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INTRODUCTION

Cryptography, or cryptology is the practice and study of techniques for secure
communication in the presence of adversarial behavior. More generally, cryptography is about
constructing and analyzing protocols that prevent third parties or the public from reading private
messages; various aspects in information security such as data confidentiality, data integrity,
authentication, and non-repudiation are central to modern cryptography. Modern cryptography
exists at the intersection of the disciplines of mathematics, computer science, electrical

engineering, communication science, and physics.

e What is cryptography?

Cryptography is the science of using mathematics to encrypt and decrypt data.
Cryptography enables you to store sensitive information or transmit it across insecure networks
(like the Internet) so that it cannot be read by anyone except the intended recipient. It is a method
of storing and transmitting data in a particular form so that only those for whom it is intended
can read and process it. Cryptography not only protects data from theft or alteration, but can also

be used for user authentication.

In Cryptography the techniques which are used to protect information are obtained from
mathematical concepts and a set of rule based calculations known as algorithms to convert
messages in ways that make it hard to decode it. These algorithms are used for cryptographic
key generation, digital signing, and verification to protect data privacy, web browsing on internet

and to protect confidential transactions such as credit card, debit card and for transactions.



ENCRYPTION AND DECRYPTION

Data that can be read and understood without any special measures is called plaintext or

clear text. The method of disguising plaintext in such a way as to hide its substance is called

encryption. Encrypting plaintext results in unreadable gibberish called cipher text. You use

encryption to make sure that information is hidden from anyone for whom it is not intended,

even those who can see the encrypted data. The process of reverting cipher text to its original

plaintext is called decryption.

The following figure shows this process:

Sender Receiver
encryption key decryption key
plaintext : Ciphertext ‘ plaintext
5| Encryption | Decryption )
algorithm algorithm

Interceptor



How does cryptography work?

A Cryptographic algorithm or cipher,is a mathematical function used in the encryption
and decryption process.A cryptographic algorithm works in combination with a key,a
word,number,or phrase to encrypt the plain text. The same plaintext encrypts to different cipher

text with different keys.

The security of encrypted data is entirely dependent on two things:

1. The strength of the cryptographic algorithm.
2. The secrecy of the key.

e Why is Cryptography important?
As our business processes become increasingly more digitalized and web-based practices
like online shopping became more mainstream, much bigger amounts of sensitive information
circulate. That is why keeping personal data private has gained significant importance and

nowadays, cyber security professionals are putting great emphasis on encryption and

cryptography.

Few decades ago, hackers would only target big organizational but as the circulation of
private information has become more common and information itself has turned into one of the
biggest assets one can have, hackers have been targeting organizations of every size, even
individuals. In fact, recent research shows that smaller organizations have been attracting hackers
even more since most of them do not allocate much resource and human power to their cyber
security operations. In other words, they are easier to take down. If you want to keep your
business safe, you definitely need proper cryptography and encryption practices in order to keep
your personnel information, customer data, business communications and such safe from the

malicious attackers.



CHAPTER -1
PRELIMINARIES

Definition:

The greatest common divisor of two non-zero integers a and b is the largest integer ¢ such
that ¢ divides both a and b. This is denoted by gcd(a, b) = ¢ or sometimes by (a, b) = ¢, however
we will use the former notation in this text. If the greatest common divisor of a and b is 1 then

we say that a and b are relatively prime.

Example:

Find gcd(522, 213).

First divide 522 by 213.
522 =213(2) + 96

Next, divide 213 by the remainder 96 and continue this process.
213=96(2) + 21
96=214)+ 12

21=12(1) +9
12=9(1) + 3
9 =3(3) +0.

So ged(522, 213) = 3.
Definition:

We say that a number p is prime if it is an integer greater than 1, whose only positive

divisors are 1 and itself. An integer greater than 1 which is not prime is said to be composite.

Definition:
For a positive integer m, which we will call our modulus, we say that two integers a and b

are congruent modulo m if m|(a - b) or equivalently if a and b have the same remainder when



divided by m. Symbolically this is written as a = b (mod m) which is read as “a is congruent to b

mod m.”

Example:

23 is congruent to 3 modulo 10 since 10 | (23 - 3) = 20. Also we have
59 = -6 (mod 13) because 13 | (59 - (-6)) = 65. We find though, 7 Z 3 (mod 5)
since 5 ¢ (7 - 3) =4.

Definition:
Given an integer a and a positive integer n, satisfying gcd(a; n) = 1, we define the
multiplicative inverse of a modulo n to be an integer d such that ad = 1 (mod n). This d is

sometimes represented symbolically by d = a™.

The Euclidean Algorithm which we described earlier can provide a convenient
way of finding multiplicative inverse modulo n. The way we can do this is by first using the
algorithm to show that gcd(a,n) = 1. We then work backwards through the equations that were
found in order to represent 1 = ad + nc for some integers d and c. We then will have that the

multiplicative inverse of a modulo n is d.

Example:

Find the multiplicative inverse of 9 modulo 32. First let us perform which can be seen in the
right hand column below. These remainder equations are the Euclidean Algorithm to show that
gcd(32; 9) = 1; this is seen in the left hand column below. At each step we will also solve for the

remainder in the equation, then labeled in a reverse ordering for later reference.
32=933)+5 — 5=32-9(3) (iii)
9=5()+4 — 4=9-5(1) (i1)

S5=4(1)+1 —  1=5-4(1) @)

Now we work backwards through these equations. First we use the last equation (i )



which states 1 = [5-4(1)]: Next we use the second to last equation (ii ) to substitute
4 =19 - 5(1)] into our previous expression. Lastly we will replace 5 = [32-9(3)] (iii ) and again

group our terms to obtain the desired equationin terms of 32 and 9.

1=[5-4(D] @)
=5-[9-5(1)] (i)
=5-9+5

=9(-1) +5(2) (group terms)
=9(-1) +2[32-9(3)] (iii)
=9(-1) +32(2) + 9(-6) (distribute)
=322) +9(-7) (group terms)

Thus we see that 91 = -7 = 25 (mod 32).
9(-7)=-63 = 1 (mod 32)

Definition:

A number a is said to be a primitive root modulo n if every number co prime to n is

congruent to a power of a modulo n

In other words a positive integer g is said to be a primitive root of prime number ‘p’, if

a! (mod p), o2 (mod p), &’ (mod p)... a”! (mod p) are distinct

Example:
Is 2 a primitive root of prime number 5?

Herea=2andp=>5

2!'mod5=2
22mod 5=4
2>mod 5=3
2*mod5=1

Since all values are distinct, 2 is a primitive root of prime number 5.



CHAPTER - 11
SHIFT CIPHER

In cryptography, a Caesar cipher, also known as Caesar's cipher, the shift cipher,
Caesar's code or Caesar shift, is one of the simplest and most widely known encryption
techniques. It is a type of substitution cipher in which each letter in the plaintext is replaced by a
letter some fixed number of positions down the alphabet. For example, with a left shift of 3, D
would be replaced by A, E would become B, and so on. The method is named after Julius

Caesar, who used it in his private correspondence.

If you have a message you want to transmit securely, you can encrypt it (translate it into

a secret code). One of the simplest ways to do this is with a shift cipher.

A shift cipher involves replacing each letter in the message by a letter that is some fixed
number of positions further along in the alphabet. We will call this number the encryption key. It
1s just the length of the shift we are using. For example, upon encrypting the message
“COOKIE” using a shift cipher with encryption key 3, we obtain the encoded message (or cipher
text): FRRNLH.

To make all of this more mathematical, consider the following conversion

table for the English alphabet:

o 1 2 3 4 5 6 7 8 9 10 11 12
A B C D FE F G H I J K L M

13 14 15 16 17 18 19 20 21 22 23 24 25
N OP QU R STUVWXY Z



e Using the table, we can represent the letters in our message “COOKIE” with their

corresponding numbers: 2 14 14 10 8 4.
e Now add 3 (the encryption key) to each number to get: 517 17 13 11 7

e Now use the table to replace these numbers with their corresponding letters: FRRNLH.

ENCRYPTION

Encryption using the Shift Cipher is very easy. First we must create the ciphertext
alphabet, which as discussed above is simply found by 'shifting' the alphabet to the left by the
number of places given by the key. Thus a shift of 1 moves "A" to the end of the ciphertext
alphabet, and "B" to the left one place into the first position. As the key gets bigger, the letters
shift further along, until we get to a shift of 26, when "A" has found it's way back to the front.

We have already seen a shift of 3 in the table above, and below we have a shift of 15.

Plain
text A B|C|ID|E|F|G|H|I|J|K|LIM|{N|O|P|Q|R|[S|T|U|V|IW|X|Y
Letter

Cipher

text PIQIR|[S|T|UV|IWXYZ| A B|C|IDE|F|G|H|I|J|K|L |MN
Letter

Once we have created the table, the encryption process is easy, as we just replace each
occurrence within the plaintext of a letter with the corresponding cipher text letter as given by

the cipher text alphabet.

Hence, if we wanted to encrypt the plaintext "JULIUS CAESAR" with the key he himself
used, namely 3, we look along the plaintext alphabet row in the first table to find "J", and note

that this encrypts to "M".




We then look for "U", and take the cipher text letter "X". Continuing in this way, we finally
encrypt to "MXOLXV FDHVDU"

DECRYPTION

Decryption by the intended recipient of a cipher text received that has been encrypted
using the Shift Cipher is also very simple. One can either use the table already created above,
and find each letter of the cipher text in the bottom row, and replace with the corresponding
plaintext letter directly above it, or the recipient could create the inverse table, with the cipher

text alphabet on top, and using a shift of -3 on it, which gives the table below.

Cipher

text A B|CIDIE|F|G|H|I|J|K|LIM|{N|O|P|Q|R|S|T|U|V|IWIX|Y|Z
Letter

Plain
text XY Z|A|B|CID|E|FIGH|I|J |[KILIMN|O|P|QIR|S|T|U|V|W
Letter

Clearly, the encryption table and its inverse are the same as each other, only reordered. If
we have received the cipher text "PDUFXV EUXWXV", and we know that it has been
enciphered using the key 3, then we can use the table to decipher the message. We see that "P"
represents the plaintext letter "M", "D" represents "A" and so on. Continuing in this way we
retrieve the plaintext "M ARCUS BRUTUS", the name of the famous conspirator in the

assassination of Julius Caesar.



Example:

There is a small complication when we want to encrypt a message that
contains a letter near the end of the alphabet. For example, if we consider the
new message “PIZZA,” then what letter should we use to replace the “Z”

when we encrypt?

After performing a shift cipher encryption with encryption key 3, the message “PIZZA”
becomes SLCCD. The letter “Z” was replaced with the letter “C,” which we can view as being 3
places further along than “Z” if, after we reach “Z,” we cycle the alphabet around to the

beginning again.

In terms of the numerical representations of our letters, the encryption of the message “PIZZA”

looks this way:

15825250—1811223.

There is a handy mathematical concept that describes this very nicely. Define the following

notation for integers a and b and integer m > 1:

a=Db (mod m) means m is a divisor of a — b.

In our situation, we take the number m (the modulus), to be equal to the size of our character set,

so m = 26.

Now take each number x from the representation of the message and perform the following

arithmetic:

Add 3 to x, and if the result is between 0 and 25, stop; otherwise, replace x + 3 with the integer y

between 0 and 25 that satisfies y = x + 3 (mod 26).

10



In summary, our encryption of the message “pizza” using a shift cipher with encryption key 3
looks like this:

P— 15 > 15+3=18(mod26) — S
I - 8 > 8+3=11(mod26) —» L
Z — 25 — 25+3= 2(mod26) —» C
Z — 25 — 25+3= 2(mod26) — C
A— 00— 0+3= 3(@mod26) - D

How is the original (plaintext) message recovered from the ciphertext if the

encryption key is known?

