|xandd|y
ii. forallc€zifc|xandc|ythenc|d.

Example:2.2.3

Consider the Integers 45 and 126

126 =245+ 36
45=136+9
36=4.9+0



Thus 9=gcd (45, 126) Also
9=45-1.36
=45-1.[126 - 2.45]
= 3.45 + (-1).126.
Heres=3t=-1
Theorem:2.2.4
Let x and y be nonzero Integers. Then x and y are relatively prime if and only
if there exist s, t € zsuchthat | =s x +ty
Proof:
Let x and y be nonzero Integers. Then g ¢ d (x, y)=1 there exist integers s and
t such that I=s x +t
Conversely suppose 1 =s x + t y for some pairs of Integers s, t.Let
d=gcd(x,y). Thend|xandd|yandsod]|(sx+ty). Since d is a positive integer
andd|1,d=1.Thus gcd (x,y) =1 and so x and y are relatively prime .

Theorem:2.2.5

Letx,y,z € zwithx #0 if x [y zand x , y are relatively prime then x | z.
Proof:

Since x and y are relatively prime there exists,t € zsuchthatl1 =sx+ty.
Let x, y be a nonzero integers. Then x , y are relatively prime if and only if there exist

s,t€zsuchthat 1 =sx+ty Thusz=sxz+tyz Now x| x and hypothesis x | y z.

Thus x | (s Xz +t y z) and so X | z.

Corollary:2.2.6
Let x,y,p €z with p aprime. If p | x y then eitherp [x orp | y.



2.3 Correspondence Theorem
Definition:2.3.1

Let n be a positive Integer. Let ¢ (n) denote the number of positive Integers m
such thatm <nandgcd (m,n)=1 @) ={mEN|m<nand g cd (m,n) =1} ¢(n)
is called the Euler ¢- function.

Example:2.3.2
Let a and b be Integers such that g cd (b, 4) =2 prove thatgcd (a+b, 4) =4
Solution:

Since g c d (a, 4) =2, 2 | a but 4 does not divide a. Therefore a = 2 x for some
Integer x such that g ¢ d (2, x) = 1 Similarly b =2 y for some Integer y such that g c d
(2, y) thus x and y are both odd integers. This implies that x + y is an even integer
and so x +y =2 n for some Integer n. Now a + b =2(x, y) = 4 n hence,
gcd(at+b,4) =gcd(@n,4)=4.

Example:2.3.3
Find Integers x and y such that 512 x + 320 y =64
Solution
512=320.1 + 192
320=192.1 +128
192 =128.1 + 64
128=64.2+0
Thus 64 =192 - 128 =192 — (320 - 192)
=192.2+320. (-1)
=(512-320). 2 +320. (-1)
=512.2 +320. (-3)

Hencex=2and y=-3



Thcorem:2.3.4

Let fbea homomorphism of a group G onto a group G,. The f induces a one

— one inclusion prc.scrving correspondence between the subgroups of Gy. In fact if H

and K are co,-rcsponding subgroups of G and G, respectively then H is a normal

subgroup of Gi.

Proof:

Letu = {HHisa subgroup of G such that kerf € H}

And K={k|kisa subgroup of G} .
Define f*: H— K by for all H € u. f*(H) = {f(h)h€H} Then f*(H) € K. Hence

f* is a function since fis a function. Let a€ kerf then f(a) = ¢, € kand soa € f'

(k)=H. Thus kerf € H let a, b € H Then f(a), f(b) € k and so flab") = f(a) f(b™") = f(a)

fib"") € k. Therefore a b€ H and so H is a subgroup of G containing kerf . Hence

f*(H,) = f*(Hy). Let hj€H) . Then there exists hy €H, such that f(h) = f(hy). This

implies that f(h; hy"') = €, and so b h," € kerf C Hy if Hence h; = (b hy") by €H.

Clearly Therefore H; € H; if and only if similarly H; & H; Thus Hi = Hyand so f* is

one - one clearly HiS H, if and only if P#( H) € P*( H). In fact f* is one — one

H, c H, if and only if f#(Hz) S f*(Ho) -

Suppose H is a normal subgroup of G such that kerf € H let k = f* (H) we

show that k is a normal subgroup of G let f(a) € G , f(b) € k Now aha’ € H since H

is a normal subgroup of G and so f(a) f(h) fla')=fah a") € k Hence k is a normal

subgroup of G let J be a normal subgroup of G and L€ { be such that f¥(L) =17 let

a€GandheL Thenflaha')=1f(a)f(h) f') and soa h a’! € L This proves that L

is a normal subgroup of G.



Example:2.3.5

Show that4z|(2z = 23)

Solution:

Define f: 4z — 23 by f(4n) = [n] for all 4n € 4 z one can show that fis an
epimorphism Then from the first Isomorphism Theorem 4 z | kerf = z; Now
kerf= {4n€4z|fdn)=[0]})={4n€4z[n]=[0]} =122
2.4 The Groups of D4 and Qs
Definition:2.4.1

A group G is called a dihedral group of degree 4 if G is generated by two
elements a and b satisfying the relations 0(a) =4 0(b)=2andba= a’b.
Example:2.4.2

Let T be a group of all 2x2 invertible matrices over R under usual matrix
multiplication Let G be the subgroup of T generated by the matrices.
Definition:2.4.3

A group G is called a quaternion group if G is generated by two elements a, b
satisfying the relation 0(a) =4 a=b*andba=2a’b.
Example:2.4.4

Let T be the group of all 2x2 invertible matrices over ¢ under usual matrix

multiplication let G be the subgroup of T generated by the matrices

A=[_°1 (1) andB=[? (‘)]

Then 0(A) = 4 and

A= [_01 -01] =B’

a=[} 1% =[5 Y

Thus B A = A’ B Hence G is quaternion group.



Theorem:2.4.5
There exist only two noncommutative non Isomorphic groups of order §

Proof:
wGbc.nonconunuum-cmupot‘ordchum[G]ucvmu\acmw

clementu € G uxcsmhlh“":'“f":'efmdlxGG!ha:GueommmtxvcA
contradiction . Thus there exists a€ G such that a” # e. Since o(a) | 8, 0(a) = 4 or 8 If
a) = 8 then G 1s cychic and hence commutative contradiction, Thus o(a)= 4 let
H-;c'.'.:.’;‘ThcnH|sasubgoup0f00flndcx2u1d!oﬂill.norrndu;bpoup
of G Let b € G be such that b€ H Then G = H U H b and HN H b = ¢ This implies
that G = (¢, a, a*a’,b,ab,a’b,a’bj=<ab> Nowbab'€H. Ifbab' =cthen
s =cacontradiction. Thus bab' zcifbab' =athenab=b aand hence G is
commutative a contradiction. If bab' =a’ thenba’b' =(bab 'y =a' = cand s0
s’ = ¢ a contradiction. Thereforebab'= =a’ and 50 ba=a’ b Since [GIH] = 2 and
b¢H.o(Hb)-ZHawcb:-nota’mmo(b)'SMnoGuwmvaec
contradiction. Therefore aither b° = ¢ of b* = &' It now follows that if G s a
mmmmmuulncymnpo{ordabdmolwﬁ-<a.b>wthlhﬂo(b)*2md

ba=a'b Inthe first case G = D, and in the second case G = Qy
Example:2.4.6
FIMI(Do,

Solution:
It 1s known that z2(D.) is & normal subgroup of Dy Now Dy has five normal

;uhb’?f.iup) Dg, le), TH - fC,I:;;Ts - { C....:"’;:T." (Q‘:b- "b;'
= (e, ab, &b SinceabzbaD,, T, and T; cannot be a 2(Dy) [f(ab)b=b(ab)

ena=bajb=a b" = g and s0 3" = ¢ a contradiction hence

;22De) = e st = H

10



2.5 Group Actions
Definition:2.5.1
Let G be a group and s a nonempty sct. A (left) action of G on S is a function -
G x § —S such that
L (g g) X =8I (g2 x) and
ii. E.x=xwherccisthe Identity of G forall xe S g, g € G
Example:2.5.2
Let G be a permutation group on a set S. Define a left action of G on S by
ax = 0(X)
Forallo € G, x €slet x €sNow e x =e(x) = x where e is the identity permutation
ons. Let g, 07 € G. Then:
(0,°02). x=(0,°07) (x) = 0,(02 (x)) = 01.(02 (X)) =0/.(02 . X). Hence S is a G- set.
Theorem:2.5.3

Let s be a finite nonempty set and G be a finite group. If s is a G- set then
the number of orbits of G is I_:?T 24 ec f(g) where f(g) is the number of elements of s

fixed by g.
Proof:

LetT=1{(g a) €GxS|ga=a} since f(g) is the number of elements a € s
such that (g, a) € T. it follows that | T | = ¥ ¢ f(9)- Also | G a |‘is the number of
elements g€ G Such that (g, a) € THence [T | = Ya €s |G,|. Let
s=[a]]U[a]U......U [a] is the set of all distinct orbits of G on s Then

Zgecf(9)= Zaera) | Gal += Taerazy 1 Galt...... Zaeqan | Gal
Suppose a, b are in same orbit. Then [a] = [b] and [G: G,] = | [a] | = | [b] | = [G: Gb]

This implies:

11



.|—GL=—L
|Gal |Gb|
And also |Ga| = |Gb| Thus
Toecf(9) =[] || Gail +|[a]l|Gaal +....][[a ]| |G ay

|G|
" |Gak|

G
|Ga2|

= L 1Ga+ |Gay| + |G ay

|Ga1|

Where k is the number of distinct orbits consequently

K=r=Zgecf(9).

Example:2.5.4

Let s be a finite G-set where G is a group of order p " let
so={a€ s|ga=a forall g €G} Show that |s| = p*
Solution:

IS| = Yaea[G: Ga] where A is a subset of s containing exactly one element

from each orbit [a] of G Now a€ Syifand onlyifga=aforallg€G

IS| = |So| + Xaea IIGLaII since |G, # |G| for all a€ A\Sy Thus % is divisible by p

PrOVing that |s| = p*”
2.6 Sylow Theorem
Definition:2.6.1
Let H be a subgroup of a group Gand a € Gifah o' =1 then His.cuied
invariant under a.

Example:2.6.2

Let G be a finite group and a € G be such that a has only two conjugates proves that

c(a) is a normal subgroup of G.

12



Solution:
IG: c(@)| = [ci(a)] Now |ci(a)|=2 Hence |G: c(a)| = 2 proving that c(a) is a
normal subgroup of G.

Theorem:2.6.3

Let G be a finite group of order p "m where p is a prime r and m are positive
Integers p and m are relatively prime Then G has a subgroup of order p ® for all k,0<
k <r.

Definition:2.6.4

Let G be a finite group and p a prime. A subgroup P of G is called a SYLOW
p subgroup of G if P is a p subgroup and is not properly contained in any other p
subgroup of G.

Theorem:2.6.5

Let G be a finite group of order p " m where p is a prime r and m are positive
Integers and p and m are relatively prime. Then any two SYLOW P- subgroups of G
are conjugate and therefore isomorphic.

Theorem:2.6.6

Let G be a finite group of order p " m where P is a prime r and m are positive

Integers and p and m are relatively prime Then the number n, of SYLOW P-
subgroups of G is 1 # k , for some nonnegative integer k and n,\ p "'m.

Example:2.6.7
The Symmetric group S; has three SYLOW 2 subgroups namely.

13



Solution:

fr i CIOHC e
e 963 ) g

Thus a SYLOW p-subgroup of a given group need not be uniqu
e.

14
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CHAPT ER 3
PROBABILITY THEORY
3.1 Probabuity

Deﬂniﬁon 3.1.1

A probability mode is 5 Mathematica] description of an uncertain situation .
It must be in accordance with 5 fundamental framework

Definition:3.1.2
1. (Nonnegative) P(A) >0, for every event A.

2. (Additivity) If A and B are two disjoint events , then the probability of

their union satisfies,
P(AUB)=P(A)+P(B).
3.(Normalization) The probability of the entire sample space Q
is equal to 1, that is P(Q) = 1.

