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Introduction 

Fuchsian groups are discrete subgroups of isometries of the hyperbolic plane. This 

project will primarily work with the upper half-plane model, though we will provide an 

example in the disk model.  

   We will define Fuchsian groups and examine their properties geometrically and 

algebraically. We will also discuss the relationships between fundamental regions and 

Dirichlet regions. 

  

Möbius transformations  are mappings from the complex plane to itself of the form 

                                                          𝑇 (𝑧) =   
az+b

cz+d
                                   

where a,b,c,d є ℂ , and ad - bc ≠ 0. We restrict to a,b,c,d є ℝ, then T preserves ℍ2 . 

We will use associated matrices of these transformations to help us discover more 

about the geometric properties hidden in these mappings.  

   We will see the trace of a matrix will determine which transformation is either 

hyperbolic, elliptic or parabolic. These elements have special properties for Fuchsian 

groups and their geometries will differ.  

     To begin, we will give some background on hyperbolic geometry, then define what 

Fuchsian groups are. This will lead us to consider the geometry of fundamental 

regions and Dirichlet regions.
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Chapter 1 

Preliminaries 

Necessary definitions are given in this section which are needed for the following 

chapters. 

Definition 1.1.  

The upper half plane model of the hyperbolic plane is the metric space consisting of 

the open half plane 

                        ℍ2 ={ (x,y) ∈ ℝ2 ; y > 0 } = {z  ∈ ℂ;Im(z) > 0}.  

Definition 1.2. 

In the upper half plane model, the hyperbolic length of a curve, which is parametrized 

by a differentiable vector valued function 

       𝑡 ↦ (𝑥(𝑡), 𝑦(𝑡)), 𝑎 ≤ 𝑡 ≤ 𝑏   

to be 

                                             ℎ(𝛾) = ∫
√𝑥′(𝑡)2  +𝑦′(𝑡)2   

𝑦(𝑡)
𝑑𝑡.

𝑏

𝑎
 

Definition 1.3.  

The hyperbolic distance between two points 𝑧1 and 𝑧2 is the infimum of the 

hyperbolic lengths of all piecewise differentiable curves going from 𝑧1  to 𝑧2. It is 

denoted by 

                                      𝑑(𝑧1, 𝑧2)  =  𝑖𝑛𝑓{ ℎ(𝛾) ;  𝛾 𝑔𝑜𝑒𝑠 𝑓𝑟𝑜𝑚 𝑧1 𝑡𝑜 𝑧2 } . 
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Definition 1.4.  

The set of linear fractional transformations of ℍ2, also known as M𝒐̈bius 

transformations is of the form 

                                      {z ↦   
az+b

cz+d
  |a, b, c, d  ∈  ℝ, ad − bc = 1} 

In addition to preserving circles, angles, and symmetry, these mappings are 

oneto-one and onto. For each w there is one and only one z that maps to w.  

Definition 1.5.  

The special linear group, SL(2,ℝ) is the group of 2 ×2 with determinant 1. 

Definition 1.6. 

PSL(2, ℝ) is defined as the projective special linear group of degree two over the 

field of real numbers  

In other words ,it is defined as   (2, ℝ )/ { ±I2 },  

where I2 is the identity matrix. 

Definition 1.7. 

Let f be a bijective mapping between two topological spaces. We say if f and its 

inverse f−1 are continuous, then f is said to be a homeomorphism. 

Definition 1.8. 

A transformation of ℍ2 onto itself is called an isometry if it preserves the hyperbolic 

distance. 

Definition 1.9. 

A geodesic between two points in ℍ2is a path of minimal length between them. 
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Definition 1.10 

 A transformation of ℍ2 is called conformal, if it preserves angles, and anti-

conformal, if it preserves the absolute values of angles, but changes the signs. 

Definition 1.11 

For a subset A ⊂ ℍ2, we define µ(A) as the hyperbolic area of A by 

                                                      𝜇 (𝐴) =  ∫
𝑑𝑥𝑑𝑦

𝑦2

0

𝐴
 

if this integral exists. 

Definition 1.12 

Consider the matrix g = [
𝑎 𝑏
𝑐 𝑑

]  ∈ PSL(2, ℝ).  

Then, tr(g) = |a + d| is defined to be trace of g. 

Definition 1.13 

A geodesic in ℍ2  joining the two fixed points of the hyperbolic transformation T is 

called the axis of T, and we denote it C(T). 

Definition 1.14 

A discrete subgroup of Isom(ℍ) is called a Fuchsian Group, if it consists of 

orientation preserving transformations. A Fuchsian group is a discrete subgroup of 

PSL(2,ℝ). 

Definition 1.15 

 If G is any group and g ∈ G, then the centralizer of g in G is defined by 

                           𝐶𝐺(𝑔)  = {ℎ ∈  𝐺 | ℎ𝑔 =  𝑔ℎ } 
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Definition 1.16 

A closed region F ⊂ X is said to be a fundamental region for a group G if the 

following conditions hold: 

1. ⋃T ∈G  (F) = X  

2. F˚ ∩ T(F˚ ) =  ∅ 

where F is the closure of a non-empty open set, F˚ called the interior of F. 

 

Definition 1.17 

         Let Γ be an arbitrary Fuchsian Group and let 𝑝 ∈ ℍ2  be not fixed by any element 

of Γ − { 𝐼𝑑}. We will define the Dirichlet region for Γ centered at 𝑝 to be the set 

𝐷𝑝(Γ) = { 𝑧 ∈ ℍ2  |  𝑑 (𝑧, 𝑝) ≤ 𝑑(𝑧, 𝑇(𝑝)) |for all T ∈  Γ} 

Definition 1.18 

A perpendicular bisector of the geodesic segment [z1, z2] is the unique geodesic 

through w, the midpoint of [z1, z2], orthogonal to [z1, z2].  

Definition 1.19 

The unit disk is defined to be 

                                                    𝔹 2  = { z ∈  ℂ ||z| < 1}.  