The following cipher text was produced using a shift cipher with encryption key 9:
LQXLXUJCN.
To decrypt it (i.e., to recover the plaintext message), we need to add 17 (. . . or subtract 9 .
.. why is that the same?) to each of the numbers representing the ciphertext letters.

Here 17 is the decryption key for the shift cipher with encryption key 9.

Again, we must sometimes replace the result of this addition with the appropriate number

between 0 and 25:

L —>11 - 11+17 = 2(mod26) — C
Q - 16 - 16+17 = 7(mod26) — H
X —523 - 23+17 =14 (mod 26) — O
L —»11 - 11+17 = 2(mod26) — C
X 523 -5 23+17 =14 (mod26) — O
U —>20 - 20+17 =11(mod 26) — L
J - 9— 9+17 = 0(mod26) — A
C—-> 2— 2+17 =19(mod26) — T
N —->13 - 13+17 = 4(mod26) — E

11



CHAPTER - II1
AFFINE CIPHER

The affine cipher is a type of mono alphabetic substitution cipher , where each letter in an
alphabet is mapped to its numerical equivalent, encrypted using a simple mathematical function,

and converted back to a letter.

The formula used means that each letter encrypts to one other letter, and back again, meaning the
cipher is essentially a standard substitution cipher with a rule governing which letter goes to

which.

As such, it has the weaknesses of all substitution ciphers. Each letter is enciphered with the

function (ax + b) mod 26, where b is the magnitude of the shift.

ALGORITHM

The 'key' for the Affine cipher consists of 2 numbers, we will call them a and b. The
following discussion assumes the use of a 26 character alphabet (m = 26). a should be chosen to
be relatively prime to m (i.e. a should have no factors in common with m). For example 15 and
26 have no factors in common, so 15 is an acceptable value for a, however 12 and 26 have

factors in common (e.g. 2) so 12 cannot be used for a value of a.

When encrypting, we first convert all the letters to numbers ('a'=0, 'b'=1, ... , 'z'=25). The

ciphertext letter c, for any given letter p is (remember p is the number representing a letter):

The encryption function is

c=aptb@modm),1<a<m,1<b<m

12



The decryption function is:

p =a ! (c-b) (mod m)

where a’! is the multiplicative inverse of a in the group of integers modulo

m. To find a multiplicative inverse, we need to find a number x such that:

ax = 1(mod m)

Example:

In these two examples, one encrypting and one decrypting, the alphabet is going to be the

letters A through Z, and will have the corresponding values found in the following table:

A 0 N 13
B 1 0 14
C 2 P 15
D 3 Q 16
E 4 R 17
F 5 S 18
G 6 T 19
H 7 U 20
I 8 v 21
J 9 W 22
K 10 X 23
L 11 Y 24
M 12 7 25

13




ENCRYPTING

In this encrypting example, the plaintext to be encrypted is AFFINE CIPHER using the
table mentioned above for the numeric values of each letter, taking a to be 5, b to be 8, and m to
be 26 since there are 26 characters in the alphabet being used. Only the value of a has a
restriction since it has to be coprime with 26. The possible values that a could be are
1,3,5,7,9,11,15,17,19,21,23 and 25. The value for b can be orbitary as long as a does not equal
to 1 since this is the shift of the cipher. Thus the encryption function for this example will be y=
E(x) =(5x+8) mod 26. The first step in encrypting the message is to write the numeric values of

each letter.

Plaintext A F F I N E C I | H E

Now, take each value of x and solve the first part of the equation (5x+8). After finding the
value of (5x+8) for each character, take the remainder when dividing the result of (5x+8) by 26.

The following table shows the first 4 steps of the encrypting process.

14




Plaintext F F I N E C I P H E R

X 5 5 8 13 4 2 8 15 7 4 17
(5x+8) 33 33 48 73 28 18 48 83 43 28 93
(5x+8)mod26 7 7 22 21 2 18 22 5 17 2 15

The final step in encrypting the message is to look up each numeric value in the table for the

corresponding letters. In this example, the encrypted text would be IHHWVCSWFRCP. The

table below

Plaintext F F I N E C I P H E R

X 5 5 8 13 4 2 8 15 7 4 17
(5x+8) 33 33 48 73 28 18 48 83 43 28 93
(5x+8)mod26 7 7 22 21 2 18 22 5 17 2 15
Ciphertext H H W \Y C S W F R C P

15




DECRYPTING

In this decryption example, the cipher text that will be decrypted is the cipher text from the
encryption example. The corresponding decryption function is D(y) = 21(y-8) mod 26, where a’!
is calculated to be 21, and b is 8. To begin write the numeric equivalents to each letter in the

cipher text are shown in the table below.

Ciphertext I H H W \Y% C S W F R C P

Y 8 7 7 22 21 2 18 22 5 17 2 15

Now the next step is to compute 21(y-8), and then take the remainder when that result is

divided by 26. The following table shows the results of both computations.

Ciphertext I H H W A\ C S W F R C P

Y 8 7 7 22 21 2 18 22 5 17 2 15
21(y-8) 0 -21 -21 294 273 -126 | 210 294 -63 189 -126 147
21(y-8)mod26 0 5 5 8 13 4 2 8 15 7 4 17

16




The final step in decrypting the cipher text is to use the table to convert numeric values back into
letters. The plaintext in this decryption is AFFINE CIPHER. Below is the table with the final

step completed.

Ciphertext I H H W \Y C S W F R C P
Y 8 7 7 22 21 2 18 22 5 17 2 15
21(y-8) 0 21 21 294 273 -126 | 210 294 -63 189 -126 147
21(y-8)mod26 0 5 5 8 13 4 2 8 15 7 4 17
Plaintext A F F I N E C I | H E R

17




CHAPTER - IV

APPLICATION OF LINEAR ALGEBRA IN
CRYPTOGRAPHY

In crytography, encryption is the process of concealing information — which we call
plaintext — in a way that makes it unrecognisable at first glance. In order to encrypt
information,we use a cipher ,or a set of steps to encode the data. In order to make the information
legible, we use decryption, which is recreating the original message from the encrypted data ,
known as ciphertext. In order to decrypt information, we take the cipher that was used in the
encryption process, reverse it,and apply it to the coded message. The reversed cipher is known as

the key.

The concept of encryption and decryption applies to Linear Algebra through the use of
matrices as plaintext/ciphertext, and matrix algebra as the cipertext/key. The matrix we use for

the plaintext/ciphertext must be invertible in order for the ciphertext to be decrypted.

In order for a matrix to be invertible it has to be a square matrix, and it can’t be a zero
matrix so our plaintext has to be a nonzero, square matrix. In this example , we will have our
plaintext can be the same message as before, “Leave the door unlocked”. To convert this
plaintext to a matrix, we assign each character of the plaintext to an integer. For this example

we’ll use number 0-52:

e 0: Spaces
e 1-26: Uppercase ‘A’-‘Z’ in the alphabet

e 27-52: Lowercase ‘a’-‘z’ in the alphabet

18



=0 A=l B=2 =3 D=4 E=5 F=6 G= H=8
=9 J=10 K=11 L=12 M=13 N=14 O=15 P=16 Q=17
R=18 S=19 T=20 U=21 V=22 W=23 X=24 Y=25 7=26
a=27 b=28 c=29 d=30 e=31 =32 g=33 h=34 i=35
j=36 k=37 1=38 m=39 n=40 0=41 p=42 q=43 r=44
s=45 t=46 u=47 v=48 w=49 x=50 y=51 z=52

In setting up our matrix, we have to be mindful that the matrix needs to be square, and
since the amount of character in our plaintext is 23, we add 2 spaces at the end of the plaintext to
get a square amount of character, 25. Now we have our plaintext matrix(which we will denote as
matrix P):

12 31 27 48 31
0 46 34 31 O
P=|30 41 41 44 O

47 40 38 41 29
37 31 30 0 O

Next we choose our cipher. We will perform elementary row operations on the identity

matrix,
1 0 0 0 O
01 0 0 O
I=]0 0 1 0 O
0 0 01 O0
0 0 0 0 1

Now performing row operations on the identity matrix we get our cipher matrix E

e Ri—R3
0 01 0 O
0 1.0 0 O
I~11 0 0 0 O
0 001 O
0 0 0 0 1

19
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l l ¢ l
— —_ — —

R2 < R4

Rs - Rs + Ry
R4 — R4 +R3
Ri —>Ri+R3

20

Let this matrix be E (i.e Cipher matrix)



Now, when we multiply our matrices P and E we get our cipher text matrix (which we will call

©
87 48
65 31
P*E=C=[115 44
126 41
67 0

43
0
30
76
37

31
46
41
40
31

Now, to convert our cipher matrix to cipher text, we simply type out the characters of the

corresponding integers. For the integers that exceed 52, we subtract 52 from the integer and use

the result (think of the interval as a circular list, where the front and end are connected). Here is

our cipher text:

“ivgeeMe t KrXncO ke”

In order to decrypt this cipher text, we first find the key matrix, which is the cipher matrix’s

inverse E! :

LetE'=|X11 X2 X133 X14  Xg5

We know that EE1=

1 0 1 0 Oyp*1 X2 X3 X4
0 0 0 1 Of||Xs X7 Xg Xo
1 0 0 0 O]|*11 X12 X13 X14
1 1 0 0 O0]|*e X17 X183 X1i9
0 0 1 0 1dXa1 Xz Xz3 X4

0O 0 1 0

0O 0 -1 1

E'=l1 0 -1 0

0O 1 0 O

-1 0 1 0

]

o O OO

L

OO OO

oS o oOoOmRmO

(el el )

O R OO Oo

(il == I« I an Ji an

Next, we multiply our key matrix and our cipher matrix to get the original plaintext matrix:

So we want to prove that C * E' =P

21



35 48 43 31 31 0 0 1 0 0
133 31 0 46 O 0 0 -1 1 0
C*El=|11 44 30 41 0 1 0 -1 0 O
22 41 24 40 29 0 1 0 0 O
15 0 37 31 O -1 0 1 01

12 31 -25 48 31
0 46 —-18 31 O
=130 41 -63 44 O
-5 40 -14 41 29
37 31 =22 0 O

(Applying mod 52 on all negative values in the matrix, we get the following matrix)

12 31 27 48 31
0 46 34 31 O
30 41 41 44 O
47 40 38 41 29
37 31 30 0 O

=P
We know that:

P = Plaintext matrix
E = Cipher matrix
C = Cipher text matrix =P * E

W=

E! = Key matrix
So we can rewrite the equation C * E' = P as
P*E*E1=P

The product of a matrix and its inverse is the identity matrix (according to the definition of an

inverse), so we can simplify this to :
P*I=P
And multiplying plaintext matrix P by the identity matrix I returns P (i.e P = P)

So multiplying the key matrix and the ciphertext matrix returns the plaintext matrix:

22



12 31 27 48 31
0 46 34 31 O
P=|30 41 41 44 0
47 40 38 41 29
37 31 30 0 O

And when we convert the plaintext matrix to plaintext we get the original message:
“Leave the door unlocked”

Thus completing the decryption.

23



CHAPTER -V

THE RSA CIPHER

One of the most well-known and widely used public-key cipher systems is the RSA
Cipher. It is named for its authors Ron Risvest, Adi Shamir, and Leonard Adle-man who first
publicly described the system in 1977. Clifford Cocks, a cryptographer working for the British
government, independently discovered an equivalent encryption cipher to RSA in 1973, but his
work was not declassified until 1997, so Risvest,Shimir and Adleman are commonly credited
with the discovery of the cipher. The security of this system is based upon the difficulty of
factoring large numbers into their prime factorizations. This cipher is a wonderful example of an
application of elementary number theory topics to the realm of cryptography. The cipher utilizes
topics such as congruence , modular exponentiation and modular multiplicative inverses. We will
first explain how the cipher works and work through an example of its. We then will delve into

some of the mathematics behind how it works.