Example:3.1.3

Consider an experiment involving a single coin toss. There are two possible
outcbmes , heads (H) and tail (T). The sample space is @ = {H,T}, and the events are

{HT}, (H},{T}, ¢
If the coin is fair , if we believe that heads and tails are “equally likely” we should
assign equal probabilities to the two possible outcomes and specific that P({H}) =
P({H}) = 0.5. The additivity axiom implies that
P({H,T}) = P({H}) + P({T})
=1,

Which is consistent with the normalization axiom . Thus, the probability law is given

by

15
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PR =1 P({H) =05, P(Th =05, P (6) = 0, and satisfies all three

gxion

Consider another experiment in three coin tosses . The outcomes will now be 3 —

Jong SITin8 of heads or tails .The sample space is
o= {HHH, HHT ,HTH, HTT, THH, THT, TTH, TTT}
We assume that each possible of 1/8. Let us construct a probability law that satisfies
ihe three axioms . Consider , as an example the event .
A = { exactly 2 heads occur }
= { HHT,HTH, THH}.
Using additivity the probability of A is the sum of the probability of its element:
P({HHT , HTH, THH}) = P ({HHT}) + P({HTH}) + P({THH})
=1/8+1/8+1/8
=3/8.

Similarly, The probability of any event is equal to 1/8 times the number of possible

outcomes contained in the event . This defines a probability law satisfies the three

axioms .

Remark:3.1.4

Consider a probability law and let A,B and C be event.
a) IfACB, then P(A) < P(B).

b) P(AUB)=P(A)+P(B)- P(ANB).

¢) P(AUB)<P(A) + P(B).

P(AUBUC) = P(A) + P (A°NB) + P(A°n B°nC)

16
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3.2 Conditional Probability

Dcﬁnition:3.2.l

Conditional probability provides us with a way to reason about the outcome
of an experience based on partial information.
Rcmark:3.2.2

* The conditional probability of an event . A given an event B

with P(B) > 0, is defined by

_ P(4nB) _
P(A|B) = (s 2nd specific a new conditional probability.

o If the possible outcomes are finitely many and equally likely ,
then

P(A/B) — Number of elements of AnB
Number of elements of B

Example:3.2.3
We toss a fair coin three successive times . We wish to find the conditional

probability P(A/B) when A and B are events .

A = { more heads than tails come up },

B = { 1" toss is a head }.
The sample consists of eight sequence

n={HHH,HHT,HTH,HTT,THH,THT,TTH,'I‘TI:I}
Which we assume to be equally likely. The event B consists of the four elements
HHH , HHT, HTH, HTT, so its probability is

P(B)=4/8.

The event A..B consists of the three elements HHH , HHT , HTH , so its probability is

P(ANB) =3/8.

17



Thus, the conditional probability Py A/B) is

P(AnB) Y

P(A/B) = 0] 17: -3/4

Because all possible outcomes are cqually likely here, we can also compute P(A/B)
using a shorteut .we can bypass the calculation of P(B) and P(ANB) and simply

divide the number of elements shared by A and B (which is 3) with the number of

clements of B (which is 4),
Theorem:3.2.4
Let A1 ,...Aq be disjoint events that from a partition of the sample space each

possible outcomes is included in exactly one of the A....A, and assume that P(A;) > 0

, for all I. Then for any events B , we have
P(B)=P(A\NB)+......... + P(A;NB)

= P(A)) P(B/A)) +.....+ P(A,) P(B/Ay).
Example:3.2.5
You enter a chess tournament where your probability of winning a game is 0.3 against
half the players (call them type 1) . 0.4 against a quarter of the players and 0.5 against
the remaining quarter of the players you play a game against a randomly chosen
opponent . What is the probability of winning?
Solution:

Let A, be the event of playing with an opponent of typei, we have

P(A) = 0.5, P(Az) =0.25 , P(As) = 0.25.
Thus, by the total probability of winning is

P(B) = P(A1) P(B/A1) P(A2) P(B/Az) + P(A3) P(B/As)

=0.5.0.3+0.25.0.4+0.25.0.5 =0.375.

18



Deﬁnition:3.3.1

Let Ai,Az.. A, be disjoint evens that from a partition of the sample space ,

and assume  that P(A;) > 0 | for a1 - Then,, for any event B such that P(B) >0, we

have

P(A )P(B|A;)
P(Ai|3)=‘,,T)‘

_ PCADP(B|4;)
PCAYPBIAL )+ .. +P(a) P (B 1AL

Example:3.3.2

Let us return to the rader detection problem of
A = {an aircraft is present}

B = {The rader generates an alarm}

We are given that
P(A)=0.05, P(B/A)=0.99, P(B/A%)=0.1.

Applying Nate’s rule with A; = A and Ax= Ac,

P(aircraft present / alarm) = P(A/B)
= P(A) P (B/A)/P(B)

P(A) P )
N PP (3+P@crp o

0.05+0.09

e % (), 3426,
0.05+0.99+0.95+0.1

Example:3.3.3
Let us return to the class problem here A; is the event of getting an opponent of
typei, and

P(A1) = 0.5, P(A2) = 0.25, P(As) = 0.25

19



AlsO B is the event of Winning and

PBIAY =03, P(w/a) . g, i -

suppose that you Win what iy Probabiliyy P(AVB) thy
14

You had ap
| pponent ¢
Using Baye's rule | yq have B
P (A, |B)'p(A P (B i)
' Ay )P (A p AP CBIA
VP (AP (B, J*P(AL )P (B A, )

- 0.5.0,3
0.5.034.25 04405 os - 04
3.4 Independence

Definition:3.4.1

» Twoevents A and B are said that be Independent if
P(ANB) = P(A)P(B).
If in addition ,P(B) >0, Independent is equivalent to the .
P(A/B) = P(A).
o If A and B are independent so are A and B¢
e Two events A and B are said to be conditional independent , given another
event C with P(C) >0, if
P(ANB) = P(A/C) P(B/C)
If in addition , P(BNC) > 0, conditional independent is equivalent to be
equivalent to the condition
P(A/BNC) = P(A/C).

o Independent does not imply conditional independence and vice versa.

Example:3.4.2

Let A and B be independent events use the definition of independence to
e

prove the following

(a) The events A and B° are independent.

20



(b) The events A¢ ang g are indepeng
ent,

(a) The event A is the ypion of the disjo;
| | Sjoint events An B and AnB addivity
axioms and the Independent of AandB

P(A) = P(AnB) + P(ANBs) = p(y P(B) + P(anpy)
P(ANB¢) = . |
( ) =P(a) (1-P(B)) = P(A)P(B:) 50 A and B are independent.

(b) Apply the result to part (2) twice : first o AandB. then on B
- then on B¢

and A.
3.5 Random Variables

Main Concepts Related to Random Variable:

Starting with a probabilities mode] of an experiment:
e A random variable is 3 reg valued function of the outcome of the
experiment.

A function of a random variable defines another random variables.

We can associate with each random variable certain average of interest such

as the mean and the variance.

o A random variable can be conditioned on an event or on another random

variable.

o There is a notion of independence of a random variable from an event or

from another random variable.

Example:3.5.1

Consider two independent coin tosses ,each with a % probability of a head and let x
be the number of heads obtained .
Solution:

= =3/ :
This a binomial random variable with parameters n = 2 and p = % its PMF is

21
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LYET:
1

Px(k) = z.(:)_(%) (=1
O if k=2

S0 the mean is
E[X] = 0.(1/4)}
=1.(2.%.%)
=2 (%)?
=24/16
=3/2
3.5 Markov Inequality

Dcﬂnition:3.5.1

If a random variable X can only take nonnegative values , then ;

P(XZa)SE(X)/a,foralla>0.

Example:3.5.2

f,\'(J') 4l

(h)
P(Y, =«)

'
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Let X be untformly distrity e, I the in the

Inileyyy) f(,/;‘ 4 rene that

[(X) "4 Then the Murkoy Inequutity e that

52§ 2= 1,
pX 24 =g

l "
l’(x o")' ';-0;()’,

1
p(X v 4) < ;-().SA

By comparing With the exact probby ;e
pX > 2 )=0.5,

P(X23)=025,

P(X 2 4)=0. We see that the bounds provided by the Markov inequality can be quite
loose .

3.6 Chebyshev Inequality

Definition:3.6.1

If X is a random variable with mean u and variance o | then
P(X-p)zc) <o®/c* forallc>0.
Example:3.6.2
When X is known to take values in a range [ a, b ], we claim that
o’ < ( b-a)2 \4 . Thus, if o®is unknown , we may use the bound (b-a)® ' 4 in place
of o in the Chebyshev Inequality , and obtain
P(|X-p|2c)< (b-a)/4c?,forallc>0.
To verify our claim, note that for any constant A, we have
E[(X—)]=E[XY-2E[X]y+¥,
and the above quadratic is minimized when y = E[X] .1t follows that
°2=E[(X-E[X]2 1<E[(X-y)?%],forally.By letting
y=(a+b)/2,weobtain

of < E[(X-ath/2)]* =E[(X-a)(X-b)]+(b-a)?/4 < (b-a)?/4,

23
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nequality follows from the fay (x-a) (x-b) <
e b0 und & (b - a)24 may be quite Conservative. but in the

absence of further
-formation about X, it cannoy pe Improveq.
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If x and y are two p-
tuples of (g and s, thep We shall say that their
Hamming'distance (usually just distance) g d(x, y)=

, i} <i<n, iy,
Defintion:4.1.

The code C with eight words of length 6 which We treated above has the property that

o distinct code words have dj .
any tw distance at least 3.That 1s why any error-

pattern with one
error could be corrected. The code is single—error-correcting code

Defnition: 4.1.3

This means that if'y is received we try to find a code word x such that

d (x ,y)is minimal. This principle is called maximum-likehood-decoding.

4.2 Shannon Theorem

If 0 <R <1+p log p+q log q and Mu:=2(R} then p*(Mj, n, p)—0 if n—oo,
P=0.001 . i,e 1+p log p*q log q is nearly .The requirement in the experiment was that the
rate should be at least ¥4. We see that for ¢ >0 and n sufficiently large there is a code C of

length n ,with rate nearly 1 and such that pe<ce.

Theorem:4.2.1

In the proof of Shannon’s we shall pick the code word x1,x2........ ,X m at random

(independently).we decode as follows. If y is received and if there is exactly one
codeword xi such that d (xi, y) < p, then decode y as xi, Otherwise we declare an

€rror

25



( (if We must decode ,then we always decode 5
4 § Xi).

. Ty=0.1" P (Y}xi) gi (y)

= Ly pOK{I-f(y xi )4y :
. ! f()’y Xj),

yere the first termm on the right-hand sige i . Probap
0babilj

. ty that the ;
B, (xi)BY p(w > 1 p +b) < Ve this PfObability St mogy . received worg ¥is ot
28. HencC
P < e + M'l Yiel X y z j# p()’|Xi) f(y,x j). we haVe

rhe main Princile of the proof i the g gy 0

S1,p) is less than the ex

. pected

value of pc over all possible codes C picked at rando c
m

Therefore we have

M
poip) HetMT LY Ve o)

=1y yz1

M
=hetMiYy 3 Y (PCyiX0)BR| /20 = Y4e +(M. 10 By

i=l y yz1

we now take logarithms apply

|B9 (X)l = Z (':) <%n (;) <%n. n“/pp(n-p)n-pand

isp

p/n log p/n =1/n[n p+b]/n =p log p+o(n™) .and then we divide by n.

The result is n™" log (p*(M,n,p)-%: €). < n” log M - (14p log p +q log q) + o(n™) substituting
M=M, on the right -hand side we find ,using the restriction on R,

n" log (p*(M o0 ,p)-Y2 € ) <- B <0, for

n>ng, i.e p*(M,n,p) < ¥ & + 2" This proves the theorem.

4.3 Coding Gain

Definition:4.3.1

The ratio between SNR(un code) and NSR/ (coded) for equal error probability
era
after decoding is callled the coding gain.

Pe:.l. 1A2n6? exp(-y¥26D)dy = Q(E v/6%)a
VE ,
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wyhe[ (2]

f -y¥ 2)dy =
Q) - 1/‘~]2n{ exp (Y7 2y =% erfe(s/ \2). The ratio E y/ g2

1s called the signal to noise

Ratio(SNR)'

E;ample:4'3'2
Consider the example of the mariner code. Suppose that for a useful pict
1Icture, each

. wple M2 be wrong with probability p eat most 104 In case of no coding d
we nee

¢, /2= 1722 to achive this, since pe=Q({17.22) = 10/6,and PE = 1(1-p ¢)6 = 104
Next supposeé that we use [32,6]code, Correcting at most seven errors, at the same SNR

of 17.22. Since R = 6 /32, we obtain ‘p ¢'=~ 0.036 (note that this error probability is 2000

rimes as large as before 1) After decoding, we obtain erroneous 6- tuples with probability

32 : NI2—i ~ g
pE .Z ( ) )- (pl)p-pPi=14.1 0-3which is almost order of magnitude better than p &

i»7 l
Example:4.3.3
A binary channel has a probability q = 0.9 that Q transmitted symbol is received
correctly and a probability p = 0.1that an erasure occurs (i.e. we received ).On this
channel we wish to use a code with rate %. .Does the probability of correct
interpretation increase if we repeat each transmitted symbol? s it possible to construct
a code with eight words of length 6 such that two erasures can do no harm? Compare

the probabilities of correct interpretation for these two codes. (Assume that the

receiver does not change the erasures by guessing symbol).