The map 

                                                        𝑓 (𝑧) =  
𝑧𝑖+1

𝑧+𝑖 
                   

is a 1-1 map of  ℍ 2     and provides an isometry onto 𝔹 2  . 
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Chapter 2 

Hyperbolic Geometry 

This chapter deals with hyperbolic geometry. We will see how the 

hyperbolic length and distance share similarities to Euclidean space. We will also see 

how isometries and geodesics play an important role in our study. Finally, we will 

explore hyperbolic area. 

§ 2.1 The Hyperbolic Metric 

The hyperbolic plane is a less familiar metric space than the Euclidean plane. 

An introduction to some of the basic properties will be and find it has similarities with 

the Euclidean plane. There is a one-to-one correspondence between points in ℝ2 and 

the complex plane ℂ . The notations for the real and imaginary parts of the complex 

number 

𝑧 =  𝑥 +  𝑖𝑦 є ℂ, 

to be 𝑅𝑒(𝑧)  =  𝑥 and 𝐼𝑚(𝑧)  =  𝑦. The conjugate of z is defined to be 

   𝑧̅  =  𝑥 −  𝑖𝑦. 

Definition 2.1.1. 

The upper half plane model of the hyperbolic plane is the metric space consisting of 

the open half plane 

                       ℍ2 ={ (x,y) є ℝ2 ; y > 0 } = {z є ℂ ;Im(z) > 0}.  
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Definition 2.1.2. 

In the upper half plane model, the hyperbolic length of a curve, which is 

parametrized by a differentiable vector valued function 

         𝑡 ↦ (𝑥(𝑡), 𝑦(𝑡)), 𝑎 ≤ 𝑡 ≤ 𝑏   

to be  

                                                 ℎ(𝛾) = ∫
√𝑥′(𝑡)2  +𝑦′(𝑡)2   

𝑦(𝑡)
𝑑𝑡.

𝑏

𝑎
 

This metric is a way of finding the lengths of curves and we illustrate this with an 

example. 

Example 2.1.3. Suppose P0 = (x,y0) and P1 = (x,y1). To compute the hyperbolic length 

of the line segment denoted by [P0,P1], we will parametrize this segment by,  

𝑡 ↦  (𝑥, 𝑡), 𝑦0 <  𝑡 <  𝑦1.  

Then, 

                                          ℎ(𝛾) = ∫
√02  +12   

𝑡
𝑑𝑡.

𝑦1
𝑦0

 

                                                   = ∫
1

t

y1
y0

 dt  

                                                 = ln
y1

y0
. 

Definition 2.1.4. 

The hyperbolic distance between two points 𝑧1 and 𝑧2 is the infimum of the 

hyperbolic lengths of all piecewise differentiable curves going from 𝑧1  to 𝑧2. It is 

denoted by 

                                     𝑑(𝑧1, 𝑧2)  =  𝑖𝑛𝑓{ℎ(𝛾) ;  𝛾 𝑔𝑜𝑒𝑠 𝑓𝑟𝑜𝑚 𝑧1 𝑡𝑜 𝑧2 } . 
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Definition 2.1.5. The set of linear fractional transformations of  ℍ2, also known as 

M𝐨̈bius transformations is of the form 

                                     {z ↦   
az+b

cz+d
  |a, b, c, d є ℝ, ad − bc = 1} 

In addition to preserving circles, angles, and symmetry, these mappings are 

one-to-one and onto. For each w there is one and only one z that maps to w. This leads 

us to consider finding the inverse of such mappings. Before we do that, we want to 

have a simple way to view these transformations. We will uses matrices to help give 

us an algebraic point of view, so we can use it to discover geometric properties. 

 

Definition 2.1.6. Let,  T (z) =   
az+b

cz+d
  where a , b ,c ,d є ℝ  and ad −bc = 1. Then,  

                                                            

                                                             T =  [
a b
c d

] 

is the matrix associated with T. 

Square brackets are used to indicate the matrix is identified with its negative. Since                   

ad − bc = 1, every Möbius transformations is invertible. The inverse of a Möbius 

transformations is the associated inverse matrix of T, which is 

T−1 = [
d b
c a

] 

These transformations form a group. To convince ourselves, we can show the 

transformations meet all the requirements to be a group. Composition of Möbius 

transformations is another Möbius transformations . These transformations have 

inverses because the determinant is 1 and the identity transformation is simply the 

associated identity matrix. Finally, the associative property follows since composition 

of maps is always associative. 
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§ 2.2. Special linear group 

Definition 2.2.1.  The special linear group, SL(2, ℝ) is the group of 2×2 with 

determinant 1.  

Definition 2.2.2.  PSL(2, ℝ ) is defined as the projective special linear group of 

degree two over the field of real numbers  

In other words ,it is defined as  (2, ℝ)/ {±I2 }, where I2 is the identity matrix. 

We will now give examples of the associated matrices of  Möbius transformations 

Each example will have determinant 1. 

Example 2.2.3.  

𝑇 (𝑧) =  
𝑧 + 1

𝑧 + 2
   ⟺ [

1 1
1 2

] 𝑧 

 

Example 2.2.4.  

                                     𝑇 (𝑧) =  
√2

  2  
𝑧+ 

√2

  2  

− 
√2

  2  
𝑧+ 

√2

  2  

 ⟺  [

√2

  2  

√2

  2  

−
√2

  2  

√2

  2  

] 𝑧.  

 

Example 2.2.5.  

𝑇 (𝑧) =  𝑧 + 1 ⟺  [
1 1
0 1

] 𝑧 

 

Example 2.2.6. 

Let L be a Euclidean circle or a straight line orthogonal to the real axis, which meets 

the real axis at some finite point α. We would like to show the transformation 

                                             𝑇 (𝑧) =  − ( 𝑧 −  𝛼 )−1 +  𝛽                        
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is a Möbius transformations, and for a suitable β maps L to imaginary axis. What this 

amounts to is showing T is of the form  

𝑇 (𝑧) =  
az+b

cz+d
   

where ad−bc = 1 and  a ,b ,c ,d  є ℝ. Rearranging T we find that it is of the form  

                                           𝑇 (𝑧) =  
−1

𝑧 − 𝛼
 +  𝛽 =  

 𝛽𝑧+(−α𝛽−1)

 𝑧− 𝛼
 

and its determinant is 1. Hence, T is a Möbius transformations. 