Bob wishes to establish a public encryption key so that people may send him
encrypted messages which only he can decrypt. To do so, first Bob will choose two secret large
prime numbers, p and q. Bob then forms his modulus n by computing n = pq. Next, Bob will
choose an integer e such that gcd (e, (p -1)(q -1)) = 1. This e will serve as his encryption key.
Bob then computes his decryption key d such that de = 1 (mod (p-1) (g-1)). That is, d is the
multiplicative inverse of e modulo (p-1)(g-1). Bob then makes n and e public, keeping p, q, and d

secret.

If Alice wants to send a secret message to Bob, she will first convert her plaintext message
into an integer m. (Note that if m < n then Alice should break up m into several blocks which are
each smaller than n and send the blocks individually. For now we will assume m < n). Alice then
encrypts her plaintext message m into her ciphertext ¢ by computing,

¢ = m¢(mod n)

and choosing the value for ¢ such that 0 < ¢ < n. Alice will send the ciphertext ¢ to Bob.
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In order to read Alice's message, Bob will then decrypt her ciphertext by computing
m = ¢ (mod n)
and choosing the value m which satisfies 0 < m < n.We will do an example now to see how this

cipher will work before we continue on to explore the mathematics behind why it works.

Example:

For this example we will use small numbers in order to simplify the work. In practice,
however, numbers such as the choice of n will need to be on the order of 10'®. For a few of the

computations we will still likely need the use of a computer.

Bob chooses his prime numbers p = 47 and q = 67 and then computes n = pq =3149.
Next he needs to choose an encryption key e so that gcd (e,d(n)) = 1.
We see that since p =47 and q = 67 then ®(n)=(p - 1)(q - 1) = 3036. Bob chooses e = 5.We can
use the Euclidean Algorithm to verify that gcd(5; 3036) = 1.

We write:
3036 = (607)5 + 1
5=05)1+0.

So indeed we have gcd (5, 3036) = 1. Now Bob must compute his decryption exponent
d by computing d as the multiplicative inverse of e modulo (p - 1)(q - 1). That is,
we need:
d=5" (mod 3036)
We can compute d working backwards through Euclidean algorithm. We can also use the
following formula:
d=(1+kd(n))/e

Try for each integer k until we receive an integer for d

k=1 d=1+1(3036))/5
d=607.4
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k=2 d=(1+2(3036))/5

d=1214.6

k=3 d=(14+3(3036))/5
d=1821.8

k=4 d=(14+4(3036))/5
d =2429

Thus we have that d = 2429. Bob now has his secret primes p and g, his modulus n, his
encryption key e and his decryption key d. Bob keeps p, q, and d secret, and he makes n and e

public so that Alice can send him an encrypted message.

Suppose Alice wants to send the plaintext message “HI" to Bob. One way Alice
could convert her message into an integer m is to use a basic mapping of A — 01,
B — 02, etc. So she gets “ HI ” becomes m = 0809 = 809 which is strictly less than n = 3149.
Then Alice takes Bob's encryption key and computes

¢ =m* (mod n)
obtaining
¢ =809° (mod 3149) = 2522 (mod 3149).

An efficient technique for computing powers modulo n is through the technique of
successive squaring. To do this we rewrite the exponent as a sum of powers of 2. So
for the above example we would write 5 =4 + 1 = 22 + 2°. Then we would compute

809°= 809*! = (809)* (809)' = (654481)* (809) (mod 3149).

To simplify the process we continually reduce modulo 3149 as we compute multiplication.
We see that 654481 = 2638 (mod 3149). So by reducing, next we will
obtain:
(654481)* (809) = (2638)* (809) = (6959044)(809) = (2903)(809)
= 2348527 = 2522 (mod 3149).
So Alice has computed that
c=2522 (mod 3149) and since 0 < 2522 < 3149

she will choose ¢ =2522. Alice then sends her cipher text ¢ to Bob.
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Bob can now decrypt Alice's message as
m=c? (mod n)
m = 2522%2° (mod 3149) = 809
He notes that 0 < 809 < 3149 so Bob knows that Alice's message m must be m = 809.

So we see Bob was able to recover and read Alice's message “HI”

27



CHAPTER - VI
DIFFIE - HELLMAN KEY EXCHANGE

One benefit of private-key ciphers is that they are often much faster
computationally than public-key ciphers are. So for this benefit they are still widely used for

communication. A very real issue can arise, however, when trying to use a private-key cipher.

Suppose Bob and Alice want to communicate privately using a symmetric cipher.

To do this they both need to know a shared key which will allow them to encrypt

and decrypt the information that they send to one another. But, they currently do

not have any secure way of communicating (it is possible they have never even met
each other before!), so they cannot just publicly discuss what key to use as it might

be overheard and intercepted by Eve the eavesdropper. They need a way to securely
establish a secret shared key which they can use for their private-key cipher without
Eve (who presumably can read/hear all of their current communication) being able

to find out what the key is.

One way that this problem can be solved is with the Diffie-Hellman Key Exchange.
This key exchange was first published by Whitefield Diffie and Martin Hellman in
1976 . The idea is that we can use a type of dual public-key cipher in order to
create a shared key for a private-key cipher. We will explain how this cipher works
and then discuss some of the mathematical applications that we can see are used.
Diffie-Hellman Key Exchange: Suppose Bob and Alice wish to establish a
shared secret key for use in a private-key cipher. They can do so using the following

method.
A large prime number p is chosen and a primitive root g modulo p is chosen. Both

numbers p and g can be made public, and so Alice and Bob can share these with each

other through insecure channels.
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Once p and g are established then Alice will choose a secret large integer x and
Bob will choose a secret large integer y. They can choose these such that 1 <x < p-1

and 1 <y<p-1.

ENCRYPTING

Alice computes X = g* (mod p), chooses the value of X satisfying 0 < X < p,
and sends X to Bob.

Similarly, Bob computes Y = g¥(mod p), chooses the value of Y satisfying 0 <Y < p, and

sends Y to Alice.

DECRYPTING

Once they have received these messages each of Alice and Bob can compute a
shared private-key K.
Alice does this by computing K = Y* (mod p) and Bob does this by computing
K = XY (mod p) and each chooses K such that 0 < K < p. We can see that they have computed
the same key K by observing that
Y*(mod p) = (g¥)*(mod p) = (g%)* (mod p) =X (mod p).

Let us do an example so that we can see how this system works. For our example
we will be using relatively small numbers so that the computations we need to make
do not get out of hand. A true implementation of the Diffie-Hellman Key Exchange
would need to use a very large value of p and would use a computer to carry out all

of the computations.
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Example:

Bob and Alice agree to use p = 17. They need to find a primitive root

g modulo p = 17. They try g = 3.

3'mod 17 =3 3°mod 17 =14
3’mod 17=9 3"mod 17 =8
3*mod 17 =10 3'"mod 17=7
3*mod 17 =13 32mod 17 =4
3°mod 17=5 383 mod 17 =12
3°mod 17 =15 3% mod 17 =2
3’mod 17 =11 3mod17=6
3¥mod 17 =16 3mod 17 =1

Since all the values are distinct 3 is a primitive root of 17

g = 3 is a primitive root modulo p = 17, Alice then chooses her secret integer. She picks x = 12

such that. Similarly Bob chooses his secret integer y = 11 which is in the interval such that x < p

and y < p. x and y are private keys.

Calculating public keys X and Y:

Alice computes X

X = g* (mod p)
X =32(mod 17)
X =4

Bob computes Y
Y = g'(mod p)
Y =3 (mod 17)
Y=7

Then Alice and Bob exchange their public keys with each other
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Once Alice receives Bob's message containing Y = 7, she computes
Ki = Y* (mod p)
Ki=7" mod 17
Ki=13

Similarly once Bob receives Alice's X = 4, he computes
K= XY (mod p)
K> =4""mod 17
K2=13
We see that K1 = Kz. Now Bob and Alice have a secret shared key of K = 13. Hence their key

exchange is successful.

Why is it that the Diffie-Hellman key exchange is secure? That is, if Eve is an
eavesdropper listening in on Bob and Alice's communications, why is Eve not able to find K for
herself? Eve will be able to know p, g, X and Y since all of these are sent
via insecure communication channels. If Eve wanted to compute K she would need

to compute g*(mod p) or g¥(mod p) .

Eve does not know x or y, however, unless she can solve the discrete logarithm problem
to obtain either y fromY = g¥ (mod p) or x from X = g* (mod p). Thus the security of the
Diffie-Hellman key exchange is based on the difficulty of computing discrete logarithms over
finite groups. The procedure to find the exponent x and y is very difficult, in case of large prime
numbers p it will take thousands of years to check all the possibilities. Since Diffie Hellman does
not deal with encryption and decryption it is usually implemented along with some means of
authentication, such as RSA. In real life application p is taken 2048 bit long prime number for

strong security purposes.
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CONCLUSION

Cryptography is the use of a series of complex puzzles to conceal and uncover messages.
Equations and computer coding convert plain, readable data into a format that only an authorized
system or person can read. This allows the information to remain secure and enables parties to

send and receive complex messages.

As we toward a society where automated information resources are increased and

cryptography will continue to increase in importance as a security mechanism.

Electronic networks for banking, shopping, inventory control, benefit and service delivery,
information storage and retrieval, distributed processing, and government applications will need

improved methods for access control and data security.

Cryptography is the practice of secure communication in the presence of third parties. Its
objective is to make it difficult for an eavesdropper to understand the communication.
Cryptography is used in a variety of applications, including email, file sharing, and secure
communications. The conclusion of cryptography is that it is a powerful tool for secure
communication, but it is not perfect. There are a number of ways to attack a cryptographic
system, and new attacks are constantly being discovered. Cryptography is an important part of

security, but it is not the only factor to consider.
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CHAPTER 1

Introduction

Statistics simply means numerical data, and is field of math that generally deals
with collection of data, tabulation, and interpretation of numerical data. It is actually a
form of mathematical analysis that uses different quantitative models to produce a set of
experimental data or studies of real life. It is an area of applied mathematics concern with
data collection analysis, interpretation, and presentation. Statistics deals with how data
can be used to solve complex problems. Some people consider statistics to be a distinct
mathematical science rather than a branch of mathematics. Statistics makes work easy

and simple and provides a clear and clean picture of work you do on a regular basis.

Biostatistics is a branch of biological science which deals with the study and methods
of collection, presentation, analysis and interpretation of data of biological research.
Biostatistics is also called as biometrics since it involves man measurements and
calculations. In biostatistics, the statistical methods are applied to solve biological

problems.

Biostatistics, a portmanteau word constructed from biology and statistics, is defined as
per the etymology; application of statistics in biology. Historically the field of statistics
was emerged and systematically developed to answer various problems in biology. Later
it was found that the field started having applications in various other disciplines, notably
in quantitative fields of humanities (psychology and economics) such that the original
meaning of statistics got steadily expanded necessitating the coinage of biostatistics to refer
biological statistics. The term statistics now acquired a new meaning, “branch of
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mathematics that deals with the experimental design, the collection of numerical data,
summarization of the data, analysis and interpretation of the data for drawing inferences

on the basis of the probability.”

Biostatistics (also known as biometry) are the development and application of statistical
methods to a wide range of topics in biology. It encompasses the design of biological
experiments, the collection and analysis of data from those experiments and the
interpretation of the results. It is a specialized discipline of statistics that deals with
statistical applications in the biological and health sciences. The design of health surveys,
clinical trials, vital statistics, cancer survivorship studies and biological field studies are

some specific biostatistical applications.

Francis Galton is called as the ‘Father of Biostatistics’. He created the statistical concept
‘correlation’. Sir Galton for the first time used statistical tools to study differences among
human population. He also invented the use of questionnaires and surveys for collecting

data on human communities.

