Attainment of Programme Outcome

M.Sc Mathematics

CO, PO and PSO Mappings

Blueprint of the	Section	Unit I	Unit II	Unit III	Unit IV	Unit V
question paper	Section A	2	2	2	2	2
	Section B Any FIVE	2	2	1	1	1
	Section C Either OR	2	2	2	2	2
	Section D Any THREE	1	1	1	1	1

Course Name: Groups and Rings Course Code: 21PMAC11

Course Objectives

- To provide an introduction of Normal Subgroups, permutation groups, concept and to develop working knowledge of Ideals, Principle Ideal Domain, Euclidean Domain, Unique Factorization Domain and Modules.
- To enrich the students with the knowledge of Abstract Algebra.

	Semester I		
Core I	Groups and Rings		
Course Code: 21PMAC11	Hrs/Week: 6	Hrs/Sem: 90	Credits: 4

Unit I

Cayley's Theorem - Permutation Groups - Another Counting Principle.

(Chapter 2: Sections 2.9, 2.10, 2.11)

Unit II

First part of Sylow's Theorem- Second part of Sylow's Theorem- Third part of Sylow's Theorem.

(Chapter 2: Section 2.12)

Unit III

Direct Products - Internal direct product- Finite Abelian Groups-Invariants - Solvable.

(Chapter 2: Sections 2.13, 2.14)

Unit IV

Rings Theory—Homomorphisms- Ideals and Quotient Rings – More Ideals and Quotient Rings - The Fields of Quotients of an Integral Domain.

(Chapter 3: Sections 3.3, 3.4, 3.5, 3.6)

Unit V

Euclidean Rings - A Particular Euclidean Ring - Polynomial Rings - Polynomial over the Rational Field.

(Chapter 3: Sections 3.7, 3.8, 3.9, 3.10)

Text Book

1. I. N. Herstein. *Topics in Algebra*. New Delhi: Wiley Eastern Ltd. Second Edition, 2013.

Books for Reference

- 1. Gavvett Birkhoff and Thomas C. Bartee. *Modern Applied Algebra*. Delhi: CSS Publishers and Distributors, 1987.
- 2. P.B Bhattacharya, S.K. Jain and S.R. Nagpaul: Basic abstract algebra, Cambridge University Press, 1987.

Course Outcomes

CO. No.	Upon completion of this course, students will be able to	PSO	CL
		addressed	
CO-1	illustrate the orbit for a set and make use of the counting	2	Un
	principle technique to find algebraic descriptions for the size of		
	each equivalence class.		
CO-2	describe all abelian groups generated by a finite set of elements	1,2	Re
	and to find the root of unity for each element of a group.		
CO-3	analyze and demonstrate the examples of Ideals and Quotient	5	An
	Rings.		
CO-4	evaluate the properties implied by the definition of Euclidean	6	Ev
	Rings and to illustrate and apply the concepts of Polynomial		
	Rings.		
CO-5	recall procedural fluency with polynomial expressions including	4	Re
	basic factoring.		
CO-6	write the definitions of matrix multiplication that corresponds to	2	Re
	composition of linear transformations.		

21PMAC11 – Groups and Rings

		PO									PSO							
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg
CO-1	3	3	3	3	2	2	2	2	2.5	3	3	3	3	3	3	2	2	2.7
CO-2	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.7
CO-3	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.7
CO-4	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	3	2.8
CO-5	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	3	2.8
CO-6	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	3	3	3.0
Average	3	3	3	3	2.8	2	2	2		3	3	3	3	3	3	2.2	2.5	
			PO M	lean					2.5				PSO	Mean				2.7
Strength of	Strength of PO Correlation Strong						Strength of PSO Correlation Strong											

Course Name: Real Analysis Course Code: 21PMAC12

Course Objectives

 To acquire thorough knowledge about real functions, limit functions and their properties.

• Have the knowledge of basic properties of the field of real numbers.

Semester I								
Core II	Real Ana	alysis						
Course Code: 21PMAC12	Hrs/Week: 6	Hrs/Sem: 90	Credits: 4					

Unit I

Metric Spaces- Compact sets- Perfect sets- Connected sets.

(Chapter 2)

Unit II

Convergent Sequences - Subsequences - Cauchy Sequences - Upper and Lower Limits - Some Special Sequences- Series of nonnegative terms - The Number e.

(Chapter 3)

Unit III

The Root and Ratio Tests - Power Series - Summation by parts - Absolute Convergence - Addition and Multiplication of series - Rearrangements - Problems related to SET/NET.

(Chapter 3)

Unit IV

Limits of functions - Continuous functions - Continuity and Compactness - Continuity and Connectedness - Discontinuities - Monotone functions - Infinite limits and limits at infinity - Problems related to SET/NET.

(Chapter 4)

Unit V

The Derivative of a real function - Mean value Theorems - The continuity of derivatives - L'Hospital's Rule - Derivatives of Higher order - Taylor's Theorem.

(Chapter 5)

Problems related to SET/NET is only for Internal Examination.

Text Book

1. Walter Rudin. *Principles of Mathematical Analysis*. McGraw-Hill International Editions. Third Edition, 1953.

Books for Reference

- 1. Apostol. *Mathematical Analysis*. London. Addition Wesley Publishing Company, 1971.
- 2. Goldberg. Methods of Real Analysis. Oxford & IBH Publishing Company, 1970.

CO. No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	recall the basic properties of real numbers.	5,6	Re
CO-2	demonstrate the knowledge of real functions, limit of functions and their properties	2,5	Ap
CO-3	evaluate the continuity, differentiability and integrability of functions defined on the real line.	2,5	Ev
CO-4	analyse the concepts of continuous functions and their properties	6	An
CO-5	explain the concepts of axioms of real number systems, uniform convergence of sequences and series of functions, equicontinuity, compact and complete metric spaces, the Stone-Weierstrass theorem.	1,5	Un
CO-6	apply the concept of the series of real numbers and convergence.	2,5	Ap

Course Outcome

21PMAC12 – Real Analysis

		PO									PSO							
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg
CO-1	3	2	3	3	3	2	3	2	2.6	3	3	3	3	3	3	2	2	2.8
CO-2	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	3	2.9
CO-3	3	3	3	3	3	3	3	2	2.9	3	3	3	3	3	3	2	3	2.9
CO-4	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	3	2.9
CO-5	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	3	2.9
CO-6	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	3	2.9
Average	3	2.8	3	3	3	2.2	3	2		3	3	3	3	3	3	2	2.8	
PO Mean 2.8						2.8				PSO	Mean				2.9			
Strength of PO Correlation Strong					ı	S	Strength of PSO Correlation Strong					•						

Course Name: Ordinary Differential Equations Course Code: 21PMAC13

Course Objectives

- To obtain the general solution of any homogeneous second order ODE with constant coefficients
- To determine the solution of these special ordinary differential equations by the power series solution method.

Semester I								
Core III	Ordinary Differe	ntial Equations						
Course Code: 21PMAC13	Hrs/Week: 6	Hrs/Sem: 90	Credits: 4					

Unit I

Second order linear equations - The general solution of a homogeneous equation - The use of a known solution to find another - The method of variation of parameters - Problems related to SET/NET.

(Text Book:1 Chapter 3:Sections 14, 15, 16, 19)

Unit II

Power series solution - A review of power series solution - series solution of first order equations - Second order linear equations.

(Text Book:1 Chapter 5: Sections 25, 26, 27)

Unit III

Ordinary points - Regular singular points - Frobenius series - Hermite Polynomials. Legendre polynomial - Bessel functions and Gamma functions.

(Text Book:1 Chapter 5: Sections 28, 29, Chapter 6: Sections 32, 33, 34, 35)

Unit IV

Linear systems - Homogeneous linear systems with constant coefficients - The methods successive approximation - Picard's theorem.

(Text Book:1 Chapter 7: Sections 37, 38, Chapter 11: Sections 55, 56)

Unit V

Introduction-StrurmLiouville problem-Green's function - Problems related to SET/NET (**Text Book 2: Chapter 7: Sections 7.1, 7.2, 7.3**)

Problems related to SET/NET is only for Internal Examination.

Text Book

- 1. G.F.Simmons. *Differential equations with application and historical notes*. Tata McGraw Hill, 1997.
- 2. S.G.Deo, V.Lakshmikantham, V.Raghavendra. *Text book of Ordinary Differential Equations*. New Delhi: Tata McGraw- Hill Educational Private Limited, second edition, 1997.

Books for Reference

1. Richard Bronson. *Differential Equations*. Tata McGraw Hill. Schaum's Outlines, Second Edition, 1989.

2. Shepley L. Ross. *Differential Equations*. John Wiley &Sons Publications. Third Edition, 1980.

Course Outcomes

CO. No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	solve the solution of second order differential equations by variation of parameters.	2	Ap
CO-2	solve the method of Frobenius to solve differential equations about regular singular points.	5	Ap
CO-3	construct Legendre and Bessel equations.	2	Cr
CO-4	solve scientific and engineering problems	8	Ap
CO-5	compare the Euler equation, Bessel equation and Regular singular points.	2	An
CO-6	understand the Homogenous linear system with constant co-efficient	2,5	Un

21PMAC13 - Ordinary Differential Equations

		PO									PSO							
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg
CO-1	3	3	3	3	3	2	3	2	2.8	3	3	2	3	3	3	3	3	2.9
CO-2	3	3	3	3	3	2	3	2	2.8	3	3	2	3	3	3	3	3	2.9
CO-3	3	3	3	3	3	2	3	2	2.8	3	3	2	3	2	3	3	3	2.8
CO-4	3	3	3	3	3	2	3	3	2.9	3	3	2	3	2	3	3	3	2.8
CO-5	3	3	3	2	3	2	3	2	2.6	3	3	2	3	2	3	3	3	2.8
CO-6	3	3	3	2	3	2	3	2	2.6	3	3	2	3	2	3	3	3	2.8
Average	3	3	3	3	3	2	3	2		3	3	2	3	2.3	3	3	3	
			PO M	lean					2.7				PSO	Mean				2.8
Strength of PO Correlation Strong							S	trengtl	h of PS	SO Coi	relatio	n		Strong				

Course Name: Mathematical Statistics Course Code: 21PMAC14

Course Objectives

- To enable the use of statistical techniques whenever relevant.
- To have a proper understanding of statistical applications in real life.

Semester I									
Core IV	Mathematical St	tatistics							
Course Code: 21PMAC14	Hrs/Week: 6	Hrs/Sem: 90	Credits: 4						

Unit I

Distribution of Two Random Variables – Conditional Distributions and Expectations-The correlation coefficient-Independent Random Variables-Extension to Several Random Variables.

(Chapter 2: Sections 2.1, 2.2, 2.3, 2.4, 2.5)

Unit II

Some special Distributions: The Binomial and Related Distributions – The Poisson Distribution - The Gamma and Chi-square Distributions – The Normal Distribution – The Bivariate Normal Distribution.

(Chapter 3: Sections 3.1, 3.2, 3.3, 3.4, 3.5)

Unit III

Distributions of functions of Random variables: Sampling theory – Transformations of variables of the discrete type – Transformations of variables of the continuous type – The Beta, t, and F Distributions.