 

Definition 2.2.7.    Let  f  be a bijective mapping between two topological spaces. We 

say if  f  and  its inverse f−1 are continuous, then f is said to be a homeomorphism. 

 

Theorem 2.2.8.  Every Möbius transformation ϕ  in PSL(2, ℝ)  is a homeomorphism 

of  ℍ  

Proof :  First show that ϕ maps ℍ into ℍ.  Let ϕ (z) =  
az+b

cz+d
 where ad − bc = 1 and  

z ∈ ℍ. 

                                   ϕ(z)             =  
(az + b)(cz̅ + d) 

(cz + d)(cz̅ + d)
  =   

ac|z| 22 + adz + bcz̅ + bd 

|cz + d|2
    

                                 

                                Im(ϕ (z))      =  
ϕ (z) − ϕ (z)̅̅ ̅̅ ̅̅ ̅ 

2i
      =  

adz + bcz̅− adz̅ − bcz 

2i|cz + d|2
  

                                                                       = 
(ad − bc)(z − z̅  ) 

2i|cz + d|2
   

                                                                       = 
Im(z) 

|cz + d|2
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The imaginary component of z is greater than 0, so clearly Im(ϕ (z)) > 0, which 

implies that ϕ (z) is in ℍ.  

Because ϕ is a rational function with a nonzero denominator, continuity is clear. The 

existence of an inverse follows from the fact that ϕ−1  is also an element of 

PSL(2,ℝ ).By the argument above, it is continuous and maps into ℍ. Therefore, ϕ is 

a homeomorphism of ℍ.  

Definition 2.2.9.    A transformation of ℍ2 onto itself is called an isometry if it 

preserves the hyperbolic distance. 

Theorem 2.2.10. PSL(2, ℝ) ⊂ Isom(ℍ). 

Proof.  

Let    γ : [0, 1] → ℍ      be a piecewise differentiable path in ℍ.  

Let γ be given by  

z(t)  =  (x(t), y(t)) and w(t)  =  T(z(t))  =  u(t)  +  iv(t) By the quotient rule, 

                                   
dw

dt
 = 

a(cz + d) − c(az + b)

(cz + d)2
  = 

acz − caz + ad − bc 

(cz + d)2
=  

1

(cz + d)2
 

 Since Im(T(z)) = 
Im(z) 

|cz + d|2
 =  v  and y =  Im(z), |

dw

dt
| = 

v

y
.  

From the definition of hyperbolic length, we obtain the following equation. 

           h(T(γ)) =  ∫
|
dw

dt
|

v(t)

1

0
dt  

                       = ∫
|
dw 

dz
 
dz 

dt
| 

v(t)

1

0
dt  

                       = ∫
|
v(t)

y(t)
 
dz 

dt
|

v(t)

1

0
dt  

                       = ∫
|
dz 

dt
|

y(t)

1

0
dt = h(γ).  
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The hyperbolic distance ρ(j, k) is the infimum of the differentiable paths γ between j 

and k, so since each γ is invariant under T, ρ(j, k) is invariant under T. Thus, T ∈

 PSL(2,ℝ) is an isometry.  There is one further property that classifies PSL(2,ℝ) as a 

subset of Isom(ℍ), which is that PSL(2,ℝ) is the set of all orientation preserving 

isometries of ℍ. A linear operator on a vector space is orientation preserving if its 

determinant is positive. 

§ 2.3.  Geodesics 

In Euclidean geometry, the shortest curve joining two points is the line 

segment with those two points as endpoints. This subsection defines and describes the 

shortest curves of the hyperbolic plane, which are also known as geodesics. 

 

Definition 2.3.1. A geodesic between two points in ℍ2is a path of minimal length 

between them. 

Proposition 2.3.2 Two points in ℍ2 can be joined by a unique geodesic and the 

hyperbolic distance between those points is equal to the hyperbolic length of the 

unique geodesic segment connecting them. This will be denoted by [z1,z2], where z1 

and z2 are in ℍ2 . 

Proposition 2.3.3. The geodesics in ℍ2 are semicircles and straight lines orthogonal 

to the real axis.( [1] or [4]). 

                                         

                         Figure 2.1: The hyperbolic length of a segment 
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Example 2.3.4. Let L ={ z = eiθ| 0 < θ< π}. Then, L is a geodesic orthogonal to the 

real axis 

  

                      

Figure 2.2: The semicircle L is a geodesic in ℍ2 

Example 2.3.5. Let L ={ x = 1 | y > 0} . Then, L is a geodesic and is clearly orthogonal 

to the real axis  

                           

    Figure 2.3: Vertical line L is a geodesic in ℍ2 

Corollary 2.3.6. If z1 and z2 are two distinct points in ℍ2, then d(z1,z2) = d(z1,z3) + 

d(z3,z2) if and only if z3 ∈ [z1,z2]. This is a consequence of the triangle inequality. 
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Example 2.3.7. Take the example seen in figure 2.1. Suppose there is a point between 

ia and ib and call it ik, where a < k < b. Then, the corollary applies. 

§ 2.4 Isometries 

The hyperbolic plane has many symmetries and find that it is as symmetric 

as the Euclidean plane. In this subsection, we will define and describe the isometries 

of ℍ2. In our discussion, we will explain that all isometries of H2 are exactly of the 

form 

                                                     T (z) =   
az+b

cz+d
                            

Or                                                 

                                                     ϕ (z) =  
−a𝑧̅+b

−c𝑧̅+d
          

where ad – bc = 1 and a,b,c,d ∈  ℝ       

Example 2.4.1. Let ϕ: ℍ2 ⟼ ℍ2defined by 

ϕ (x,y) = (kx,ky) 

This isometry is known as the homotheties transformation, which is also known as 

dilations. 