On the other hand, the term ‘mathematical biology’ is defined as an interdisciplinary
field encompassing all applications of mathematics to the biology. Development of this

field is concurrent with that of biostatistics.



Vital statistics is that branch of statistics that deals mainly with births, deaths, human
populations and the incidence of disease. Medical statistics is a further specially of
biostatistics when the mathematical facts and data are related to health, preventive

medicine and disease.



CHAPTER 2

Preliminaries
Definition 2.1
Arithmetic mean of n observations x; x, . X, is defined by
Then F = X1 4% % mums +xp &
- n - n

This definition is useful when 7 is so small that grouping of the values into a

frequency distribution is not necessary. Suppose x; X, , X, be the distinct values of

...........

a variate with corresponding frequencies f; f, . . Jn.
= 2% =12 . .0
Xfi
Example 2.1.1

Consider the 10 numbers 18 ,15,18,16,17,18,15,19,17,17.

18+15+18 +16 +17 + 18 +15 +19 +17 +17.
10

Then x =

— 170 =17
10

The frequency distribution for the above data is

X 15 16 17 18 19




=2 95 5.

bl

Xfi
_ (2x15)+(1x16)+ (3x17 )+ (3x18)+ (1X19)
- 2+1+3+3+1
_ 170
X=— =17
10
Theorem 2.1.2
If x; x5 ...o.., Xy are the arithmetic means of 1y 1y, .. vev oo, My

Observations then the arithmetic mean of the combined set of observation is given by

= N1Xq1 4 N2X2 4
X =

Proof:
n,Xx, is the sum of all n; observation in the first set.
n,x, 1is the sum of all n,observation in the second set .
N X, is the sum of all n,observation in the k" set

Zé‘zl n;X; Isthesumofalln; +n, + ..... + n; observation in the

combination set.
o= 1 k = — Vvk
- X =~ (ZiimX) Where N = i n;,
Hence the theorem

Definition 2.2

Median of a frequency distribution is the value of the variate which divides the total

frequency into two equal parts . In other words median is the value of the variate for

(N/2 -m)h
fk

Where [ is the lower boundary of the median class , m is the c. f. above the median

which the cumulative frequency is % N where N is the total Median =1 +



class, f is the frequency corresponding to the median class and h is the width of the

class .
Definition 2.3

In the case of grouped frequency distribution the mode is computed by the formula

(f=foh

Mode =1
ode=t+ o h-ra

Where 1 is the lower boundary of the modal class; f is the maximum frequency; f; and
f- are the frequencies of the classes preceeding and following the modal class; h is the

width of the class.

An alternate formula for finding the mode is also given by

Mode =1 + _hrz with the above notations.

1+ fz
Definition 2.4

The Standard deviation o of a frequency distribution is defined by

1/2
Where N = ), f; and X is the arithmetic mean the frequency

_ [Efilxi=%)?
F = [ N ]
distribution.
Definition 2.5

The square of the standard deviation of a frequency distribution called the Variance of

the frequency distribution.

Hence Variance = g



Definition 2.6

Let S be a sample space associated with a random experiment. A function X : S - R
which assigns to each element w € S one and only one real number is called a Random

variable (r.v ) . Thus X (w) represents a real number.
Definition 2.7

If a random variable X takes at most a countable number of values

Wiy, g s v itis called a discrete random variable.

...............

Let P (X = x;) = p;. Then by definition of probability it follows that
2. p;= 1 and for any subset A of &,P (4) =X, p (x;) .

Definition 2.8

A Frequency distribution is an organized tabulation showing exactly how many
individuals are located in each category on the scale of measurement. A frequency
distribution presents an organized picture of the entire set of scores, and it shows where

each individual is located related to other in the distribution
Definition 2.9

Range is the most simple and obvious measure of dispersion. It is the difference between

the maximum and the minimum value of the variate.
Definition 2.10

The Mean deviation of a frequency distribution from any average A is defined by

_ Xfilxi—a

M.D where N = Y f;

Definition 2.11

The root mean square deviation of a frequency distribution is defined to be



.- [Zfi(xi_A)z]l/z

N where A is any arbitrary origin and s? is called the mean square

deviation.
Definition 2.12

Coefficient of variation of a frequency distribution is defined to be

o
C.V = —x100
x

Definition 2.13

Karl person‘s Coefficient of correlation between the variables x and y is defined by

V4 S(x;-%)(v;~y) Where X,y are the arithmetic means and oy o), the standard deviation of
Xy ==————==

nO'xO'y

the variables x and y respectively.
Definition 2.14

A collection of random variables is independent and identically distributed if each

random variable has the same probability distribution as the others and all are

mutually independent. This property is usually abbreviated as i.i.d., iid, or IID. 1ID was
first defined in statistics and finds application in different fields such as data mining and

signal processing.
Definition 2.15 (Bayes’ rule)

For any events A and B in a probability space (2, F,P)

P (A) P (B|A)

P (AB) === -

as long as P (B) > 0.



CHAPTER 3

Kappa Statistics

3.1 INTRODUCTION

The kappa statistic is frequently used to test interrater reliability. The importance of
rater reliability lies in the fact that it represents the extent to which the data collected in the
study are correct representations of the variables measured. Measurement of the extent to
which data collectors (raters) assign the same score to the same variable is called interrater
reliability. While there have been a variety of methods to measure interrater reliability,
traditionally it was measured as percent agreement, calculated as the number of agreement
scores divided by the total number of scores. In 1960, Jacob Cohen critiqued use of percent
agreement due to its inability to account for chance agreement. He introduced the Cohen’s
kappa, developed to account for the possibility that raters actually guess on at least some
variables due to uncertainty. Like most correlation statistics, the kappa can range from -1
to +1. While the kappa is one of the most commonly used statistics to test interrater
reliability, it has limitations. Judgments About what level of kappa should be acceptable
for health research are questioned. Cohen’s suggested interpretation may be too lenient for
health related studies because it implies that a score as low as 0.41 might be acceptable.
Kappa and percent agreement are compared, and levels for both kappa and percent

agreement that should be demanded in healthcare studies are suggested.

3.2 IMPORTANCE OF MEASURING INTERRATER
RELIABILITY

Many situations in the healthcare industry rely on multiple people to collect research or
clinical laboratory data. The question of consistency, or agreement among the individuals

collecting data immediately arises due to the variability among human observers. The



extent of agreement among data collectors is called, “interrater reliability”. Interrater
reliability is a concern to one degree or another in most large studies due to the fact that
multiple people collecting data may experience and interpret the phenomena of interest
differently. Variables subject to interrater errors are readily found in clinical research and
diagnostics literature. As a potential source of error, researchers are expected to implement
training for data collectors to reduce the amount of variability in how they view and
interpret data, and record it on the data collection instruments. Finally, researchers are
expected to measure the effectiveness of their training and to report the degree of agreement

(interrater reliability) among their data collectors.

3.3 MEASUREMENT OF INTERRATER RELIABILITY

There are a number of statistics that have been used to measure interrater and interrater
reliability. A partial list includes percent agreement, Cohen’s kappa (for two raters), the
Fleiss kappa (adaptation of Cohen’s kappa for 3 or more raters) the contingency coefficient,
the Pearson r and the Spearman Rho, the intra-class correlation coefficient, the
concordance correlation coefficient, and Krippendorff’s Alpha (useful when there are
multiple raters and multiple possible ratings). Use of correlation coefficients such as
Pearson’s r may be a poor reflection of the amount of agreement between raters resulting
in extreme over or underestimates of the true level of rater agreement. In this paper, we
will consider only two of the most common measures, percent agreement and Cohen’s
kappa.

3.3.1 Cohen’s Kappa

Cohen’s kappa, symbolized by the lower case Greek letter, k is a robust statistic useful
for either interrater or interrater reliability testing. Similar to correlation Coefficients, it can
range from -1 to +1, where O represents the amount of agreement that can be expected from
random chance, and 1 represents perfect agreement between the raters. While kappa values
below 0 are possible, Cohen notes they are unlikely in practice .As with all correlation
statistics, the kappa is a standardized value and thus is interpreted the same across multiple

studies. Cohen suggested the Kappa result be interpreted as follows: values < 0 as
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indicating no agreement and 0.01-0.20 as none to slight, 0.21-0.40 as fair, 0.41- 0.60 as
moderate, 0.61-0.80 as substantial, and 0.81— 1.00 as almost perfect agreement. However,
this interpretation allows for very little agreement among Raters to be described as
“substantial”. For percent agreement, 61% agreement can immediately be seen as
problematic. Almost 40% of the data in the dataset represent faulty data. In healthcare
research, this could lead to recommendations for changing practice based on faulty
evidence. For a clinical laboratory, having 40% of the sample evaluations being wrong
would be an extremely serious quality problem. This is the reason that many texts
recommend 80% agreement as the minimum acceptable interrater agreement. Given the
reduction from percent agreement that is typical in kappa results, some lowering of
standards from percent agreement appears logical. However, accepting 0.40 to 0.60 as
“moderate” may imply the lowest value (0.40) is adequate agreement. A more logical

interpretation is suggested in given table .

Value of Kappa Level of Agreement % Data that are
Reliable

0-.20 None 0-4%

21-.39 Minimal 4-15%

40-.59 Weak 15-35%

.60-.79 Moderate 35-63%

.80-.90 Strong 64-81%

Above .90 Almost Perfect 82-100%
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Calculation of Cohen’s kappa may be performed according to the following formula:
. Pr(a)-Pr(e)
1-Pr(e)
Where Pr(a) represents the actual observed agreement, and Pr(e) represents chance

agreement.

Note that the sample size consists of the number of observations made across which raters
are compared. Cohen specifically discussed two raters in his papers. The kappa is based on

the chi-square table, and the Pr(e) is obtained through the following formula

(3o ()
Expected (Chance) Agreement = " n

n

where

cm! represents column 1 marginal

2 .
cm“represents column 2 marginal
rmlrepresents row 1 marginal,

2 .
rm“represents row 2 marginal, and
n represents the number of observations

(not the number of raters).

Example 3.3.1.1

The kappa statistic calculated can be found in the given table. Notice that the
percent agreement is 0.94 while the Kappa is 0.85 — a considerable reduction in the level

of congruence. The greater the expected chance agreement, the lower the resulting value

of the kappa.

12



DATA IN TABLE FORMAT

Rater 1 Row
normal abnormal Marginals
Rater2  normal 147 3 150 rm’
abnormal 10 62 72 rm?
Column Marginals 157 65 222 n

cm! cm?

Solution:

_ Pr(a) —Pr(e)
 1-"Pr(e)

Raw % Agreement

147+62
993

Pr(e) Calculation

cml X rm?l - cm2X rm?2
n n

Expected Agreement = —

(157X150) " (65 X 72)
— 222 222

Expected Agreement

222
108.08+21.08
Expected Agreement = # = 85
94— .57
Kappa = e .85

This indicates strong Agreement based on table
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Example 3.3.1.2

Part of the hope for people using the kappa statistic is to argue that diagnostics criteria can
be used consistently, and that they therefore measure something “real”. The easiest case is
if there are two doctors .Suppose two doctors are diagnosing patients as either HDL

Cholesterol or Serum creatinine. Then we can represent the proportions of diagnoses in a

table:
Doctor A
Doctor B Row Total
HDL Serum
Cholesterol | Creatinine
HDL Cholesterol 57.9 3.4 61 .3

Serum creatinine 249 9.36 34 .26

Column Total 82.8 12.76 95 .56

Solution :

_ Pr(a)-Pr(e)
T 1-Pr(e)

57.9+9.36

Pr(a) - 95.56

Pr(a) = 0.7039

14



cm1 X rm! + csz rm?
_ n n

Expected (Chance) Agreement =

n

82.8(61.3) = 12.76(34.26)

—_ 95.56 95.56
Pr(e) = 95.56
Prid) = 53.1147 +4.5747
95.56
57.6894
Prie) = 95.56

Pr(e) = 0.6037

__0.7039 — 0.6037
1-0.6037

0.1002
0.3963

k =0.2528

This indicates Minimal Agreement based on table.