(Chapter 4: Sections 4.1, 4.2, 4.3, 4.4)

Unit IV

Extensions of the Change of variable technique – Distributions of Order statistics – The Moment generating function technique – The Distributions of \overline{X} and nS^2/σ^2 – Expectations of functions of random variables.

(Chapter 4: Sections 4.5, 4.6, 4.7, 4.8, 4.9)

Unit V

Limiting Distributions: Convergence in Distribution – Convergence in Probability – Limiting Moment Generating Function – The central limit theorem – Some theorems on Limiting Distributions.

(Chapter 5: Sections 5.1, 5.2, 5.3, 5.4, 5.5)

Text Book

1. Robert V. Hogg and AllenT.Craig. *Introduction to Mathematical Statistics*. Pearson Education Asia. Fifth edition, 2004.

Books for Reference

1. J.N.kapur, H.C. Saxena. *Mathematical Statistics*. S.Chand& Co, 2013.

2. Keith Knight. Mathematical Statistics. New York. Chapman & Hall/CRC, 2000.

Course Outcome

CO.NO.	Upon completion of this course, students will be able to	PSO	CL
		addressed	
CO-1	explain the concepts of distributions and apply them.	2,8	Un
CO-2	examine the method used for analysis, including a	1,2	An
	discussion of advantages, disadvantages and necessary		
	assumptions.		
CO-3	apply discrete and continuous probability to evaluate the	2,7	Ap
	probability of real world events.		
CO-4	compare the distribution with one another.	2,8	An
CO-5	apply the concepts of random variable, probability	2,7,8	Ap
	distribution, distribution function, expected value, variance		
	and higher moments, and calculate expected values and		
	probabilities associated with the distributions of random		
	variables.		
CO-6	define a probability generating function, a moment	5,8	Re
	generating function and derive them in simple cases.		

21PMAC14 - Mathematical Statistics

					PO					PSO								
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-	PO- 8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg
CO-1	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	2	2.8
CO-2	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.8
CO-3	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	2	2.8
CO-4	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.8
CO-5	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	2	2.8
CO-6	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	2	2.8
Average	3	3	3	3	3	2	2.6	2		3	3	3	3	3	3	2	2	
	PO Mean 2.7 3							2.73	PSO Mean						2.8			
Strength	Strength of PO Correlation Strong							Strength of PSO Correlation Strong						•				

Course name: Combinatorics Course Code: 21PMAE11

Course Objectives

- To understand and demonstrate the basic concept of an algorithm and its applications in combinatorial mathematics.
- To emphasise on the importance of enumeration tools and techniques in diverse branches of mathematics and Applied Fields

	Semester I		
Elective I A	Combinator	rics	
Course Code: 21PMAE11	Hrs/week: 6	Hrs/Sem:90	Credits: 4

Unit I

Permutations and Combinations: Introduction, rules of sum and product-Permutations and Combinations - Distributions of distinct objects - distributions of non - distinct objects.

(Chapter 1: Sections: 1.1 -1.6)

Unit II

Generating Functions: Generating functions for combinations - enumerators for permutations- Distributions of distinct objects into non- distinct cells - partitions of integers.

(Chapter 2: Sections: 2.1 -2.5)

Unit III

Recurrence Relations: Linear Recurrence relations with constant coefficients - Solution by the technique of generating functions - A special class of nonlinear difference equations - Recurrence relation with two indices.

(Chapter 3: Sections: 3.1 - 3.5)

Unit IV

The Principle of Inclusion and exclusion: The principle of Inclusion and Exclusion - the general formula – Derangements - Permutations with restrictions on relative positions.

(Chapter 4: Sections: 4.1 -4.5)

Unit V

Polya's Theory of Counting: Equivalence classes under a permutation group- Equivalence classes of functions - Weights and inventories of functions -Polya's fundamental theorem.

(Chapter 5: Sections: 5.3 -5.6)

Text Book

1. C. L. Liu. *Introduction to Combinatorial Mathematics*. McGraw Hill publications, 1968.

Books for Reference

1. Normal L. Biggs. *Discrete Mathematics*. Oxford University Press, 2002.

Course Outcome

		PSO	CL
CO. No.	Upon completion of this course, students will be able to	addressed	
CO-1	explain the properties and behaviour of permutations and combinations.	1, 6	Un
CO-2	solve problems involving strings, combinations, distributions and partitions.	2	Ap
CO-3	understand the ideas of permutations and combinations.	1,6	Un
CO-4	apply, implement and interpret the theory of combinatorics to relevant probability and statistics problems.	2	Ap
CO-5	evaluate the addition and multiplication principles of counting.	3	Ev
CO-6	apply diverse counting strategies to solve varied problems involving combinations and distributions.	2,3	Ap

21PMAE11 - Combinatorics

					PO					PSO								
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg
CO-1	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	2	2	2	2.6
CO-2	3	3	3	3	3	2	3	2	2.6	3	3	3	3	3	2	3	3	2.9
CO-3	3	3	3	3	3	2	3	2	2.5	3	3	3	3	3	2	3	2	2.8
CO-4	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	2	3	3	2.9
CO-5	3	3	3	3	3	2	3	2	2.6	3	3	3	3	3	2	2	3	2.8
CO-6	3	3	3	3	3	2	3	2	2.6	3	3	3	3	3	3	3	3	3.0
Average	3	3	3	3	3	2	2.9	2		3	3	3	3	3	2.2	2.8	2.8	
	PO Mean 2.								2.6	PSO Mean							2.8	
Strength of	Strength of PO Correlation Strong						1	Strength of PSO Correlation Strong										

Course Name: Fuzzy Sets Course Code: 21PMAE12

Course Objectives

- To establish thorough knowledge on the basic mathematical elements of the theory of fuzzy sets.
- To provide an emphasis on differences and similarities between fuzzy sets and classical set theories.

	Semester I		
Elective I B	Fuzzy Sets		
Course Code:21PMAE12	Hrs/week:6	Hrs/Sem:90	Credits:4

Unit-I

Basic types - Additional properties of α -cuts - representation of fuzzy sets - Extension principle for fuzzy sets.

(Chapter 1: Sections 1.3 & 1.4 Chapter 2: Sections 2.1 & 2.3)

Unit-II

Types of operations - fuzzy complements - fuzzy intersections: t-norms - fuzzy unions: t-conorms- combinations of operations - aggregation operations.

(Chapter 3: Sections 3.1-3.6)

Unit-III

Fuzzy numbers - linguistic variables - arithmetic operations on intervals - arithmetic operations on fuzzy numbers.

(Chapter 4: Sections 4.1- 4.4)

Unit-IV

Lattice of fuzzy numbers - fuzzy equations - crisp versus fuzzy relations - projections and cylindric extensions.

(Chapter 4: Sections 4.5 & 4.6 Chapter 5: Sections 5.1 & 5.2)

Unit-V

Binary fuzzy relations - binary relations on a single set - fuzzy equivalence relations- fuzzy compatibility relations - fuzzy ordering relations.

(Chapter 5: Sections 5.3 - 5.7)

Text Book:

1. George J. Klir and Bo Yuan. *Fuzzy sets and Fuzzy Logic Theory and Applications*. New Delhi: PHI Learning Private Limited, 2012.

Books for Reference:

- 1. J.Zimmerman. *Fuzzy set Theory and its Applications*. New Delhi: Allied Publishers Ltd, 1991.
- 2. Bhargava A.K. Fuzzy set Theory Fuzzy Logic and their Applications. S. Chand and company, 2013.

Course Outcome

		PSO	CL
CO. No.	Upon completion of this course, students will be able to	addressed	
CO-1	differentiate crisp sets and fuzzy sets.	6	An
CO-2	apply the fuzzy set theory on statistical methods.	7	Ap
CO-3	compare statistical methods against fuzzy logic methods.	1,7	An
CO-4	apply fuzzy logic membership function.	2,6	Ap
CO-5	solve problems on fuzzy set theory.	2	Ap
CO-6	identify the methods of fuzzy sets and fuzzy logic in solving	1,7	Re
	problems in the theory of fuzzy control.		

21PMAE12 - Fuzzy Sets

					PO					PSO								
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg
CO-1	3	2	3	3	3	2	3	2	2.6	3	2	2	3	3	3	3	3	2.8
CO-2	3	3	3	3	3	2	3	3	2.9	3	3	3	3	3	3	3	3	3
CO-3	3	3	3	3	2	2	3	2	2.8	3	2	3	3	3	3	3	3	3
CO-4	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	3	3	3
CO-5	3	3	3	3	3	2	3	2	2.8	3	3	3	2	3	3	3	3	2.9
CO-6	3	3	3	3	3	2	3	3	2.9	3	3	3	3	3	3	2	3	2.9
Average	3	2.9	3	3	2.9	2	3	2.3		3	2.8	2.9	2.9	3	3	2.9	3	
	PO Mean 2.								2.8	PSO Mean							2.9	
Strength of	Strength of PO Correlation Strong							Strength of PSO Correlation Strong						Strong				

Course Name : Linear Algebra Course Code: 21PMAC21

Course Objectives

- To reveal the ability to use algebraic properties to describe interpret and analyse the real world data.
- To introduce the concepts and to develop working knowledge on dual space, modules, extension fields and algebra of linear transformations.

	Semester	·II	
Core V	Linear Algo	ebra	
Course Code: 21PMAC21	Hrs/Week: 6	Hrs/Semester: 90	Credits: 4

Unit I

Dual Spaces - Inner product Spaces - Orthogonal Complement - Norm - Gram Schmidth Process - Schwartz Inequality - Modules - R-Module - Unital R-Module - Module Homomorphisms - Finitely Generated Module.

(Chapter 4: Sections 4.3, 4.4, 4.5)

Unit II

Extension fields - Algebraic Extension - Finite Extension - Roots of polynomials - Remainder theorem - Factor theorem - Splitting field - More about Roots - Irreducible - Simple extension.

(Chapter 5: Sections 5.1, 5.3, 5.5)

Unit III

Galois Group - Fixed Field - Automorphism - Normal Extension - Elements of Galois Theory - Fundamental Theorem - Solvability by Radicals - Commutators - Solvable - Abel's Theorem.

(Chapter 5: Sections 5.6, 5.7)

Unit IV

The Algebra of linear Transformations - Minimal Polynomial - Invertible - Singular - Regular - Rank - Characteristics Roots - Characteristics Vector - Matrix of linear Transformation - Problems related to SET/NET.

(Chapter 6: Sections 6.1, 6.2, 6.3)

Unit V

Canonical forms - Triangular form - Nilpotent Transformations - Jordan Form - Problems related to SET/NET.

(Chapter 6: Sections 6.4, 6.5, 6.6)

Problems related to SET/NET is only for Internal Examination.

Text Book

1. I.N.Herstein. *Topics in Algebra*. New Delhi: Wiley Eastern Ltd. Second Edition, 2013.

Books for Reference

- 1. GavvettBirkhoff and Thomas C. Bartee. *Modern Applied Algebra*. Delhi: CSS Publishers and Distributors, 1987.
- 2. P.B Bhattacharya, S.K. Jain and S.R. Nagpaul. *Basic abstract algebra*. Cambridge University Press, 1987.