                                                            

Figure 2.4: Dilation transformation 
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Example 2.4.2. Let ϕ: ℍ2 ⟼ ℍ2 defined by ϕ (x,y) = (x + x0 ,y), for some x0 є ℝ. 

This is known as the horizontal translations transformation, which is also another 

isometry. 

                         

Figure 2.5: Translation transformation 

Example 2.4.3. Let ϕ: ℍ2 ⟼ ℍ2defined by z ⟼ −z̅. The transformation is 

reflection across the y-axis, which is another isometry of ℍ2. 

 

                                 

     Figure 2.6: Reflection across the y axis 

Example 2.4.4. The standard inversion or simply inversion ,across the 

unitb circle,which is defined by 𝜙(𝑥, 𝑦) = (
x

x2 + y2
 ,

y

x2 + y2 
)  is another 

isometry, In general,inversion across an arbitrary circle can also be defined 

as given any point P not the center,the point 𝑃′ is the inverse to P if  
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1.P′ lies on a ray from O to P, and  

 2.OP · OP′ = r2   where O is the center of the circle and r is the radius of the 

circle.      

                                                     

      Figure 2.7: Inversion across the unit circle                                                     

Definition 2.4.5. A transformation of ℍ2 is called conformal, if it preserves angles, 

and anti-conformal, if it preserves the absolute values of angles, but changes the 

signs. 

Example 2.4.6. Homotheties and horizontal translations are conformal transformations 

because they preserve the angles. 

Example 2.4.7. Inversion is an anti-conformal transformation. 

§ 2.5  Hyperbolic Area and Gauss-Bonnet 

Definition 2.5.1.For a subset A ⊂ ℍ2, we define µ(A) as the hyperbolic area of A 

by 

                                                      𝜇 (𝐴) =  ∫
𝑑𝑥𝑑𝑦

𝑦2

0

𝐴
 

if this integral exists. 

Example 2.5.2. Let’s find the hyperbolic area by calculating the integral over the 

region above the semicircle  

𝑦 =  √1 − 𝑥2  
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and between x = -1 to x = 1.Then,  

∫ ∫
𝑑𝑥𝑑𝑦

𝑦2
= ∫−

1

−1

∞

√1− 𝑥2

𝟏

−𝟏

1

𝑦
|
√1−𝑥2

∞

 𝑑𝑥 

                     

Once we evaluate the integrand, we have 

                                                    [[ lim
𝑦 ⟶ ∞

−
1

𝑦
  ] − ( −

1

𝑦
)]|

√1−𝑥2

∞

=  
1

√1− 𝑥2
  

Now, we evaluate the second integral   

∫
1

√1 − 𝑥2

1

−1

𝑑𝑥 

                                                              

The function has discontinuities at x = -1 to x = 1. Consider the two integrals  

 

∫
1

√1 − 𝑥2

0

−1

𝑑𝑥 

and  

 

∫
1

√1 − 𝑥2

1

0

𝑑𝑥 

        

We will sum up these integrals to get the area of the region. We take advantage of symmetry 

and just evaluate one. We see that 

                                                     ∫
1

√1− 𝑥2 
𝑑𝑥 =  𝑠𝑖𝑛−1(𝑥) + 𝐶     

                                    where C is a constant. Therefore,  
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                                        𝑠𝑖𝑛−1(𝑥)|0
1  =  𝑠𝑖𝑛−1(1) − 𝑠𝑖𝑛−1(0) =  

𝜋

2 
− 0 =  

𝜋

2 
  

      

Then, by symmetry we also have 
π

2
 for the other integral and therefore the area of the 

region is π 

A hyperbolic n-sided polygon is a closed set of ℍ2bounded by n hyperbolic 

geodesic segments. If two line segments intersect, then the point of intersection is 

called a vertex of the polygon. If these vertices are at 1 or on the real axis, these 

vertices are known as ideal points. If a polygon has vertices only in ℝ ∪ {∞} , we 

say that the polygon is an ideal polygon. There are four types of hyperbolic triangles, 

which depends on how many vertices belong to ℝ ∪ {∞} 

 

Figure 2.8: Hyperbolic triangle with 0 ideal points 

 

Figure 2.9: Hyperbolic triangle with 1 ideal point 
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Figure 2.10: Hyperbolic triangle with 2 ideal points 

 

Figure 2.11: Hyperbolic triangle with 3 ideal points 

 

Theorem 2.5.3 (Gauss-Bonnet) Let ∆ be the hyperbolic triangle with angles α, β, γ. 

Then 

                  µ(A) = π −  α −  β −  γ.  

Before we see some examples, it is important to note that if one of the 

vertices belongs to ℝ ∪ {∞} , then the angle at this vertex will be zero. 

Example 2.5.4. Let T be a hyperbolic triangle with vertices at -1,0 and ∞ and . The 

geodesics are the vertical lines -1 and 0 joining to ∞ and the other is the semicircle 

with 0 joining- 1. Then, all these angles are zero, since all vertices are ideal. This 

triangle is similar to that of figure 2.11. Then, by the Gauss-Bonnet theorem, we have 

 µ(T) = π − 0 −0 −0 = π. 

Since all vertices were in ℝ ∪ {∞}, T is an ideal triangle. Example 2.4.1 is an example 

of an ideal triangle. 

 

Example 2.5.5. Let T be a hyperbolic triangle with 2 vertices in ℝ ∪ {∞}. Let us 

assume one vertex is ∞ and the other is on the real axis. Let the third vertex be at an 

angle of   
π

2
. This triangle is similar to that of figure 2.10. Then, by the Gauss-Bonnet 

theorem  
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                               𝜇 (𝑇) =  𝜋 − [ 
π

2
− 0 − 0] =  

2π

2
− 

π

2
=  

π

2
                      

                                       . 