3.4 SCOTT’S m STATISTIC

Two statistics are often used in practice for evaluating the extent of agreement

between raters. These are the Kappa statistic suggested by Cohen (1960) and the  -statistic

(should be read “pi-statistic”’) suggested by Scott (1955) suggested computing the extent

of agreement between raters A and B using the m — statistic PI, which is defined as

follows:

P -e(m)
1-e(m)

PI = (1)

15



Where p = (A + D )/N is the overall agreement propensity and e (1r) (should be
read e of PI) is given by

& (] = ((Al +11;1)/2)2 i ((AZ +NBz)/2)2 - (2)

It should be noted that e(7r) designates the propensity for both raters to agree by chance

without having the same assessment of a subject.

The p component of equation (1) only involves subjects both raters have classified in
the same category. It could be used as a naive measure of the extent of agreement.
However, there are reasons to believe that raters A and B would classify some subjects into
the same category not for the same reasons. Subjects classified in the same category for
different reasons correspond to an agreement by chance. Because chance agreement does
not measure consistency in the rating, it is not of interest and the p component should be
adjusted accordingly. Gwet (2001) discusses extensively about the motivation of the form

of equation (1) and explains why statistics of this type provides the desired adjustment.

Example 3.4.1

Part of the hope for people using the kappa statistic is to argue that diagnostics criteria can
be used consistently, and that they therefore measure something “real”. The easiest case is
if there are two doctors .Suppose two doctors are diagnosing patients as either HDL
Cholesterol or Serum creatinine. Then we can represent the proportions of diagnoses in a

table:

16



Doctor A
Doctor B Row Total

HDL Serum

Cholesterol | creatinine

HDL Cholesterol 57.9 3.4 61 .3

Serum creatinine 24.9 9.36 34 .26

Column Total 82.8 12.76 95 .56
Solution:

pI = 2@ )

1-e (m)

Where p = (A + D )/N is the overall agreement propensity and e (1r) (should be
read e of PI) is given by

& (i) = ((Al +11:1)/2)2 i ((AZ +NBz)/2)2 - (2)

((Al +B1)/2)2 _ ((82.8 +61.3)/2)2 + ((12.76 +34.26)/2)2
N o 95.56 95.56

e(m) = (0.75397)% + (0.24602)>

17



= 0.5685 + 0.0605

e(m) = 0.6290
To find P
p= (A+D)/N
_ 57.9+936
P = Tosse
p = 0.7039
From ..... (1)
_ b-e(@
PI = 1-e(m)

0.7039 —0.6290

PI =
1-0.6290
p] = %0749
0.371
PI =0.2019

18



CHAPTER 4

Frequentist Statistics

4.1 INTRODUCTION

The goal of statistical analysis is to extract information from data by computing

statistics, which are deterministic functions of the data.

In this chapter we model the data-acquisition process probabilistically. This
allows to analyze statistical techniques and derive theoretical guarantees on their
performance. The data are interpreted as realizations of random variables, vectors or
processes (depending on the dimensionality). The information that we want to extract can
then be expressed in terms of the joint distribution of these quantities. We consider this

distribution to be unknown but fixed, taking a frequentist perspective.

4.2 INDEPENDENT IDENTICALLY-DISTRIBUTED

SAMPLING

In this chapter we consider one-dimensional real-valued data, modeled as the
realization of an iid sequence. Figure 4.2 depicts the corresponding graphical model. This
is a very popular assumption, which holds for controlled experiments, such as randomized
trials to test drugs, and can often be a good approximation in other settings. However, in
practice it is crucial to evaluate to what extent the independence assumptions of a model
actually hold. The following example shows that measuring a quantity by sampling a subset
of individuals randomly from a large population produces data satisfying the iid
assumption, as long as we sample with replacement (if the population is large, sampling

without replacement will have a negligible effect).
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Fig 4.2

Figure 4.2 : Directed graphical model corresponding to an independent sequence. If the

sequence is also identically distributed, then X;.X,, ..., X}, all have the same distribution.

4.3 MEAN SQUARE ERROR

The mean square error (MSE) of an estimator Y that approximates a
deterministic quantity y € R is

MSE (Y) =E ((¥ —=7)?)

The MSE can be decomposed into a bias term and a variance term. The bias term is the
difference between the quantity of interest and the expected value of the estimator. The
variance term corresponds to the variation of the estimator around its expected value.

Where Y :=h ( X;.X,, ..., X, ). We define an estimator as a deterministic function of the
available data x4,x,, ..., X,

4.3.1 Lemma (Bias-variance decomposition)

The MSE of an estimator Y that approximates y € R satisfies

e A’

bias

MSE(Y) =E (n--’ _E u'j:nf) +(E(Y) —9).

-y
VATIADCE

Proof:

The lemma is a direct consequence of linearity of expectation. If the bias is zero, then
the estimator equals the quantity of interest on average.

20



4.4 CONSISTENCY

If we are estimating a scalar quantity, the estimate should improve as we gather
more data. Ideally the estimate should converge to the true value in the limit when the

number of data n —oo. Estimators that achieve this are said to be consistent.

4.4.1 Definition (Consistency)

An estimator Y(n) := h (X (1),X (2),....,X (n)) that approximates y € R is
consistent if it converges to y as n —o in mean square, with probability one or in

probability.

4.4.2 Theorem (The sample mean is consistent).

The sample mean is a consistent estimator of the mean of an tid sequence of random
variables as long as the variance of the sequence is bounded.

Proof :

We consider the sample mean of an iid sequence X with mean y,

- T

=l

The estimator is equal to the moving average of the data. As a result it
converges to U in mean square (and with probability one) by the law of large numbers as

long as the variance o2 of each of the entries in the iid sequence is bounded.

4.4.3 Example (Estimating the average height)

In this example we illustrate the consistency of the sample mean. Imagine that
we want to estimate the mean height in a population. To be concrete we consider a

population of m := 25000 people. Figure 4.2 shows a histogram of their heights if we
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sample n individuals from this population with replacement, then their heights form an iid

sequence X . The mean of this sequence is

m
E [i."-' i a'}} - E P (Person j is chosen) - height of person j
4 =

e

1 Y
—_ fl;
R AR
m =1

av(fgy..osftm)

for 1 <i<n, where hy, ..., hy, are the heights of the people. In addition, the variance is
bounded because the heights are finite. By Theorem 4.4.2 the sample mean of the n data
should converge to the mean of the iid sequence and hence to the average height over the

whole population..

If the mean of the underlying distribution is not well defined, or its variance is unbounded,
then the sample mean is not necessarily a consistent estimator. This is related to the fact
that

The data are available here:

wiki.stat.ucla.edu/socr/index.php/SOCR_Data_Dinov_020108_HeightsWeights.
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Sample for 200 individuals here

INDEX HEIGHT INDEX HEIGHT(INCHES)
(INCHES)
1 65.78 46 68.67
2 71.52 47 66.88
3 69.40 48 67.70
4 68.22 49 69.82
5 67.79 50 69.09
6 68.70 51 69.91
7 69.80 52 67.33
8 70.01 53 70.23
9 67.90 54 70.41
10 66.78 55 66.54
11 66.49 56 70.18
12 67.62 57 70.41
13 68.30 58 66.54
14 67.12 59 66.36
15 68.28 60 67.54
16 71.09 61 66.50
17 66.46 62 69.00
18 68.65 63 68.30
19 71.23 64 67.07
20 67.13 65 70.81
21 67.83 66 68.22
22 63.88 67 69.06
23 63.48 63 67.73
24 68.42 69 67.22
25 67.63 70 67.37
26 67.21 71 65.27
27 70.84 T8 70.84
28 67.49 73 69.92
29 66.53 74 64.29
30 65.44 75 68.25
31 69.52 76 66.36
32 65.81 77 68.36
33 67.82 78 65.48
34 70.60 79 69.72
35 71.80 80 67.73
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36 69.21 81 68.64
37 66.80 82 66.78
38 67.66 83 70.05
39 67.81 84 66.28
40 64.05 85 69.20
41 68.57 86 69.13
42 65.18 87 76.36
43 69.66 88 70.09
44 67.97 89 70.18
45 65.98 90 68.23
91 68.13 137 65.92
92 70.24 138 67.44
93 71.49 139 73.90
94 69.23 140 69.98
95 70.06 141 69.52
96 70.56 142 65.18
97 69.29 143 68.10
98 63.43 144 68.34
99 66.77 145 65.18
100 68.89 146 68.26
101 64.87 147 68.57
102 67.09 148 64.50
103 68.35 149 68.71
104 65.61 150 68.89
105 67.76 151 69.54
106 68.02 152 67.40
107 67.66 153 66.48
108 66.31 154 66.01
109 69.44 155 72.44
110 63.84 156 64.13
111 67.72 157 70.98
112 70.05 158 67.50
113 70.19 159 1202
114 65.95 160 65.31
115 70.01 161 67.08
116 68.61 162 64.39
117 68.81 163 69.37
118 69.76 164 68.38
119 65.46 165 65.31
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120 68.83 166 67.14
121 65.80 167 68.39
122 67.21 168 66.29
123 69.42 169 67.19
124 68.94 170 65.99
125 67.94 171 69.43
126 65.63 172 67.97
127 66.50 173 67.76
128 67.93 174 65.28
129 68.89 175 73.83
130 70.24 176 66.81
131 68.27 177 66.89
132 71.23 178 65.74
133 69.10 179 65.98
134 64.40 180 66.58
135 71.10 181 67.11
136 68.22 182 65.87
183 66.78 192 65.52
184 68.74 193 67.46
185 66.23 194 67.41
186 65.96 195 69.66
187 68.58 196 65.80
188 66.59 197 66.11
189 66.97 198 68.24
190 68.08 199 68.02
191 70.19 200 71.39
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Height (inches)

Figure :4.2 Histogram of the height of a group of 25000 people.

Total Cholesterol
Total Cholesterol — < 200(N)

—200 to 250 (Borderline high)
—> 200 (high)
Example 4.4.3.1

We have calculated total cholesterol level of 15 patients from the MGM hospital Chennai.

We have categories based on age.
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Age Frequency
30-39 2
40-49 3
50-59 5
60-69 5

Solution :

Cholesterol level

Frequency
w

30-39 40-49 50-59 60-69
Age

Conclusion:

Thus the people above the age of 50 are more than high Cholesterol level.

Example 4.4.3.2

We have calculated total cholesterol level of thel5 patients from the MGM hospital
Chennai. We have categories based on age.
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Frequency
Age No.of patient total cholesterol

Percentage
30-40 454.2 22.3
41-50 102.7 5.0
51-60 1140.1 239
61-70 343.1 16.8
Total 2040.1 100

Solution :

2500
2000
1500
1000

500

Frequency Histogram

r A ’ f l Percentage
Ay Total Cholesterol level

30-40 41-50 51-60 61-70 Total

B Total Cholesterol level ~® Percentage
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4.5 CONFIDENCE INTERVAL

Consistency implies that an estimator will be perfect if we acquire infinite data, but
this is of course impossible in practice. It is therefore important to quantify the accuracy of
an estimator for a fixed number of data. Confidence intervals allow to do this from a
frequentist point of view. A confidence interval can be interpreted as a soft estimate of the
deterministic quantity of interest, which guarantees that the true value will belong to the

interval with a certain probability.

4.5.1 Definition (Confidence interval)

A 1 — a confidence interval J for y € R satisfies

pyedl) 21—«

where 0 <oa< 1
Confidence intervals are usually of the form [Y — ¢, Y + ¢] where Y is an estimator of the
quantity of interest and c is a constant that depends on the number of data. The following
theorem derives a confidence interval for the mean of an iid sequence. The confidence

interval is centered at the sample mean.