Solution:

For the code using repetition of symbols the probability of correct reception of a

repeated symbol is | — p.Therefore the code of length 6 with code words (a1,a2,3 21,82,83)

has probability (1-p* )* = 0.97 of correct reception. The code of (s 1,32.83) = (1,1,0). This

27



sed by the ¢ .
an B cau ITor .(101()11),(011101

(

her This leads to a probability
ither-

0
(1P 996 of Correct of receptiop i
-1ering the fact that the tw Sisa Temarkable ip,
considering 0 codes are Very similar Provement
Defmition:4.3.4
A generator matrix G for a |inegr code Cisak b
Y I matrix for which the TOWS are a

pasis of C
Theorem:4.3.5

For a linear code C the minimum distance is equal to the minimum weight
Proof:

d(x,y)=d (x-y,0)=W(x,y)and ifx € C,y € C then x-y€eC,
4.4 Self Dual Code

Definition:4.4.1
If C is an [n, k] code we define the dual code C* by
C'={y € R|" xeC [ <x,y>]}.
Definition:4.4.2
The subspaces C and C* can Have an intersection larger than {0} and in fact they can
even be equal. If C=C" then C is called self-dual code.
Definition:4.4.3

d
If C i a code of length n over the alphabet Fawe define the extende

n+l

Code € by €={(C 1.6 2,000--C 0,C 1)1 (Gl c n)GC»Z G=

28



pefoition:4-44

Letn=(q * 1)/(q-1).The [
: n, n-k -
] Hamming Code over F

the parity check matrix has colympg that are Pairwise |ip, e
S¢ linearly ip

dependent (over F),

Hamming codes are perfect codes.

proof:

Let C be the [n, n-k i
] Hamming code over Fo, where n = (9-k)/(q-1),If xEC then

= - k e v .
,IB("N 14n(q-1)-q". Therefore the q+ disjoint sphere of radius larround the odeword
codewords of C
srkasal :
constant  |Cl;q"=q" words i.e, all possible words, Hence is perfect C a code Cc Q" with
c Q" wi

minimum distance 2e+1 is called a perfect code if every X€Q" has distance < e to exactly one

code-word.The fact the minimum distance is 2e+1 means that the code is e-error- correcting

The following is obvious. Sphere-packing condition. If C c Q" is perfect e-error- correcting

code ,then

IC| ' M@ = q-
i

Example:4.4.6

Suppose that we use an extended Hamming code of length n=2™ on a B.S.C, with bit
error probability p;(q:=1-p). The expected number of errors per block before decoding in np.
If one error occurs , it is corrected. If two errors oceur, then we have error detection but no
correction. So,the two errors remain. Otherwise, if is possible that the decoder introduces an
sed codeword. Therefore,

extra error by changing a received word with 2 3 errors into the clo

the expected number of errors per block after decoding is at most

2(g)p2qn-2 oF (i i+ 1))(?)!” q™

i=3
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48 Lee Weight

pcﬂnilion:-l.s.l

Consider Z, as alphabet. :
p The Lee weight of an integer i(0 <j<m)is .
=1<m)is defined by

we=min{i, m-1}.This Lee metric on Z," is de fned by n
-

(a) = Z uL(a),

i=]

where the sum is defined in No, we defined Lee distance by du(x,y) = wi(x-y)
2Y) = WiX-y).

Definition:4.5.2

The Lee weight enumerator of a code C ¢ Z," is defined by

Leec(x,y) = Yoec X WVHO

y " Note that Leec (x, y) = Swec (X, xy, y)
Example:4.5.3
1) Let C be a [2k+1, k] binary code such that C c CL Describe CL\ C

Solution:
Since C  CL every ¢ € C has the Property <c,c>, ie.w(¢) is even and hence
<¢,1>=0.However, <1,1>=1 Since the word length is odd. Therefore ¢\ C is obtained by
adding 1 to all the words C.
2) Let p be a prime .Is there an [8,4] self dual code over Fy?

Solution:

sl T 14) is the
) If p = 1(mod 4) then there is an ¢ € Fp such that o2 = -1. Then G145

generator matrix of the required code.
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z

j(mod 4) We 1S¢ the fact tha all the o
¢ Cmemq
Sof n

| ) 0 WhiCh s i A Bz,such that ¢ +] re $quareg
ol - -
prz"l' L v Henee hence they,
p»

1000 B y o :

01 0 0 -y B 0 0
¢= |0 0 1 0 0 o B

0001 0 0 - z

J) et be a binary code with generator Matrix

decode the following received words.

2) (11 01 0.1 1);

11011 1);

(011 1000);

From the generator matrix we find for c€C. cit+ertes=cytestes=ci+ertestester=0

Hence the syndromes (s1,52,83)=e1+eates,extestes,eitertestester),

For the three received words are respectively.(0,0,0),(0,0,1),(1,0,1),Hence (a) is a code word,
by maximum likelihood decoding (b) has an error in position 7(c) has an error in position 1
or an error in position 2,50 here we have a choice.

3) Let C be the binary [10,5] code with generator matrix.

1000000011
0100001100
G=lo0010010100
0001011000
0000111100

: : ived word x there is
Show that C is uniquely decodable in the following sense: For every receive

2 unique code word C such that d (%, ©) is minimal.
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46 The Gilbert bound:

Dcﬁnition:4.6.l

l

Deﬁnition:4.6.2

d = n-kt1. Such codes are optimal in the sense of |C| =

A (0, d). Usually
mn-kt1] codes are called maximum distance separabe codes (MDS ¢oq
codes

)
Theorem:4.6.3

For binary codes we have A (n2 1) = A(n+1, 21) We remind the reader of the

definition of a sphere Br (x), given in according to Block codes and we define;

. :
Vq (n,r) = |Br (x)| =§ (';) (q-1)! sphere-packing condition.
i=
In order to study the function o, we need a generalization of the entropy function defined in
the binary entropy function H is defined by H(0) = 0,H(x) = -x log x-(1-x) log(1- x),
(0<x < %5).We define the entropy function Hq on [0,e], where
Q:= (g-1)/q, by
Hy(0)= 0

Hq(x) = x logq (q-1)-x logax - (1-x)logg(1-x) for 0 <x<e.

Note that Hq(x) increases from 0 to 1 asx runs from 0 toe.

Lemma:4 6 4

=Hq(} )
Lemma 0 <1 <@, q> 2. Then limn>= ot loga Va (A2 o
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orem:4'6'5

<o othen a(8) > 1- Hy(8).
0485

By A(nd) 2 q" Vo(mud-1) and lim, ., log, Vo(h,[An )= 1

a(A). we have

= litpae 0" 10gq A(n3,) > lim, . {

N L og, Valn, 8,)), = |

Examplc:4-6u6

Consider a generator matrix for he (31

resulting code has d=10 and meets the Gi|per bound.
Solution:

The columns of generator matrix are the points (X1,X2,X3,X4,Xs) of PG (4,2). We know

that all the non zero codewords of the [31,5] code have weight 16. By the same result the
positions corresponding to X,=x,=0 yield a subcode of length 7 with all non zero weights
equal to 4 and the positions with x;-x,=x,=0 give a subcode of length 3 with all non zero

weights equal to 2.If we puncture by these ten positions the remaining [21,5] code therefore
k=1

has d= 16 - 4.2=0. From Griesmer Boundn> ). [d/qi] we find
i=0

n210+5+3 +2+ 1=21 ,i.e. the punctured code meets the Griesmer bound.
Lemma:4.6.7
If A and C are subsets of Q" then there is an x € Q" such that
|{(x+A)NC|/|A| 2|C|/ q".
4.7 Elias Bou;fl
Theorem:4.7.1

Let gn,d reN ,q>2,0-1-q" and assume that r<en and r* - 2enr + end>0.Then

Aln, d)<(end/rP-2enr+end).(qn/ vin,r)
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pro”
€ are subset of Q" then there jg o, XE (p
A AR T
i h thar
koW that an (nM.d) code has 4 Subcode wiyy " MG 1A
, ith i gl
we v
B go we may apply lemma, 1 WOrds whyies
M ! h - are n

o <k <
s }'iclds q Mv(nr) sksond/r-2op ond

- (hat =0 n,d > e nyields the plotting boyp d
l ,

efiton 1472

we denote by (n,d,w) the maximal number of code~words in 4 b

d inimum distance > d for which all codewords have wgight" : binary code of length n
Deﬁnition:4.7.3 |

Let C € Q" be a code with M words. We define

A=M {(xy) | x€C YEC , d(xy) =i}l

The sequence (Ai)'"; =0. is called the distance distribution or inner distribution is the

weight distribution.
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CYagg SECy,
. - RiTy
pefinition:5.1.1
We may wish to Measyre the di
| Slance of
objections we wigh g Measyre th Clemqm in 5 - If x
' Hen we dcﬁnc q * e s .
. ad; .
oduct of set with melfmapped - ; functig, on the
Iy
§: XxX =R T ot
o (Nonnegativlty) d(x,y) > 0)
¢ (Coincidence) dixy) >0 iy =y)
* (Symmetry) d(x,y) . d(y.x))
* (Triangle lnequnllty) d(xy) + diy,z)> d(x,2))

Definition:S.1.3

If a function satisfies all of the requirements of the distance function except
for symmetry, then it is a quasimetric. In this case, d(x,y) might not be the same as
dix,y). A simple 1llustration of this metric is a city that only has one way streets. The
distance between home and the office may not be the same as the distance between

the office and home depending on the streets

3%



nel and Index

2 K

Deﬁniti"“’s’z'l

; clidean metriC, SO it deﬁned on e
U

od

. L on the
etfic between two vectors x and e d(x

m .

. 'Y) de
he simip, .. . Ole the p
Milariy o Calleq gy lidea
Ky = €~ 40) Caussian g, |
If x=y, then d(X,y)=(), 50 ki "
(X,y)=1 from the Negative gigy -
know that the values of k(x,y) are between g i o ® Xponent, v
P Are only jf e
equal: YO Values e
Definition:5.2.2

sets and this will given as the Similarity calleq gy Jaccard index of gy - d
€ jaccar

coefficient. In precise terms the jaccard jndey Y& B)=14nBja up,

Let (0,0,0,0) and (0.1,0.1,0.1,0.1) be clements of the set R4, Theq the

Euclidean distance of the two elements is o.2. However, if we consider the Jaccarg
index, the similarity is 0, as the two vector have no elements in common. So the fact
that the Euclidean distance is small means that they are closed together by using that

metric but the similarity given by the Jaccard index implies that they are very

different.