Example 2.5.6. Let T be a hyperbolic triangle with 1 vertex in ℝ ∪ {∞} . Let us 

assume the vertex is ∞ . Let the other two vertices have angles of 

π

4
 and 

π

3
respectively. This triangle is similar to that of figure 2.9. Then, by the Gauss-

Bonnet theorem 

                          𝜇 (𝑇) =  𝜋 − [ 
π

4
−
π

3
− 0] =  

12π

12
− 

3π

12
− 

4π

12
− 0 = 

5π

12
. 
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Chapter 3 

Fuchsian Groups 

In this chapter, we will define what a Fuchsian group is and what properties 

these types of groups have. We will also distinguish the elements of PSL(2, ℝ) by the 

value of its trace. Furthermore, we will discuss what it means for a Fuchsian group to 

be discrete and properly discontinuous. Finally, we will discuss algebraic properties 

of Fuchsian groups. 

§ 3.1  The Group PSL(2, ℝ) 

There are 3 types of elements in PSL(2, ℝ) and by the value of its trace we 

can distinguish which type of transformation it is. 

1. If |𝑇𝑟(𝑇)|  <  2, then T is an elliptic transformation. 

2. If |𝑇𝑟(𝑇)|  =  2, then T is a parabolic transformation. 

3. If |𝑇𝑟(𝑇)|  >  2, then T is a hyperbolic transformation. 

Definition 3.1.1. Consider the matrix g = [
𝑎 𝑏
𝑐 𝑑

] 𝝐 PSL(2, ℝ). Then, 𝑡𝑟(𝑔)  =  |𝑎 +  𝑑| is 

defined to be trace of g. A  geometrical meaning of the trace function allows us to identify 

what type of transformation we are working with and immediately know how it acts in the 

upper half plane 

 

Example 3.1.2. Let  𝑇(𝑧)  =  
𝑧+1

𝑧−2
 .Based on the value of its trace,T is hyperbolic. 

 

Example 3.1.3. Let 𝑇(𝑧)  =  𝑧 +  1. Based on the value of its trace, T is parabolic. 
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Example 3.1.4. Let 𝑇(𝑧) = 
√2

  2  
+ 
√2

  2  

− 
√2

  2  
+ 
√2

  2  

. Based on the value of its trace, T is elliptic. 

                    We will now consider finding the fixed points of these 

transformations.The fixed points are found by solving 

                                               𝑧 =   
az+b

cz+d
   

with a,b,c,d є ℝ and ad − bc = 1. The hyperbolic transformation has two fixed points 

in ℝ ∪ {∞},  one repulsive and one attractive, a parabolic transformation has one 

fixed point in ℝ ∪ {∞} . An elliptic transformation has a pair of conjugate fixed points 

and therefore, one fixed point in ℍ2. We will illustrate this with a few examples. 

Example 3.1.5. Let us find the fixed points of the transformation 

𝑇(𝑧)  =  𝑎𝑧 +  𝑏 

where a,b є ℝ . So, 

 𝑧 =  𝑎𝑧 +  𝑏 ⟹   𝑧 − 𝑎𝑧 =  𝑏  ⟹  𝑧(1 − 𝑎)  =  𝑏 ⟹   𝑧 =  
𝑏

1 − 𝑎
 

Hence, if a = 1, then T is parabolic and the only fixed point is ∞ . If a > 1, then by the 

value of the trace, T is hyperbolic and the second fixed point is  
b

1−a
. 

Example 3.1.6. Let us find the fixed points of the elliptic transformation 

𝑇(𝑧) =  
𝑧𝑐𝑜𝑠 

𝜋
 2 + sin

𝜋
 2 

−𝑧 sin
𝜋
 2 +  𝑐𝑜𝑠 

𝜋
 2 

 

Setting 𝑇(𝑧)  =  𝑧 and simplifying T, we find  

                                            

𝑇(𝑧) =  
𝑧𝑐𝑜𝑠 

𝜋
 2 + sin

𝜋
 2 

−𝑧 sin
𝜋
 2 
+  𝑐𝑜𝑠 

𝜋
 2 

 

                                                     = 
1

−𝑧
 = −

1

𝑧
. 
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Isolating  𝑧 and solving for 𝑧, we find that 

                                           𝑧2 = −1         ⟹      𝑧 =  ±√−1    ⟹  𝑧 =  ±𝑖. 

This shows the transformation has a pair of conjugate fixed points and one of them is 

in ℍ2 . 

Definition 3.1.7.  

   A geodesic in ℍ2joining the two fixed points of the hyperbolic transformation T is 

called the axis of T, and we denote it 𝐶(𝑇). 

Example 3.1.8. Let us find the fixed points of a hyperbolic transformation  

                                                              𝑇(𝑧) =  
𝑧+1

𝑧+2
  . 

By setting T(z) = z, we have 

                              
𝑧+1

𝑧+2
 = 𝑧 ⟹ 𝑧2 + 2𝑧 = 𝑧 + 1 ⟹ 𝑧2 + 𝑧 − 1 = 0. 

By the quadratic formula, we find that the fixed points of  T are z = −
1

2
+
√5

2
   and  

−
1

2
−

√5

2
 . 

Therefore, the geodesic connecting these fixed points is the axis of the transformation 

       

      Figure 3.1: The axis of the transformation T 
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§ 3.2  Discrete and Properly Discontinuous Groups 

In this subsection, we define what a Fuchsian group is and describe what it 

means to be locally finite and properly discontinuous. We also discuss the orbit and 

stablizers of Fuchsian groups. 

Definition 3.2.1 A discrete subgroup of Isom(ℍ) is called a Fuchsian Group, if it 

consists of orientation preserving transformations. A Fuchsian group is a discrete 

subgroup of PSL(2,ℝ). 

Example 3.2.2. The modular group PSL(2,ℤ) is a discrete subgroup of PSL(2, ℝ) and 

hence is a Fuchsian group. 

Example 3.2.3. The group PSL(2,ℚ) is a subgroup of PSL(2, ℝ), but it is not discrete, 

therefore is not a Fuchsian group. 

Example 3.2.4. The set of integer translations {𝑇(𝑧)  =  𝑧 +  𝑛 | 𝑛 ∈ ℕ} is a 

Fuchsian group. 