4.5.2 Theorem (Central limit theorem with sample standard deviation).
Let X be an iid discrete random process with mean py := psuch that its

variance and fourth moment E(X (i*)) are bounded. The sequence

Wn (;.‘_1..' |t'{ (1),...,X (n) ’] - ;r}

std (i {1}),. X |‘r3}]

converges in distribution to a standard Gaussian random variable.
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Recall that the cdf of a standard Gaussian does not have a closed-form expression. To

simplify notation we express the confidence interval in terms of the Q function.

4.5.3 Definition (Q function).

Q(x) is the probability that a standard Gaussian random variable

is greater than x for positive x,

o | SEETE o
Q(z): ’/; = ] (r _T_) du, ==

=z VAT =

-

By symmetry, if U is a standard Gaussian random variable and y < 0

P(U<y)=Q(—1).

4.5.4 Corollary (Approximate confidence interval for the mean).

Let X be an iid sequence that satisfies the conditions of Theorem 4.5.2. For

any0<a<1

is an approximate 1 - confidence interval for p, i.e.

Plpel,)=1—a.
Proof :
By the central limit theorem, when n — oo X,, is distributed as a Gaussian random

variable with mean p and variance 2. As a result
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Ppel,)=1-P (.}"; > p 5:1(3_1 {%j‘ ) - (Yﬂ =FT &:%Q_i {%) )
. 3) Jn* \2)

A T

na R

~1-20( (2))

1 — o

(by theorem 4.5.2)

It is important to stress that the result only provides an accurate confidence interval if n is
large enough for the sample variance to converge to the true variance and for the CLT to

take effect.
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CHAPTER 5

Bayesian Statistics

3.1 INTRODUCTION

In the frequentist paradigm we model the data as realizations from a distribution that is
fixed. In particular, if the model is parametric, the parameters are deterministic quantities.
In contrast, in Bayesian parametric modeling the parameters are modeled as random
variables. The goal is to have the flexibility to quantify our uncertainty about the underlying
distribution beforehand, for example in order to integrate available prior information about

the data.
5.2 BAYESIAN PARAMETRIC MODEL

In this section we describe how to fit a parametric model to a data set within a Bayesian
framework. As we assume that the data are generated by sampling from known
distributions with unknown parameters. The crucial difference is that we model the
parameters as being random instead of deterministic. This requires selecting their prior
distribution before fitting the data, which allows to quantify our uncertainty about the value

of the parameters beforehand. A Bayesian parametric model is specified by:

5.2.1 Definition

The prior distribution is the distribution of 6 , which encodes our uncertainty about the

model before seeing the data.

5.2.2 Definition

The likelihood is the conditional distribution of X given 6 , which Specifies how the

data depend on the parameters. In contrast to the frequentist framework, the likelihood is

32



not interpreted as a deterministic function of the parameters. Our goal when learning a

Bayesian model is to compute the posterior distribution of the parameters 6 given X.
Evaluating this posterior Distribution at the realization X allows to update our uncertainty

about 6 using the data.

3.3 CONJUGATE PRIORS

Both posterior distributions are beta distributions since the prior and the posterior belong
to the same family, computing the posterior is equivalent to just updating the parameters.
When the prior and posterior are guaranteed to belong to the same family of distributions

for a particular likelihood, the distributions are called conjugate priors.

5.3.1 Definition
A conjugate family of distributions for a certain likelihood satisfies the following property:
if the prior belongs to the family, then the posterior also belongs to the family. Beta

distributions are conjugate priors when the likelihood is binomial.

5.3.2 Theorem (The beta distribution is conjugate to the binomial likelihood)

If the prior distribution of 6 is a beta distribution with parameters a and b and the
likelihood of the data X given 0 is binomial with parameters n and x, then the posterior
distribution of 6 given X is a beta distribution with parameters x + aand n- x + b.

Proof:
fo(8)px|a(x16)
pX(x)
fe(8)px|a(x16)
JufoWpx e (xlw)du

foix (0]x) =

ga—l(l_g)b—l (Z)QX(l_e)n—x

[utta-wb-1 (B u*(1-wn*du

9x+a—1(1_9)n—x+b—1

J‘uux+a—1 (1_u)n—x+b—1du

fB(H;x+a,n—x+b)
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5.4 BAYESIAN ESTIMATORS

The Bayesian approach to learning probabilistic models yields the whole posterior
distribution of the parameters of interest. In this section we describe two alternatives for
deriving a single estimate of the parameters from the posterior distribution.

5.4.1 Minimum mean-square-error estimation

The mean of the posterior distribution is the conditional expectation of the parameters

given the data. Choosing the posterior mean as an estimator for the parameters 6 has a
strong theoretical justification: it is guaranteed to achieve the minimum mean square error
(MSE) among all possible estimators. Of course, this only holds if all of the assumptions
hold, i.e. the parameters are generated according to the prior and the data are then generated

according to the likelihood, which may not be the case for real data.

5.4.1.1 Theorem (The posterior mean minimizes the MSE).

The posterior mean is the minimum mean-square-error (MMSE) estimate of the parameter
6 given the data X. To be more precise, let us define

Oumse(X) = E(0]X =X).
For any arbitrary estimator 6,10, (X),

E (Qotner(X) = )?) > E ((Bumse(X) — 6)?)

Proof:
We begin by computing the MSE of the arbitrary estimator conditioned on X=%in
terms of the conditional expectation of 8 given X,
E(( Ooener(X) = 6) 21X = %)
= E((eother(f) - HMMSE()_()) + QMMSE()?) - §) 2|)? = 9_5))
= (Botner () — Oymse(X))? + E (( HMMSE()_()) — 6)X =3)
+2 Botner () = Oumss ())E Bumss (X) — E(B1X = 2))
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= (BotherX) — Oymse(X))* + E((QMMSE(X)) - §)2|X> =X).

By iterated expectation,

E((Bother(X) = 6)2) = EE(Boener(X) — 6)21X))
= B((Botner (X) = Omsz(X))?) + E (B (Oumse(X) — 6)1X))
= E ((Bocher (X) = Bumsz (X)?) +E (Oumss(X) — 6)?)

>E ((Oumse (X) — 6)%)
Since the expectation of a nonnegative quantity is nonnegative.

5.4.2 Maximum-a-posteriori estimation
An alternative to the posterior mean is the posterior mode, which is the maximum of the

pdf or the pmf of the posterior distribution.

5.4.2.1 Definition (Maximum-a-posteriori estimator)
The maximum-a-posteriori (MAP) estimator of a parameter 6 given data X
modeled as a realization of a random vector X is
Opap(X) = argmax pgp—;(ﬁlf)
0
if 6 is modeled as a discrete random variable and
Opap(X) := argmax f@*p?(é)w)

6

if it is modeled as a continuous random variable.
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5.4.2.2 Lemma

The maximum-likelihood estimator of a parameter 6 is the mode (maximum value) of

the pdf of the posterior distribution given the data X if its prior distribution is uniform.

Proof:
We prove the result when the model for the data and the parameters is continuous, if
any or both of them are discrete the proof is identical (in that case the ML estimator is the

mode of the pmf of the posterior).If the prior distribution of the parameters is uniform, then

f5(§) is constant for any 6, which implies

(035 16)
[ gig(% [U) au

arg max f—gl)—(»(é)p_c’) = arg max

6 g

=arg max f Xelg(iﬂé) (the rest of the terms do not depend on 5)

6

=arg max L,—g(é).
g

Note that uniform priors are only well defined in situations where the parameter is
restricted to a bounded set.

We now describe a situation in which the MAP estimator is optimal. If the parameter 6 can
only take a discrete set of values, then the MAP estimator minimizes the probability of

making the wrong choice.
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5.4.2.3 Theorem (MAP estimator minimizes the probability of error)

Let 6 be a discrete random variable vector and X be a random vector modeling

the data. We define
Opap(X) : = arg max Pg@(ép—f =X).

0
For any arbitrary estimator 8 0, (X),

P(Optner(X) # ) 2P (Byap(X) # 6).

In words, the MAP estimator minimizes the probability of error.

Proof:

We assume that X is a continuous random vector, but the same argument applies if it

is discrete. We have
P8 = Botner (X)) = [of3(DIP (6 = Bouner(D)| X = %) dX
= [ :fx P51z Oother %) d¥
< [+ 3@,z Ouap D|X) d¥
=P (6 = Oyap(X))
where < [ +fz (J_C))pgl 7 (Oyap (X)[X) dx follows from the definition the MAP estimator as

the mode of the posterior.
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CONCLUSION

Statistics is presented using a special assignment. The present data’s of the patients
affected by cholesterol are taken and medical biostatistics are made. Medical Biostatistics
can be implemented by Kappa statistics, Frequentist statistics and Bayesian statistics.
Statistics is concerned with scientific method for collecting and presenting, organizing and
summarizing and analyzing data as well as deriving valid conclusions and making

reasonable decisions on the basis of this analysis.

The use of statistics allows clinic researches to draw reasonable and accurate
inferences from collected information and to make sound decisions in the presence
of uncertainty .It can prevent numerous errors and biases in the medical research.
Biostatistics helps researchers make sense of the datas collected to decide whether a
treatment is working or to find factors that contribute to diseases. Medical
statisticians design and analyse studies to identify the real causes of health issues as

distinct from chance variation.
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INTRODUCTION

Colouring of graphs by HB COLOUR MATRIX algorithm method was proposed
by A A Bhange, H R Bhapkar in the journal of Physics published under licence by IOP
Publishing Ltd at International Conference On Mathematics & Data Science (ICMDS) 2020.

Graph Colouring is a chief element in graph theory with tremendous applicability in
computer science like data mining, clustering, networking, image segmentation etc.

And a variety of implementations in aircraft scheduling, register allocation, sudoku,
mobile networking, etc. Various algorithms were contrived for vertex colouring. This paper
defines the HB colour matrix method and its kinds. There are three types of such matrices,
Vertex HB colour matrix (VHBCM), Edge HB Colour matrix (EHBCM), and Region HB
colour matrix (RHBCM). Also, the HB colour matrix algorithm is developed using a special
assignment method, which gives the chromatic number of the given graph. Further, the
algorithm is used to develop the python program, giving time complexity O(n) and space
complexity O(n?).

Also, the output of the python program for some standard graphs is calculated. The
Similar algorithm can be developed for edge and face colouring of the graphs. Colouring of

the graph further can be extended to perfect colouring
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CHAPTER-1
PRELIMINARIES

DEFINITION 1.1

A graph G consists of a pair (V(G), X(G)) where V(G) is a non-empty finite set
whose elements are called points or vertices of the graph G and X(G) is a set of unordered
pairs of distinct elements of V(G). The elements of X(G) are called lines or edges of the

graph G.

DEFINITION 1.2

If two vertices in a graph are connected by an edge, we say that the vertices are

adjacent.

DEFINITION 1.3

If two distinct lines x and y are incident with a common point then they are called

adjacent lines.

DEFINITION 1.4

A graph in which any two distinct points are adjacent is called a complete graph.

The complete graph with p points is denoted by Kp.

AN

Figure 1.1: Complete graph



DEFINITION 1.5

A simple graph of n vertices n > 3 and n edges forming a cycle of length

n is called as a cycle graph.

The graph consisting of a cycle of length n is denoted by C,,.

DEFINITION 1.6

A graph that is drawn on the plane without intersecting edges is called

a plane graph.

DEFINITION 1.7

A graph is called planar if it can be drawn on a plane without intersecting edges.

DEFINITION 1.8

A graph is called maximal planar if no line can be added to it without losing
planarity. In a maximal planar graph, each face is a triangle and such a graph is sometimes

called a triangulated graph.

DEFINITION 1.9

The chromatic number y(G) of a graph G is the minimum number of colours

needed to colour G. A graph G is called, n-colourable if ¥(G) <n.