Course Outcome

CO. No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	define inner products and determine orthogonality on vector spaces including Gram Schmidt orthogonalization.	5,6	Re
CO-2	explain the concepts of field extensions and apply it to diverse situations in mathematical contexts.	7	Un
CO-3	demonstrate accurate and efficient use of field extension and Galois Theory.	5,6	Ap
CO-4	understand Polynomial Rings and its effect in Galois Theory.	6	Un
CO-5	understand the significance of various canonical forms.	5	Un
CO-6	evaluate the fundamental concepts of algebra and their role in modern mathematics and applied contexts.	2	Ev

21PMAC21- Linear Algebra

					PO					PSO								
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg
CO-1	3	3	2	3	3	2	3	2	2.6	3	3	3	3	3	2	3	2	2.8
CO-2	3	3	3	3	3	2	3	2	2.8	3	2	3	3	3	2	3	3	2.8
CO-3	3	3	3	3	3	2	2	3	2.8	3	3	3	3	3	3	3	3	3
CO-4	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	2	3	3	2.9
CO-5	3	3	3	3	2	2	3	2	2.6	3	3	3	3	3	2	3	3	2.9
CO-6	3	3	3	3	3	2	3	3	2.9	3	3	3	3	3	3	3	3	3
Average	3	3	2.9	3	2.9	2	2.9	2.3		3	2.9	3	3	3	2.3	3	2.9	
	PO Mean 2.							2.7	PSO Mean							2.9		
Strength of	Strength of PO Correlation Strong						ı	Strength of PSO Correlation Strong										

Course Name: Mathematical Analysis Course Code: 21PMAC22

Course Objectives

- To give a systematic study of Riemann Stieltjes integral and calculus on Rⁿ and a brief study of convergence of sequence and series, power series and polynomial.
- To expose the concepts of convergence, uniform convergence, power series and the application of function of several variables.

Semester II									
Core VI	Mathematical	Analysis							
Course Code: 21PMAC22	Hrs/Week: 6	Hrs/Sem: 90	Credits: 4						

Unit I

Riemann - stieltjes integral: Definition and Existence of Riemann - Stieltjes Integral - Properties of the

integral (Chapter 6)

Unit II

Integration and Differentiation - Rectifiable curves. Sequences and series of functions: Discussion of Main problem - Uniform Convergence - Uniform Convergence and Continuity

(Chapter 6&7)

Unit III

Uniform Convergence and Integration - Uniform Convergence and Differentiation - Equicontinuous families of Functions - Stone Weierstrass Theorem.

(Chapter 7)

Unit IV

Some special functions: Power series - The Exponential and Logarithmic Functions - The Trigonometric Functions - The Algebraic Completeness of the Complex field

(Chapter 8)

Unit V

Fourier series - The Gamma function.

(Chapter 8)

Text Book

1. Walter Rudin. *Principles of Mathematical Analysis*. McGraw Hill International Editions. Third Edition, 1953.

Books for Reference

1. Apostol. *Mathematical Analysis*. London: Addition Wesley Publishing Company, 1971.

2. Goldberg. Methods of Real Analysis. Oxford & IBH Publishing Company, 1970.

Course Outcome

CO. No.	Upon completion of this course, students will be able to	PSO	CL
		addressed	
CO-1	differentiate the Riemann integrability and the Riemann-Stieltjes integrability of a bounded function and able to prove theorems concerning integration.	4	An
CO-2	distinguish pointwise and uniform convergence of a sequence of functions.	2,6	Un
CO-3	illustrate the convergent properties of power series.	2	Un
CO-4	analyze the concepts of Fourier Series and Beta, Gamma functions.	2	An
CO-5	compare differentiability of functions and relate to the integrability of functions.	6	An
CO-6	describe fundamental properties of the real numbers that lead to the formal development of real analysis.	1	Un

21PMAC22 - Mathematical Analysis

					PO					PSO								
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg
CO-1	3	3	3	3	3	2	3	2	2.7	3	3	3	3	3	3	2	3	2.9
CO-2	3	3	3	3	3	2	3	2	2.7	3	3	3	3	3	3	2	3	2.9
CO-3	3	3	3	3	3	2	3	2	2.7	3	3	3	3	3	3	2	3	2.9
CO-4	3	3	3	3	3	2	3	2	2.7	3	3	3	3	3	3	2	3	2.9
CO-5	3	3	3	3	3	2	3	2	2.7	3	3	3	3	3	3	2	3	2.9
CO-6	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	2.9
Average	3	3	3	3	3	2.2	3	2.2		3	3	3	3	3	3	2	3	2.9
	PO Mean 2.7								2.7	PSO Mean						2.9		
Strength of	Strength of PO Correlation Strong						ı	Strength of PSO Correlation Strong										

Course Name: Classical Mechanics Course Code: 21PMAC23

Course Objectives

- To represent the equations of motion for complicated mechanical systems using the Lagrangian and Hamiltonian formulation.
- To develop math skills as applied to physics.

	Semester II		
Core VII	Classical Mechan	nics	
Course Code:21PMAC23	Hrs/Week: 6	Hrs/Sem: 90	Credits: 4

Unit I

Some Definitions-Lagrange's Equations for a Holonomic System- Lagrange's Equations of Motion for Conservative, Non –Holonomic system - Physical Significance of λ_l - Problems related to SET/NET.

(Chapter 1: Sections 1.1, 1.2, 1.3, 1.4)

Unit II

Variational Principle - Calculus of Variations- Hamilton's Principle - Derivation of Hamilton's Principle from Lagrange's Equations- Derivation of Lagrange's Equations from Hamilton's Principle - Extension of Hamilton's Principle - Cyclic or Ignorable Coordinates-Conservation Theorems - Problems related to SET/NET.

(Chapter 2: Sections 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8)

Unit III

Equations of Motion of a Rigid Body- Generalized Coordinates of a Rigid body- Eulerian Angles - Components of Angular Velocity along the Body Set of Axes- Rate of Change of a Vector-Coriolis force-Euler's Equations of motion for a rigid body-Motion of a Heavy Symmetrical Top.

(Chapter 3: Sections 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8)

Unit IV

Derivations of Hamilton's Equations of Motion - Routh's procedure - Equations of motion - Derivation of Hamilton's equations from Hamilton's principle - Principle of least action.

(Chapter 4: Sections 4.1, 4.2, 4.3, 4.4)

Unit V

Canonical coordinates and canonical transformations - Hamilton's Equations of Motion in Poisson's Bracket - Infinitesimal contact Transformation - Relation between Infinitesimal contact Transformation and Poisson's Bracket - Hamilton - Jacobi theory.

(Chapter 5: Sections 5.1, 5.2, 5.3, 5.4, 5.5)

Problems related to SET/NET is only for Internal Examination.

Text Book

1. C.R.Mondal. Classical Mechanics. Prentice Hall of India, 2007.

Books for Reference

- 1. K. SankaraRao. Classical Mechanics. Prentice Hall of India, 2005.
- 2. Herbert Goldstein. Classical Mechanics. Narosa Second Edition, 1994.

Course Outcome

Co. No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	analyze the dynamics of system near equilibrium and find	2	An
	the normal modes of oscillation.		
CO-2	understand D' Alembert's Principle and simple applications	2,6	Un
	of the Lagrangian formulation.		
CO-3	compute the principle co-ordinates and the principle	2	Ap
	moment of inertia for arbitrary rigid body.		
CO-4	explain Hamiltonian principles and establish the	2,5	Un
	Hamiltonian equations.		
CO-5	solve equations of motion for simple system.	2	Ap
CO-6	distinguish the concept of Hamilton equation of motion and	6	An
	lagrange's equations.		

21PMAC23 - Classical Mechanics

					PO					PSO								
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg
CO-1	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	2	2.8
CO-2	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.8
CO-3	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	2	2.8
CO-4	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.8
CO-5	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	3	2.9
CO-6	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.8
Average	3	3	3	3	3	2	2.5	2		3	3	3	3	3	2.2	2.2	2	
	PO Mean 2.						2.7				PSO	Mean				2.8		
Strength of	trength of PO Correlation Strong						1	Strength of PSO Correlation Stre				Strong						

Course Name: Calculus of Variations and Integral Equations Course Code: 21PMAC24

Course Objectives

- To impart analytical ability in solving variational problems and integral equations also to formulate the laws of mechanics and basic physics.
- To provide the foundation of Calculus of variation and give examples on some applications within Physics and Engineering Sciences.

Semester II								
Core VIII Ca	lculus of Variations	and Integral Equation	ıs					
Course Code: 21PMAC24	Hrs/Week: 4	Hrs/Sem: 60	Credits: 4					

Unit I

Calculus of Variations and Applications: Maxima and Minima - The Simplest case - Illustrative examples - Natural boundary conditions and transition conditions - The variational Notation - The more general case.

(Chapter 2: Sections: 2.1 - 2.6)

Unit II

Constraints and Lagrange multipliers - Variable end points - Sturm - Liouville problems - Hamilton's principle - Lagrange's equations.

(Chapter 2: Sections: 2.7 - 2.11)

Unit III

Integral Equations: Introduction - Relations between differential and integral equations - The Green's function - Alternative definition of the Green's function.

(Chapter 3: Sections: 3.1 - 3.4)

Unit IV

Linear equations in cause and effect - The influence function - Fredholm equations with separable kernels - Illustrative example.

(Chapter 3: Sections: 3.5 - 3.7)

Unit V

Hilbert-Schmidt theory- Iterative methods for solving equations of the second kind - Fredholm theory.

(Chapter 3: Sections: 3.8, 3.9, 3.11)

Text Book

1. Francis B. Hildebrand. *Methods of Applied Mathematics*. Prentice-Hall of India private limited. second edition, 1968.

Books for Reference

- 1. L. Elsgolts. *Differential Equations and the Calculus of Variations*. University Press of the Pacific, 2003.
- 2. Mark Kot. *A First Course in the Calculus of Variations*. American Mathematical Society Providence Rhode Island, 2014.

Course Outcome

CO. No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	understand the properties of geometrical problems	2	Un
CO-2	evaluate using decomposition method.	2	Ev
CO-3	compare different types of integral equations.	2	An
CO-4	examine the Euler - Lagrange equation for variational problems including the case of general variations.	2,5	An
CO-5	recall symmetries and use them to solve the Euler- Lagrange equations.	2,6	Re
CO-6	solve integral equations and analyze the relation between differential equations and Volterra integral equations	2	Ap

21PMAC24 - Calculus of Variations and Integral Equations

					PO					PSO								
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg
CO-1	3	3	3	2	3	2	3	2	2.6	3	2	3	3	3	3	3	3	2.9
CO-2	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	3	2.9
CO-3	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	3	2.9
CO-4	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	3	2.9
CO-5	3	3	3	3	2	2	3	2	2.6	3	2	3	3	3	2	2	3	2.6
CO-6	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	3	3	3.0
Average	3	3	3	2.9	3	2	2	2		3	2.8	3	3	3	2.9	2.3	3	
	PO Mean							2.7	PSO Mean						2.9			

Course Name: Stochastic Processes Course Code: 21PMAC25

Course Objectives

- To acquire knowledge about stochastic process relying on the probability theory and mathematical analysis.
- To develop comprehensive knowledge of Probability Distribution, Transition Probabilities, Markov Chains, Birth Death Process.