Remark:5.2.3

bers in
LIf an open statement becomes true for all replacements by the 2 mem

b

i i statement for a given
in that universe (A bit more symbolically — if p(x) is an open

argument,
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1) If 3x - 7 =20, then IX = 27,

) if3x=27thenx =9,
3) Therefore, if 3x = 7 = 20, thep . 9.

y when we dealt with the upjye, OF all quagy, l
~ Cralg |
ound ourselves relat : " Plane 8Cometry, we ma
pave found © ing Something like thig: y
- uare i
“gince every 5q & rectangle, ang CVrY rectangle s , paralle|
. allelogram, it folows
(hat every Square is a parallelograyy, »

[n this case we are using the argument

p(x): X is & square q(x): x is a rectangle r(x): x is 5 Parallelogram

Definition:5.2.4

Let n be an integer. We call 1 evep if n s divisible by 2 - that is, if there exists
an integer r 0 that n = 2r. If n is not even, then we call n odd and find this case that
there exists an integer s where n =25 +],

5.3 The pigeonhole principle
Definition:5.3.1

In mathematics one sometimes finds that an almost obvious idea, when
applied in a In mathematics one sometimes finds that an almost obvious idea, when
applied in a rather , subtle manner , is the key needed to solve a troublesum problem .
On the list of such obvious ideas many would undoubtedly place the following rule,
known as the pigeonhole principle.
oles and m > n, then atleast one pigeonhole has

If m pigeons occupy n pigeonh:

tWo or more pigeon roosting in 1t.
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Any subset of size 6

| ey 9}, and the pl conho €8 are t 9
{l’ ’ '4 les ¢ he subscts {1
3 : ’

% Blosons (2.8
(5). When the six PIBSONS £0 10 their regpegy - b (2,8}, 13
Pigeonhol

(V]
one of the two-clement subsets whoge — » they must fill af Jeagt

Dcﬁnitlon:5.3.3

Forsets A and B, if D i
,ifDisag A xB » then my:D —A defined by 7, (
Y A a)b)=a

s called the projection of the first coordinate The functi
: ctiona. D — B, defined

by 8 (a,b), is called the projection of the second coordinate

Example:5.3.4

If A= {w, X, y} and B= {1, 2,3, 4} let D = {(x, 1), {x, 2), (x, 3), (¥, 1), (¥, 4)}. Then
the projection T : D — A satisfies ma (x, 1) = a (x, 2) = 7 (x, 3) =X, and 1A (3, 1)
=(y, 4) =Y. Since ma (D) = {x, y} CA, this function is not onto. Forng:D— B we
find that 78 (x, 1) =78 (¥, )= 1,78 (%, 2) =2, ng (x, 3) = 3, and 7g (y, 4) = 4, 50
ng(D) =B and this projection is an onto function.

5.4 Pseudo randaom generation :

Definition:5.4.1

The typical structure of a random number generator is as follows . There is

finite set S of states , and a function f: 85— . Thereisan output space U , and 21

ways take the output space to be (0,1).The

output function g S — U . We will al

d is
generator is given an initial value So for the state, called the seed . The see
i ated b
typically provided by the user - Then a sequeénce of random numbers 15 generated by

= Sn
defming;Sn=f(gn_”,n=1,2,3... U, =g (5
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A Pleudo - Random Bit Gener
ator (PR“(' _
?) I8 a detern
min

" given @ truly random binary sequence nstic algorithm

\A'h“:

oulpul a binary
nflcml"‘ b nary sequence of |(‘nﬂlh l(n) n Wi
ich appears (o he
random,

with 1(n) beng polynomial The input 1o the PRBG s cal
118 called the seed 2
. and the

salled a pseudo rar
Jput 18 ¢4 P dom bit sequence

mnnmon:S.J..\

Let g { 0.1}n = {0, 1}I(n) be an efficient (C
Cfﬁcwm (( «‘mpumhlc n pﬂl‘mnm(,;i time)
function ensemble, with 1(n) being a polynomial with I(n)>n. Let X and | be rande
. LEU / om
\anable uniformly distributed respectively on {0, [ 1n and on {1 I(n)}. The
| t1,....(n)}. Then g 15 a
next bit unpredictable PRBG, it for all adversaries. A running in polynomial ime the

<ucoess probability (Prediction Probability) of A for g
P[A(l, g(X)[l,,l-l }) = g(x)l ] _P_(}n_) < fOl’ a“ p

Where p is 8 polynomial.

5.5 The Blum - Blum Shub Generator

Definition :5.5.1

Letn € N Thena € Zn* called a quadratic residue modulo n if there exists b €

Z,* such thata = b* (mod n)

The set of quadratic residues modulo n is denoted by Q R,. Furthermore, Q NR:™

Z,*\ QR is called the set of quadratic non residues.

Example:5.5.2
For Zy;* , We have QRz3 = { l,2,3,4,6,8,9,12,13,16,18}
and

QNRys = (5.7,10,11,14,15,17,19.20.212%)

Definition :5.5.3
39



Let P be an odd prime. Foy 4 € Zp

the g
an 0 p/a
51" lae QRp
~laggpg p
lowing theorem shows hoy, W com
i PUte the legende symbol of
N of an elemen
N7/

d pri d .
Lcleca"Od prime an LctazZp‘.Thcn(s)za"T‘.(modp)

proof :

Letae QRp,i.e a=b? in Zp* for some b ¢ Zp*

21ty 2t g !
Then a =~ (b*) T b !I(modp)becamoffonnax‘slinlcmcorcm.Lctac

QNP . Let g be a generator of Zp* (4 cyclic group of order p-1). Then = g for some

odd t = 2s+1 (OthrWiSC, a= g' = 82"(3’)2).60(1 a2 .(g:)pn.(gz.),n .89-1‘2
g*'? (mod p) Now (g *'%)! = | hence g *'7 ¢ (-1,1)

- Because g is a generator of
Zp*®, the order of g is equal to p-1 and gp-1/2=-].

Example:5.5.5

Letn=p.q=7.19= 133 and s = 100.Then we have x0 =002 (mod 133) = 25.
The sequence x; = 252 (mod 133) = 93 , x; = 932 (mod 133) = 4 » X3 =42 (mod 133)
=16, x4 = 162 (mod 133) = 123 produces the output 1,0,0,1.
Properties:5.5.6
Pseudo-Random Numbers:
* Problems when generating pseudo-random numbers.
* The generated numbers might not be uniformly distributed.
* The generated numbers might be discrete-valued instead of continuous-valued

* The mean of the generated numbers might be too high or too low.



variance of the 8enerateq Numbey, s
. The

¢ might be dependence
 Thef

tocorrelation between Numberg
. AU

Ing three Conditions holq (Hull ang
Dobell, 1962)

1. The only positive integer that (exactly) divides both, », and ¢ s |

2.1f g is a prime number that divides m, then g divides a-1.

3.1f4 divides m, then 4 divideg a-1.
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SECT 'TY

™ ity is defined
ty 18 defined ag ¢ g
o 2les angd Processes

computer hardware, gofiy, - “omstructed to protecy
e Ware, networkg

0 terrorists and hackers. Error

i coding has been used extensively ip digital Communicati
| | On systems because
, . ivenes ievi i
of its ©8t effect $ In achieving efficient, reliable digital transmiss; C
1ssion. Coding

o plays a0 important role in the design of moder communication syst
ems.

Cyber security Applications
Nature of Cyberspace

Cyberspace is virtual space that use electronics and electromagnetic spectrum to
store, modify and exchange information through the use of networked system and
concened physical structure . It is intangible where communications and internet

related activities take place. Cyberspace is imaginary where contained objects are

neither exist nor representation of physical world.
Salami Attack

In this cyber criminals and attackers steal money in very little amount from several
bank accounts to make a huge amount. The alteration becomes so insignificant that in
asingle case it would be difficult to notice. It is general perception that no customer

will probably notice this unauthorized deduction, but it will be beneficial to cyber

‘nminals that make large money.
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coﬂduct IP spoofing, a hacker first m akes from 5 truStWorthy .
em rce.

10 f . d pt to ﬁnd an try.
ification an : sted
jnd the? mod: alteration of pcyeys are dope ¢ P s
ted form original O show thy the
g generate ginal host, Packets are
coding Theory Applications:

[ gatellite Communications

Two of the most treasured resources iy satellite commup;af:
cations are power and

pandwidth. Error 'control coding often useq to improve the transmission quality,
yhich is otherwise compromised by interference and power limitations.FEC
cchniques tends to be more widely used than ARQ techniques, which require data
rtransmission.  In - satellite  communication systems, convolutional codes with
constraint length 7 are widely used. Block codes are also applied in some satellite
systems .

Examples of using block codes include a (31, 15) RS code for the joint tactical
information distribution system (mDS), a (127, 112) BCH code for the INTELSAT V

system, and a (7, 2) RS code for the air force satellite communications (AFSATCOM)

wideband channel.

In Mobile Applications

i ing are dominant.
In the mobile environment, it burst errors due to multipath fading

— imi code rate must
Since the bandwidth available to each channel 1S strictly limited , the

i i include a decoder,
b high. Furthermore. since each mobile terminal must obviously
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g probability of und
emunng ’ etected error of less than 10-10
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INTRODUCTION

Fuzzy sets are sets whose elements have degrees of membership. Fuzzy sets
were introduced independently as an extension of the classical notion of set.
Fuzzy relations, which are now used throughout fuzzy mathematics and have
applications in areas such as linguistics decision making and clustering. The
fuzzy set theory can be used in a wide range of domains in which.information is

incomplete or imprecise, such as bioinformatics.

Applications of fuzzy logic and fuzzy set theory in Decision — making,
Pattern recognition, Image processing, Control systems, Neutral networks,

Genetic algorithm and in many other areas have given significant results.

The Project consists of five chapters.

In chapter 1, we have discussed the basic concepts of concepts of Crisp Sets
and to introduce notation and terminology useful for our discussion of fuzzy
sets.

In chapter 2, we have discussed about properties of fuzzy matrices.

In chapter 3, we have discussed about Fuzzy Relations and Compositions,
the concept of relations in the same manner as fuzzy sets generalize the
fundamental idea of sets.

In chapter 4, we have discussed about Fuzzy Graphs and Relations, the
usual convention between binary relations and Boolean matrices

In chapter 5, we have discussed about the Applications of Fuzzy Graphs

in numerous applications in diverse parts of Science and Engineering like
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Broadcast communications, producing, Social Network, man-made reasoning,

data hypothesis, neural systems and arranging and so forth.
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CHAPTER 1
PRELIMINARIES

1.1 DEFINITION OF FUZZY SETS

1.1.1 EXPRESSION FOR FUZZY SETS

Membership function pa in crisp set maps whole members in universal set X

to set {0,1}

pa: X =0, 1}

Definition: 1.1.2

In fuzzy sets, each element is mapped to [0, 1] by membership function.

pa: X-[0, 1] ;

Where [0, 1] means real numbers between 0 and 1 (including 0, 1)
1.2 EXPANSION OF SETS

Definition: 1.2.1

The value of membership degree might include uncertainty. If the value of

membership function is given by a fuzzy set, it is Type-2 fuzzy set. This concept can

be extended up to Type-n fuzzy sets

Definition: 1.2.2

The term “Level-2 set” indicates fuzzy sets whose elements are fuzzy sets.

The term “Level-1 set” is applicable to fuzzy sets whose elements are no fuzzy sets

ordinary elements. In the same way, we can derive up to level-k fuzzy sets

(¥ Scanned with OKEN Scanner




1.3 a-CUT SET

Definition: 1.3.1

The a-cut set Aa is made up of members whose membership is not less

than a.

Ay = {x€X/pa(x)=a}
Note that  is arbitrary. This a-cut set is a crisp set.
Definition: 1.3.2

The value a which explicitly shows the value of the membership function, is

in the range of [0, 1]. The “level sei” is obtained by the a’s.
ie. ap={a/ ua(x)=a,a =2 0,x € X}

1.4 CONVEX SETS

Definition: 1.4.1 (

Let the universal set X be defined in n-dimensional Euclidean vector
space R™. If all the a-cut sets are convex then the fuzzy sets with these a-cuts are also

convex. In other words, if a relation,

Ha®) 2 Min [ pa (v), pa (s)]

Where t= Ar + (1- A) s, 1, s € R, A € [0,1] holds, the fuzzy set A is convex.
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1.5 FUZZY NUMBER

Definition: 1.5.1

If a fuzzy set is convex and normalized, and its membership function is

defined in R and piecewise continuous, it is called as “Fuzzy Number”.

1.6 FUZZY CARDINALITY

Definition: 1.6.1
The possibility for number of elements in A to be|Ag |isa. Then the

membership degree of fuzzy cardinality | A l is defined as,

Ha) ( |Azl ) =a, a@ € Aa

Where A, is a a-cut set and pa s a level set.

1.6.2 SUBSET OF FUZZY SET

If there are two fuzzy sets A and B. When their degrees of membership are

same, we say “A and B are equivalent”. i.e.
A=Biff pua (x) = us (x), Vx e X.
1.7 STANDARD OPERATION OF FUZZY SETS

1.7.1 COMPLEMENT

We can find complement set of fuzzy set A in crisp set. We denote the

complement set of A as A. Membership degree can be calculated as following,

ug (x) = 1- pa (x),¥ x € X.
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1.7.2 UNION

Membership value of member x in the union takes the greater value of

membership between A and B.