Example 3.2.5. The set of all translations {𝑇(𝑧)  =  𝑧 +  𝑏 | 𝑏 ∈  ℝ} is not a 

Fuchsian group as it is not discrete. 

 

§ 3.3   Algebraic Properties of Fuchsian Groups 

          In this subsection, we will take an algebraic point of view to describe Fuchsian 

groups. We will look at centralizers of parabolic, elliptic and hyperbolic elements of 

PSL(2, ℝ) and examine their properties. 

Definition 3.3.1. If G is any group and g ∈ G, then the centralizer of g in G is defined 

by 

                            𝐶𝐺(𝑔)  = {ℎ ∈  𝐺 | ℎ𝑔 =  𝑔ℎ } 

Lemma 3.3.2. If 𝑆𝑇 =  𝑇𝑆, then S maps the fixed point set of T to itself. 
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Proof : Suppose that T fixes p, that is, 𝑇(𝑝)  =  𝑝. Then 

𝑆(𝑝)  =  𝑆𝑇(𝑝)  =  𝑇𝑆(𝑝) 

so that 𝑆(𝑝) is also fixed by 𝑇.  

We now will look at centralizers of parabolic, elliptic and hyperbolic 

elements of PSL(2, ℝ). 

Example 3.3.3. For a parabolic centralizer, let us consider 𝑇(𝑧)  =  𝑧 + 1. We would 

like to find a 𝑆 ∈ PSL(2, ℝ) such that 𝑆𝑇 =  𝑇𝑆. By the previous lemma, we know 

S will map the fixed points of 𝑇 to itself. Since 𝑇 is parabolic, this means 𝑆(∞)  =

 ∞. Hence, 𝑆 is of the form 

𝑆(𝑧)  =  𝑎𝑧 +  𝑏 

and 𝑆𝑇 =  𝑇𝑆 gives us a = 1. Therefore, the 𝑆 we desire is 𝑆(𝑧)  =  𝑧 +  𝑘, where  

k ∈  ℝ . 

Example 3.3.4. For a hyperbolic centralizer, let us consider 𝑇(𝑧)  =  2𝑧. Observe 

𝑇(0)  =  0 and 𝑇(∞)  =  ∞. We would like to find 𝑆 ∈  𝑃𝑆𝐿(2, ℝ) such that 𝑆𝑇 =

 𝑇𝑆. Since 𝑆(∞)  =  ∞, S must have the form 

𝑆(𝑧)  =  𝑎𝑧 +  𝑏 

where a > 1. Consider 

                                      [
a b
0 1

].[
2 0
0 1

] = [
2 0
0 1

] . [
a b
0 1

] 

which implies,                          [
2a b
0 1

]   =   [
2a 2b
0 1

]    

which means this equality is true, if and only if b = 2b. Now, this is only possible if b 

= 0. Therefore, the S we desire is 𝑆(𝑧)  =  (2𝑎)𝑧, where is a > 1. 

Example 3.3.5. Let us find an elliptic centralizer for the following transformation. 

Suppose 
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𝑇(𝑧)  =  
0𝑧 + 1

−𝑧 + 0 
=  [

0 1
−1 0

] 𝑧     

This transformation is elliptic since its trace is less than 2. We would like to find a  

𝑆 ∈  𝑃𝑆𝐿(2,ℝ) such that 𝑆𝑇 =  𝑇𝑆. Consider  

                                                 [
a b
c d

] . [
0 1
−1 0

] =  [
−b a
−d c

] 

and                                         [
0 1
−1 0

]  .  [
a b
c d

]  =  [
c d
−a −b

] 

 

In order for these matrices to commute, a = d and -b = c. Therefore, the centralizer is  

                                                                             [
a −c
c −a

]   z      

or  𝑆(𝑧)  =   
𝑎𝑧−𝑐

𝑐𝑧−𝑎 
. 

Example 3.3.6. Let 𝑇(𝑧)  =  𝑧 +  2 and 𝑆(𝑧)  =  𝑧 −  1. We know both 

transformations are parabolic and fix ∞. Let us consider their corresponding matrices 

and show they commute. Consider        

                                   [
1 2
0 1

] . [
1 −1
0 1

] =  [
1 1
0 1

] =  [
1 −1
0 1

] . [
1 2
0 1

] 

Therefore, by direct calculation, we see these transformations commute.  

Example 3.3.7. Let 𝑇(𝑧)  =  2𝑧 and 𝑆(𝑧)  =  3𝑧. We know both transformations are 

hyperbolic and fix both ∞ and 0. Let us consider their corresponding matrices and 

show they commute.Consider                                

                                   [
2 0
0 1

] . [
3 0
0 1

] =  [
6 0
0 1

] =  [
3 0
0 1

] . [
2 0
0 1

] 

 Since 𝑇 and 𝑆 have the same fixed point set, by direct calculation 𝑇 and 𝑆 commute. 
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Example 3.3.8. Let 𝑇(𝑧) = 

√3

2
z + 

1

2

−
1

2
z+ 

√3

2

   and 𝑆(𝑧)  = 

√2

2
 z+ 

√2

2

−
√2

2
z+ 

√2

2

 We know both 

transformations are elliptic and fix i. Let us consider their corresponding matrices 

and show they commute.     

 

                                 [

√3

2

1

2

−
1

2

√3

2

] .  [

√2

2

√2

2

−
√2

2

√2

2

]    =   [
 
1

4
√3√2  

1

4 
√2

1

4 
√2

1

4
√3√2

]                                                   

and the other            [

√2

2

√2

2

−
√2

2

√2

2

]  .  [

√3

2

1

2

−
1

2

√3

2

]    =   [
 
1

4
√3√2  

1

4 
√2

1

4 
√2

1

4
√3√2

]  

Therefore, we have shown the transformations commute, so it must be the case they have 

the same fixed point set. 

Theorem 3.3.9 The centralizer in PSL(2, ℝ) of a hyperbolic, parabolic, elliptic 

element of PSL(2, ℝ) consists of all hyperbolic, parabolic, elliptic elements with the 

same fixed point set, together with the identity. 