Semester - II									
Core IX	Stochastic Proce	esses							
Course Code: 21PMAC25	Hrs/week: 4	Hrs/Sem: 60	Credits: 4						

Unit I

Generating functions - Laplace Transforms - Laplace Transforms of a Probability Distribution or of a Random variable - Difference Equations - Difference Equations in Probability Theory.

(Chapter1: Sections: 1.1 - 1.5)

Unit II

Differential- Difference Equations - Matrix analysis. Stochastic Process: Notion of Stochastic process - Specification of Stochastic Process.

(Chapter 1: Sections: 1.6, 1.7 and Chapter 2: Sections: 2.1 - 2.3)

Unit III

Higher transition probabilities and classification of states - Higher transition probabilities - Classification of states and chains - Determination of Higher transition probabilities - Stability of Markov system: Limiting Behavior.

(Chapter 3: Sections: 3.1 - 3.5)

Unit IV

Statistical inference for Markov Chains-Markov chains with continuous state space-Non-stationary or Non-homogeneous chains-Poisson process-Poisson process and Related Distributions.

(Chapter 3: Sections: 3.6-3.8 and Chapter 4: Sections: 4.1 - 4.2)

Unit V

Generalizations of Poisson Process-Birth and Death process-Markov Processes-Discrete State Spaces-Erlang Process.

(Chapter 4: Sections: 4.3 - 4.6)

Text Book:

1. J.Medhi. Stochastic Process. Wiley Eastern Limited, 1982.B

Books for Reference:

- 1. SrinivasanMehata. *Stochastic Process*. New Delhi: Tata McGraw-Hill Publishing Company Limited, 1976.
- 2. Tapas kumar Chandra and SreelaGangopadhyay. *Introduction to Stochastic Process*, Narosa Publishing House, 2018.

Course Outcome:

CO. No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	illustrate the stochastic model.	8	Un
CO-2	explain the well known models like birth-death and queueing to reorient their knowledge of stochastic analysis.	7	Un
CO-3	analyze the transition probabilities and its classifications.	2	An
CO-4	compare the different stochastic models.	1,8	An
CO-5	discuss the notions of stochastic process.	5	Un
CO-6	apply markov chains to practical problems	4	Ap

21PMAC25 - Stochastic Processes

					PO					PSO								
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg
CO-1	3	3	3	3	3	2	3	3	2.9	3	3	3	3	3	3	2	3	2.9
CO-2	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	3	2.9
CO-3	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	3	2.9
CO-4	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	3	2.9
CO-5	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	3	2.9
CO-6	3	3	3	3	3	2	3	3	2.9	3	3	3	3	3	3	2	3	2.9
Average	3	3	3	3	3	2	2.5	2.3		3	3	3	3	3	3	2	3	
	PO Mean 2.7								2.7	PSO Mean						2.9		
Strength of	Strength of PO Correlation Strong							Strength of PSO Correlation Strong										

Course Name: Operations Research Course Code: 21PMAE21

Course Objectives

- To use quantitative methods and techniques for effective decision –making; model formulation and applications that are applied to problems in business, industry and society.
- To provide a theoretical introduction and implementation of optimization techniques in order to get best results from a set of serial possible solution of different problems.

	Semester	II	
Elective II A	Operations Res	earch	
Course Code: 21PMAE21	Hrs/Week: 4	Hrs/Sem: 60	Credits: 3

Unit I

Integer Programming: Some Applications of Integer Programming Solution Algorithms-Methods of Integer Programming - Cutting Plane Algorithm - Branch and Bound Algorithm.

(Chapter 8: Sections 8.1, 8.2, 8.3, 8.4)

Unit II

Dynamic Programming: Elements of DP Model - The Capital Budgeting Example - Cargo-Loading Problem - Reliability Problem - Work Force Size Problem - Forward and Backward Recursive equations.

(Chapter 9: Sections 9.1, 9.2, 9.3)

Unit III

Inventory Models: The ABC Inventory System - A generalized inventory model - Deterministic models: Single item static model and multiple item static model.

(Chapter 13: Sections 13.1, 13.2, 13.3)

Unit IV

Inventory Models: Probabilistic models— A continuous review model-Single Period Models: Instantaneous Demand, No Setup Cost and s-S Policy

(Chapter 13: Sections 13.4(13.4.1, 13.4.2))

Unit V

Queueing Theory: Elements of Queueing model - Roles of the Poisson and Exponential Distributions - Arrivals Process- Departures Process

(Chapter 15: Sections 15.1, 15.2)

Text Book

1. Hamdy A. Taha. *Operations Research an Introduction*. New York: Macmillan Publishing Company, Fourth Edition, 1987.

Books for Reference

- 1. J.K.Sharma. Operations Research. Macmillan Publishers India Ltd, 2007.
- 2. KantiSwarup, P.K.Kupta and Man Mohan. *Operations Research*. Sultan Chand & Sons Publications, 2013.

Course Outcome

CO. No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	classify and formulate integer programming problems and solve them with Cutting Plane Algorithm, Branch and Bound Algorithm.	2,4	Ap
CO-2	solve classical dynamic programming problems.	2,6	Ap
CO-3	compare inventory models and other related models.	2	An
CO-4	analyze a network of queues with Poisson external arrival, exponential service requirements and independent routing.	1,6	An
CO-5	evaluate the concept of complementary slackness and its role in solving prime and dual problems	2	Ev
CO-6	define probabilistic inventory models that accounts for all variations in real systems.	2	Re

21PMAE21 - Operations Research

					PO					PSO								
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7		Avg
CO-1	3	3	3	3	3	2	2	2	2.8	3	3	3	3	3	3	2	3	2.9
CO-2	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.8
CO-3	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	3	2.9
CO-4	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	3	2.8
CO-5	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	3	2.8
CO-6	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.8
Average	3	3	3	3	3	2	2.2	2		3	3	3	3	3	2.2	2.2	2	
	PO Mean												PSO	Mean				2.8

Course Name: Applied Algebra Course Code: 21PMAE22

Course Objectives

- To acquire a thorough knowledge on Boolean Algebras, Switching circuits and linear codes.
- To provide with an overview of discrete mathematics and related disciplines.

Semester II										
Elective II B	Applied Alge	ebra								
Course Code: 21PMAE22	Hrs/Week: 4	Hrs/Sem: 60	Credits: 3							

Unit I

Properties and examples of Lattices- Distributive Lattices-Boolean Algebras- Boolean Polynomials – Minimal forms of Boolean Polynomials.

(Sections: 1,2,3,4&6 Problems: Section 1:7,11,14,15, Section 2: 2,5,6,13, Section 3:3,4,8,

Section 4:8,9& Section 6: 3,6,7,8)

Unit II

Switching circuits- Applications of Switching circuits

(Sections 7&8 Problems: Section 7: 1, 2,4,5,6& Section 8: 3, 4, 5)

Unit III

Irreducible Polynomials over Finite fields- Factorization of Polynomials over Finite Fields.

(Sections 14&15 Problems : Section 14:2,4,5,7,8,12,16& Section 15:2,3,4,5,8,9)

Unit IV

Introduction to Coding- Linear Codes.

(Sections 16&17 Problems : Section 16:3,4,5,7,10& Section 17:1,2,4,5,8,10,11,14)

Unit V

Cyclic Codes-Special Cyclic Codes

(Sections 18&19 Problems : Section 18: 1,2,4,7,10,11,16,17& Section 19: 2,3,4,7,8)

Text Book

1. Rudolf Lidi and Gunter Pilz. *Applied Abstract Algebra*. Springer Publications. Second Edition

Books for Reference

- 1. Arumugam .S& Isaac .A.T.*Modern Algebra*. Scitech Publications (INDIA) PVT.LTD, 2003.
- 2. Daniel Augot et al. *An introduction to linear and cyclic codes*, Journal of Symbolic Computional, 2009.

Course Outcome

CO. No.	Upon completion of this course, students will be able to	PSO	CL
		addressed	
CO-1	explain some fundamental mathematical concepts and	2,4	Un
	terminology.		
CO-2	analyse recursive definitions.	2,6	An
CO-3	compare the different techniques for constructing	2	An
	mathematical proofs, illustrated by discrete mathematics		
	examples		
CO-4	solve linear codes and cyclic codes.	1,6	Ap
CO-5	describe the concepts of Boolean Algebra and lattices.	2	Un
CO-6	apply basic and advanced principles of codes.	2,6	Ap

21PMAE22 - Applied Algebra

					PO					PSO									
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg	
CO-1	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	2	2.8	
CO-2	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.8	
CO-3	3	3	3	3	3	2	3	3	2.9	3	3	3	3	3	3	2	3	2.9	
CO-4	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	3	2.9	
CO-5	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	2	2.8	
CO-6	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	3	2.9	
Average	3	3	3	3	3	2	2.6	2.2		3	3	3	3	3	3	2	2.5		
			PO M	lean					2.8				PSO	Mean				2.9	

Course Name: Topology Course Code: 21PMAC31

Course Objectives

- To introduce the fundamental ideas of Topological spaces and developing a clear understanding of the fundamental concepts of connectedness, compactness, continuity, separation and countability axioms.
- To concern with the properties of geometric object that are preserved under continuous deformations such as stretching, twisting, crumpling and bending but not tearing or gluing.

	Semester III		
Core X	Topology		
Course Code: 21PMAC31	Hrs/Week: 6	Hrs/Sem: 90	Credits: 4

Unit I

Topological spaces and Continuous functions: Topological spaces - Basis for a topology - Order Topology - The Product topology on $X \times Y$ - The Subspace Topology - Closed sets and Limit points.

(Chapter: 2, Sections: 12, 13, 14, 15, 16, 17)

Unit II

Continuous Functions - The Product Topology - The Metric Topology.

(Chapter: 2, Sections: 18, 19, 20, 21)

Unit III

Connectedness and Compactness: Connected Spaces - Connected subspaces of the real line - Compact spaces - Compact subspaces of the real line - Limit point compactness - Problems related to SET/NET.

(Chapter: 3, Sections: 23, 24, 26, 27, 28)

Unit IV

Countability and Separation Axioms: The Countability Axioms - The separation axioms - Normal spaces - The Urysohn lemma - Problems related to SET/NET.

(Chapter: 4, Sections: 30, 31, 32, 33)

Unit V

The Urysohn Metrization theorem - The Tietze extension theorem - The Tychonoff theorem.

Problems related to SET/NET is only for Internal Examination.

Text Book

1. J.R Munkres. *Topology*. New Delhi: Pearson Education Agency, Second Edition 2002.

Books for Reference

- 1. George McCarty. Topology. New Delhi: Tata McGraw Hill Publications, 1967.
- 2. G.F.Simmons. *Topology and Modern Analysis*. McGraw Hill International Editions ,1963.