DEFINITION 1.10

An assignment of colours to the edges of a graph G so that no two adjacent edges

get the same colour is called an edge colouring or line colouring of G.



DEFINITION 1.11

Let G = (V, E) be any graph HB colour matrix of a graph G is defined as

C = (Cjj), where

C;j = o, if labels of row R;and column C;jhave different colours and

Cij =0, if labels of row R;and column Cjhave the same colour.

DEFINITION 1.12

Let G be a graph with n nodes or vertices say vq, V,, V3, ..., V. A Vertex

HB Colour matrix of a graph G is denoted as C(V) and is defined as C(V)= ( Cj;)nxn,

where

Cij = o, if v; and v; are adjoint vertices,

C;j = oo, if i is equal to j and

Cij =0, if v; and v; are not adjoint vertices.

DEFINITION 1.13

Let G =(V, E) be a graph with m number of edges say ey, e, es, ... €, An Edge

HB colour matrix of a graph G is denoted by C(E) and defined as C(E) = ( Cj;)mxm.Where

Cij= o, if ¢; is adjoint to e; in graph G.

Cij= o, if i is equal to j and

C;j= 0, if e; is not adjoint to e; in the graph G.



DEFINITION 1.14

Consider any planar graph H with regions or faces say F1, F2, F3, ... Fr. A Region
HB Colour Matrix of graph H is indicated by C(F) and defined as C(F) = ( Cij)rxr where
Cij = oo, if F;is adjoint to Fj.,
Cij=o,1fi =jand

Cij =0, if F; is not adjoint to F; in a graph H.

DEFINITION 1.15

A square matrix A = (a;j) is said to be symmetric if a;; = aj; for all i, j.

DEFINITION 1.16

Two regions are said to be adjacent if they have a common edge.

DEFINITION 1.17

A square matrix a;; is called upper triangular matrix if all the entries below the
principal diagonal are zero.

Hence a;; = 0 whenever i > j in an upper triangular matrix. For example:

SO D

g
5
9
4

SO O W
S Wk

Figure 1.2: Upper Triangular Matrix



DEFINITION 1.18
The definition of a graph does not allow more than one line joining two points. It

also does not allow any line joining a point to itself. Such a line joining a point to itself is

called a loop.

DEFINITION 1.19
Let G=(V, X) be a (p, q) graph, Let V= {v;,v,,v3, ..., vp}. The pXp matrix A =

(a;j) where

[a; _]_{1 if v, v; are adjacent
Yo Otherwise

’ 1 293 4
2 " 10110
al1 0 1 1
3|11 1 0 1
4
alo 11 0

Figure 1.3: Adjacency Matrix
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CHAPTER-2

COLOURING OF GRAPHS BY HB
COLOUR MATRIX ALGORITHM
METHOD

2. HB colour matrix method

Let G = (V, E) be any graph HB colour matrix of a graph G is defined as C = ((;;) ,where
Cij = oo, if labels of row R; and column C; have different colours and
Cij = 0, if labels of row R; and column C; have the same colour.

The rows or columns of this matrix are labelled by using vertices or edges or
region or any other property of the corresponding graph. HB colour matrix has
only two elements, either 0 or co. There are different kinds of HB colour matrices

which are given below.

2.1. Vertex HB colour matrix

Let G be a graph with n nodes or n vertices say vy, V,, V3, ... ,. A Vertex HB Colour

matrix of a graph G is denoted as C(V) and is defined as C(V)=( C;;)pnxn, Where
C;j=oo, if v; and vjare adjoint vertices,
C;j=oo, if i is equal to j and

C;j=0, if v; and v; are not adjoint vertices.

7



Figure 2.1: Vertex colouring of graph G

2.1.1. Properties of Vertex HB colour matrix

1. Every Vertex HB colour Matrix (VHBCM) is a symmetric matrix. All diagonal

elements of this matrix are co.

2. The number of zeros in each column or row is equivalent to the number of

vertices that are non-adjoint to the corresponding vertex.

3. The number of « in every column or row is equal to the a+1, where a is the number

of vertices adjoint to the corresponding vertex.

4. If all elements of a row are o, then the corresponding vertex or node is adjoint

to all remaining vertices or nodes of that graph.

5. If all elements of a row are zeros except the diagonal element, then the
corresponding vertex is not adjacent to all remaining vertices of that graph. Such

vertex is either a null vertex or a vertex with loops only.

6. If a VHBCM with n vertices contains all zeros except diagonal elements
then the corresponding graph is either a Null graph or a disconnected graph. Such

a graph is one colourable.



2.1.2 Algorithm of HB colour matrix method for the vertex

colouring of graphs

Let G be any graph with n vertices v4, v,, V3, ... v,. The following is an

algorithm for the vertex colouring of any graph.

Step1: Write the HB colour matrix C(V) of the given graph G. Make assignments
only in the upper triangular form of C(V). So write the upper triangular form of

C(V) and denote it by H .

Step2: Select vertex vy i.e. the first row. Find (vy,v;) = 0, for the smallest

Jj=2, 3, 4,..n. If the smallest j is the k then assign the same colour say C; to

v;and vy.

i) If 3 the smallest r such that (v; Vj4,) =0 and (v Vg4,) =0, then assign the
same colour to v, and vy, i.e. Cicolour. If 3 smallest s such that (V3 Vy4p45) =0

then check labels of (Vg Vgiris) and (Vgyr Vkgrss)-

a) If one of them is oo then cross (v; Vy4r4s) = 0.
or

b) If all are zero then assign colour C; to V4., Continue in this way for

all elements of row 1.

i) If (v Vg4r) =00 and (Vg Vg4y) = 0 then cross zero or if (v; Vg4,) =0 and

(Vg Vk+r) = o0 then cross the zero of the corresponding place.

iii) If (vy Vg4p) =00 and (Vg Vg4,) = 0 then v; V4, should have different colours.



Step3: Apply the same procedure for the second row vertex v, then vs, vy, Vs, ... y.
Step4: If all zeros get assigned or crossed then check whether we colour all vertices or not. If

vertices are remaining then assign a different colour to these vertices.

%1 VU, Vg Vk+r Vk+r+s Un

Vi 0 — — — ces —_ —_— —
Uk+r = — —_ - — —

Vk+r+s —_ —_ vee —_ ee —_ ee — vee —_

Figure 2.2: Vertex HB colouring matrix

2.1.3. llustration of VHBCM algorithm

Consider a graph G with five vertices viz. 1, 2, 3, 4, 5,seven edges x ,y ,z ,p ,q ,I' ,s and

four regions A ,B ,C ,D (Figure2.3).

Figure 2.3: Graph G

The vertex HB colour matrix is created from graph G (figure 2.4(a)). The upper triangular
of the HB matrix is formed as it’s a symmetric matrix (figure 2.4(b)). Following the steps of
HB colour matrix algorithm, an assignment is made at first zero of the first row i.e. cell (1, 3)

and strike out column 3 (figure2.4(c)), hence vertex 1 and 3 will have the same colour.
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1o o 0 o oo 1@ o0 0 o o 1 oo o 0 o 1 [0 oo 1)
2]l 0 o o 0 2|— o oo o 0 2 |— o oo 0 2 |- o 0o
CV)=3 |0 o o o 0];HV)=3 |- — o o O]H(V)— 31— - © 0] ; HV)=3 |- - ©
4 loo o0 o0 00 00 4 |— — — oo oo 4 |- - oo 00 4 |- - (o)
5Lto 0 0 o o 5l- - - - o 5L- - - 5L - -

Figure 2.4: Implementation of VHBCM algorithm to graph G

Further, there is no more zero in the first row so move to row 2 and search for the first
zero, here it is at cell (2,5) so make assignment at (2,5) and strike out the column 5 (figure
2.4). This denotes vertex 2 and 5 will have the same colour. As row 4 is having all oo so
assign the third colour to it. In VHBCM, colour assignments are colour C;(Red) to vertices 1
and 3, colour C, (Green) to vertices 2 and 5 and colour C3(Yellow) to vertex 4

(figure2.4).Hence the vertex chromatic number of graph G is 3.

THEOREM 2.1 If a VHBCM with n vertices contains all co then the corresponding graph is
the complete graph on n vertices (K,,).
PROOF:

Let G be a graph with n vertices whose VHBCM contains oo everywhere. Hence every
vertex of graph G is adjacent to remaining all vertices. Therefore G is a complete graph on n

vertices.

THEOREM 2.2 The VHBCM of a wheel graph with p vertices contains a row with all
elements oo.
PROOF:

Let G be a wheel graph with p vertices. Therefore there exist a vertex v in G which

will be adjoint to the rest of the vertices, hence the corresponding row contains all cos

11



2.2 Edge HB colour matrix

Let G =(V, E) be a graph with m number of edges say e, e,, e, ... €. An Edge
HB colour matrix of a graph G is denoted by C(E) and defined as
C(E) = ( Cij)mxm-Where
Cij = oo, if e; is adjoint to e; in graph G.
Cij = oo, if i is equal to j and

Cij =0, if e; is not adjoint to e; in the graph G.

Figure 2.5: Edge colouring of graph G

2.2.1. Algorithm of HB colour matrix method for the edge colouring of
graphs
Let H be any graph with m number of edges. An edge HB colour matrix of graph H

is of order m. By using analogy of the vertex HB algorithm and replacing vertices by edges,

resultant algorithm can be generated.

12



2.2.2. Illustration of an EHBCM algorithm

An edge chromatic number calculation of graph G (figure2.3) using EHBCM algorithm is
shown in figure2.6. In EHBCM, colour assignments are, colour C;(Red) to edges x and z,
colour C,(yellow) to edges y and q, colour C3 (Green) to edges p and s, colour C, (blue) to

edge r. Thus the edge chromatic number of G is 4.

X y zZ p q rv S X y zZ p q r S
X oo oo 0 oo (0 oo o0 X [oo o0 oo oo
Yy oo 0o 0 oo 0 0 0 Yy |— o ¢ o 0
Z |0 oo o o o oo 0 Z — — ¢ o 00
CE)=p |0 0 0 o o o 0|HE=p |- - 4+ o -
q |10 0 o o o o oo q |- - + - -
" oo 0 o o o0 o0 oo r |- - 4+ = 00
S Lo 0 0 o oo o0 oo S — - L —_
Figure 2.6: Implementation of EHBCM algorithm to graph G
Example for EHBCM:

~
> [0

Figure 2.7: Edge colouring of Helm graph
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Q
o
a
L
®
\H
Q
=
~
k‘
3
S
o

A [0 o o oo (l) 0

b |- o o o o o) 0

c — — 00 oo do do oo

d |- - - o ¢ [@ )

e - - - —- P 9P 0 IE

f - — — - 4 ¢ d g oo

g - - - - 4+ - P (g do oo
HE)=h |- - - — 1+ + 4+ o ) 0

[ - - — — 4+ + 4+ 4+ P P 0

j - = = - 4+ 4+ 4+ 4+ 1+ P

k - - — — 4+ 3+ + + + 4+ o0 @

[ - - = = + + 1+ + + + - o

m |- - - - 4+ L 4+ 1+ 1 1+ - 1

n - - - - 1 L 4£ 1r 1+r 1+ - 1

(0] — — = = T = T T == T_ - W_

Figure 2.7: Edge colouring of Helm graph G

THEOREM 2.3 If an EHBCM is a diagonal matrix then all components of
G are either K; or K, or vertex with loops.
PROOF:

If EHBCM is a diagonal matrix then all non-diagonal elements are
zeros, which means either edges are not adjacent to each other or vertices
are isolated. Therefore no two edges of G are adjacent. So all components of

G are either K; or K, or vertex with loops only.