Corollary 3.3.10.Two hyperbolic elements in PSL(2, ℝ) commute if and only if they 

have the same axes. 

Example 3.3.11.Consider again the hyperbolic transformation 𝑇(𝑧)  =  2𝑧. We saw 

that in example 3.3.2 𝑆(𝑧)  =  3𝑧 shares the same fix point set as 𝑇(𝑧)  =  2𝑧 and 

they commute. This means the geodesic connecting the fix points is the vertical line 

from 0 to ∞. The vertical line is the axis for both transformations. 
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                                      Figure 3.4: The axis of S and T 
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Chapter 4 

 

Fundamental Regions  

In this chapter we examine the properties and geometries of fundamental regions, 

Dirichlet regions and the Ford region. We will also examine the idea of isometric 

circles, which can be used to construct these regions. 

 

§ 4.1 Definition of  Fundamental Region  

  Fundamental regions can be useful to visualize a group structure. These 

regions can also tell us if an action is discontinuous. The regions also determine the 

geometry of the quotient space 𝑋/𝛤.  For our purposes, theses regions form a 

tessellation on ℍ2.In other words, these regions can be viewed as a partition of the 

upper-half plane. 

 

Definition 4.1.1. A closed region 𝐹 ⊂  𝑋 is said to be a fundamental region for a 

group 

G if the following conditions hold: 

1. ⋃T ∈G  (𝐹) = 𝑋  

2. F˚ ∩ T(F˚ )= ∅ 

where F is the closure of a non-empty open set, F˚ called the interior of F. 

Example 4.1.2. Let G = 〈[
1 1
0 1

]〉, let F = { z ∈ ℍ2  | 0 ≤ 𝑅𝑒 (𝑧) ≤  1}  and then 

F˚ = {z ∈ ℍ2| 0 < 𝑅𝑒(𝑧) < 1} . This is an example of a fundamental region because the 

union of all images of with F is indeed all of ℍ2 . The intersection of all interiors F˚ are 
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empty. Elements of G translate left and right by integer increments as shown in figures 

4.1 and 4.2. 

                       

Figure 4.1: Intersection of mutually disjoint regions will be empty 

                           

            Figure 4.2: Union of regions for T ∈ G give ℍ2  

Example 4.1.3. Let G = 〈[
1 1
0 1

]〉, let F = { z ∈ ℍ2  | 0 ≤ 𝑅𝑒 (𝑧) ≤  
1

2
  }    and let 

 F˚ = { z ∈ ℍ2  | 0 < 𝑅𝑒 (𝑧) <  
1

2
  }.  This is not a fundamental region because it fails  

condition 1. The union of all images with F does not give all of ℍ2.      

   

   Figure 4.3: Union of regions for T ∈ G give ℍ2 
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Example 4.1.4. Let Let G = 〈[
1 1
0 1

]〉, let F = { z ∈ ℍ2  | 0 <  𝑅𝑒 (𝑧) <  
3

2
  } and let 

F˚ = { z ∈ ℍ2  | 0 ≤ 𝑅𝑒 (𝑧) ≤  
3

2
  }. This is not a fundamental region because it fails 

condition 2. The intersection of all interiors with F˚ is not empty. We can see F and 

𝑇(𝐹) overlap between 1 < 𝑅𝑒(𝑧) < 1.5. 

                  

Figure 4.4: Regions are not mutually disjoint for 𝑇 ∈  𝐺 

Example 4.1.5. Let G = 〈[
2 0
0 1

]〉,  

                            let F = { z = reiθ ∈ ℍ2  | 1 ≤ r ≤ 2, 0 ≤ θ ≤  π } 

and let F˚ be the open set of this region. Then, F  is a fundamental region since the 

union of all the regions for all T ∈ G will yield ℍ2. The intersection of mutually 

disjoint regions for 𝑇 ∈  𝐺 of F˚ will be empty. 

                                   

                    Figure 4.5: Union of regions for T ∈ G will give ℍ 
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              Figure 4.6: Mutually disjoint regions for T ∈ G will be empty 

 

§ 4.2  The Dirichlet Region 

 

 

 Definition 4.2.1. 

         Let Γ be an arbitrary Fuchsian Group and let 𝑝 ∈ ℍ2  be not fixed by any element 

of Γ − { 𝐼𝑑}. We will define the Dirichlet region for Γ centered at 𝑝 to be the set 

𝐷𝑝(Γ) = { 𝑧 ∈ ℍ2  |  𝑑 (𝑧, 𝑝) ≤ 𝑑(𝑧, 𝑇(𝑝)) |for all 𝑇 ∈  𝛤} 

 

Definition 4.2.2. A perpendicular bisector of the geodesic segment [z1, z2] is the 

unique geodesic through w, the midpoint of [z1, z2], orthogonal to [z1, z2].  

We will denote the perpendicular bisector of the geodesic segment [𝑝, 𝑇(𝑝)] by 𝐿𝑝(𝑇) 

and the hyperbolic half plane containing p is denoted by 𝐻𝑝(𝑇). Therefore, an 

equivalent definition for the Dirichlet region is given by 

𝐷𝑝(𝛤)  = ∩ 𝐻𝑝(𝑇) 
 

for 𝑇 ∈ 𝛤 and 𝑇 ≠ 𝐼𝑑. 
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Figure 4.7: Hyperbolic half plane containing 𝑝 

§ 4.3 Isometric Circles 

              In this subsection, we define isometric circles and examine their properties. 

We also will see geometrically how isometric circles of a transformation T act with the 

isometric circles of T-1. We will then transition to examining the isometric circles of 

the unit disk because the model provides a convenient way to compute the Ford Region. 

Let 𝑇(𝑧)  =  
𝑎𝑧+𝑏

𝑐𝑧+𝑑
 ∈  𝑃𝑆𝐿(2, ℝ). Since T′(z)= (cz + d)−2, the locally Euclidean 

lengths are scaled by |𝑇′(𝑧)|  =  |𝑐𝑧 +  𝑑|−2. Thus, locally Euclidean area is scaled by 

|𝑐𝑧 +  𝑑|−4.The Euclidean areas of regions are not altered in magnitude if and only if 

|𝑐𝑧 +  𝑑|  =  1.  