Bauvs (X) =Max [ pax), us(x)], V x € X.
1.7.3 INTERSECTION

Intersection of fuzzy sets A and B takes smaller value of membership function

between A and B.

fanp (X) =Min [ pax), us(x)], VXEX

(¥ Scanned with OKEN Scanner



CHAPTER 2
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CHAPTER 2

FUZZY MATRICES

Definition: 2.1

Let A be a n x m matrix defined By

a;1 A1z ... A

a1 Qzz .. QAm
A= . Y :

an, anz .. anm

The matrix A is called Fuzzy matrix if and only if a;; € [0, 1] for 1 < i<n and 1<j<m.
In other words, any n X M matrix A is a fuzzy matrix if the elements of A are in the

interval [0, 1].
Definition: 2.2

We define fuzzy addition +, fuzzy multiplication. , and fuzzy subtraction -,

as follows:

a+b =max (a,b),

a.b = min(a,b), and
_(aifa>b
&b _{OifaSb.
Proposition: 2.3

Let A, B, C be three n x n fuzzy matrices. With the fuzzy addition defined in

Definition 2.1, we have the following:
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(1) A+B =B+ A (Commutativity),
2) (A+B)+C= A+ (B + C) (Associativity),

(3) A+0=0+ A=A (Additive Identity).

Proof:

Q11 Q12 . aln" b11 b12 o b1n
U1 O3z . Q2N by, .. ban

Let A=|® G2 v @M g b?1 22w 02
an, an; .. ann| bn, bny .. bnn
€11 C1z . Cﬂq
C1 C2 .« C2n

andC=| . .
cny cnz . Cnnj

(1) Observe the following:

[A11 Q12 .. GaN b11 blz " b1n
A+B= a:21 a:22 --- az:n + b21 bzz ..:. bzn
Lani anz .. ann bn, bn, .. bnn
'max( ay1,b11)  max(aiz, bi2) .. max(an,bin)
_ max(dz1,b21) max(az,bz2) . max( azn, ban)
{max( any,bny) max(ang,bng) .. max(ann,bnn)
On the other hand,
-bn b12 o b1n a1 Az .. 41N
B+A = b:n bfz bzzn 4 a:z1 azzz o a?n
lbn, bny .. bnn] lam amp .. ann
" max(byy,@11) max(biz a1z ) .« max(bin,a;n)
_ | max(bz1,621) max( bzz,a22) .. max(ban,azn)
{max( bnyan,) max(bngany) .. max(bnn,ann )

Thus A +B =B + A. It follows that the addition of fuzzy matrices is qommutative.

6
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(2) Observe the following:

a1 a2 amn b11 b1z bin
a a an b b bon
(a+B)+C=| [T T : o :

any an, ann bny bn; bnn

cq1 €12 .. Cint

c c v Can

7% 2 %

cm, cnz .. cnn

max( ai, b11) max( aiz, blZ) max( an, b1n)

max( az;,bz1) max(azz,bzz) max( azn, bzn)

max( an;,bn;) max(any,bnyz) max( ann, bnn)

Ci11 C12 .« Cqn
C21 Cz22 .. Cn
+ . . . H

cny cny .. cnn

max(max( a;n,bin),cin)

max(max( ai1,b11),€11) max(max( @iz,bi2),C12)
max(max( azn,bzn),c;n)

max(max( Qz1,b21),¢21)  max(max( azz,b22),€22)

max(max( any,bny),cn;) max(max( anz,bn,),cnz) max(max( ann,bnn),cnn)

max( ain,bin,cin)

max(ai1,b11,611) max(az,biz,c12)
max( azn,bzn, can)

max( az1,b21,C21) max( azz,bzz, C22)

max( any ,bny,cny) max(anz,bnz, cny) max( ann,bnn,cnn)

a;; Q2 ... @n
az1 Qazz .. Qan
A+ (B+C) = : : ; +
an,; an ann
by4 biz b1n Ci1 C12 « C1Nn
b1 bz bzn + C21 C22 .. Can
bny bn, bnn cny  Ccn, cnn
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a;; Qg2 ... an
az1 Q22 .« azn
H : " : ot

an,; anz .. ann
max( b1n,C1Tl)

max( byy,c11) max(biz,C12)
max( bzn, con)

max( b1, C21) max( bZZ ’ CZZ)

max( bny,cny) max(bng,cnz) max( bnn, cnn)

max(ain, max(bsn ,cin))

max(asq, max(by1,c11)) max(aiz, max(biz,c12))
max(azn, max(bzn , c2n))

max(azq, max(bzs,c21)) max(azz, max(bzz,c22))

max(an,, max(bn,,cn;)) max(anz, max(bn;,cn;)) max(ann, max(bnn , cnn))

max( ayn,bin,cin)

max( ai1,b11,¢11) max(aiz,b12,C12)
max( a;n,b;n,cn)

max( azi1,b21,C21) max( azz,b2z,Cz22)

max( any ,bny,cny) max(anz,bny,cny) max( ann,bnn,cnn)

Thus (A + B) + C= A+ (B +C). It follows that addition of fuzzy matrices is

associative.

(3) Observe the following:

a1 AaAiz am 0 0 0
a azn
lany an; ann 0 0 0
max( a1, 0) max( aiz ,0) max( an ,0)
_ max( az1,0) max(azz,0) max( azn,0)
|max( any,0) max(anz,0) max( ann, 0)

a1 Qa2 an
az1 Qzz .. an

an; ang ann

Thus A + 0 = A. Since fuzzy matrix addition is commutative (Property 1), it follows

that A+0 = 0+A = A.
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Proposition 2.4:

Let A be an n xn fuzzy matrix. With the fuzzy subtraction defined in

Definition 2.1, we have the following:

(1) 0-A=0,
2) A-A=0,
B)A-0=A,

Proof:
a; a2z .. an
a e
LetA= a.u zz : afn
an; anz .. ann

(1) Observe the following:

[0 0 .. O ai1 Q12 an
0-A= O (') 0 _ a;21 azzz .. afn
[0 0 0 an, anz .. ann
['0 — a11 0—azz .. 0-—ain
_|0—az 0—az 0—azn
[0—an; 0—an; 0—ann
[’0 0 .. 0
_ 0 0 ..0
0 0 .. O
=0.

Thus 0-A = 0.
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(2) Observe the following:

a1 Q12 .. ain ajg; Qiz - an
a; a . azn
A-A=|T 2o G (0n G G0
lan; an; .. ann an; anz .. ann
[Q11— Q11 Q12— Q12 . Q— AN
- Q71— a1 Qzp—0azz .. aan—Aazn
lan; —an, anp—an; .. ann—ann
0 0 .0
_|0 0 . 0
0 0 .. 0
=0.
Thus A - A =0.

(3) Leti,jEZ" . Note that for any 1<, j <n, ajj> 0. Suppose a;;> 0. Observe

the following:
a1 Qiz .. QN 0 0 0
N o
an; anz .. ann 0 0 .. 0
a;1—0 a2—0 an—20
_ a21—0 azz"-o azn-O

any—0 anz=0 .. ann—0

a1 Q2 an
Az1 Q22 azn

any anz .. ann

=A.

In other words, ajj -0 = ajjsince a;;> 0. Suppose a;j= 0. Then a;j—0=0=aj.

Since a;;<0. Thus A-0=0.

10
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Lemma 2.5:

The fuzzy multiplication is distributive with respect to the fuzzy addition. In

other words, if 3, b, ¢ € [0, 1], then a (b + ¢) = ab +ac;
That is, min(a, max(b,c)) = max(min(a,b),min(a,c)).
Proof:
Leta, b, c €[0, 1]. It suffices to consider the following six cases:

(ha £b =gc
2)a ¢ £b,
@)b £a=sq
@b <c <a
(S)CSaSb,

©6c<b<a

For Example, for case (1), we have:
a (b+c) =min(a, max(b,c))

= min(a,c)

On the other hand,

ab + ac = max (min(a,b), min(a,c))

= max(a,a)

11
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Thus case (1) 1s proved. The proofs of the other five cases are sim;]
milar to case (1)

proposition 2.6:
Let A’ B’ Cben x i i
nfuzzy matrices. Thep with the fuzzy operations

We have:

(1) A0=0.A=0,
(2) A (B+C) =AB + AC, (Distributive)
(3) A.I=1A = A (Multiplicative Identity)

(4) (AB)C = A (BC) (Associativity).

Qi1 Q12 .. ain bu blz v bin
a a we  agn
Proof: Let A=| -+ 22 " % p= b.n bz .. ban

any anz .. ann bny bn, .. bnn
€11 Ci12 .. C1n

€21 C22 .« Cont
andC=| 2t "% 2" | be fuzzy matrices, and Leti,j€Z" .

cny cnz .. cnn

(1) Observe the following:

[A11 Q12 an] [0
az; Q2 .. amm| |0

lany anz .. annJ 00 ..0

(X311 X1z e XAl
X21 X2z . X2l

| xn4 XNy .. XNNJ
where for each 1<, j <1, Xij = max {min(ax,0),1 Sk < n}. Note that i 4

and therefore, min(ai ,0)=0. It follows that x;;=0.

On the other hand, we have:

12
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0 o Q
11 a
10 0 12 an
0.A= H ¢ . a.21 @22 an
00 L 5
0l lan; an, aiin
X11 X12 .. xin
= X21 X22 .. Xn

xnl xnz P xnn

where for each 1<, j <n, x;j = max {min(0, ay)),1 <k < n}. Note that ax > 0
i 0,

and therefore, min(0, axj) = 0. It follows that x;= 0

Thus, we have that A.0 =0.A = 0.

Vi1 Vi .. vn
(2) Let 1 <i,j<n NoteB+C=|'2t Uz = van

vng vn, .. vnn
where vj; = max(bjj, cj).

Wii Wiz .. wWin

w "% e Won
Then A(B+C)=|; .= . )

wn,; wnz .. wnn

, where wij = max {min(aix , vi;), | <k <n}.

X111 X12 .. Xqn

X21 X22 . X2N
H . . H ’

Now note that AB = : :
xnqy Xnz .. xXnn

where xij = max {min(ai , byy), | <k <n},

Yi1. Y1z . Y1l
And AC=|"20 Y2 7 Y| here yj = max{min(a, ¢k, | Sk<n). It
ng ynz .. ynn
Z11 Z12 - 21N
Zy1 Zz2 - 221

follows that AB + AC = , where

Zng ZNz znn
Zij = max {min(xg, y;),1 <k <n}. Inother words, for any 1 <k <n, we have:

13
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zjj= max {max(min(ai, b)), max(min(ay, ci))).

Note that wij = max {(3ik,Vij)} = max {min(ag, max(by, ci)), 1 <k <n}. It suffices to

show that wij = Zij; that is,
max {mln(xU! yij)s l S k S n} = lnaX{min(a[k, maX(bkj, ckj)), 1 S.k S n}.
Observe the following:

zij = max {max(min(aix, bxj)),max(min(aj, cxj))}

= (aitbyj + apbzj +....... + aikbix ) +
(aircijtapcyt....... + aik Ckj )
= (aibij + ail Cllj) + (aigbzj+ aizczj ) Fooennnnnn. + (aikbix+ aik Ckj )

= max {(min(ai, bkj),m_in.(aik, cK)}
By Lemma 2.5 , we have that max {(min(aix, bx),min(aix, ck)} = min {ayj , max (b,
Ckj)}
Now observe the following:
zij = min {aik , max (bij,C )}
= min(aik , Vkj)
= Wijj .

= C.
Thus z;; = wj; . It follows that A(B+C)=ABTA

10 8
(3) LetI= ? 1 ;
0 0 1

14
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_Observe the following;

@11 Qiz .. @n] 1 o 0

a1 Q42 .. az;n
A.I= : . . . 0 .‘} 0
any anz .. annj |o 0 1

X11 X12 . X1

X212 X2 . Xom

k]

Xxn{y xXnz .. xnn

Where for each 1 <j <n, x;j=max{min(ajj,1 ), min(ap, 0), | <p<n, 1 < q<

n,p#i,q#j}. It follows that xij = max(ajj, 0) = a; Therefore A.I=A.