Course Outcome

CO.No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	define and illustrate the concepts of topological spaces and product topology.	5	Re
CO-2	explain the concepts concerned with properties that are preserved under continuous deformation of objects.	5,6	Un
CO-3	apply the knowledge general topology to formulate and solve problems of a topological nature in mathematics and other fields where topological issues arise.	2	Ap
CO-4	analyse Connectedness and Compactness and prove the related theorems.	5	An
CO-5	understand the separation axioms in different spaces.	5	Un
CO-6	explain the relation between the three types of compactness in general topological spaces and in metric spaces.	5	An

21PMAC31 - Topology

														5 00						
					PO					PSO										
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg		
CO-1	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.8		
CO-2	3	3	3	3	3	3	2	2	2.8	3	3	3	3	3	3	2	3	2.9		
CO-3	3	3	3	3	3	3	2	2	2.8	3	3	3	3	3	3	2	3	2.9		
CO-4	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	2	2.8		
CO-5	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	2	2.8		
CO-6	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.8		
Average	3	3	3	3	3	2.3	2.3	2		3	3	3	3	3	3	2.2	2			

PO M	ean	2.7	PSO Mean		2.8
Strength of PO Correlation	Strong		Strength of PSO Correlation	Strong	

Course Name: Graph Theory Course Code: 21PMAC32

Course Objectives

- To acquire a detail knowledge about graph theory and to solve problems in communication networks, railway networks etc,
- To introduce the basic concepts of Graph Theory such as Trees, Eulerian Graphs,
 Matchings, Vertex Colourings, Edge Colourings and Planarity.

	Semester III	[
Core XI	Graph Theor	· y	
Course Code: 21PMAC32	Hrs/Week: 6	Hrs/Sem: 90	Credits: 4

Unit I

Graphs - Sub graphs- Graphs & Simple graphs- Graph Isomorphism- Vertex degrees -Path and connection - Trees-Cut edges and Bonds-Cut vertices - Cayley's formula.

(Chapter: 1, Sections: 1.1 - 1.7 & Chapter: 2, Sections: 2.1 - 2.4)

Unit II

Connectivity - Blocks - Euler tour - Hamilton cycle - Chavatal theorems.

(Chapter 3, Sections: 3.1, 3.2 & Chapter 4, Sections: 4.1, 4.2)

Unit III

Matchings - Matchings and Coverings in Bipartite Graphs - Marriage Theorem - Perfect Matching.

(Chapter 5, Sections: 5.1, 5.2, 5.3)

Unit IV

Colorings - Edge Coloring - Edge Chromatic number - Vizing's theorem-Vertex Coloring-Chromatic number - Brook's Theorem - Hajo's Conjecture-Chromatic Polynomials- Girth and Chromatic Number.

(Chapter 6, Sections: 6.1, 6.2 & Chapter 8, Sections: 8.1 - 8.5)

Unit V

Independent sets - Cliques: Independents sets-Ramsey's Theorem -Plane and Planar Graphs-Dual Graphs-Directed Graphs - Directed Paths.

(Chapter 7, Sections: 7.1, 7.2, Chapter 9, Sections 9.1,9.2 & Chapter 10, sections:10.1,10.2)

[Last sections (applications) in each chapter not included]

Text Book

1. H.J.A.Bondy and U.S.R.Murty. *Graph Theory with Applications*. North Holland, New York, Amsterdam, Oxford, 2008.

Books for Reference

- 1. R.BalaKrishnan and K.Ranganathan. *Text Book of Graph Theory*. Springer Publications.
- 2. Robin J. Wilson. *Graph Theory*. Pearson Education Asia,2002.

Course Outcome

CO.	Upon completion of this course, students will be able to	PSO addressed	CL
CO-1	illustrate the basic concepts of graphs, directed graphs and	7	Un
	present the graph by matrices.		
CO-2	solve the problems involving edge and vertex connectivity,	2,7	Ap
	Planarity and crossing number and to determine the Eulerian		
	and Hamiltonian graphs.		
CO-3	analyze the properties of Trees and Connectivity.	5,7	An
CO-4	solve the problems involving vertex and edge coloring.	2,7	Ap
CO-5	apply the fundamental concepts of independent sets.	2	Ap
CO-6	show a series of graph theoretical problems which have real	1	Re
	world applications		

21PMAC32- Graph Theory

					РО					PSO									
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg	
CO-1	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.8	

CO-2	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	3	2.9
CO-3	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.8
CO-4	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	2	2.8
CO-5	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.8
CO-6	3	3	3	3	3	2	3	3	2.9	3	3	3	3	3	3	2	3	2.9
Average	3	3	3	3	3	2	2.5	2.2		3	3	3	3	3	3	2	2.3	
PO Mean													PSO	Mean				2.8
Strength of PO Correlation Strong										S	trengtl	of PS	SO Cor	relatio	n	,	Strong	•

Course Name: Measure Theory Course Code: 21PMAC33

Course Objectives

- To introduce abstract integration theory for functions on measure spaces.
- To provide a basic course in bounded variation and differentiation of functions.

	Semester III		
Core XII	Measure Theo	ry	
Course Code: 21PMAC33	Hrs/Week: 5	Hrs/Sem: 75	Credits: 4

Unit I

Lebesgue Measure: Outer measure - Measurable sets and Lebesgue measure - Measurable functions.

(Chapter 3: Sections 1, 2, 3, 5)

Unit II

The Lebesgue Integral: The Riemann Integral - The Lebesgue integral of a bounded function over a set of finite measure - The integral of a non-negative function - The general Lebesgue Integral.

(Chapter 4: Sections 1, 2, 3, 4)

Unit III

Differentiation of monotone functions- Functions of Bounded Variation – Differentiation of an Integral- Absolute Continuity

(Chapter 5: Sections 1,2,3,4)

Unit IV

General Measure and Integration: Measure spaces- Measurable functions - Integration - Signed Measures -The Radon Nikodym Theorem.

(Chapter 11: Sections 1, 2, 3, 5, 6)

Unit V

Measure and Outer measure: Outer measure and Measurability- The Extension theorem - The Lebesgue - stieltjes Integral - Product Measures.

(Chapter 12: Sections 1, 2, 3, 4)

Text Book

1. H.L.Royden. *Real Analysis*. New York: Collier, Macmillan Co , Second Edition, 2004.

Books for Reference

- 1. Munroe M.E. *Introduction to Measure and Integration*. U.S.A: Addition Wesley Publishing Company, 1959.
- 2. Donald L. Cohn. *Measure theory*. Springer International Edition, Second edition, 2013.

Course Outcome

CO. No.	Upon completion of this course, students will be able to	PSO	CL
		addressed	
CO-1	understand the basic definitions and the properties of	1	Un
	Lebesgue measure of measurable sets.		
CO-2	define Lebesgue integral and discuss its properties.	6	Re
CO-3	analyze the concept of bounded variation.	1,2	An
CO-4	explain the concept of simple functions and Lebesgue	6	Un
	integral of nonnegative integral functions.		
CO-5	summarize and discuss the properties of outer measure.	2	Un
CO-6	develop a basic knowledge of measure theory needed to	7	An
	understand probability theory and functional analysis		

21PMAC33 - Measure Theory

PO									PSO							
PO-1 PO-	2 PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg

CO-1	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	2	2.8
CO-2	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.8
CO-3	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	2	2.8
CO-4	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	2	2.8
CO-5	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	2	2.8
CO-6	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.8
Average	3	3	3	3	3	2	2.6	2		3	3	3	3	3	3	2	2	
			PO M	lean					2.7				PSO	Mean				2.8
Strength of	РО С	orrela	ation			Str	ong			S	trengtl	of PS	SO Coi	relatio	n	S	Strong	•

Course Name: Partial Differential Equations Course Code: 21PMAC34

Course Objectives

- To focus on the formulation of first and second order Partial Differential Equations for three basic types of hyperbolic, parabolic and elliptic equations.
- To solve the problems of PDEs which include heat, wave and Laplace's Equation that arise in various physical systems.

Semester III								
Core XIII Partial Differential Equations								
Course Code: 21PMAC34	Hrs/Week: 5	Hrs/Sem: 75	Credits: 4					

Unit I

Partial differential equations of the first order: Partial differential equations -Origins of first order partial differential equations-Linear equations of the first order-Surface orthogonal to a given system of surfaces-Nonlinear PDE of the first order-Cauchy's method of characteristics - Problems related to SET/NET.

(Chapter: 2, Sec: 1, 2, 4, 6, 7, 8)

Unit II

Compatible systems of first order equations - Charpit's Method-Special types of first order equations-Solutions satisfying given conditions - Problems related to SET/NET.

(Chapter: 2, Sec: 9, 10, 11)

Unit III

Partial differential equations of second order: The origin of second order equations-higher order equations in physics-Linear PDE with constant coefficients-Equations with variable coefficients.

(Chapter: 3, Sec: 1, 3, 4, 5)

Unit IV

Characteristic curves of second order equations-Characteristics of equations in three variables-The solution of linear hyperbolic equations-Separation of variables in a PDE.

(Chapter: 3, Sec: 6, 7, 8, 9)

Unit V

Laplace's equation - elementary solutions of Laplace's equations; families of equipotential surfaces - Wave Equations - Elementary Solutions of one dimensional wave equations (Chapter: 4, Sec: 1, 2, 3; Chapter 5, Sec 1,2)

Problems related to SET/NET is only for Internal Examination.

Text Book

1. I. N. Sneddon. *Elements of Partial Differential Equation*. McGraw Hill Book Company, Third edition, 1998.

Books for Reference

- 1. E. T. Copson. *Partial Differential Equations*. Cambridge University: Second edition, 1975.
- 2. M.D. Raisinghania& R.S. Aggarwal. *Ordinary and partial differential equations*. New Delhi: S. Chand and company Ltd., Ram nagar, Second Edition.

Course Outcome

CO.	Upon completion of this course, students will be able to	PSO	CL
No.		addressed	
CO-1	apply the fundamental concepts of Ordinary Differential	2	Ap
	Equations and Partial Differential Equations and the basic		
	numerical methods for their resolution.		
CO-2	demonstrate accurate and sufficient use of Laplace's	2,6	Ap
	equation and their applications in the theory of PDE.		
CO-3	investigate the behavior of second order partial differential	1,2	Un
	equations.		
CO-4	analyze the Partial Differential Equations using separation	6	An
	of variables techniques.		
CO-5	solve the differential equations using Laplace Equation.	2	Ap
CO-6	apply partial derivative techniques to predict the behavior	2	Ap
	of certain phenomena.		

21PMAC34 - Partial Differential Equations

	РО									PSO								
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg
CO-1	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	2	2	3	2.8

CO-2	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	2	2	3	2.8
CO-3	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	2	2	3	2.8
CO-4	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	2	2	3	2.8
CO-5	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	2	2	3	2.8
CO-6	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	3	2.9
Average	3	3	3	3	3	2	2.6	2		3	3	3	3	3	2.2	2	3	
			РО М	ean					2.7				PSO	Mean				2.8
Strength of	РО С	orrela	ation			Str	ong		•	Strength of PSO Correlation Stro							Strong	•

Course Name: Research Methodology Course Code: 21PMAC35

Course Objectives

- To contribute to the development of the new statistical methodology to address substantive problems and to promote the use of these methods through publications.
- To identify and discuss the complex issues inherent in selecting a research problem, selecting an appropriate research design and implementing a research projects.