Proposition 4.3.1. 

 Let 𝑇(𝑧)  =  
𝑎𝑧+𝑏

𝑐𝑧+𝑑
 with c ≠ 0, then locus of such a z is a circle 

                                               𝐼(𝑇) = { z ∈ C |  |cz + d| = 1} 

where the center is - 
d

c
 and radius 

1

|c| 
.  

Proof:  

    We will show I(T) is a circle with center  - 
d

c
 and radius 

1

|c| 
 .Consider |cz + d| = 1. 
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Then,  |cz + d| = 1. 

 

 ⇒ | z + 
d

c
 | =  

1

|c|
  

⇒ | (x + iy) + 
d

c
 | =  

1

|c|
         

⇒ | (x + 
d

c
 ) +  iy| =  

1

|c|
    

⇒ √(x + 
d

c
 )
2
+ y2 =  √

1

c2
  

⇒ (x + 
d

c
 )
2
+ y2 =  

1

c2
  

This takes the form of a Euclidean circle with center (−
d

c
 , 0) and radius  

1

|c|
 .   

Corollary 4.3.2. Let  𝑇
−1(𝑧) =   

−𝑑𝑧+𝑏

𝑐𝑧−𝑎
 with c ≠ 0, then locus of such a z is a circle 

I(T−1) = { z ∈  ℂ | |cz − a|  =  1}  

where the center is  and radius 
1

|c|
. 

Definition 4.3.3.      I(T) = { z ∈ ℂ |  |cz + d| = 1} 

 These I(T) are called isometric circles. 

We point out the radius of the isometric circles of a transformations T and  

T−1are equal. Let us consider some examples and see how hyperbolic and elliptic 

elements differ with their respective isometric circles. 

Example 4.3.4.Let 𝑇(𝑧) =  
𝑧+1

𝑧+2
 be the hyperbolic transformation. Then, 

𝐼(𝑇) = { 𝑧 ∈  𝐶 | |𝑧 + 2 |  =  1} 
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where the center is -2 and the radius is 1. 

                                     

                      

Figure 4.8: Isometric circles for hyperbolic transformation 

Example 4.3.5. Let T(z) =  
√2

2
z+ 

√2

2

−
√2

2
 z+ 

√2

2

 be the elliptic transformation. Then, 

I(T) =   

{
 
 

 
 

z ∈  ℂ | |z − 1 | =
1

|−
√2
2 |

 =   √2

}
 
 

 
 

 

where the center is 1 and the radius is √2 

                               

    Figure 4.9: Isometric circles for elliptic transformation 
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Example 4.3.6. Let T(z)  =  z +  1. Observe 

                                              [
1 1
0 1

] z  

We see that T is parabolic with c = 0. This means there is no unique circle with the 

isometric property since ∞ is a fixed point. 

In these examples, we see geometrically how isometric circles of T act with the 

isometric circles of  T−1 

1. When I(T) and I(T−1) intersect, T is elliptic. 

2. When I(T) and I(T−1)do not intersect, T is hyperbolic. 

Definition 4.3.7. The unit disk is defined to be 

                                                    𝔹 2  = { z ∈  ℂ ||z| < 1}.  

The map 

                                                        𝑓 (𝑧) =  
𝑧𝑖+1

𝑧+𝑖 
                   

is a 1-1 map of  ℍ 2   and provides an isometry onto 𝔹 2  . 

Proposition 4.3.8.. The group of orientation preserving isometries of the unit disk given 

by the matrices  

𝑇(𝑧)  =  
𝑎𝑧 + 𝑐̅

𝑐𝑧 +  𝑎̅
 

where a , c  ∈  ℂ  and  aa̅ − cc ̅ = 1. 

Example 4.3.9.Let  T(z) =  
3z+(2−2i)

(2+2i )z+3 
   be an orientation preserving transformation 

of the unit disk. Then,  

𝐼(𝑇) = { 𝑧 ∈  ℂ | |(2 + 2𝑖)𝑧 + 3 |  =  1} 
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where the center is  

                 
3

(2+2𝑖 ) 
= −

(6−6𝑖)

8 
 = − 

3

4
 +

3

4
i      

 

 

and the radius is   

                               
1

|2+2i|
= 

1

√8 
 

   

                                               

Figure 4.10: Isometric circles for orientation preserving transformation of the unit disk 
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Conclusion 

In this project we discussed about  the hyperbolic metric. We calculated 

hyperbolic lengths and distances. We also discussed Möbius transformations and 

how these transformations can be looked at algebraically by their associated matrices. 

The trace of a matrix determined which element in PSL(2,ℝ) are hyperbolic, elliptic 

or parabolic. 

We discussed how to find the fixed points of these elements. We defined 

what Fuchsian groups were and gave examples of them geometrically and 

algebraically. We discussed what it meant to be properly discontinuous and showed 

examples of cyclic generated groups and their orbits and stabilizers. We saw some 

algebraically properties of Fuchsian groups and it was shown that elements of 

PSL(2, ℝ)commute if and only if they share the same fixed point set. We finally 

looked at some examples of fundamental regions and Dirichlet regions. 

  

 

 

 

 

 

 

 

 



39 
 

Bibliography 

[1] Francis Bonahon. Low-Dimensional Geometry: From Euclidean Surfaces to 

Hyperbolic Knots. American Mathematical Society, Providence, Rhode Island, 2009. 

[2] James W. Anderson. Hyperbolic Geometry. Springer, London, 1999. 

[3] Matthew F. Gray, Jeremy J. Brannan, David A. Esplen. Geometry. Cambirdge 

University Press, Cambridge University Press, New York, 2012. 

[4] Svetlana Katok. Fuchsian Groups. The University of Chicago Press, Chicago, 1992. 

[5] Tristan Needham. Visual Complex Analysis. Oxford University Press, Oxford, 1997. 

 

 

 

 

 

 








































































