On the other hand,
1 0 .. 0 a1 a2 .. ain
0 1 .. a a v a
I.A= : : : 0 ' :21 :zz . %n
0 0 . 1 anl anz W« ann
X11 X12 . XN
_ %21 X2 em XN
- : : . $ ’
XNy XNz .. Xnn

Where for each 1 <i<nmand 1<j< n,xj=max{min (1 ,aij ), min (0, apq ),1<p<n
J<q<n,p#i,q#)}. It follows that x;j = max( 0, aij) = a. Therefore A.1=1.A

=A.
(4) Observe the following:
(AB) C = Zi=1(AB)x Ci
= 32, atix ( =1 biem Omi)
= Y em=1 Ak bkm Cmj

= ZT’: m=i mil’l( aik, bkm, cmj)

15
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= Lkm=1 Min( ayn, Bouk,y Cij)
=(AB)C.
Thus (AB)C =A(BC).
2.7 DEFINITION OF SQUARE MATRIX
Definition:2.7.1
The determinant |Ajof n x n fuzzy r@atrix A is defined as

|A] = det(A) = X acsn la(1) 820(2) +-++-Bnc(n) where S, denotes the symmetric group of all

permutations of the indices (1,2,....,n). [2]

Example: 2.7.2

0 04 1
02 03 0.5

0.7 0.1 0.9
Let A=

Then,

@) =07 g3 o] +01 o2 o) 09 loz 03
= 0.7 (min(0.4,0.5) + min(1,0.3)) + 0.1 (min(0,0.5) + min(1,0.2)) + 0.9
(min(0,0.3) + min(0.4,0.2))
= 0.7(0.4+0.3)+0.1(0+0.2)+09(0+02)
=07 (0.4)+0.1(02) +09 0.2)
=0.4+0.1+0.2

=0.4.

16
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Remark 12,73

tt in the case of classica] matr;
(1) Recall ttint ssical matrices, we al
) ternate between adgis;
Ition and

subtraction when calculating the determ;
minant, but i the ¢
’ ase of fuzzy matrice
S)

we only use fuzzy addition,

(2) We have that det(A) det(B) = det(AB). But this is not always true.f fuzzy
or

matrices. For instance, consider the fo]lowing examples:

Example: 2.7.4

0.7 01 09 02 01 0
LetA={0 04 1]|andB=|gg 1 03] be two fuzzy
02 03 05 0.4 09 04
matrices. Then
04 1

dei(a)= 07 |5 o[+ 01 |0(.)z 0?5|+°'9 0.2 8:

= 0.7 (min(0.4,0.5) + min(1,0.3)) + 0.1 (min(0,0.5) + min(1,0.2)) + 0.9
(min(0,0.3) + min(0.4,0.2))

= 0.7(0.4+0.3)+0.1(0+0.2)+0.9(0+0.2)

= 0.7 (0.4) +0.1(0.2) + 0.9 (0.2)

=0.4+0.1+0.2

=04,

Now observe that

dai®)=02 gy | +0: e 8?2|+°|8:i 09

17
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= 0.2 (min(1,0.4) + min(0.3,9)) + 0.1 (min(0.8,0.4) + min(0.3,0.4)) + o
(min(0.8,0.9) + min(1,0.4))

=02(004+03)+0.1(04+ 0.3)+0(0.8 + 0.4)

=0.2 (0.4) +0.1(0.4) + 0 (0.8)

=02+0.1+0

=0.4.

It follows that det(A) . det(B) = min(0.4,0.2) = 0.2 . On the other han d

07 01 09 0.2 01
o
02 03 0.5/ 10.4 09 04

X11 X1z X13
X21 X2z X23

X31 X3z X33

max(0,0.4,0.4) max(0,0.4,09) max(0,0.3,0.4)
max(0.2,0.3,0.5) max(0.1,0.3,0.5) max(0,0.3,0.4)

l’max( 0.2,0.1,0.4) max(0.1,0.1,09) max(0,0.1,0.4) ]

= (04 09 04

[0.4 0.9 0.4‘
04 05 04

where

X11 =max (min (0.7, 0.2), min (0.1, 0.8), min (0.9, 0.4)) ,
X12 = max (min (0.7, 0.1), min (0.1, 1), min (0.9, o.§)),
X13 = max (min (0.7, 0), min (0.1, 0.3), min (0.9, 0.4)),

X1 = max (min (0, 0.2), min (0.4, 0.8), min (1, 0-4),

18
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xzz = max (min (0, 0.1), min (0.4, 1), mir (1,09))

xas = max (min (0, 0), min (0.4,0.3), min (1,
x31 = max (min (0.2, 0.2),

min (0.3, 0.8), min (0.5, 0.4))

x32 = max (min (0.2, 0.1), min (0.3, 1), min (05, 0.9)

3 = max (min (02, 0), min 0.3, 0.3), min (0.5, 0.4y

m <0423 S 0s[04 04, ps 0

= 0.4(min(0.9,0.4) + min(0.4,0.5)) + 0.9(min(0.4,0.4) + min(0.4,0.4)) + 0.4

(min(0.4,0.5) + min(0.9,0.4))

= 0.4(0.4+0.4)+09 (0.4+04)+0.4 (04 +0.4)
= 0.4 (0.4) +0.9(0.4) + 0.4 (0.4)

= 0.4+ 0.4 + 0.4

=04,

Therefore det(A) det(B) = 0.2 #0.4 = det(AB). Also, note that det(A) + det(B) =0.4.

Now observe the following:

07 01 09 02 01 O
A+B = ’ 0 04 1|+[08 1 03
02 03 05 04 09 04

= | max(0,0.8) max( 0.4,0.1)  max(1,0.3)

max( 0.7,0.2) max(0.1,0.1)  max(0.9, 0) l
) max( 0.2,0.4) max( 0.3,0.9) max(0.5, 0.4)

19
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=108 1 1

[0.7 0.1 09
0.4 0.9 0.5]

det(A+B)=0'7|o%9 0?5|+0‘1|g:2 |+° |o4 I
0.9

0.7 (min(1,0.5) + min(1,0.9)) + 0.1 (min(0.8,0.5)+ min(1,0.4))

+ 0.9 (min(0.8,0.9) + min(1,0.4))

0.7 (0.5+0.9) +0.1(0.5 + 0.4) +0.9(0.8 + 0.4)
=0.7(0.9) +0.1 (0.5) + 0.9 (0.8)

= 0.7+0.1+0.8

= 08.

Therefore det(A) + det(B) = 0.4 # 0.8 =det (A+B). Thus

det(A) + det(B) # det(4 + B).

Proposition 2.7.5:
a;1 Qiz .. Q1N
Qz1 Q2 . Q2N
LetA = ,21 :22 2 be an 1 X n fuzzy matrix. Then det(A) =
an, anz .. ann
det(AT).
Proof:

Let A= [a“ ] It follows that det(A) = max(min(an azz), min(azaz1).

ai1 21]

Now note T= [
that A ay; 22

Then det(A) = max(min a1 az2), min(a12az1)) = det(A)

20
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bis bz b1 bir by b
LetB= [bz1 bz, bzs] + Then BT = [blz bi: b§:
bs1 bsz bas b1z by; b, '

observe the following:

b12 b13
bsz  bs;

baz bas

biz b
bsz bas = s

+b21
b22 23

+‘b31

det(A) = bu1

bz biz
bz b3

biz bs,
bis baal + ba

+b21|

b12 b22|

=b
. b13 b23

bi1 bz1 bas
b1z b2z b3z
bis bas bas

= det(BT).
2.8 TRACES OF FUZZY MATRIX

Proposition: 2.8.1

Let A and B be two n x n fuzzy matrices, and let A be a real number such that

A € [0,1]. Then we have the following:

(1) Tr(A) + Tr(B) = Tr(A + B),
(2) Tr(A) = Tr(AT),

(3) Tr(MA) = ATr(A).

Proof:
a;; Q2 .. Q1N by b1z .. bin
Leta=|®t G2 = @M gp|bn bz - bg" be two fuzzy
an, an; .. ann bn, bn .. bnn

matrices.

21
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(1) Note that Tr(A) = ay; + ay, +
b22 ..... b= max(ay, 1822, ....ag,) -
Then we obtain:

Tr(A) + Tr(B) = max(max(aj, ay,
. 1'[‘laX(a”! a22, ...y ann, b“s b22, seey bnn)

maX( ai !bll) maX( aiz, blz)

A4B = max( 031 1ba1) max( a?z vb23)

max( any,bny) max(ang,bn,)

It follows that

1222, ..., ay,) and Tr(B) = by, +

vy ann), maX(bll, b22; ey bﬂﬂ))

max( a;n, byn)
max( azn ' bzn)

max( ann ] bnn)

Tr(A + B) = max(max(an, bi), max(az, bz), ..., max(am ban))

= max(ai1, b11, 22, b22, ..., ann, ban)
= max(ai1, 822, ... n, b11, b22, ..., bon).

Therefore Tr(A) + Tr(B) = Tr(A + B).

a1 Qds2 .. ang
a a . an
(2) Note that AT=| "2+ 72 7 TF

a;n a;n .. ann
Thus Tr(AT) = max(ai1, @22, ..., ) = Tr(A).

(2) Let A be an n x n fuzzy matrix,

Then )A = {min(}, aij ) : 1 <i<n, 1<) <n}. It foll

Tr(AA) = max{min(}, aij )}.

Note thatTr(A) = max{aii}. Then 2 Tr(A

Tr(AA) = A Tr(A).
22

and let A be a real number in the interval [0, 1].

ows that ,

) =min{}, max(aii)}. Then by Lemma 2.5,
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CHAPTER 3
FUZZY RELATION AND COMPOSITION
pefinition: 3.1
Fuzzy relation has degree of membership whose value is (0, 1]

HR: AXB —[0,1]

R={lxy), KR, V)] | BR (%, ) 20, x € A,yeB}
Here,
HR(X, y) is interpreted as strength of relation between x and y.

Fuzzy binary relation can be extended to n- ary relation. If we assume
X1,Xz,....Xn to be fuzzy sets, fuzzy relation R € X1xX»x.....x Xu can be said to be a
fuzzy set of tuple elements (X1,X2,...Xa) Where x1€X1,x2€Xa...., Xa € Xa
Example: 3.1.1

For instance, Crisp relation R in the following figure (a) reflects a relation in

AxA. Expressing this by membership function pr (a,c)=1, pr(b,a)=1, pr(cb)=1and
HR (c,d)=1

If this relation is given as the value between 0 and 1 as in figure (b), this
relation becomes a fuzzy relation.

Expressing this fuzzy relation by membership function yields,

ur(a,c)=0.8 ur(b,a)=1.0 ur(c,b)=0.9  pr(c,d)=1.0

23
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0.8
c 1.0 c
|1
b b 09 1,0
d d
Figure 3.1 Figure .
(a) Crisp relation (b) Fuzzy relation
its Corresponding matrix is as follows:
A a b c d
a 0.0 0.0 0.8 0.0
b 1.0 0.0 0.0 0.0
c 0.0 0.0 0.0 0.0
d 00 00 00 00
3.1.2 DOMAIN AND RANGE OF FUZZY RELATION
When a fuzzy relation R is defined in crisp sets A and B, the domain range of this

relation are defined as:
Hdom®)(X) = Max PR )

Hdom(R)(Y) = max PR x,5)

24
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COMPARISON OF RELATIQNg

i 1 -\
M Reflexive Anti Symmetic o
[ation Reflexive
Rela Symmetric
\
v Py I
Equivalence Y
e ) T\“\-\
Compatibility
v
v
pre-Order
e
v v y
Order
v 7 ,
Strict order
3" - Table 3.1
3.2 FUZZY MATRIX

Given a certain vector, if an element of this vector has its value between

0 and 1, we call this vector a fuzzy vector. Fuzzy matrix is a gathering of such

vectors. Given a fuzzy matrix A=(ajj) and B=(bjj), we can perform operation on these

fuzzy matrices.