Semester III									
Core XIV I	Research Method	ology							
Course Code: 21PMAC35	Hrs/ week: 4	Hrs/Semester: 60	Credits: 4						

Unit I

An Introduction: Meaning of Research- Objectives of Research- Motivation of Research- Types of Research- Research approaches- Significance of Research- Research methods versus Methodology- Research and scientific method.

(Text Book: 1, Chapter: 1, pages 1-9)

Unit II

Importance of knowing how research is done - Research Process - Criteria of Good Research.

(Text Book: 1, Chapter: 1, pages 10-20)

Unit III

Planning the Thesis: Selecting a topic-Reviewing the literature-Designing the study-The chapter outline. Writing the Thesis: The preliminaries - The text-The reference material-The abstract - The final product-Chapter divisions and subdivisions – Spacing – Pagination - Margins-Paragraph indentation-Sample pages.

(Text Book: 2, Chapter: 3, 5)

Unit IV

Revising the Thesis: Editing the final draft-Evaluating the final draft - Proof reading the final typed copy - Plagiarism - What is Plagiarism - Types of Plagiarism - Glossary – preventing plagiarism when writing.

(Text Book: 2, Chapter: 6, 12, http://www.plagiarism.org/plagiarism-101/what-is-plagiarism/

Unit V

Writing language of theorem: Introduction and Motivation - Mathematical style - Terminology and notation (especially in discrete mathematics) - English usage in mathematical writing.

(Text Book: 3, Pages 1-31)

Text Books

- 1. C.R. Kothari. *Research Methodology*, New Age International (P) Limited, Publishers, Second Revised Edition, 2009.
- 2. Janathan Anderson, Berry H. Durston& Millicent Poole. *Thesis and assignment Writing*. Wiley Eastern limited, Eleventh Reprint, 1991.
- 3. Douglas B. West The Grammar According to West.

Book for Reference

1. Leonie Elphinstone and Robert Schweitzer. *How to get a research degree*. A Surival Guide, Allen and Unwin Publication, 1998.

Course Outcome

CO. No.	Upon completion of this course, students will be able to	PSO	CL
		addressed	
CO-1	implement Mathematical and Statistical techniques for research.	5,8	Ap
CO-2	acquire knowledge in research publication and thesis writing.	5	Un
CO-3	understand the basic aspects in research.	5	Un
CO-4	practice and improve the research presentation skills with latest tools.	5	Re
CO-5	investigate research in a more appropriate manner.	5	An
CO-6	analyse appropriate research topics.	5	An

21PMAC35 - Research Methodology

					PO									PSO				
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg
CO-1	3	3	2	3	3	3	3	2	2.8	3	2	3	3	3	3	3	3	2.9
CO-2	3	3	2	3	3	3	3	2	2.8	3	2	3	3	3	3	3	3	2.9
CO-3	3	3	2	3	3	2	3	2	2.6	3	2	3	3	3	3	3	3	2.9
CO-4	3	3	2	3	3	3	3	3	2.9	3	2	3	3	3	3	3	3	2.9

CO-5	3	3	2	3	3	3	3	3	2.9	3	2	3	3	3	3	3	3	2.9
CO-6	3	3	2	3	3	3	3	3	2.9	3	2	3	3	3	3	3	3	2.9
Average	3	3	2	3	3	2.8	3	2.5		3	2	3	3	3	3	3	3	
			РО М	ean					2.8				PSO	Mean				2.9
Strength of	ngth of PO Correlation Strong							S	trength	of PS	SO Cor	relatio	n	S	Strong			

Course Name: Fluid Mechanics Course Code: 21PMAE31

Course Objectives

- To introduce fundamental aspects of fluid flow behaviour and to develop steady state mechanical energy balance equation for fluid flow systems.
- To estimate pressure drop in fluid flow systems and determine performance characteristics of fluid machinery.

	Semester	III	
Elective III A	Fluid M	echanics	
Course Code: 21PMAE31	Hrs/Week: 4	Hrs/Sem: 60	Credits: 3

Unit I

Properties of Fluids: Viscosity - Thermodynamic properties- Compressibility and Bulk modulus - Surface Tension and Capillarity - Vapour Pressure and Cavitation.

(Chapter 1: Sec 1.1 - 1.7)

Unit II

Pressure and its measurement: Fluid pressure of a point - Pascal's Law - Pressure variation in a fluid at rest - Absolute, Gauge, Atmospheric and Vacuum Pressure - Measurement of pressure - Simple manometer - Differential Manometer - Pressure at a point in Compressible fluid.

(Chapter 2: Sec 2.1 - 2.8)

Unit III

Hydrostatic forces on Surfaces: Total pressure and Centre of Pressure- Vertical Plane Surfaces submerged in liquid - Horizontal Plane Surfaces submerged in liquid - Inclined Plane Surface submerged in liquid - Curved Surface submerged in liquid

(Chapter 3: Sec 3.1-3.6)

Unit IV

Total Pressure and Centre of pressure on lock gates - Pressure Distribution in a liquidsubjected to Horizontal/Vertical Acceleration.

Unit V

Buoyancy and flotation: Buoyancy - Centre of Buoyancy - Metacentre - Metacentric height - Conditions of Equilibrium of a Floating and Submerged bodies - Experimental Method of Determination of Meta - centric Height - Oscillation of a floating body.

(Chapter 4 Sec 4.1 – 4.9)

Text Book

1. Dr.R.K. Bansal. *A text book of Fluid Mechanics*. Laxmi Publication private limited, Tenth edition.

Books for Reference

- 1. Joseph H.Spurk, NuriAksel. *Fluid Mechanics*. Springer- Verlag Berlin Heidelberg, Second Edition, 2008.
- **2.** Ranald V. Giles. *Fluid Mechanics and Hydraulics*. McGraw Hill Book Company, Second Edition.

Course Outcome

CO.No.	Upon completion of this course, students will be able	PSO	CL
	to	Addressed	
CO-1	explain fundamentals of fluid mechanics, which is used in	1,8	Un
	the applications of Hydraulics.		
CO-2	classify hydrostatic law, principle of buoyancy and	2	Ap
	stability of a floating body and application of mass,		
	momentum and energy equation in fluid flow.		
CO-3	examine stability of submerged and floating bodies.	6	An
CO-4	differentiate horizontal motion and vertical motion.	1	An
CO-5	describe methods of implementing fluid mechanics laws	5,6	Re
	and phenomena.		
CO-6	calculate and optimize operational parameters of	2	Ap
	hydraulic problems, systems and machines		

21PMAE31 - Fluid Mechanics

					РО									PSO				
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg
CO-1	3	3	3	3	3	2	3	3	2.9	3	3	3	3	3	3	2	3	2.9

CO-2	3	3	3	3	3	2	3	3	2.9	3	3	3	3	3	3	2	3	2.9
CO-3	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	3	2.9
CO-4	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	3	2.9
CO-5	3	3	3	3	3	2	3	3	2.9	3	3	3	3	3	3	2	3	2.9
CO-6	3	3	3	3	3	2	3	3	2.9	3	3	3	3	3	3	2	3	2.9
Average	3	3	3	3	3	2	3	2.6		3	3	3	3	3	3	2	3	
			PO M	ean					2.8				PSO	Mean				2.9
Strength of	РО С	orrela	ation			Stro	ong			Strength of PSO Correlation Strong								

Course Name: Wavelet Analysis Course Code: 21PMAE32

Course Objectives

 To establish the theory necessary to understand and use wavelets and related constructions

• To apply wavelets, filter banks and multi irresolution techniques to a problem.

	Semester – III		
Elective III B	Wavelet Analys	is	
Course Code: 21PMAE32	Hrs/week: 4	Hrs/Sem: 60	Credits: 4

Unit I

Motivation and Heuristics - Heuristics Treatment of the Wavelet Transform - Wavelet Transform - Wavelet Characterization of Smoothness - Haar Wavelet Expansion - Haar Functions and Haar Series - Haar Sums and Dyadic Projections - Completeness of the Haar Functions. (Chapter: 6, Sec: 6.1 - 6.3, except 6.3.4 - 6.3.7)

Unit II

Multi resolution Analysis - Orthonormal System and Riesz Systems - Scaling Equations and Structure Constants - From Scaling Function to MRA - Meyer Wavelets - From Scaling Function to Orthonormal Wavelet.

(Chapter: 6, Sec 6.4)

Unit III

Wavelets with Compact Support - From Scaling Filter to Scaling Function - Explicit Construction of Compact Wavelets - Smoothness of Wavelets - Cohen's Extension

(Chapter: 6, Sec: 6.5)

Unit IV

Convergence Properties of Wavelet Expansions - Wavelet Series in L^P Spaces - Jackson and Bernstein Approximation Theorems. (Chapter: 6, Sec: 6.6)

Unit V

Wavelets in Several Variables - Two important Examples - General Formulation of MRA and Wavelets in \mathbb{R}^d - Examples of Wavelets in \mathbb{R}^d . (Chapter: 6, Sec: 6.7)

Text Book:

1. Mark A. Pinsky. *Introduction to Fourier Analysis and Wavelets*. Published by the American Mathematical Society, First Indian Edition, 2015.

Books for Reference:

- 1. E. Hernandez and G. Weiss. A First Course on Wavelets. CRC Press, 1996.
- 2. L. Prasad & S.S. Iyengar. *Wavelet Analysis with Applications to Image Processing*. CRC Press, 1997.

Course Outcome:

CO. No.	Upon completion of this course, students will be able to	PSO	CL
		addressed	
CO-1	describe wavelet basis and characterize continuous and discrete wavelet transform	2	Un
CO-2	illustrate multi resolution analysis and identify various wavelets and evaluate their time frequency resolution properties	3	Un
CO-3	discuss and explain the main merits and limitations of wavelet analysis	2	An
CO-4	explain the properties and applications of wavelet transform	1	Un
CO-5	explain brief features and strength of transform beyond wavelet.	2	Un
CO-6	analyse the basis of the application of wavelet transforms to different fields	1,6	An

21PMAE32 - Wavelet Analysis

					РО									PSO				
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg
CO-1	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	2	2.8
CO-2	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	3	2	2.9

CO-3	3	3	3	3	3	2	2	3	2.8	3	3	3	3	3	3	2	3	2.9
CO-4	3	3	3	3	3	2	2	3	2.8	3	3	3	3	3	3	3	3	3
CO-5	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	3	2	2.9
CO-6	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	3	2	2.9
Average	3	3	3	3	3	2	2.6	2.3		3	3	3	3	3	3	2.6	2.3	
			РО М	ean					2.8				PSO	Mean				2.9
Strength of	РО С	orrela	ation			Str	ong			Strength of PSO Correlation Strong								

Course Name: Complex Analysis Course Code: 21PMAC41

Course Objectives

- To initiate the students to enjoy complex variables and to relate the problems with real life problems.
- To introduce the fundamental ideas of the functions of complex variables and developing
 a clear understanding of the fundamental concepts of complex analysis such as analytic
 function, complex integrals and a range of skills which will allow students to work
 effectively with the concepts.