THEOREM 2.4 If all elements of C(E) are cos then the corresponding
graph is the cycle graph C;.
PROOF:

Consider an EHBCM of graph G with all elements oos. So every
edge is adjacent to every other edge of graph G, Hence G is either a cycle
graph Cs .
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2.3. Region HB colour matrix

Consider any planar graph H with regions or faces say Fy, F,, F3, ... F.. A Region HB

Colour Matrix of graph H is indicated by C(F) and defined as C(F) = ( C;;),xr Where
Cij = o, if F; is adjoint to F;
Cij=oo,ifi=jand

Cij =0, if F; is not adjacent to F; in a graph H.

Figure 2.8: Region colouring of graph G
2.3.1. Properties of RHBCM

1. Every RHBCM is a symmetric matrix of size r.
2. If H is a null or zero graph then its RHBCM is of order 1.

3. RHBCM of non-planar graph does not exists.

2.3.2. Algorithm of HB colour matrix method for the region colouring of
graphs
Let H be any graph with r edges F;, F,, F5, .... F.. The region HB colour matrix of H is of

order r. Using analogy of the Vertex HB colour matrix algorithm and replacing vertices by

regions will give HB colour matrix algorithm for the region colouring of graphs.

15



2.3.3. Hlustration of RHBCM algorithm

Calculation of the RHBCM of graph G (figure2.3) is shown in figure2.8.

A B C D A B C D
A [0 o oo 00 Ao o o
B |co oo oo 0 _ _B|— o »
C(R)=C O O 0 o0 s H(R) = cl— oo ]
D Lo 0 o o S —

Figure 2.9: Implementation of RHBCM algorithm to graph G

In RHBCM, assign colour C; (Red) to regions B and D, colour C, (Blue) to region C, and

colour C;(Green) to region A (figure2.6). Hence the region chromatic number of G is 3.

Example for EHBCM

Figure 2.10: Region colouring of triangular snake graph

Calculation of the RHBCM of triangular snake graph

A B ¢ D E F

I
8
8

||
8 8

mm O 0w >
I
I
8
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THEOREM 2.5 If all elements of RHBCM of planar graph H are oo then H is the perfect HB
map.
PROOF:

Let H is any planar graph with regions say F;, F5, F3, ... . where r < 4. If all elements of
RHBCM of graph H are oo, then all regions of H are adjoint to each other. So each region of

H is the pivot region. Hence H must be the perfect HB map.

THEOREM 2.6 If H is a planar graph then RHBCM of H does not involve 5 or more rows
with all oos.
PROOF:

Let H be any planar graph. Assume that RHBCM of H involves 5 or more rows with all
elements as oos. Therefore, there are 5 or more regions that are adjacent to each other, which
contradicts the assumption that H is a planar graph. The contrapositive of this statement is "’If
RHBCM of H involves 5 or more rows with all elements as oos then the corresponding graph

is not planar”.
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CHAPTER-3
VERTEX COLOURING USING THE

ADJACENCY MATRIX

3.1 Adjacency matrix

Let G = (V, E) be a simple graph where |[V|=n and n > 1. Let V= {vy,v,,v3, ..., 5} .

The n X n Adjacency matrix of graph G is denoted by A= (a; j) where

1ifv;is adjacent to v;
Aip = 0 otherwise

Adjacency matrix is a simple symmetrical graph, so a;; = aj;

1 1 1
“ 3 5. 2 3
\,
3
4 . v 4

1 23 4 1 23435 1 23 4
| 1 10 ;?;:gg | 1 00
HE R St T
410 1 10 slo 00 0o 410 1 1 0

Figure 3.1: Example of graphs with it is adjacency matrix
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3.2 Proposed algorithm

Now we will introduce a new colouring method, namely vertex colouring

using an adjacency matrix.

The following is a colouring method that is proposed to colour the vertex in a

graph using its adjacency matrix:

Step 1: Make an adjacency matrix of the graph which its vertex will be coloured.
Step 2: Sum the matrix elements in each row.

Step 3: Select the row matrix that has the biggest value.

Step 4: Strikethrough the selected matrix row and give the colour at its vertex.

Step S: Strikethrough the row of matrix that corresponds to the column of the selected row that

has a value 0.

Step 6: Give the colour at its vertex with the same colour of selected row.

Step 7: Select another row of matrix which has not been strikethrough and have the biggest

row value (if the biggest row value is more than one, please choose one).

Step 8: Repeat step 4, give another colour at its vertex and so on until all the

matrix row are strikethrough or all vertices have been coloured.

19



To understand this colouring method, an example is given to colour the

vertex of graph using the adjacency matrix.

Figure 3.2: Graphs sample

First step, make adjacency matrices for graph base on figure3.2. The results of

the adjacency matrix can be seen in figure3.3

®
-
o
S| O
=3

ONONONONONO,
1111000
0| o

ol o

0

Figure 3.3: Matrix adjacency

20



The second step is sum the values of each matrix row. The results can be seen

in figure3.4.

@1 1 0— 2
OR 1 0o— 2
@o 0 0o—3
@®of|ojJoj1]o|1—2
®@oflojojof1]o—1

Figure 3.4: Sum of the matrix row

0— 2

The third step is choosing the biggest row value. In this graph the biggest

value is 3 , that is at vertex 4.The fourth step strikethrough the selected

matrix row and put colour to the selected vertex (e.g. a). The results of this

step can be seen in figure3.5.

OOOOOO6
@Qoj1j1]0[0jo0—2
@1|0|o|1]|0]0—2
®@1(0]of1]0|0—2
@ e+ eto— 3
@ofojof1]0]1—2
@®@ojojojlof1]o—1

Figure 3.5: Selected matrix row colouring
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The fifth step 5, strikethrough the row of matrix that corresponds to the column of the
selected matrix row and has a value 0. In this case, the selected rows are vertex 1, vertex 4
and vertex 6. The sixth steps, put the colour at its vertex by the same colour like selected row.

The colouring results can be seen in figure3.6.

(ONONONONONO)

® e++t++4ote4+o0— 2a
@1|0f(of1]o[0o—2
®1|0|o|1]0o]0o—2
@eTrtrye Tt o—3a
®ojojo|1|of1—2
® o101+ 1+o0—1a

Figure 3.6: The colour of vertex that have same to the selected row

The seven steps, select a matrix row which has not been strikethrough and
has the biggest row value (if more than one row have the biggest values,
please choose one). In this case there are three vertices that have the biggest
row values, those are vertex 2, vertex 3, and vertex 5. Suppose vertex 2 is
selected as the selected row. The next step strikethrough the selected row
and put a different colour to the selected vertex (eg: b). The result of this

step can be seen in figure3.7.

(0ONONONONONO]

® e+++6+o+0— 22
O o B B i
@1|ofo]|1]0o]o—2
@ e +Hotrrro—3
@ojojo|1|o]1—2
® H8t+o+o1+++o—1a

Figure 3.7: Another selected matrix row
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The eight steps, strikethrough the row of the matrix that matches with the column of the
selected row which have 0 value, those are vertex 2, 3, 5 and vertex 6. Vertex 6 is not chosen

because it has been strikethrough or has been coloured. The results can be seen in figure3.8

(ONONORORONO)

O o+444-o4o40— 22
Q@ +rotot1oto0— 2p
®1(o]o|1]0o]|0o— 2
@ T 3
@ofojo|1]|o|1—D
® o010 — 1.

Figure 3.8: vertex colouring according to the selected row

Repeat step 7, give the other colour at vertex colouring using the adjacency

matrix above is the minimum colour that used to colour the vertex (chromatic

number) is 2.
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CHAPTER-4

NEW ALGORITHM FOR
CHROMATIC NUMBER OF GRAPHS
AND THEIR APPLICATIONS

4.1 Associated Adjacency Matrix

The associated adjacency matrix of a graph G, denoted by AA(G),
is a matrix whose entry a;;=1 if the vertices v; and v; are adjacent such that
1#]j and a;;=0 otherwise, where v; and v; are vertices in G.

Consider we have the graph G shown in Figure.4.1

Figure 4.1

then the associated adjacency matrix of this graph is given by

AA(G) =

o = o O

O OR
_ O

(=)



4.2 R-colouring algorithm

Let G be a graph of order n with vertices as vy, vy, V3, ...., U,

Step1: Evaluate the associated adjacency matrix of the graph G

i1 Q12 -t Qqn
Az1 Q2 *° Qppn
AA(G) = : : . :

An1 Anz - Qnn
Step 2: Confirm R-colouring matrix from the associated adjacency matrix as follows:

In the first row of R-colouring matrix, put a*;; = 1. This means that the vertex v, is

coloured by colourl. Then put

a1, =

5 _{O ifa12 = 0
2 ifa12 = 1

After that put

0Oif a43=0
a*q3= 2 if ;3 =1,a;, =0
3if ajz=a1; =az3 =1

In the same way, for entry a*,;, where 1< j < n,

0 lfa]_]:O
a*;j = {min{a*,a*z,..,a"gm} if a1 = apn = LagjV1€ZY,1<1I<m 1<kl <j
j ifa12:a13 :...:alj:azj:a3j :...:a(j_l)j:].

25



For any column I has the entry a*;; = h, we put

hlfa]l:].,l#—']

a*ji= 0 lfa]l :O,l ¢]

h lfa]l:(),l:]

Where i, j<n

(c) Now start from the row of the vertex which is coloured after v; and

repeat steps (a) and (b).

(d) Again repeat step (c) to complete R-colouring matrix

* * *

a1 A 412 - A qn
a* a* eee a*

RC(G) — .21 '22 . .2n
* * *

Any Apz 0 Aagn

Step3: The greatest number in the diagonal of R-colouring matrix is the chromatic

number of the graph G and the value of entry a*;; is the colour of the vertex v;.

EXAMPLE 1: Let G be a graph as shown in Figure 4.2

v,

Vi

V3

Figure 4.2
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R-colouring algorithm is applied step by step as shown in the sequence of matrices below:

01 0 1 1 000
1 0 0 1 Puta*11=1\ O 0O O O
AAGE= 1y o o 1 (O O 0 O
1110 O O o o

1 2 0O 0O

Since a;,=1Puta*;,= 210 O O d

o o o O

O O 0O 0O

1 2 0 0O

Since a;3=0Puta*,3= ord O O O

1o O O g

O O 0O O

e *
Since a1,= aA14=ay4=1,Put a 14,=3

N

Oone-
OO0
OO0e
000w

Coloumn1Puta*;;=0,a*;;=a*41=1

2 0 3
ColoumnzPuta*32=0,a*22=a*42=% 1 2 O 0O
1o 0o O O

1 2 0O [O

* — Ak — ¥ —
Coloumn 4 Put a™54=Qa 34=Q 44=3
7

(SR o J S G Y
N O NN
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1 2 0 3
1 2 0 3
24 row Since az3= 0 Put a*,3=0 0 0 O 3
12 0 3
1 2 0 3
4throwsincea43=1Puta*43=min{a*41, a1 11 2 0 3
oo O 3
1 2 1 3
1 2 0 3
Puta*33=1 1 2 0 3
_—
0 0 1 3
1 2 1 3
Then R- colouring matrix is
1 2 0 3
{1 2 0 3
RS 0 0 1 3
1 2 1 3

Hence the chromatic number of the graph G is 3, i.e. x(G)=3, as shown from the diagonal of
R-colouring matrix and the colouring matrix and the colour of v, is 1, v, is 2, v is 1 and

V4 is 3

THEOREM 4.1

R-colouring algorithm calculates the exact value of chromatic number of a graph G.
Proof:

Suppose we have a graph G with more than one chromatic number calculated by
R-colouring algorithm. This means that there exists more than one of R-colouring

matrices with different greatest entry in their diagonals. Since R-colouring
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algorithm depends on the colour of the neighbour vertices of the coloured vertex
coloured by the smallest colour is not used according to the order in the associated
adjacency matrix which is fixed for the same graph (from property of matrices).
Then, this is a contradiction and hence R-colouring algorithm calculates the exact

value of chromatic number of the graph G.
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