(1) SUM

A + B = Max [ajj,bi]

(2) MAX PRODUCT

AB = AB = Maxk [Min (aik,bk)]

25
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(3) SCALAR PRODUCT

AA where 0<<]

a b c . X i
al 02 05 00 15 " -
A=b| 04 10 0l B= 0.0 ob 0
|l 00 1.0 00 0.0 1.0 0.1

a b c

al 1.0 0.5 0.0

A+B= b| 04 1.0 0.5

c | 0.0 1.0 0.1

a b c

al 02 0.1 0.5

AB= b| 04 0.1 0.5

c| 00 0.0 0.5

26
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Here let’s have a closer look at the prod
uct AB of A
and B, For

pstance, in the first row and second column of the matriy ¢z g th
—A.D, the value 0.1

(
ow (02,05 and 0.0)

‘s calculated by applyi i :
=0.1) 18 cal ¥ applying the Max-Min Operation to the yajyeg of the first
. rs

0.2 0.5 00

0.1 0.0 1.0

Min {
0.1 0.0 00 = Max
In the same number ¢13=0.5 is obtained by applying the same procedure of

Calculation to the first row (0.2, 0.5, 0.0) of A and the third column of B(0.0,0.5,0.1)

02 05 00
0.0 05 01
0.0 05 00

And for all i and j, if aj; < bjj holds, matrix B is bigger than A,
a;j< by <=> A<B

Also when A<B for arbitrary fuzzy matrices S and T, the following relation holds

from the Max-product operation

A <B<=>SA<SB,AT<BT
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Deﬁniﬁon: 3.2.2

If a fuzzy relation R is given in the fi
tnx, i

. ts element
represents the membership values of thig relation

That is, if the matrix is denoted by g (i), hen M®)= (ur (i)
= (ur (i,

3.3 OPERATION OF FUZZY RELATION

We know now a relation is one kind of sets. Therefore we can apply
opcrations for fuzzy set to the relation. We assume REAXB and Sc AXB,
(1) Union Relation
Union of two relations R and § is defined as follows:
V(x,y) eAxB

Hrus(%, y)=Max [ug (x, ), 45 (x,)]
=t (x, y)vps (x,y)
We generally use the sign v for Max operation. For n relations, we extend it to the
following.

KR, URyUR3 U, UR, (X ¥) = Ve pri(x, y)

If expressing the fuzzy relation by fuzzy matrices, i.e., Mg and Ms, matrix Mgys

concerning the union is obtained from the sum of two matrices Mg + M;

MRUS=MR -+ MS

(2) Intersection relation

The intersection relation R N S of set A and B is defined by the

following membership function.
28
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Urns(X) = Min[ug(X, ¥), us(x, )]
=ur(x%, ¥)\us(x,y)
The symbol A is for the Min operation. In the same manner, the intersection
relation for 1 relations is defined by
HURyNRzNR3NweNRy (x,¥) = Ariuri(x, y)

) Complement Relation

Complement relation R for fuzzy relation R shall be defined by the
following number ship function

V(x,y) EAXB  pp-(X,y)=1-pr(x,y)

Example: 3.3.1

Two fuzzy relation matrices Mg and My are given

M| @ b c Mg a b c
—l— 0.3 0.2 1.0 1 0.3 00 01
2 0.8 1.0 1.0 2 0.1 ‘0.8 1.0
3 0.0 1.0 0.0 3 0.6 09 03

i ield the
Fuzzy relation matrices Mpys and Mgns corresponding R U S amd RN S yie

followings

29
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Inverse Relation

b
Meos| ® © Mgas a b
/—_ ———— ¢
| 03 02 1.0 R
03 00 0.1
2 0.8 1.0 1.0
2 0.1 0.8 1.0
3 0.6 1.0 0.3 3 06 09 5
Also complement relation of fuzzy relation R shall be
MR a b c
1 0.7 0.8 0.0
2 0.2 0.0 0.0
3 1.0 0.0 1.0

When a fuzzy relation R € A X B is given, the inverse relation of Rt is

defined by the following membership function.

For ax (x, y)SA X B

3.4 COMPOSITION OF FUZZY RELATION

Definition: 3.4.1

Two fuzzy relation R an

30

pr-1(y,X)=Hr(X,Y)

d S are defined on sets A, Band C. That is,
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ition S.R=SR of two relati .
The compOSl 1ons R and § is ex
Pressed by the rel,

. e ti
% C; and this composition is defined by the fOIIQWing 1on from A

For(x'}’) EAXB ,(y3,2)€EBXxC
Bls.R (x, z)=Maxy [Min[uR (x, 3’)»#5(}', Z)]]
=Vvug (x, ¥)Aus (v, 2)

g.R from this elaboration is a subset of A X C. Thatis g p c AXC

If the relations R and S are represented by matrices and Ms, the matrix corr espondin
! onding

to S.R is obtained from the product of Mpand M

Mg r =My - Mg

Example: 3.4.2

Consider fuzzy relations R € A X B,S € B x (. The sets A,B and C shall be
the sets of events. By the relation R, we can see the possibility of occurrence of B

after A, and by 3 that of C after B. For example, byMj, the possibility of occurrence

of a € B after 1€ Ais 0.1. By Mj, the possibility of occurrence of « after a is 0.9

R a b c d

1 0.1 0.2 0.0 1.0

2 0.3 0.3 0.0 0.2

3 0.8 0.9 1.0 04
31
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S & B y
m—
a 0.9 0.0 03 o
b 0.2 1.0 0.8
¢ 08 00 . o7
d 0.4 02 . o3

Here, we cannot guess the possibility of C when A js occurred. So our main job
. ain job now
will be the obtaining the composition S.R ¢ 4 x (., The following matrix M
S.R

represents this composition and it is also given in following figure

Now we see the possibility of occurrence of « € ¢ after event 1€ A is 0.4, and that

for B €C afterevent2€ Ais 0.3 etc..,

Presuming that there relations R and S are the expressions of rules that guide the
occurrence of event or fact. Then the possibility of occurrence of event B when event
A is happened is guided by the rule R and rule R indicates the possibility of C when B
is existing. For further cases, the possibility of »;/hen A has occurred can be induced
from the composition rule S.R. This manner is named as an “Influence” which is a

process producing new information.

S.R a p Y
1 0.4 0.2 0.3
2 0.3 0.3 0.3
3 0.8 0.9 0.8
32
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Figure: 3.3 Composition of fuzzy relation

3.5a—-CUT OF FUZZY RELATION

We have learned about @ —cut for fuzzy sets, and we know a fuzzy
relation is one kind of fuzzy sets. Therefore, we can apply the « —cut to the fuzzy

relation.

Definition: 3.5.1

We can obtain a —cut relation from a fuzzy relation by taking the pains which
have membership degrees no less than a. AssumeR € A X B and Ry is a @ —cut

relation, Then

Ree {(,y)|r(x,y) = @,x € Ay € B}
33
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Note that R is @ crisp relation.
0

Exﬂmp]e: 3-5.2

For example, we have a fuzzy relation g

09 04 00
0.2 1.0 0.4

Mgos = 0.0 0.7 1.0

0.4 0.2 0.0

Now the level set with degrees of membership function is,

A={0,0.2,0.4,,0.7,0.9,1.0)

then we can have some a-cut relations in the following

1 1 0
0 1 1
MR0.4 = 0 1 1
1 0 0
1 0 0
0 1 0
Mpo; = 0 1 !
0 0 0
34
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- L —

1 0 0

0 1 0

Mpos = 0 0 1

0 0 0
0 0 0
0 1 0
Mp1o = 0 0 1
0 0 0
35
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CHAPTER 4

FUZZY GRAPHS AND RELATIONS

U&:Eo:n it

Let G= A/..\u @v

E: fuzzy set of edges between vertices

The mnﬁr represents fuzzy relation of fuzzy nodes, and can be defined as follows
&=V, E)

we replace & = (V, E) with G = (V, E) for convenience. This is called fuzzy graphs.

Example: 4.2

ai 0.8 0.2

az 0.3 0.0

as | 0.7 0.4

36
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0.8
a
0.2
0.3 b,
az
0.7 b,
as 0.4
Figure 4.1 Fuzzy Graph .
pefinition: o
A fuzzy graph structure G = (O1,11 512500 eneeeuin) iS pi— strong if
S —o(v1) A o(v2) , for all vi, v2€Ri 1 €{1,2,3,.........n}
£ G is pi— Strong vie {l,2,3,...n}, then G is called fuzzy — graph structure.
Theorem: 4.4
Maximal product of two strong fuzzy — graph structure is also a strong fuzzy —
m_.mvz mc.c.nnE.o.
Proof:
Let G1 = (o1, i1, B2, ) and G2 (02, 1"y H2%eeeennnnee- ") DE WO
strong fuzzy graph structures.

Then i (vi, v2) =01 (vi) A 61 (v2) for any vi, v2€ Ri' and pi" (us, u) =02 () A 02

(uy) for any uj, uz € Ri", i=1,2,3,.......n. Then proceeding according to the

definition of maximal product.
Case 1:

u=u; and v;vER;", Then,

37
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i ((urs vi) (uz, V2)) = 91 (u) V " (vi, vo)

_g () V2D A0 (v2)]

= [o1 (w) V02 (vi)] A [ol (w) V 02 (v2)]

= _‘.Q (u1y <_v Ao A.EN. <~ﬁ

Case 2!

V= V2 and ww€R{, Then,

o ¥ () =260V 0,0
=g (vi) V[o1(w) Ao (u2)]
=[o1 () V 62 (v)] A [o1 (u2) V 02 (V)]

= —O. AC_. <_v AG AEN. <~Z

Thus i (a1, vi) (uz, v2)) = o (u, vi1) A 6 (uz, v2) for all edges of maximal product.

Hence G =Gi1 * G2 = (0, 11, P2.......... Hn) is a strong fuzzy graph structure.

Remark: 4.4.1

Converse of the above theorem may not be true. That is, maximal product G =

Gy * G2 may be a Strong Fuzzy — graph structuze, when Gi and Gz are not strong fuzzy

- graph structures.

38
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pefinitio™ 45
5 fuzzy setA defined on X and any number a € [0,1], the set a-cut a4 is the
0 set that contains all the elements of the universal set x whose membership grades
cns :
A are greater than or equal to the specified value of ¢,
in
ar= { x| AX)>a}
For A= {a,b, ¢}, R € AX Ais defined as follows
a b c
a 1.0 0.8 0.4
Mg = b 0.0 0.4 0.0
c 0.8 1.0 0.0

For level set {0, 0.4, 0.8, 1}, if we apply the a — cut operation, we also get crisp

relations and corresponding graphs in the figure.
om « — cut as Gq, the following relation between a and Ga

If we denote the graph fr

holds.

Gul € Ga

39
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a | 10 08 04

Mr=
c | 08 1.0 0.0
(b ¢
Figure 4.2
a b c
a 1.0 1.0 1.0
Mro.4= b| 00 1.0 0.0
¢l 10 10 00

Figure 4.3
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Figure 4.5
a cut of fuzzy graph
4.6 FUZZY EQUIVALENCE RELATION
U&.EEE: 4,6.1

If a fuzzy relaionR AXA satiisfies the following conditions, we call it a

i ion” or “similarity relation”.
“fuzzy equivalence relat ty

| 1. REFLEXIVE RELATION
vieA= pr(x¥y)=1
2. SYMMETRIC RELAT ION
vV (x,y) € AX A, IR (x,y) =K = HR (¥,X) =}

3. TRANSITIVE RELATION

Y (x,y), 1,2),(x.2) EAXA

i (x,2) > Max [ Min [ur (x, ), ur(y,2) ]

42
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: 1zzy relation ex i i :
et consider a fuzzy pressed in the following matrix, Since this

ions reflexive, symmetric and transitive, we see that it is a fuzzy equivalence
_.n_m 1

relation-

a b c d
H 1.0 0.8 0.7 1.0
b 0.8 1.0 0.7 0.8
c 0.7 0.7 1.0 0.7
d 1.0 0.8 0.7 1.0

Figure 4.6

GRAPH OF FUZZY EQUIVALENCE RELATION
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If fuzzy relation R in se A satisfies the following conditions, we call it “fu
’ NN%

ompatibility relation” or “resemblance relation”.
c

{. REF LEXIVE RELATION

vx €EA= pr(x,x)=1

, SYMMETRIC RELATION

V(xy)EAXA
pr(x,y) =p >0 X)=p

MMma—u_o" &.Q.N

In the figure o = 0.7 cut'we get compatibility class {a,b}, {c,d,e}, {d,e,f} and these

compatibility classes cover the set A. Note that elements d and e are far from partition

since these appear in dual subsets.

a b c d e f
a 10 08 00 00 00 00
b 08 10 00 00 00 00
c 00 00 1.0 10 08 00
d 00 00 10 1.0 08 07
e 00 00 08 08 10 07
f 00 00 00 07 07 10
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0.8
Q o— o W
c 0.8 072 % f
0.7
d 0.8 e
Figure 4.7

4.8 FUZZY PRE-ORDER RELATION

U&.:_Eo:" 4.8.1

Given fuzzy relation R in set A, if the followings are well kept for all x, y, z €

A, this relation is called Pre-Order relation.