	Semester	· IV	
Core XV	Complex An	alysis	
Course Code: 21PMAC41	Hrs/Week: 6	Hrs/Sem: 90	Credits: 4

Unit I

Analytic functions as mappings: Conformality: arcs and closed curves - analytic functions in regions - conformal mapping - length and area. Linear transformations: linear group - the cross ratio - symmetry - oriented circles - family of circles. Elementary conformal mappings: the use of level curves - a survey of elementary mappings - elementary Riemann surfaces - Problems related to SET/NET.

(Chapter 3: Sections 2, 3 and 4)

Unit II

Complex Integration Fundamental theorem: line integrals - rectifiable arcs - line integrals as functions of arcs - Cauchy's theorem for a rectangle - Cauchy's theorem in a disk. Cauchy's integral formula: the index of a point with respect to a closed curve - the integral formula - higher derivatives

(Chapter 4: Sections 1 and 2)

Unit III

Local properties of analytical functions: removable singularities - Taylor's theorem - zeros and poles - the local mapping - the maximum principle. The general form of Cauchy's theorem: chains and cycles - simple connectivity - homology - general statement of Cauchy's theorem - proof of Cauchy's theorem - locally exact differentials - multiply connected regions.

Unit IV

Calculus of Residues: the residue theorem - the argument principle - evaluation of definite integrals. Harmonic functions: definition and basic properties - the mean value property -Poisson's formula - Schwartz theorem - the reflection principle - Problems related to SET/NET.

(Chapter 4: Sections 5 and 6)

Unit V

Power series Expansions - Partial Fractions - Infinite Products - Canonical Products.

(Chapter 5: Sections 1 and 2.1, 2.2, 2.3)

Problems related to SET/NET is only for Internal Examination.

Text Book

1. Lars V.Ahlfors. *Complex Analysis*. McGraw Hill International Edition. Third Edition, 1979.

Books for Reference

- 1. Karunakaran.V. Complex Analysis. Narosa Publications, 2002.
- 2. S.Ponnusamy. Foundation of Complex Analysis. Narosa Publishing House, 2005.

Course Outcome

CO. No.	Upon completion of this course, students will be	PSO	CL
	able to	Addressed	
CO-1	define and analyze limits and continuity for complex	1,6	Re
	functions as well as consequences of continuity.		
CO-2	evaluate the complex contour integral directly and by	6	Re
	the fundamental theorem.		
CO-3	represent functions as Taylor, power and Laurent	6	Un
	series, classify singularities and poles, find the		
	residues and evaluate complex integrals using the		
	residue theorem.		
CO-4	apply the concept and consequences of analyticity	2,6	Ap
	and the Cauchy-Riemann equations and of results on		
	Harmonic and entire functions including the		
	fundamental theorem of algebra.		
CO-5	demonstrate accurate and efficient use of complex	6	An
	analysis techniques		
CO-6	apply the methods of complex analysis to evaluate	1,2	Ap
	definite integrals.		

21PMAC41 - Complex Analysis

РО	PSO

	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg
CO-1	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	2	2.8
CO-2	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.8
СО-3	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.8
CO-4	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.8
CO-5	3	3	3	3	3	2	3	2	2.8	3	3	3	3	3	3	2	3	2.9
CO-6	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.8
Average	3	3	3	3	3	2	2.3	2		3	3	3	3	3	3	2	2.2	
	l .	l	РО М	lean				ı	2.7	PSO Mean					I.		2.8	
Strength o	f PO C	orrela	ation			Stro	ong			Strength of PSO Correlation					n Strong			

Course Name: Functional Analysis Course Code: 21PMAC42

Course Objectives

- To provide a working knowledge of the basic properties of Banach spaces, Hilbert spaces, Banach Algebras and Functionals defined on a set of functions.
- To introduce the ideas and some of the fundamental theorems of Functional Analysis.

Semester IV											
Core XVI	Core XVI Functional Analysis										
Course Code: 21PMAC42	Hrs/Week: 6	Hrs/Semester: 90	Credits: 4								

Unit I

Banach spaces: Definition and Examples - Continuous linear transformation - The Hahn Banach theorem - The natural imbedding of N in N^{**}

(Chapter 9: Sections 46, 47, 48, 49)

Unit II

The open mapping theorem - The conjugate of an operator - Hilbert spaces: The Definition and some simple properties - Orthogonal complements - orthonormal sets - Problems related to SET/NET.

(Chapter 9: Sections 50, 51, Chapter 10: Sections 52, 53, 54)

Unit III

Conjugate space H^* - The adjoint of an operator - Self adjoint operators - Normal and unitary operators - Problems related to SET/NET.

(Chapter 10: Sections 55, 56, 57, 58)

Unit IV

Finite Dimensional spectral theory: Determinants and the spectrum of an operator - The spectral theorem-General Preliminaries: The Definition and some Examples - Regular and Singular points - Topological Divisors of Zero.

(Chapter 11: Sections 61, 62 Chapter 12: Sections 64, 65, 66)

Unit V

The Spectrum - The formula for the Spectral Radius - The Radical and Semi-simplicity. (Chapter 12: Sections 67, 68, 69)

Problems related to SET/NET is only for Internal Examination.

Text Book

1. G.F.Simmons. *Topology and Modern Analysis*. McGraw Hill International Editions.

Books for Reference

- 1. M.Thamban Nair. Functional Analysis A first course. Prentice Hall of India.
- 2. S. Ponnusamy. Functional Analysis. Narosa Publishing.

Course Outcome

CO. No.	Upon completion of this course, students will be able to	PSO	CL
		Addressed	
CO-1	apply the spectral theorem for compact self- adjoint operators and decide which properties an operator has.	5	Ap
CO 2		5	Un
CO-2	explain the various concepts of Banach Spaces.	3	UII
CO-3	attain a detailed knowledge about Hilbert Spaces.	2,5	Re
CO-4	discuss the Operator theory in Hilbert Spaces.	1,5	Un
CO-5	explain the concepts of different operators.	5	Un
CO-6	illustrate the statements and proof of important theorems and	1	Un
	explain the key steps in proofs sometimes with variation		

21PMAC42 - Functional Analysis

					PO					PSO								
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg
CO-1	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.8
CO-2	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	2	2.8

Strength of PO Correlation Strong							Strength of PSO Correlation Strong						Strong					
			PO M	ean					2.6	6 PSO Mean							2.8	
Average	3	3	3	3	3	2	2.2	2		3	3	3	3	3	3	2.2	2.5	
CO-6	3	3	3	3	3	2	3	2	2.6	3	3	3	3	3	3	3	3	3.0
CO-5	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	3	2.9
CO-4	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	2	3	2.9
CO-3	3	3	3	3	3	2	2	2	2.5	3	3	3	3	3	3	2	2	2.8

Course Name: Number Theory and Cryptography Course Code: 21PMAC43 Course Objectives

- To introduce the basic concepts of Number Theory such as Divisibility, Congruences,
 Congruences with Prime Modules, Quadratic Reciprocity and some functions of Number theory.
- To understand basics of cryptography and network security.

	Semester IV										
Core XVII N	Core XVII Number Theory and Cryptography										
Course Code:21PMAC43 Hrs/week: 5 Hrs/Sem:75 Credits: 4											

Unit I

Divisibility - primes - Congruences - Solutions of Congruences - Congruences of degree one.

(Text Book 1, Chapter: 1 & 2, Sections: 1.1, 1.2, 1.3, 2.1, 2.2, 2.3)

Unit II

Quadratic residues - quadratic reciprocity - The Jacobi symbol.

(Text Book 1, Chapter 3, Sections: 3.1, 3.2, 3.3)

Unit III

Greatest integer Function -Arithmetic functions- The Moebius inversion formula-Multiplication of Arithmetic functions.

(Text Book 1, Chapter: 4 Sections: 4.1, 4.2, 4.3, 4.4)

Unit IV

The equation $x^2 + y^2 = z^2$. The equation $x^4 + y^4 = z^2$ - sum of four and five squares -Waring's problem: Sum of fourth powers-sum of two squares.

(without Exercise problems) Unit V

The Basics of Cryptography: Encryption and decryption - What is cryptography? - Conventional cryptography - Public key cryptography - How PGP works - Keys - Digital Signatures - Digital certificates - Validity and trust - Certificate Revocation - What is passphrase? RSA: Principles of Public - key Cryptosystems - The RSA Algorithm.

(Text Book 2, Chapter 1, Text Book 3, Chapter 9)

Text Book

- 1. Ivan Niven and Herbert S. Zuckerman. *An introduction to the theory of numbers*. Wiley Eastern ltd, Third Edition, 1976.
- 2. PGP Corporation. *An introduction to Cryptography*. version 8.0, Released Oct, 2002.
- 3. William Stallings. *Cryptography and Network Security Principles and Practice*. Pearson India Education Services Pvt.Ltd, Seventh Edition.

Books for Reference

- 1. Harriet Griffin. *Elementary Theory of Numbers*. McGraw-Hall Book Company, INC 1954.
- 2. G.H. Hardy and E.M. Wright. *An Introduction to the theory of numbers*. Oxford university press, Sixth Edition, 2008.
- 3. Mohamed Barakat, Christian Eder and Timohanke. *An Introduction to Cryptography*. September 20, 2018.

Course Outcome

CO. No.	Upon completion of this course, students will be able to	PSO Addressed	CL
CO-1	define the key notions of algebraic number theory and outline	5	Re
	their interrelation.		
CO-2	calculate the most important number theoretical quantities	5	Re
	introduced during the course.		
CO-3	calculate and solve the system of linear congruences and	2,6	Re
	warning problem.		
CO-4	differentiate the greatest integer functions and arithmetic	1,6	An
	function.		
CO-5	explains the notions of public key encryption and digital	6	Un
	signatures.		

CO-6	describe and implement the specifics of some of the prominent	6	Re
	techniques for public key crypto systems and digital signature		
	schemes		

21PMAC43 - Number Theory and Cryptography

					PO					PSO								
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg
CO-1	3	3	3	3	3	2	2	2	2.6	3	3	3	3	3	3	3	2	2.9
CO-2	3	3	3	3	3	2	3	2	2.7	3	3	3	3	3	3	3	2	2.9
CO-3	3	3	3	3	3	2	3	2	2.7	3	3	3	3	3	3	3	2	2.9
CO-4	3	3	2	3	3	2	3	2	2.6	3	3	3	3	3	3	2	2	2.8
CO-5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	2.9
CO-6	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	2.9
Average	3	3	3	3	3	2.3	2.8	2.3		3	3	3	3	3	3	2.8	2	
PO Mean 2.								2.7				PSO	Mean				2.9	
Strength of	f PO C	Correla	ation			Str	ong			Strength of PSO Correlation					Strong			

Course Name: Differential Geometry Course Code: 21PMAE41

Course Objectives

- To focus on the geometry of curves and surfaces in 3-dimensional Euclidean space.
- To find and use the shortest paths on a surface and explore the relationship between the length of a curve and the area bounded by it.