"1, REFLXIVE RELATION
vx€EA = pr(x,x) =1
2 TRANSITIVE RELATION
v (x,y),(,2),(x,2) EAXA

MR (¥,2) = Max [Min (kr(x,) , #r (05 2)]

. . .. ...-
Also if certain relation is transitive but not reflexive, this relation is called “Semi Pre

' ]
Order” or “non reflexive fuzzy pre-order™.

45
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- -m-N
Hxs_:_u_n. 4
Here goes a Semi Pre-Order relation
a b .

N 0.2 1.0 0.4

b 00 06 03

€ 0.0 1.0 03
If the BnEwSmEv function follows the relation pr (x,x) = 0 for all x, we use the term
“anti- reflexive fuzzy pre-order”.
4.9 FUZZY ORDER RELATION

Definition: 4.9.1

If relation R satisfies the followings for all x,y,z€ 4, itis called fuzzy order

relation.
1. REFLEXIVE RELATION:
vXed=> mExx)=1

2. ANTISYMMETRIC RELATION
v (x,y) EAXA

ur (x,y) # pr (,2) or pr(x,Y) = e §,%)=0

3. TRANSITIVE RELATION
vV (x,y), (9,2),(x, 2V EAXA

ur (x,z) = Max[Min (ur (%, ¥), ur(: 2)]

46
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The figure S

(1)
(i)

hows a fuzzy order relation

Figure 4.8

If pr (%,y) = BRO, X) then pri (%) Y =1 pr@x)=0

If pr (X,y) = ROV, X) them pri xy)=p®»x)=0

47.
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CHAPTER 5

AN APPLICATION OF FUZZY GRAPHIN TRAFFIC CONGESTION

pefinition: 5.1

Let G: (o,p) be a fuzzy graph. The strength of connectedness between
rwo nodes X and y is defined as the maximum of the strengths of all paths

petween x and ¥ and is denoted by CONNg (x,y).

x-y path P is called a strongest x-y path if its strength equals CONNGg (x,y).

A fuzzy graph G: (o,1) is connected if for every x,y in ™ CONNg (x,y) > 0.

Example: 5.2

Figure 5.1. Strength of connectedness

Let G: (o,p) be a fuzzy graph with o' = {a,b,c,d}.
In this fuzzy graph , p(a,b) = 1, u(b,c) = 0.7, u(d,a) = 0.7, p(ac) = 0.8,
K(e,d) =0.5.

There are three different paths from a and ¢ namely,
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p;=a-b-c P2=a-d-c  P3=arc(a,)

Z oW»

m:.n:m% of P1= min{1,0.7} =0.7

mq@umE of P2 = min{0.7,0.5} = 0.5

strength of P3 =08
Therefore, the strongest path joining a to ¢ is the arc(a,c) with strength
0.8
Hence,
CONNGg (a,c) =0.8
Similarly,
OOZZ.Q (ab)=1
CONNG (b,c) =0.8
OO.ZZQ (a,c)=0.8
CONNG (d,a) =0.7
CONNG (c,d) =0.7
Definition: 5.3
An arc (x,y) in G is called o-strong, if p(x, ) > CONNG ~x) (X,¥)-
An arc (x,y) in G is called p-strong, if p(x,y) = CONNG-xy) (x,y):

An arc (x,y) in G is called 8-strong, if p(x.y) < CONNo-x) (x,y)-

49
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A & -arc (x) is called 8"-arc, if u(x,y) > u(u,v) where (u,v) is th
’ ¢
weakest arc of G.

gxample: 54

Figure 5.2. Strong arc in fuzzy graph

Let G: (o) be with o= {ab,c,d}, k(ab) =0.2, u(b,c) =1, p(e,d) = 1, p(d,)
~ 02, p(b,d) = 0.3.

J(ab) = 0.2, CONNG (a,b) = 0.2, CONNo o) (@) =02

u(b,c) = 1, CONNG (b,c) = 1, CONNG-(v,0) (b,c)=0.3

4(e,d) = 1, CONNG (c,d) = 1, CONNo e (e,d) = 0.3 :

u(da) = 0.2, CONNG (d,) = 0.2, CONNG 3 (d2) =02

u(b,d) = 0.3, CONNg (b,d) = 1, CONNG-v.d) (b,d)=1

Therefore, (b,c) and (c,d) are a-strong arcs. (a,b) and (d,a) are fi-strong
arcs. (b,d) is a §-arc.
b) is a weakest arc of G.

Also, (b,d) is a 8*-arc, since p(b,d) > p(a,b), where (3

50
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5 A GRAPHICAL MODEL OF TRAFFFIC PROBLEM AT THE

CROSS ROADS

Consider @ complete fuzzy graph that consists of 9 vertices and 27

ed
QA/\ |

The following f

A

ges respectively. We have seen 9 directional flows which are labeled by

y,0(V2) o(V3), 6(V4) , 6(Vs) , o(Ve) , a(V7), o(Vs) , o(Vs)

gure shows the direction of traffic flows,

o(h).

o(h)

oft) :

The main street of keene city road

Figure 5.3.
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The

ocﬂmmﬁoabm

one direct

cozzy graph problem has represented below is a traffic flows which i
is
in the figure 5.3. Each arrow shows the path of vehicles take fro
m

ion to another.

ows are compatible which can be seen in the following;

The fl

movement is compatible with the flows

a(V1)
o(V2)» o(V3) > o(Va) , 6(Vs) , 6(Ve) , 6(V7), o(Vs) , a(Vs)

o(V2) movement is compatible with the flows
o(V1) » (V) » 0(V5) » 6(Ve) , o(V2), o(Vs)
o(V3) movement is compatible with the flows

a~<_v.qm<~vuqﬁ<¢_q2&

o(V4) movement is compatible with the flows
o.m<_v ’ Qﬁ<qv ’ O.Az\mv ’ Qm<ov
o(Vs) movement is compatible with the flows

o(V1), 5(V2) s (Ve) , (V1) , o(Vs), o(Vs)
(V) movement is compatible with the flows
6(V1), 5(V2) , 6(Vs) , 6(V7) yo(Ve) , o(Vo)
o(V7) movement is compatible with the flows

o(V1) , 6(V2) , o(V3) , 6(V4) , o(Vs) , o(Vs) , o(V9)

o(Vs) movement is compatible with the flows

a(V1), o(Va) , 6(Vs) , o(Ve) , (Vo)
(V) movement is compatible with the flows

(V1) , 6(Va), o(V3) , 5(Va) , o(Vs) , 6(Ve) » 6(V7) o(Vs)
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V2 V3 \'2
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\\
Origin to Weight
5.No g ghtofthe | Strengthof | Strong arc
| Destination edge of the | the vertex of
path the path
\\-\\l\\.\\l\“

N o(V1) - o(V2) 0.22 0.22 B-strong
a(V1) - o(V3) 0.27 0.22 o-strong
o(V1) - o(V4) 0.40 0.35 a-strong

: s(V1) - o(Vs) 0.28 0.28 p-strong
o(V1) - a(Ve) 0.31 0.41 d-strong
o(V1) - a(V7) 0.41 0.39 a-strong
(V1) -6(Ve) 0.29 0.22 a-strong
(V1) - (Vo) 0.28 0.24 a-strong

\\u\l\.\ll
0.22 o-strong
2. o(V2) - o(V3) 0.27
( 0.28 §-strong
o(V2) - o(Vs) 0.14 v
0.41 a-strong
QA<NV - szv Oh\\
39 0.39 p-strong
o(V2) - o(V7) 0
0.19 0.11 a-strong
o(V2) - o(V9) \\\\\\\\\\\\\\\\J
0.39 p-strong
0.39 .
3. o(V3) - (V7 i s
a(V3) - o(V9) 041
I
| —
L \\\\\\\\\\\
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el o

a(Vs) - 0.39
A v Q?wv o.wm Q.om:.osm
035
Qﬂ<& nl%otv o 41 @.mc.osm
0.35
// Q:mqosm
v |
GA mv - Q?mv O.OA
041
o(Vs) - o(Vy) 039 U~strong
. 0.39
o(Vs) - 6(Vy) 0.29 g
. 0.28
o(Vs) - o(Vy) 033 elong
0.28 U-strong
,X/
a(Ve) - (V1) 0.44
041 (-strong
o(Ve)-o
) - 5(Vs) 041 041 B-strong
(V) - o(Vo) 0.42 0.41 a-strong
7, (V1) - 5(Vo) 0.48 0.39 a-strong
8. o(Vs) - o(Vg) 0.41 0.24 a-strong
Table 5.2

An observation of the crossroads forms are assumptions, as follows.

¢ The flows does not follow the light when turning to the left o(V1) , indicating

¢ The flow of the main street turning left

that the flow can increase at

to the intersection of the

any time under the waiting time of 0 (zero).

left-turn lane befor

56

from north 6(V2) is not directly related

¢ the intersection .
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Fo

Jight.

There is J

number of vehicles are passing through each crossroad on the Krif road (
0 .

Th

in p®

reentage)

\\l‘l

\\2&\\4 o-strong

st one flow turn left 6 (V3).

 other flows, move the current to the left o(V4) , a(Vs) , o(V. 9 1o follow the

—

a(V1) - 6(V3)
o(V1) - o(Va)
a(V1) - (V1)
o(V1) - 5(Vs)
o(V1) - (Vo)
o(Va2) - 6(V3)
o(V2) - o(Ve)
o(V2) - 6(V9)
o(V3) - o(Vo)
o(Va) - 6(V7)
o(V4) - o(V9)
o(Vs) - o(Vs)
o(Vs) - o(V9)
o(Ve) - 6(V7)
(Ve) - 6(V9)
(V) - 5(V9)

QA< mv -0 A<ov

CONN (V1,V3) =0.22
CONN (Vy, Vs) =0.35
CONN (Vy, V7) =0.39
CONN (V1, Vg) =0.22
CONN (Vi, Vy) =0.24
CONN (Va, V3) =0.22
CONN (Vz, Vs) =041
CONN (V2, Vo) =0.11
CONN (V3,Vs) =021
CONN (Vs, V7) =039
CONN (Vs, Vo) =0.35
CONN (Vs, Vs) = 0.28
| CONN (Vs, Vo) =0.28
CONN (Vs, V7) =041
CONN (Vs, Vo) =0:41
CONN (V7, Vo) = 0.39

CONN (Vs, Vs) =024

-

57

-

(¥ scanned with OKEN Scanner



% \u\m\mm_m\ o(V1)-o(V2) CONN (V,, Vo) =02
o(V1) - o(Vs) CONN (Vi, Vs) =0.28
o(V2)-o(V)) | CONN (Vs Vi) =0.39
o(V3) - a(V7) CONN (V3, V7) =0.39
6(V4) - 5(Vs) CONN (V4, Vs) =0.35
o(Vs) - o(V7) CONN (Vs, V7) =0.39
(V) - (Vs) CONN (Vs, Vs) n 0.41

| o (V1) - 6(Ve) CONN (V}, Ve) =0.41
o(V2) - 6(Vs) CONN (Vz, Vs) =0.28

: (Vs) - o(Ve) CONN (Vs, Ve) =0.41
L

Table 5.3. Result

The rules of strong arc are classified as each link of the nodes. The

classification shows 2 heavy congestion with an a-strong arcs, a medium flow in p-

strong arcs and a normal flow in 8-arc.

The lanes with high traffic are represented by a-strong arcs. More number of

vehicles will pass through the same lanes represented by a-strong arcs. Traffic

congestion could be reduced in the roundabouts by diverting these lanes to other

lanes, that is, p-strong, 8-arc with normal or medium flow.

The traffic jam of a road will be reduced an accidents minimized by this

method. A better solution for roundabout traffic problem has been studied with the

concept of strong arcs using fuzzy graph.
Long weights of junctions and congestion can be avoided more efficiently.
The knowledge of strong arcs in fuzzy graph is very important in any real time
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plication. The rate of traffic flow in peak time is moderate and congestions have

ap

oided in roundabouts by the application of strong arcs in traffic flow problems.
av
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CONCLUSION

[n this Ee.onr we have learned about the basics of Fuzzy Theory and its

Applications. We have discussed many theorems using the concepts of fuzzy

graphs, fuzzy matrix and fuzzy relations and compositions. The needs of the fuzzy
graphs have also been examined in the applications section ‘The mentioned
be extended to other fields of mathematics.

definitions and theorems can

(¥ scanned with OKEN Scanner
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