Semester IV									
Elective IV A Differential Geometry									
Course Code: 21PMAE41 Hrs/Week :5 Hrs/Sem: 75 Credits: 4									

Unit I

The Theory of Space Curves: Introductory Remarks about Space Curves - Definitions - Arc Length - Tangent, Normal and Binormal - Curvature and Torsion of a curve given as the intersection of two Surfaces.

(Chapter 1: Sections 1, 2, 3, 4, 5)

Unit II

Contact between Curves and surfaces - Tangent Surface, Involutes and Evolutes. Intrinsic Equations, Fundamental Existence Theorem for Space Curves - Helices.

Unit III

The Metric: Local Intrinsic Properties of a Surface: Definition of a Surface - Curves on a Surface - Surfaces of Revolution - Helicoids - Metric - Direction Coefficients.

(Chapter 2: Sections 1, 2, 3, 4, 5, 6)

Unit IV

Families of Curves - Geodesics - Canonical Geodesic Equations - Normal Property of Geodesics.

(Chapter 2: Sections 7, 10, 11, 12)

Unit V

The Second and Fundamental form: The Second and Fundamental form - Principal curvatures - Lines of Curvature - Geodesic Parallel - Geodesic curvature.

(Chapter 2: Sections 14, 15 & Chapter 3: Sections 1, 2, 3)

Text Book

1. T.J.Wilmore. *An Introduction to Differential Geometry*. Oxford University Press, 2007.

Books for Reference

- Dirk J.Struik. Lectures on Classical Differential Geometry. Addison Wesley Publishing House, Second Edition,
- 2. William C.Graustein. Differential Geometry. New York: Dover Publications, 1962.

Course Outcome:

CO. No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO -1	construct a variety of geometrical objects.	1	Ap
CO-2	acquire the essential ideas about the theory of space curves.	6	Re
CO-3	analyze the different consequences and meanings of parallelism on Euclidean and hyperbolic planes.	1	An
CO-4	demonstrate the knowledge of family of curves, geodesics and the fundamental forms.	1,6	Un
CO-5	use concrete models to demonstrate geometric concepts	2	Ap
CO-6	evaluate the principal curvatures, the mean curvature and Gauss curvature of a given surface.	2,6	Ev

21PMAE41 - Differential Geometry

		PO								PSO								
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg
CO-1	3	3	3	3	3	3	3	2	2.8	3	3	3	3	3	3	2	3	2.9
CO-2	3	3	2	3	2	2	3	2	2.5	3	3	3	3	3	3	2	3	2.9
CO-3	3	3	2	3	2	2	3	2	2.5	3	3	3	3	3	3	2	3	2.9
CO-4	3	3	2	3	2	2	3	2	2.5	3	3	3	3	3	3	2	3	2.9
CO-5	3	3	3	3	3	3	3	2	2.8	3	3	3	3	3	3	2	3	2.9
CO-6	3	3	2	3	2	2	3	2	2.5	3	3	3	3	3	3	2	3	2.9
Average	3	3	2.3	3	2.3	2.3	3	2		3	3	3	3	3	3	2	3	2.9
PO Mean 2.6							PSO Mean							2.9				
Strength of PO Correlation Strong						Strength of PSO Correlation						Strong						

Course Name: Projective Geometry Course Code: 21PMAE42

Objectives

- To acquire the essential ideas and methods of Projective Geometry.
- To study the properties of geometric objects such as curves and surfaces in terms of algebraic equations

Semester IV										
Elective B	Elective B Projective Geometry									
Course Code: 21PMAE42	Hrs/Week :5	Hrs/Sem: 75	Credits: 4							

UNIT-I

Projective Geometry as an extension of high school geometry: Two approaches to projective geometry-An initial question-Projective invariants-Vanishing points - Vanishing lines-Some projective noninvariants-Betweenness-Division of a segment in a ratio-Desargues' Theorem-Perspectivity; projectivity-Harmonic tetrads; fourth harmonic-Further theorems on harmonic tetrads.

(Chapter 1: Sections 1-12)

UNIT-II

Projective Geometry as an extension of high school geometry: The cross – ratio-Fundamental Theorem of Projective Geometry-Further remarks on the cross – ratio-Construction

of the projective plane- Previous results in the constructed plane-Analytic construction of the projective plane. (Chapter 1: Sections 13-18)

UNIT-III

The axiomatic foundation: Unproved propositions and undefined terms-Requirements on the axioms and undefined terms-Undefined terms and axioms for a projective plane-Initial development of the system; the Principle of Duality-Consistency of the axioms-Other models-Independence of the axioms-Isomorphism-Further axioms-Consequences of Desargues' Theorem-Free planes.

(Chapter 2: Sections 1-11)

UNIT-IV

Establishing coordinates in a plane: Definitions of a field-Consistency of the field axioms-The analytic model - Geometric description of the operations plus and times- Setting up coordinates in the projective plane-The non commutative case.

(Chapter 3: Sections 1-6)

UNIT-V

Relations between the basic theorems & Axiomatic introduction of Higher - dimensional space: Higher - dimensional, especially 3-dimensional projective space-Desarguesian planes and higher - dimensional space. (Chapter 4 & 5: Sections 1-2)

Text Book:

1. A.Seidenberg. *Lectures In Projective Geometry*. New York: Van Nostrandrein hold Company, 1965.

Book for Reference:

1. Herbert Busemann and Paul J. Kelly. *Projective Geometry and Projective Matrics*. NewYork: Academic Press INC Publishers, 1953.

Course Outcomes

CO. No.	Upon completion of this course, students will be able to	PSO addressed	CL
CO -1	describe geometric objects and properties with the homogeneous coordinates of the projective plane	1	Ap
CO-2	study the angle between the corresponding lines in 3-dimensional space	5	Un
CO-3	demonstrate a deep understanding of the axiomatic approach to projective spaces	1	An
CO-4	perform calculations in desarguesian planes and projective 3- spaces	5	Un
CO-5	classify the structure of collineations of projective planes	1,6	Un
CO-6	demonstrate an understanding of theory of conics in field planes	2	Ap

21PMAE42 – Projective Geometry

		PO								PSO								
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	Avg	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5	PSO-6	PSO-7	PSO-8	Avg
CO-1	3	3	3	3	3	3	3	2	2.8	3	3	3	3	3	3	2	3	2.9
CO-2	3	3	2	3	2	2	3	2	2.5	3	3	3	3	3	3	2	3	2.9
CO-3	3	3	2	3	2	2	3	2	2.5	3	3	3	3	3	3	2	3	2.9
CO-4	3	3	2	3	2	2	3	2	2.5	3	3	3	3	3	3	2	3	2.9
CO-5	3	3	3	3	3	3	3	2	2.8	3	3	3	3	3	3	2	3	2.9
CO-6	3	3	2	3	2	2	3	2	2.5	3	3	3	3	3	3	2	3	2.9
Average	3	3	2.3	3	2.3	2.3	3	2		3	3	3	3	3	3	2	3	2.9
PO Mean 2.6										PSO	Mean				2.9			
Strength of PO Correlation Strong					Strength of PSO Correlation					5	Strong							

Attainment of Course Outcomes of the M.Sc Mathematics Programme

			Course Outcomes														
Course Code	Name of the Course	Programme Outcomes (PO) Programme Specific Outcomes (PSO)															
		PO- 1	PO- 2	PO-	PO- 4	PO- 5	PO-	PO-	PO-	PSO -1	PSO -2	PSO -3	PSO -4	PSO -5	PSO -6	PSO -7	PSO -8
21PMAC11	Groups and Rings	3	3	3	3	2.8	2	2	2	3	3	3	3	3	3	2.2	2.5
21PMAC12	Real Analysis	3	2.8	3	3	3	2.2	3	2	3	3	3	3	3	3	2	2.8
21PMAC13	Ordinary differential Equations	3	3	3	3	3	2	3	2	3	3	2	3	2.3	3	3	3
21PMAC14	Mathematical Statistics	3	3	3	3	3	2	2.6	2	3	3	3	3	3	3	2	2
21PMAE11	A. Combinatorics	3	3	3	3	3	2	2.9	2	3	3	3	3	3	2.2	2.8	2.8
21PMAE12	B. Fuzzy Sets	3	2.9	3	3	2.9	2	3	2.3	3	2.8	2.9	2.9	3	3	2.9	3
21PMAC21	Linear Algebra	3	3	2.9	3	2.9	2	2.9	2.3	3	2.9	3	3	3	2.3	3	2.9

Mean Overall Score)s ar orog			are	str	ong	ly co	rre	lated	d wi	th tl	ne C	COs
Average Correlation		3	3	2.9	3	2.9	2.1	2.6	2.1	3	2.9	3	3	3	2.9	2.3	2.6
21PMAE42	B. Projective Geometry	3	3	2.3	3	2.3	2.3	3	2	3	3	3	3	3	3	2	3
21PMAE41	A. Differential Geometry	3	3	2.3	3	2.3	2.3	3	2	3	3	3	3	3	3	2	3
21PMAC43	Number Theory and Cryptography	3	3	3	3	3	2.3	2.8	2.3	3	3	3	3	3	3	2.8	2
21PMAC42	Functional Analysis	3	3	3	3	3	2	2.2	2	3	3	3	3	3	3	2.2	2.5
21PMAC41	Complex Analysis	3	3	3	3	3	2	2.3	2	3	3	3	3	3	3	2	2.2
21PMAE32	B. Wavelet Analysis	3	3	3	3	3	2	2.6	2.3	3	3	3	3	3	3	2.6	2.3
21PMAE31	A. Fluid Mechanics	3	3	3	3	3	2	3	2.6	3	3	3	3	3	3	2	3
21PMAC35	Research Methodology	3	3	2	3	3	2.8	3	2.5	3	2	3	3	3	3	3	3
21PMAC34	Partial Differential Equations	3	3	3	3	3	2	2.6	2	3	3	3	3	3	2.2	2	3
21PMAC33	Measure Theory	3	3	3	3	3	2	2.6	2	3	3	3	3	3	3	2	2
21PMAC32	Graph Theory	3	3	3	3	3	2	2.5	2.2	3	3	3	3	3	3	2	2.3
21PMAC31	Topology	3	3	3	3	3	2.3	2.3	2	3	3	3	3	3	3	2.2	2
21PMAE22	B. Applied Algebra	3	3	3	3	3	2	2.6	2.2	3	3	3	3	3	3	2	2.5
21PMAE21	A. Operations Research	3	3	3	3	3	2	2.2	2	3	3	3	3	3	3	2	2.7
21PMAC25	Stochastic Processes	3	3	3	3	3	2	2.5	2.3	3	3	3	3	3	3	2	3
21PMAC24	Calculus of Variations and Integral Equations	3	3	3	2.9	3	2	2	2	3	2.8	3	3	3	2.9	2.3	3
21PMAC23	Classical Mechanics	3	3	3	3	3	2	2.5	2	3	3	3	3	3	2.2	2.2	2
21PMAC22	Mathematical Analysis	3	3	3	3	3	2.2	3	2.2	3	3	3	3	3	3	2	3